WO2013136729A1 - Manufacturing method for laminated board and printed wiring board - Google Patents

Manufacturing method for laminated board and printed wiring board Download PDF

Info

Publication number
WO2013136729A1
WO2013136729A1 PCT/JP2013/001432 JP2013001432W WO2013136729A1 WO 2013136729 A1 WO2013136729 A1 WO 2013136729A1 JP 2013001432 W JP2013001432 W JP 2013001432W WO 2013136729 A1 WO2013136729 A1 WO 2013136729A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper foil
copper
resin
plating
Prior art date
Application number
PCT/JP2013/001432
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 伊藤
大東 範行
Original Assignee
住友ベークライト株式会社
日本電解株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社, 日本電解株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020147028063A priority Critical patent/KR101528444B1/en
Priority to CN201380014295.1A priority patent/CN104170532B/en
Publication of WO2013136729A1 publication Critical patent/WO2013136729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0671Selective plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/108Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by semi-additive methods; masks therefor

Definitions

  • the present invention relates to a method for manufacturing a laminated board and a printed wiring board.
  • the semi-additive method is beginning to be performed as a method for efficiently forming a high-density and high-pattern conductor circuit layer on a printed wiring board substrate.
  • the printed wiring board manufacturing method using the semi-additive method is described in, for example, Patent Document 1 and Patent Document 2.
  • Patent Documents 1 and 2 In the manufacturing methods described in Patent Documents 1 and 2, first, a laminated board in which a copper foil is attached to one surface of an insulating layer is prepared, and a resist pattern is formed on the laminated board. Subsequently, a plating layer is filled in the openings of the resist pattern. Subsequently, the resist pattern is removed. Thereafter, the lower copper foil is etched using the plating layer pattern as a mask, thereby forming a conductor circuit composed of the plating layer and the copper foil.
  • a copper foil residue may be generated on a fine uneven portion formed on the surface of the insulating layer.
  • Etching residue of the copper foil remaining between the conductor circuits causes a short circuit such as an insulation failure of the conductor circuit as the miniaturization progresses. For this reason, it is preferable to remove the etching residue of the copper foil on the surface of the insulating layer.
  • a laminated plate used for an element mounting substrate comprising an insulating layer and a copper foil located on at least one surface of the insulating layer, and obtained by forming a conductor circuit by etching the copper foil
  • the laminate was placed in a sulfuric acid / hydrogen peroxide etching solution comprising 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide solution and having a liquid temperature of 30 ° C. ⁇ 1 ° C.
  • a laminate having an etching rate of the copper foil under the dipping conditions of 0.68 ⁇ m / min or more and 1.25 ⁇ m / min or less.
  • the inventors of the present invention have thought that by increasing the etching rate of the copper foil, it is possible to achieve both reduction of the etching residue of the copper foil and maintenance of the wiring shape.
  • the results of the etching rate evaluation method vary depending on the components of the etchant, the component concentration, and the liquid temperature. Therefore, by using sulfuric acid, pure water, and hydrogen peroxide solution as the etchant, determining the concentration of the components, and further assuming that the liquid temperature is 30 ° C. ⁇ 1 ° C. I found out.
  • the present inventors conducted various experiments on the copper etching rate under the preconditions.
  • the lower limit value of the copper etching rate was set to 0.68 ⁇ m / min or more, whereby the etching residue of the copper foil was As a result, the inventors have found that the wiring shape is improved and the present invention has been completed.
  • the process of preparing a laminated board provided with an insulating layer and the copper foil located in at least one surface of the said insulating layer The process of forming a conductor circuit by selectively removing the said copper foil
  • a method for manufacturing a printed wiring board is provided, wherein the laminated board is the laminated board described above.
  • a laminated board in which the etching residue of copper foil is reduced and the wiring shape is good.
  • (First embodiment) 1 and 2 are cross-sectional views showing process steps of the method for manufacturing a printed wiring board according to the first embodiment.
  • the manufacturing method of the printed wiring board 101 of the present embodiment includes the following steps. First, a laminate (copper-clad laminate 100) including an insulating layer 102 and a copper foil (copper foil layer 104) located on at least one surface of the insulating layer 102 is prepared. Next, a conductor circuit (conductor circuit 119) is formed by selectively removing the copper foil.
  • the printed wiring board 101 is used as an element mounting board.
  • the manufacturing method of the printed wiring board 101 of this Embodiment uses the laminated board (copper clad laminated board 100) obtained by forming a conductor circuit by etching a copper foil.
  • the etching rate of the copper foil (copper foil layer 104) is composed of 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide, and a liquid. It is specified as 0.68 ⁇ m / min or more and 1.25 ⁇ m / min or less under the condition that the laminate is immersed in a sulfuric acid / hydrogen peroxide etching solution having a temperature of 30 ° C. ⁇ 1 ° C.
  • the etching rate of the copper foil layer 104 is specified to be 0.68 ⁇ m / min or more. For this reason, in the manufacturing process of the printed wiring board 101, it can suppress that the copper foil layer 104 remains on the insulating layer 102 between the conductor circuits 119, and can make the wiring shape of the conductor circuit 119 favorable.
  • a copper clad laminate 10 with a carrier foil in which a copper foil layer 104 and a carrier foil layer 106 are bonded to both surfaces of an insulating layer 102 is prepared.
  • the copper clad laminate 10 with a carrier foil includes an insulating layer 102, a copper foil layer 104, and a carrier foil layer 106.
  • a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104.
  • the copper foil layer 104 is formed on both surfaces of the insulating layer 102, but the copper foil layer 104 may be formed only on one surface of the insulating layer 102.
  • a peelable carrier foil layer 106 is laminated on at least one surface of the copper clad laminate 100.
  • the copper clad laminate 100 (hereinafter sometimes referred to as a laminate) is not particularly limited.
  • a copper foil layer 104 is laminated on at least one surface of an insulating layer 102 having an insulating resin layer containing a base material.
  • a thing can be used (a fiber base material is abbreviate
  • the laminate may be a single layer or may have a multilayer structure. That is, as a laminated board, you may be comprised only by the core layer, However, You may use what has the buildup layer formed on the core layer.
  • a laminate in which a plurality of prepregs are stacked can be used.
  • the prepreg is not particularly limited, and can be obtained by, for example, a method of impregnating a base material such as glass cloth with a resin composition containing a curable resin, a curing agent, a filler, and the like.
  • a laminated board what superposed
  • the same material as that of the core layer may be used for the interlayer insulating layer of the buildup layer, but the base material or the resin composition may be different.
  • the insulating layer 102 corresponds to an insulating resin layer constituting a core layer or a build-up layer, and may be either a single layer or a multilayer structure.
  • An example using a laminated board having a build-up layer will be described later in the second embodiment.
  • a known resin used as an insulating material of a printed wiring board (hereinafter also referred to as an insulating resin composition) can be used.
  • curable resins having good heat resistance and chemical resistance are mainly used.
  • the said resin composition is not specifically limited, It is preferable that it is a resin composition containing the curable resin hardened
  • the curable resin examples include urea (urea) resin, melamine resin, maleimide compound, polyurethane resin, unsaturated polyester resin, resin having a benzoxazine ring, bisallyl nadiimide compound, vinyl benzyl resin, vinyl benzyl ether resin, Examples include benzocyclobutene resin, cyanate resin, and epoxy resin.
  • the curable resin is preferably a combination having a glass transition temperature of 200 ° C. or higher.
  • cyanate resin including prepolymer of cyanate resin
  • maleimide compound it is preferable to use a benzocyclobutene resin or a resin having a benzoxazine ring.
  • combining epoxy resin and / or cyanate resin with a high amount of fillers has the advantage of excellent flame retardancy, heat resistance, impact resistance, high rigidity, and electrical properties (low dielectric constant, low dielectric loss tangent) There is.
  • the improvement in heat resistance is that the glass transition temperature becomes 200 ° C. or higher after the curing reaction of the curable resin, the thermal decomposition temperature of the cured resin composition increases, and the reaction residue at 250 ° C. or higher. This is considered to be due to the reduction of the low molecular weight.
  • the improvement in flame retardancy is attributed to the fact that the benzene ring is easily carbonized (graphitized) and a carbonized portion is generated because of the high proportion of the benzene ring due to its structure because of the aromatic curable resin. I think that.
  • the resin composition may further contain a flame retardant as long as the effects of the present invention are not impaired, but a non-halogen flame retardant is preferred from the environmental aspect.
  • a flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd.
  • Phosphoric acid ester compounds such as PPQ manufactured by Clariant Co., Ltd., OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 and FX310 manufactured by Toto Kasei Co., Ltd. Examples thereof include phosphorus-containing phenoxy resins such as ERF001 manufactured by Co., Ltd.
  • organic nitrogen-containing phosphorus compounds include phosphate ester compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Seisakusho Co., Ltd. Examples thereof include phosphazene compounds.
  • the metal hydroxide include magnesium hydroxide such as UD650 and UD653 manufactured by Ube Materials Co., Ltd., CL310 manufactured by Sumitomo Chemical Co., Ltd., aluminum hydroxide such as HP-350 manufactured by Showa Denko Co., Ltd., and the like. It is done.
  • Examples of the epoxy resin used in the resin composition include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl novolac type epoxy resin, Anthracene type epoxy resin, dihydroanthracene type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkyl modified epoxy resin, alicyclic epoxy resin, polyol type epoxy resin , Glycidylamine, glycidyl ester, butadiene epoxidized compounds, hydroxyl group-containing silicone resins and epichlorohydrin Obtained compounds.
  • the epoxy resin is preferably a naphthalene type or arylalkylene type epoxy resin.
  • the aryl alkylene type epoxy resin refers to an epoxy resin containing one or more combinations of an aromatic group and an alkylene group such as methylene in the repeating unit, and is excellent in heat resistance, flame retardancy, and mechanical strength.
  • a naphthalene type or aryl alkylene type epoxy resin moisture absorption solder heat resistance (solder heat resistance after moisture absorption) and flame retardancy can be improved in the resulting laminate.
  • Naphthalene type epoxy includes DIC Corporation's HP-4700, HP-4770, HP-4032D, HP-5000, HP-6000, Nippon Kayaku Co., Ltd.
  • NC-7300L Nippon Steel Chemical Co., Ltd. ESN-375 manufactured by Nippon Kayaku Co., Ltd., NC-3000, NC-3000L, NC-3000-FH manufactured by Nippon Kayaku Co., Ltd., NC manufactured by Nippon Kayaku Co., Ltd. -7300L, ESN-375 manufactured by Nippon Steel Chemical Co., Ltd.
  • the cyanate resin used in the resin composition can be obtained, for example, by reacting a cyanogen halide compound with phenols.
  • cyanate resins include novolak cyanate resins such as phenol novolac type cyanate resins and cresol novolak type cyanate resins, naphthol aralkyl type cyanate resins, dicyclopentadiene type cyanate resins, biphenyl type cyanate resins, and bisphenol A type cyanate resins.
  • bisphenol type cyanate resins such as bisphenol AD type cyanate resin and tetramethyl bisphenol F type cyanate resin.
  • the resin composition preferably contains 10% by weight or more of this cyanate resin in the total solid content of the resin composition.
  • the heat resistance (glass transition temperature, thermal decomposition temperature) of a prepreg can be improved.
  • the thermal expansion coefficient of the prepreg can be reduced.
  • the stress strain of the multilayer printed wiring can be reduced.
  • the connection reliability can be greatly improved.
  • a novolak type cyanate resin represented by the following formula (1) is preferable.
  • a novolac cyanate resin represented by the formula (1) having a weight average molecular weight of 2,000 or more, more preferably 2,000 to 10,000, still more preferably 2,200 to 3,500, and a weight average molecular weight of 1500 or less, more It is preferably used in combination with a novolak-type cyanate resin represented by the formula (1) of 200 to 1,300 (hereinafter, “to” represents that it includes an upper limit value and a lower limit value unless otherwise specified). ).
  • the weight average molecular weight is a value measured by a gel-permeation chromatography method in terms of polystyrene.
  • n represents an integer of 0 or more.
  • the cyanate resin represented by following General formula (2) is also used suitably.
  • Cyanate resins represented by the following general formula (2) include naphthols such as ⁇ -naphthol and ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4-di (2- It is obtained by condensing naphthol aralkyl resin obtained by reaction with hydroxy-2-propyl) benzene and cyanic acid.
  • n is 1 or more, but is more preferably 10 or less.
  • n 10 or less
  • the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminate can be suppressed.
  • intramolecular polymerization hardly occurs at the time of synthesis, and the liquid separation property at the time of washing with water can be improved, so that the yield can be prevented from being lowered.
  • R represents a hydrogen atom or a methyl group
  • R may be the same or different
  • n represents an integer of 1 or more.
  • a dicyclopentadiene type cyanate resin represented by the following general formula (3) is also preferably used.
  • n in the following general formula (3) is more preferably 0 or more and 8 or less.
  • n is 8 or less, the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminated board can be prevented.
  • a dicyclopentadiene type cyanate resin it is excellent in low hygroscopicity and chemical resistance.
  • n represents an integer of 0 to 8.
  • the resin composition may further contain a curing accelerator.
  • a curing accelerator for a phenol resin, an epoxy resin, or a cyanate resin can be used.
  • the phenol resin is not particularly limited.
  • resol type phenol resins such as oil-modified resol phenol resins modified with the above.
  • phenol resin a phenol novolak or a cresol novolak resin is preferable.
  • biphenyl aralkyl-modified phenol novolac resin is preferable from the viewpoint of moisture absorption solder heat resistance.
  • One of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination.
  • the curing accelerator is not particularly limited.
  • organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), and the like.
  • tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl-4-methyl Imidazoles such as 5-hydroxyimidazole, 2-phenyl-4,5-dihydroxyimidazole, 2,3-dihydro-1H-pyrrolo (1,2-a) benzimidazole, phenolic compounds such as phenol, bisphenol A, nonylphenol, Examples include acetic acid, benzoic acid, sal, sal
  • the curable resin may contain a maleimide compound from the viewpoint of heat resistance.
  • the maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule. Specific examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, polyphenylmethanemaleimide, these maleimide compounds Or a prepolymer of a maleimide compound and an amine compound.
  • the curable resin may contain a phenoxy resin, a polyvinyl alcohol resin, a polyimide, a polyamide, a polyamideimide, a polyethersulfone resin, or a polyphenylene ether resin from the viewpoint of adhesion to the metal foil. .
  • the phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used.
  • the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton.
  • the heat resistance of the insulating layer 102 can be improved, and the adhesion of the wiring portion (conductor circuit 118) to the insulating layer 102 can be improved when a multilayer substrate is manufactured. It is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin. Thereby, the adhesiveness to the insulating layer 102 of a wiring part can further be improved at the time of manufacture of a multilayer substrate.
  • phenoxy resins examples include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954, YL6974, YL7482, YL7553, YL6793, YL7213, and YL7290 manufactured by Japan Epoxy Resin Co., Ltd.
  • the molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, and more preferably 10,000 to 60,000.
  • its content is not particularly limited, but it is preferably 1 to 40% by weight, more preferably 5 to 30% by weight based on the entire resin composition.
  • Examples of commercially available polyvinyl alcohol resins include Denka Butylal 4000-2, 5000-A, 6000-C and 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd., S-Rec BH Series, BX Series, KS manufactured by Sekisui Chemical Co., Ltd. Series, BL series, BM series and the like. Particularly preferred are those having a glass transition temperature of 80 ° C. or higher.
  • polyimide, polyamide, and polyamideimide Commercially available products of polyimide, polyamide, and polyamideimide include “Viromax HR11NN (registered trademark)” and “HR-16NN” and “HR15ET” manufactured by Toyobo Co., Ltd., and polyamide imide “KS” manufactured by Hitachi Chemical Co., Ltd. -9300 "and the like.
  • “Neoprim C-1210” manufactured by Mitsubishi Gas Chemical Company, Inc. soluble polyimide “Rika Coat SN20 (registered trademark)” and “Rika Coat PN20 (registered trademark)” manufactured by Shin Nippon Rika Co., Ltd., GE Plastics Co., Ltd.
  • polyethersulfone resin As a commercial item of polyethersulfone resin, a well-known thing can be used, for example, PES4100P, PES4800P, PES5003P, and PES5200P by Sumitomo Chemical Co., Ltd. can be mentioned.
  • polyphenylene ether resins examples include poly (2,6-dimethyl-1,4-phenylene) oxide, poly (2,6-diethyl-1,4-phenylene) oxide, and poly (2-methyl-6-ethyl-). 1,4-phenylene) oxide, poly (2-methyl-6-propyl-1,4-phenylene) oxide, poly (2,6-dipropyl-1,4-phenylene) oxide, poly (2-ethyl-6- And propyl-1,4-phenylene) oxide.
  • Examples of commercially available products include Japanese G.P. E.
  • reactive oligophenylene oxide having a terminal modified with a functional group is preferable.
  • compatibility with the curable resin is improved, and a three-dimensional cross-linked structure between the polymers can be formed, so that the mechanical strength is excellent.
  • 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4′-diol-2,6-dimethylphenol polycondensate described in JP-A-2006-28111 and A reaction product with chloromethylstyrene is mentioned.
  • Such reactive oligophenylene oxide can be produced by a known method. Commercial products can also be used.
  • the weight average molecular weight of the reactive oligophenylene oxide is preferably 2,000 to 20,000, and more preferably 4,000 to 15,000.
  • the weight average molecular weight of reactive oligophenylene oxide exceeds 20,000, it becomes difficult to dissolve in a volatile solvent.
  • the weight average molecular weight is less than 2,000, the crosslink density becomes too high, which adversely affects the elastic modulus and flexibility of the cured product.
  • the amount of the curable resin in the resin composition used in the present embodiment is not particularly limited as long as it is appropriately adjusted according to the purpose, but the curable resin is 10 to 10% in the total solid content of the resin composition. It is preferably 90% by weight, more preferably 20 to 70% by weight, still more preferably 25 to 50% by weight.
  • the epoxy resin is preferably 5 to 50% by weight in the total solid content of the resin composition, and the epoxy resin is preferably 5% by weight. Preferably it is ⁇ 25% by weight.
  • the total solid content of the resin composition is preferably 5 to 50% by weight of the cyanate resin, and more preferably 10 to 25% by weight of the cyanate resin.
  • the resin composition contains an inorganic filler.
  • borate aluminum nitride Boron nitride, silicon nitride, carbon nitride nitride, etc., titanium titanate Lithium, and titanium salt such as barium titanate. It is possible to use one kind among these alone, it can be used in combination of two or more.
  • magnesium hydroxide, aluminum hydroxide, boehmite, silica, fused silica, talc, calcined talc, and alumina are preferable.
  • Silica is particularly preferable in terms of low thermal expansion and insulation reliability, and spherical fused silica is more preferable.
  • aluminum hydroxide is preferable in terms of flame resistance.
  • the quantity of an inorganic filler can be increased in the said resin composition.
  • the inorganic filler has a high concentration in the resin composition, the drill wearability is deteriorated, but when the inorganic filler is boehmite, the drill wearability is preferable.
  • the particle diameter of the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter can be used, or an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one or two or more inorganic fillers having an average particle size of monodisperse and / or polydisperse may be used in combination.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 0.1 ⁇ m to 5.0 ⁇ m, and particularly preferably 0.1 ⁇ m to 3.0 ⁇ m. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the resin composition becomes high, which may affect workability during prepreg production.
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Shimadzu Corporation, general equipment such as SALD-7000).
  • the content of the inorganic filler is not particularly limited, but is preferably 10 to 90% by weight, further 30 to 80% by weight, and further 50 to 75% by weight based on the total solid content of the resin composition. It is preferable.
  • the content of the inorganic filler is preferably 50 to 75% by weight in the total solid content of the resin composition. If the inorganic filler content exceeds the above upper limit, the fluidity of the resin composition may be extremely poor, which may be undesirable, and if it is less than the lower limit, the strength of the insulating layer made of the resin composition is not sufficient, It may not be preferable.
  • the resin composition used in the present embodiment can also contain a rubber component.
  • the rubber particles that can be used in the present embodiment include core-shell type rubber particles and crosslinked acrylonitrile butadiene rubber particles. Cross-linked styrene butadiene rubber particles, acrylic rubber particles, silicone particles and the like.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.).
  • NBR crosslinked acrylonitrile butadiene rubber
  • XER-91 average particle size 0.5 ⁇ m, manufactured by JSR Corporation).
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include methabrene W300A (average particle size 0.1 ⁇ m), W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
  • the silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane.
  • Silicone rubber fine particles include KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.
  • the above resin composition may further contain a coupling agent.
  • the coupling agent improves the wettability of the interface between the curable resin and the inorganic filler, thereby uniformly fixing the resin and the inorganic filler to the base material, heat resistance, especially solder heat resistance after moisture absorption Is added to improve the quality.
  • the said coupling agent is not specifically limited, For example, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, a silicone oil type coupling agent etc. are mentioned. Thereby, the wettability with the interface of an inorganic filler can be made high, and thereby heat resistance can be improved more.
  • the amount of the coupling agent to be added is not particularly limited, but is preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic filler. If the content is less than the lower limit, the inorganic filler cannot be sufficiently coated, and thus the effect of improving the heat resistance may be reduced. If the content exceeds the upper limit, the reaction is affected, and the bending strength is reduced. There is a case.
  • the resin composition used in the present embodiment includes an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, a flame retardant aid such as silicone powder, and an ion scavenger as necessary. You may add additives other than the said components, such as.
  • the above resin composition preferably contains at least an epoxy resin, a cyanate resin, and an inorganic filler, from the viewpoint of easily realizing low linear expansion, high rigidity, and high heat resistance of the prepreg.
  • the solid content of the resin composition preferably contains 5 to 50% by weight of epoxy resin, 5 to 50% by weight of cyanate resin, and 10 to 90% by weight of inorganic filler, and further contains 5 to 50% of epoxy resin.
  • it contains ⁇ 25 wt%, cyanate resin 10 ⁇ 25 wt%, and inorganic filler 30 ⁇ 80 wt%.
  • the prepreg used in the present embodiment is obtained by impregnating or coating a base material with a varnish of a resin composition.
  • a base material well-known ones used for various types of laminates for electrical insulating materials are used. Can be used.
  • the material for the substrate include inorganic fibers such as E glass, D glass, NE glass, T glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. It is done.
  • These base materials have shapes such as woven fabric, non-woven fabric, low-ink, chopped strand mat, surfacing mat, etc., and the material and shape are selected depending on the intended use and performance of the molded product, and can be used alone or as required.
  • the thickness of the base material is not particularly limited, but usually about 0.01 to 0.5 mm is used, and the surface is treated with a silane coupling agent or the like, or mechanically opened and flattened. These are suitable in terms of heat resistance, moisture resistance and processability.
  • the prepreg is usually impregnated or coated with a resin so that the resin content is 20 to 90% by weight after drying, and is heated and dried at a temperature of 120 to 220 ° C. for 1 to 20 minutes. A semi-cured state (B stage state) can be obtained.
  • a laminated sheet can be obtained by laminating 1 to 20 sheets of this prepreg and laminating them by heating and pressing in a configuration in which an ultrathin copper foil with a carrier foil is disposed on both sides thereof.
  • the thickness of the plurality of prepreg layers varies depending on the application, but a thickness of 0.03 to 2 mm is usually preferable.
  • a laminating method a normal laminating method can be applied. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine or the like is used, and the temperature is usually 100 to 250 ° C., the pressure is 0.2 to 10 MPa, and the heating time is used.
  • Lamination can be performed under conditions of 0.1 to 5 hours, or lamination can be performed under conditions of lamination conditions of 50 to 150 ° C., 0.1 to 5 MPa, and vacuum pressure of 1.0 to 760 mmHg using a vacuum laminating apparatus.
  • the ultrathin copper foil with a carrier foil (copper foil layer 104) is formed with a bumpy electrodeposited layer (called burnt plating on the roughened surface of the ultrathin copper foil; see, for example, JP-A-9-195096). Or roughening surface treatment by oxidation treatment, reduction treatment, etching, or the like. Thereby, a bumped portion (hereinafter also referred to as a roughened foot portion) is formed on one surface of the bulk portion of the copper foil layer 104.
  • the copper foil layer 104 copper containing an additive metal component such as nickel or aluminum in addition to copper foil made of copper (excluding contaminants inevitably mixed in the manufacturing process) is used.
  • Foil may be used (in this case, the copper content is not particularly limited, but is preferably 90% by weight or more, more preferably 95% by weight or more based on the total weight of all metal components constituting the copper foil layer 104). It is preferably 99% by weight or more, and the additive metal component may be used alone or in combination of two or more.
  • a metal foil such as a nickel foil or an aluminum foil may be used instead of the copper foil layer 104.
  • the method for producing the copper foil used in the present embodiment is not particularly limited.
  • An inorganic compound or organic compound layer is formed, and a copper foil is formed on the release layer by plating.
  • the plating solution for example, copper sulfate or copper pyrophosphate can be used.
  • various additives may be added to the bath in consideration of the physical properties and smoothness of the copper foil.
  • the peelable type metal foil is a metal foil having a carrier and is a metal foil that can be peeled off by the carrier.
  • the formation of the copper foil on the release layer can be performed by, for example, cathodic electrolysis using a copper sulfate plating bath containing gelatin and chloride ions as additives.
  • the copper sulfate plating bath contains, for example, 15 to 35 ppm of gelatin having an average molecular weight of 5000 or less. Further, the copper sulfate plating bath contains, for example, a chloride ion concentration of 0.1 to 100 ppm, preferably 0.5 to 50 ppm, particularly preferably 1 to 25 ppm.
  • the formation of the copper foil is performed by using the carrier foil on which the release layer is formed as a cathode, performing electrolytic treatment using the copper sulfate plating bath, and copper plating on the release layer.
  • a method for forming a copper foil it is possible to form a copper foil that has an appropriate mechanical strength even after high-temperature heating, is excellent in etching properties, and is excellent in handling properties.
  • Such an effect results from the fact that the crystals constituting the copper foil can be made finer by adding gelatin.
  • the average molecular weight of gelatin is preferably 500 to 5000, and more preferably 1000 to 5000.
  • the average molecular weight of gelatin By setting the average molecular weight of gelatin to 500 or more, it is possible to suppress the gelatin added to the copper sulfate plating bath from being decomposed in an acidic solution and decomposed into an organic compound such as a low molecular weight amino acid. Thereby, it can suppress that the effect of preventing recrystallization by gelatin being taken in into a crystal grain boundary at the time of plating falls.
  • the gelatin concentration in the copper sulfate plating bath is preferably 15 to 35 ppm.
  • the gelatin concentration is 15 ppm or more, the effect of suppressing recrystallization by heating can be sufficiently obtained. For this reason, it becomes possible to maintain a fine crystal state after heating.
  • the gelatin concentration is 35 ppm or less, it is possible to suppress an increase in internal stress of the copper foil formed by plating. Thereby, it can suppress that an ultra-thin copper foil with a carrier foil curls, and a malfunction generate
  • the copper sulfate plating bath for example, a sulfuric acid copper sulfate plating bath containing copper sulfate pentahydrate, sulfuric acid, gelatin and chlorine is preferably used.
  • the concentration of copper sulfate pentahydrate in the copper sulfate plating bath is preferably 50 g / L to 300 g / L, more preferably 100 g / L to 200 g / L.
  • the concentration of sulfuric acid is preferably 40 g / L to 160 g / L, more preferably 80 g / L to 120 g / L.
  • the concentration of gelatin is as described above.
  • the chloride ion concentration is preferably 1 to 20 ppm, more preferably 3 to 10 ppm.
  • the solvent for the plating bath is usually water.
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 1 to 15 A / dm 2, more preferably 2 to 10 A / dm 2.
  • strike plating using a so-called good plating bath can be used before the electrolytic treatment using the copper sulfate plating bath to prevent the generation of pinholes.
  • the plating bath used for strike plating include a copper pyrophosphate plating bath, a copper citrate plating bath, a copper citrate nickel plating bath, and the like.
  • the copper pyrophosphate plating bath for example, a plating bath containing copper pyrophosphate and potassium pyrophosphate is suitable.
  • the concentration of copper pyrophosphate in the copper pyrophosphate plating bath is preferably 60 g / L to 110 g / L, more preferably 70 g / L to 90 g / L.
  • the concentration of potassium pyrophosphate is preferably 240 g / L to 470 g / L, more preferably 300 g / L to 400 g / L.
  • the solvent for the plating bath is usually water.
  • the pH of the plating bath is preferably 8.0 to 9.0, more preferably 8.2 to 8.8.
  • ammonia water or the like may be added (hereinafter the same).
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 0.5 to 10 A / dm 2 , more preferably 1 to 7 A / dm 2 .
  • the electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • a plating bath containing copper sulfate pentahydrate and trisodium citrate dihydrate is suitable.
  • the concentration of copper sulfate pentahydrate in the copper citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L.
  • the concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L.
  • the solvent for the plating bath is usually water.
  • the pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0.
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 .
  • the electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the copper nickel citrate plating bath for example, a plating bath containing copper sulfate pentahydrate, nickel sulfate hexahydrate and trisodium citrate dihydrate is suitable.
  • the concentration of copper sulfate pentahydrate in the copper nickel citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L.
  • the concentration of nickel sulfate hexahydrate is preferably 1 g / L to 10 g / L, more preferably 3 g / L to 8 g / L.
  • the concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L.
  • the solvent for the plating bath is usually water.
  • the pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0.
  • the temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C.
  • the current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 .
  • the electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the release layer is an inorganic compound or organic compound layer such as a metal oxide, and a known layer can be used as long as it can be peeled off even when subjected to heat treatment at 100 to 300 ° C. during lamination.
  • a metal oxide for example, zinc, chromium, nickel, copper, molybdenum, an alloy system, or a mixture of a metal and a metal compound is used.
  • an organic compound it is preferable to use what consists of 1 type, or 2 or more types selected from a nitrogen-containing organic compound, a sulfur-containing organic compound, and carboxylic acid.
  • the nitrogen-containing organic compound is preferably a nitrogen-containing organic compound having a substituent.
  • BTA 1,2,3-benzotriazole
  • CBTA carboxybenzotriazole
  • N ′ N '-Bis (benzotriazolylmethyl) urea
  • BTD-U 1H-1,2,4-triazole
  • TA 3-amino-1H— 1,2,4-triazole
  • ATA 3-amino-1H— 1,2,4-triazole
  • sulfur-containing organic compound examples include mercaptobenzothiazole (hereinafter referred to as “MBT”), thiocyanuric acid (hereinafter referred to as “TCA”), 2-benzimidazolethiol (hereinafter referred to as “BIT”), and the like. It is preferable to use it.
  • MBT mercaptobenzothiazole
  • TCA thiocyanuric acid
  • BIT 2-benzimidazolethiol
  • carboxylic acid it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid or the like.
  • a desired orientation is realized on the upper surface of the copper foil layer 104 of the present embodiment by appropriately controlling the manufacturing method such as increasing the electrolytic density or reducing the film thickness. be able to.
  • the lower surface 22 (the surface in contact with one surface of the insulating layer 102) of the copper foil layer 104 used in this embodiment is used to make the adhesion between the copper foil layer 104 and the insulating layer 102 at a practical level or higher.
  • the surface treatment may be performed. Examples of the surface treatment for the metal foil used for the copper foil layer 104 include rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. Any surface treatment means can be appropriately selected in accordance with the resin material constituting the insulating layer 102.
  • the rust prevention treatment is performed by forming a thin film on a metal foil by sputtering, electroplating, or electroless plating, for example, any one of metals such as nickel, tin, zinc, chromium, molybdenum, and cobalt, or an alloy thereof. Can be applied. From the viewpoint of cost, electroplating is preferable.
  • a complexing agent such as citrate, tartrate or sulfamic acid can be added in the required amount.
  • the plating solution is usually used in an acidic region and is performed at a temperature of room temperature (for example, 25 ° C.) to 80 ° C.
  • the plating conditions are appropriately selected from the range of current density of 0.1 to 10 A / dm 2 , energization time of 1 to 60 seconds, preferably 1 to 30 seconds.
  • the amount of the rust-proofing metal varies depending on the type of metal, but is preferably 10 to 2000 ⁇ g / dm 2 in total. If the rust preventive treatment is too thick, it may cause etching inhibition and deterioration of electrical characteristics, and if it is too thin, it may cause a reduction in peel strength with the resin.
  • the cyanate resin is contained in the resin composition constituting the insulating layer 102, it is preferable that the rust prevention treatment is performed with a metal containing nickel. This combination is useful in that there is little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.
  • an aqueous solution containing hexavalent chromium ions is preferably used.
  • the chromate treatment can be performed by a simple immersion treatment, but is preferably performed by a cathode treatment.
  • Sodium dichromate is preferably used under the conditions of 0.1 to 50 g / L, pH 1 to 13, bath temperature 0 to 60 ° C., current density 0.1 to 5 A / dm 2 , and electrolysis time 0.1 to 100 seconds. It can also carry out using chromic acid or potassium dichromate instead of sodium dichromate.
  • the chromate treatment is preferably performed on the rust preventive treatment. Thereby, the adhesiveness of an insulating resin composition layer (insulating layer 102) and metal foil (copper foil layer 104) can be improved more.
  • silane coupling agent used in the silane coupling treatment examples include epoxy-functional silanes such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-amino Amino-functional silanes such as propyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyl Olefin-functional silanes such as trimethoxysilane and vinyltris (2-methoxyethoxy) silane, acrylic-functional silanes such as 3-acryloxypropyltrimethoxysilane, and methacryl-functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3 - And mercapto-functional si
  • These coupling agents are used by dissolving in a solvent such as water at a concentration of 0.1 to 15 g / L, and applying the obtained solution to a metal foil at a temperature of room temperature to 50 ° C. Adsorb the silane coupling agent on the foil. A coating film is formed on the metal foil by these silane coupling agents being condensed and bonded to the hydroxyl group of the rust-preventing metal on the surface of the metal foil. After the silane coupling treatment, such bonding is stabilized by heating, ultraviolet irradiation or the like. In the heat treatment, for example, drying at a temperature of 100 to 200 ° C. for 2 to 60 seconds is preferable.
  • the ultraviolet irradiation is preferably performed in a wavelength range of 200 to 400 nm and 200 to 2500 mJ / cm 2 , for example.
  • the silane coupling treatment is preferably performed on the outermost layer of the metal foil.
  • the insulating resin composition constituting the insulating layer 102 contains a cyanate resin, it is preferably treated with an aminosilane-based coupling agent. This combination is useful with little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.
  • the silane coupling agent used for the silane coupling treatment preferably reacts with the insulating resin composition constituting the insulating layer 102 by heating at 60 to 200 ° C., more preferably 80 to 150 ° C. It is preferable.
  • the functional group in the said insulating resin composition and the functional group of a silane coupling agent react chemically, and it becomes possible to obtain the more excellent adhesiveness.
  • an epoxy resin that is liquid at room temperature is preferable to use as the insulating resin of the insulating resin composition used in this embodiment, and in this case, the viscosity at the time of melting is greatly reduced, so that the wettability at the adhesion interface is improved.
  • a chemical reaction between the epoxy resin and the silane coupling agent is likely to occur, and as a result, a strong peel strength can be obtained.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin having an epoxy equivalent of about 200 are preferable.
  • the insulating resin composition contains a curing agent
  • a thermosetting latent curing agent as the curing agent. That is, when the functional group in the insulating resin composition and the functional group of the silane coupling agent chemically react, the reaction temperature of the functional group in the insulating resin composition and the functional group of the silane coupling agent is the same as that of the insulating resin composition. It is preferable to select the curing agent so that it is lower than the temperature at which the curing reaction is initiated.
  • thermosetting latent curing agent for the insulating resin composition containing an epoxy resin include solid dispersion-heat-dissolving curing agents such as dicyandiamide, dihydrazide compounds, imidazole compounds, and amine-epoxy adducts, urea compounds, onium salts, Examples thereof include reactive group block type curing agents such as boron trichloride / amine salts and block carboxylic acid compounds.
  • the prepreg containing the insulating resin composition and the ultrathin copper foil with the carrier foil are laminated and integrated by the above-described method, whereby the copper clad laminate 10 with the carrier foil as shown in FIG. Can be obtained.
  • the copper clad laminate 100 having the copper foil layers 104 on both surfaces of the insulating layer 102 is obtained by peeling off the carrier foil layer 106.
  • the present invention is not limited thereto, and the copper foil layer 104 may be formed on at least one surface of the insulating layer 102 or may be formed on the entire surface or a part of the insulating layer 102.
  • the copper foil layer 104 of this Embodiment has a bulk part and a roughening foot part.
  • the etching rate of the copper foil layer 104 (thin layer copper foil) under the above-described conditions is 0.68 ⁇ m / min or more and 1.25 ⁇ m / min or less, more preferably 0.68 ⁇ m / min or more and 1.24 ⁇ m / min. Or less, more preferably 0.69 ⁇ m / min or more and 1.23 ⁇ m / min or less.
  • the etching rate of the copper foil layer 104 described here particularly indicates only the etching rate of the bulk portion.
  • the etching rate of the copper foil layer 104 by setting the etching rate of the copper foil layer 104 to the lower limit value or more, the etching residue of the copper foil layer 104 can be reduced and the wiring shape can be improved.
  • the etching rate of the copper foil by setting the etching rate of the copper foil to the upper limit value or less, it is possible to prevent a notch from being formed in the side wall of the copper foil layer 104 and to reduce the adhesion between the wiring and the insulating layer. That is, when etching up to the roughened foot portion of the copper foil layer 104, it is possible to suppress the occurrence of abnormal constriction in the bulk portion of the copper foil layer 104.
  • the etching rate of the bulk part of copper foil can be measured with the following method.
  • 4-1 Weigh 60 g of 95% sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and place in a 1 L beaker.
  • 4-2 Put pure water into the beaker used in 4-1 to make a total of 1000 cc.
  • 4-3 Stir with a magnetic stirrer at 30 ° C. ⁇ 1 ° C. for 3 minutes.
  • 4-4 Weigh 20 cc of 34.5% hydrogen peroxide water (Kanto Chemical Co., Ltd., deer grade 1), put it in the beaker used in 4-1, make a total of 1020 cc, then 3 minutes at 30 ° C ⁇ 1 ° C Stir.
  • an etching solution containing 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide water is obtained. 5.
  • the sample piece is immersed in the etching solution (liquid temperature 30 ° C. ⁇ 1 ° C., stirring condition magnetic stirrer, 250 rpm). 6).
  • the weight W1 of the sample piece is measured every 30 seconds (including the substrate weight) until the bulk portion of the ultrathin copper foil is completely etched. 7).
  • the slope K is calculated using the method of least squares between 0 and 150 seconds.
  • Etching rate ( ⁇ m / min) K (g / sec ⁇ m 2 ) ⁇ 8.92 (copper specific gravity g / cm 3 ) ⁇ 60 (sec / min)
  • the difference in Vickers hardness of the copper foil layer 104 before and after heat treatment at 230 ° C. for 1 hour is preferably 0 Hv or more and 50 Hv or less, more preferably 0 Hv or more and 30 Hv or less.
  • the recrystallization of the copper foil layer 104 proceeds by heating and the crystal grain size is increased, thereby suppressing the etching rate from being slowed or after etching. It is possible to suppress accumulation of distortion of the fine circuit.
  • the absolute value of the difference in Vickers hardness of the copper foil layer 104 before and after the heat treatment at 230 ° C. for 1 hour is preferably 0 Hv or more and 50 Hv or less, more preferably 0 Hv or more and 30 Hv or less. .
  • the copper foil layer 104 has a Vickers hardness after heat treatment at 230 ° C. for 1 hour, preferably from 180 Hv to 240 Hv, more preferably from 185 Hv to 235 Hv.
  • a Vickers hardness after heat treatment at 230 ° C. for 1 hour, preferably from 180 Hv to 240 Hv, more preferably from 185 Hv to 235 Hv.
  • the Vickers hardness can be measured by, for example, the following method. That is, the measurement of Vickers hardness is performed at 23 ° C. using a micro hardness meter (model number MVK-2H) manufactured by Akashi Corporation according to JIS Z 2244 according to the following procedure.
  • the ultrathin copper foil with carrier foil formed up to the copper foil layer is left in an oven (nitrogen atmosphere) heated to 230 ° C. for 1 hour, and then cut into 10 ⁇ 10 mm squares.
  • An indentation is made on the cut sample under conditions of a load speed of 3 ⁇ m / second, a test load of 5 gf, and a holding time of 15 seconds, and Vickers hardness is calculated from the measurement result of the indentation.
  • the crystal grain size of the cross section after heat treatment at 230 ° C. for 1 hour is preferably 2.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and further preferably 0.25 ⁇ m or more and 0. .5 ⁇ m or less.
  • the crystal grain size of the copper foil layer 104 By setting the crystal grain size of the copper foil layer 104 to the upper limit value or less, it is possible to prevent the circuit linearity after etching from being lowered.
  • By setting the crystal grain size of the copper foil layer 104 to the lower limit value or more it is possible to suppress the internal stress (tensile stress) before heating after the thin copper layer plating from becoming too high, and the entire ultrathin copper foil with support is curled. As a result, it is possible to suppress the occurrence of problems during conveyance.
  • the crystal grain size of the copper foil layer 104 can be measured by the following method. That is, the crystal grain size of the copper foil layer 104 was measured according to JIS H 0501. The specific procedure is as follows. First, a laminated board (copper-clad laminated board 100) is processed with a FIB (focused ion beam) processing apparatus, and a SIM (Scanning Ion Microscope) observation photograph is taken. The crystal grain size of the cross section of the photograph taken is calculated from the standard photograph of the comparative method specified in JIS H 0501.
  • FIB focused ion beam
  • SIM Sccanning Ion Microscope
  • the copper foil layer 104 (particularly, by reducing the crystal grain size of the copper foil layer 104, reducing the change in Vickers hardness after heating, increasing the etching rate of the roughened foot portion, etc.)
  • the etching rate of the bulk portion can be increased.
  • the etching rate of the roughened foot portion is usually slower than that of the bulk portion, but can be increased by reducing the electrolytic density, for example.
  • the film thickness of the copper foil layer 104 can be arbitrarily set according to the application.
  • the film thickness of the copper foil layer 104 is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and more preferably 1 ⁇ m or more and 4 ⁇ m or less.
  • a through hole 108 for interlayer connection penetrating from the upper surface to the lower surface is formed in the copper clad laminate 100.
  • Various known means can be used as a method of forming the through hole 108.
  • a drill or the like is used from the viewpoint of productivity.
  • a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG is suitable.
  • At least a catalyst nucleus can be provided on the copper foil layer 104, but in this embodiment, the catalyst nucleus is provided on the entire surface of the copper foil layer 104 and on the inner wall surface of the through hole 108.
  • the catalyst nucleus is not particularly limited.
  • a noble metal ion or palladium colloid can be used.
  • an electroless plating layer is formed using this catalyst nucleus as a nucleus.
  • smear removal with a chemical solution or the like may be performed on the surface of the copper foil layer 104 or the through hole 108. good.
  • the desmear treatment is not particularly limited, and is a wet method using an oxidant solution having an organic substance decomposing action, and an organic substance by irradiating a target object with active species (plasma, radical, etc.) having a strong oxidizing action directly.
  • a known method such as a dry method such as a plasma method for removing the residue can be used.
  • Specific examples of the wet desmear treatment include a method in which the resin surface is subjected to a swelling treatment, etched by an alkali treatment, and then subjected to a neutralization treatment.
  • a thin electroless plating layer 110 is formed on the copper foil layer 104 provided with catalyst nuclei and the inner walls of the through holes 108 by electroless plating.
  • the electroless plating layer 110 electrically connects the copper foil layer 104 on the upper surface of the insulating layer 102 and the copper foil layer 104 on the lower surface thereof.
  • electroless plating for example, one containing copper sulfate, formalin, complexing agent, sodium hydroxide or the like can be used.
  • it is preferable to stabilize the plating film by performing a heat treatment at 100 to 250 ° C. after the electroless plating. A heat treatment at 120 to 180 ° C.
  • the average thickness of the electroless plating layer 110 may be any thickness that allows the next electroplating to be performed. For example, about 0.1 to 1 ⁇ m is sufficient.
  • the inside of the through hole 108 may be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
  • a resist layer 112 having a predetermined opening pattern is formed on the electroless plating layer 110 provided on the copper foil layer 104.
  • This opening pattern corresponds to a conductor circuit pattern described later. Therefore, the resist layer 112 is provided so as to cover the non-circuit formation region on the copper foil layer 104. In other words, the resist layer 112 is not formed in the conductive circuit formation region on the through hole 108 and the copper foil layer 104.
  • the resist layer 112 is not particularly limited, and a known material can be used, but liquid and dry films can be used. In the case of forming fine wiring, it is preferable to use a photosensitive dry film or the like as the resist layer 112.
  • the resist layer 112 for example, a photosensitive dry film is laminated on the electroless plating layer 110, the non-circuit formation region is exposed and photocured, and the unexposed portion is dissolved and removed with a developer. The remaining cured photosensitive dry film becomes the resist layer 112. It is preferable that the thickness of the resist layer 112 be equal to or greater than the thickness of the conductor (plating layer 114) to be subsequently plated.
  • a plating layer 114 is formed by electroplating at least inside the opening pattern of the resist layer 112 and on the electroless plating layer 110.
  • the copper foil layer 104 serves as a power feeding layer.
  • the plating layer 114 may be provided continuously over the upper surface of the insulating layer 102, the inner wall of the through hole 108, and the lower surface thereof.
  • Such electroplating is not particularly limited, but a known method used in ordinary printed wiring boards can be used. For example, in a state where the plating solution is immersed in a plating solution such as copper sulfate, an electric current is supplied to the plating solution. A method such as flowing a stream can be used.
  • the thickness of the plating layer 114 is not particularly limited as long as it can be used as a circuit conductor.
  • the thickness is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m.
  • the plating layer 114 may be a single layer or may have a multilayer structure.
  • the material of the plating layer 114 is not particularly limited, and for example, copper, copper alloy, 42 alloy, nickel, iron, chromium, tungsten, gold, solder, or the like can be used.
  • the resist layer 112 is removed using an alkaline stripping solution, sulfuric acid, a commercially available resist stripping solution, or the like.
  • the electroless plating layer 110 and the copper foil layer 104 other than the region where the plating layer 114 is formed are removed.
  • a technique for removing the copper foil layer 104 for example, soft etching (flash etching) or the like is used.
  • stacking the copper foil layer 104 and the metal layer 116 (the electroless-plating layer 110 and the plating layer 114) can be formed.
  • the etching solution used for the soft etching of this embodiment will be described below.
  • the etching solution is not particularly limited.
  • circuit formation tends to be deteriorated because the exchange of the solution is inevitably worsened for fine portions of the wiring.
  • reaction-limited etching solution for example, one containing hydrogen peroxide and an acid not containing a halogen element as main components can be mentioned. Since hydrogen peroxide is used as the oxidizing agent, strict etching rate control becomes possible by managing the concentration. If a halogen element is mixed in the etching solution, the dissolution reaction tends to be diffusion-limited.
  • acid not containing halogen nitric acid, sulfuric acid, organic acid, and the like can be used, but sulfuric acid is preferable because it is inexpensive.
  • sulfuric acid and hydrogen peroxide are the main components, the respective concentrations are preferably 5 to 300 g / L and 5 to 200 g / L from the viewpoints of etching rate and liquid stability. Examples thereof include ammonium persulfate, sodium persulfate, and sodium persulfate.
  • the copper clad laminate 100 may be immersed in an etching solution stored in a liquid storage container such as a beaker, or the etching solution may be applied to the copper foil layer 104 by a shower method.
  • a conductor circuit 118 having a desired shape can be obtained.
  • the printed wiring board 200 in which the conductor circuit 118 is formed on both surfaces of the insulating layer 102 is obtained.
  • a solder resist layer 120 may be formed so as to cover the insulating layer 102 and a part of the conductor circuit 118.
  • the solder resist layer 120 for example, a filler or a substrate excellent in insulating properties may be included, and a heat-resistant resin composition such as a photosensitive resin, a curable resin, and a thermoplastic resin is used.
  • the first plating layer 122 and the second plating layer 124 may be further formed on the conductor circuit 118 provided with the opening of the solder resist layer 120.
  • the metal layer 116 may have a multilayer structure of two or more.
  • a gold plating layer can be adopted.
  • the gold plating method may be a conventionally known method, and is not particularly limited. For example, electroless nickel plating is performed on the plating layer 114 to about 0.1 to 10 ⁇ m, and displacement gold plating is performed to 0.01 to 0. There is a method of performing electroless gold plating about 0.1 to 2 ⁇ m after about 5 ⁇ m. As a result, the printed wiring board 202 shown in FIG. 2D-1 is obtained. In addition, as shown in FIG. 2D-2, the first plating layer 122 and the second plating layer 124 may be formed around the conductor circuit 118 without forming the solder resist layer 120. .
  • a semiconductor device (not shown) can be mounted on these printed wiring boards 200, 202, and 204 to obtain a semiconductor device.
  • 3 to 5 are cross-sectional views showing the steps of the manufacturing process of the printed wiring board manufacturing method according to the third embodiment.
  • the printed wiring board manufacturing method of the third embodiment uses, for example, the printed wiring boards 200, 202, and 204 obtained in the second embodiment as inner layer circuit boards, and builds on the inner layer circuit boards. An up layer is further formed.
  • the printed wiring board 200 obtained in FIG. 2C is adopted as the inner layer circuit board.
  • the inner layer circuit (conductor circuit 118) of the printed wiring board 200 is subjected to a roughening process.
  • the roughening treatment means performing a chemical treatment, a plasma treatment, or the like on the surface of the conductor circuit.
  • a blackening treatment using oxidation reduction or a chemical solution treatment using a known roughening solution of sulfuric acid-hydrogen peroxide system can be used. Thereby, the adhesiveness of the interlayer insulation material which comprises the insulating layer 130, and the conductor circuit 118 of the printed wiring board 200 can be improved.
  • the inner layer circuit board is not particularly limited in place of the printed wiring board 200 obtained in the second embodiment, but the resin composition does not include a prepreg or a base material by a plated through hole method, a build-up method, or the like.
  • a normal multilayer printed wiring board in which physical layers and the like are laminated can also be used.
  • the conductor circuit layer serving as the inner layer circuit may be formed by a conventionally known circuit forming method.
  • through-holes are formed by drilling, laser processing, etc. on the laminate (a laminate obtained by laminating multiple prepregs) and metal-clad laminate as the core layer. Then, the inner circuit on both sides can be electrically connected by plating or the like.
  • an insulating layer 130 prepreg
  • a copper foil layer 105 with a carrier foil layer 107 carrier foil
  • carrier foil carrier foil
  • a part of the insulating layer 130 and the copper foil layer 105 is removed to form a hole 109.
  • a part of the surface of the conductor circuit 118 is exposed at the bottom surface of the hole 109.
  • the method of forming the hole 109 is not particularly limited, and for example, a method of forming a blind via hole having a hole diameter of 100 ⁇ m or less using a gas laser such as carbon dioxide or excimer or a solid laser such as YAG is used. it can.
  • the hole 109 is shown as a non-through hole in FIG. 3D, it may be a through hole. In the case of a through hole, it may be formed by laser irradiation or using a drilling machine.
  • a thin electroless plating layer 111 is formed on the conductor circuit 118 provided with the above-described catalyst nucleus, on the inner wall of the hole 109, and on the copper foil layer 105.
  • the electroless plating layer 111 is formed in the same manner as the electroless plating layer 110 described above.
  • desmear treatment such as smear removal with a chemical solution may be performed.
  • the thickness of the electroless plating layer 110 may be any thickness that allows subsequent electroplating to be performed, and about 0.1 to 1 ⁇ m is sufficient.
  • the inside of the hole 109 (blind via hole) can be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
  • a resist layer 113 having an opening pattern corresponding to the conductor circuit pattern is formed on the electroless plating layer 110.
  • the non-circuit forming portion is masked by forming the resist layer 113.
  • the thickness of the resist layer 113 is preferably set to be approximately the same as or thicker than that of the conductor circuit to be subsequently plated.
  • a plating layer 132 is formed inside the opening pattern of the resist layer 113.
  • the plating layer 132 may be formed on the conductor circuit 118 inside the hole 109 or may be formed on the electroless plating layer 111 inside the opening pattern.
  • the electroplating for forming the plating layer 132 can use the same technique as that for the plating layer 114 described above.
  • the thickness of the plating layer 132 may be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m.
  • the resist layer 113 is peeled in the same manner as the resist layer 112 described above.
  • the copper foil layer 105 and the electroless plating layer 111 are removed by soft etching (flash etching) in the same manner as the copper foil layer 104 described above.
  • the conductor circuit pattern comprised from the copper foil layer 105, the electroless-plating layer 111, and the plating layer 132 can be formed.
  • vias and pads that are electrically connected to the conductor circuit 118 can be formed by the plating layer 132.
  • the printed wiring board 201 is obtained as described above.
  • a solder resist layer 121 may be formed on the insulating layer 130, the conductive circuit pattern plating layer 132, and a part of the pad plating layer 132.
  • the solder resist layer 121 the same thing as the above-mentioned solder resist layer 120 can be used.
  • a first plating layer 123 and a second plating layer 125 made of, for example, a nickel plating layer and a gold plating layer are further formed on the plating layer 132 in which the opening of the solder resist layer 121 is provided. May be.
  • the printed wiring board 203 shown in FIG. 5C-1 is obtained. Further, as shown in FIG.
  • the first plating layer 123 and the second plating layer 125 described above are formed around the conductor circuit pattern and the pad without forming the solder resist layer 121. May be formed.
  • the printed wiring board 205 shown in FIG. 5C-2 is obtained. Also in the second embodiment, the same effect as the first embodiment can be obtained.
  • FIG. 6 (a) the copper clad laminated board 10 with a carrier foil is prepared.
  • FIG. 6 (b) the carrier foil layer 106 is removed from the copper clad laminate 10 with the carrier foil by peeling off.
  • FIG. 6C a resist layer 112 having a predetermined opening pattern is formed on the remaining copper foil layer 104.
  • a plating layer (metal layer 115) is formed by plating in the opening pattern of the resist layer 112 and on the copper foil layer 104 (FIG. 6D). Subsequently, as shown in FIG.
  • the resist layer 112 is removed. Thereby, the pattern of the predetermined metal layer 115 can be selectively formed on the copper foil layer 104. Thereafter, as shown in FIG. 6F, the copper foil layer 104 in the region not covered with the metal layer 115 is removed by, for example, soft etching. After such a step of removing the copper foil layer 104, the pattern of the conductor circuit 119 can be formed by the remaining copper foil layer 104 and the metal layer 115.
  • the printed wiring board 101 of the third embodiment is obtained. In the third embodiment, the same effect as in the first embodiment can be obtained.
  • the copper clad laminated board 10 with carrier foil is prepared.
  • a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104.
  • the carrier foil layer 106 is peeled from the copper clad laminated board 10 with carrier foil.
  • a metal layer 115 (plating layer) is formed on the entire surface of the copper foil layer 104 by plating.
  • FIG. 7C a metal layer 115 (plating layer) is formed on the entire surface of the copper foil layer 104 by plating.
  • a resist layer 112 having a predetermined opening pattern is formed on the plane-shaped metal layer 115.
  • the metal layer 115 and the copper foil layer 104 in the opening pattern of the resist layer 112 are removed by, for example, etching.
  • the resist layer 112 is removed.
  • the pattern of the conductor circuit 119 comprised from the copper foil layer 104 and the metal layer 115 can be formed.
  • a fine circuit processing of an ultrathin copper foil with a carrier foil, a fine circuit shape, a method of manufacturing a printed wiring board excellent in insulation reliability, and the printed wiring board It becomes possible to provide.
  • the printed wiring board manufacturing method of the present embodiment is not only for forming a conductor circuit layer on both sides of a printed wiring board substrate, but also for forming a conductor circuit layer only on one side of the printed wiring board substrate. Can be applied. Further, as shown in FIG. 2 (c), the double-sided printed wiring board can be used as the inner layer circuit board, and the case of the multilayer printed wiring board of the third embodiment can also be applied. Therefore, any of a single-sided printed wiring board, a double-sided printed wiring board, and a multilayer printed wiring board can be produced by the method for producing a printed wiring board of the present embodiment.
  • a release layer formation tank (nickel sulfate hexahydrate: 30 g / L, sodium molybdate dihydrate: 3 g / L, trisodium citrate dihydrate: 30 g / L, liquid temperature: 30 ° C.) was used for 5 seconds at a current density of 20 A / dm 2 to form a release layer on the glossy surface of the carrier foil.
  • a bulk portion (hereinafter referred to as a bulk copper layer) was formed on the release layer.
  • the bulk copper layer was formed as follows.
  • electrolytic treatment was performed for 15 seconds at a current density of 2.0 A / dm 2 using a plating bath (copper pyrophosphate: 80 g / L, potassium pyrophosphate: 320 g / L, ammonia water: 2 ml / L, liquid temperature: 40 ° C.).
  • a first bulk copper layer was formed on the release layer.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBH, weight average molecular weight (MW) 5000): 15 ppm, chloride ion: 5 ppm, liquid
  • the second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
  • the current density was 5 A / dm after electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds. 2 for 70 seconds to form a roughened foot portion (hereinafter referred to as a roughened copper layer) on the bulk copper layer.
  • electrolytic treatment was performed at a current density of 0.5 A / dm 2 for 2.5 seconds using a rust prevention treatment tank (sodium dichromate dihydrate: 3.5 g / L, liquid temperature 28 ° C.) to prevent rust. Processed.
  • Production Example 2 An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
  • the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer.
  • a plating bath copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBF, weight average molecular weight (MW) 3000): 20 ppm, chloride ion: 5 ppm, liquid
  • the second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PA-10, weight average molecular weight (MW) 1000): 25 ppm, chloride ion: 5 ppm
  • a liquid temperature of 40 ° C. for 150 seconds at a current density of 3.5 A / dm 2 to form a second bulk copper layer on the first bulk copper layer.
  • Production Example 4 An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
  • the bulk copper layer was formed as follows. First, current density using a plating bath (copper sulfate pentahydrate: 30 g / L, nickel sulfate hexahydrate: 5 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) Electrolytic treatment was carried out at 2.0 A / dm 2 for 15 seconds to form a first bulk copper layer on the release layer.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PA-10, weight average molecular weight (MW) 1000): 35 ppm, chloride ion: 5 ppm
  • a bulk copper layer was formed.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBH, weight average molecular weight (MW) 5000): 30 ppm, chloride ion: 5 ppm, liquid
  • the second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
  • plating bath copper sulfate pentahydrate: 150 g / L, sulfuric acid: 150 g / L, gelatin (manufactured by Nippi, trade name PBH, weight average molecular weight (MW) 5000): 15 ppm, chloride ion: 5 ppm
  • Electrolytic treatment was performed at a current density of 10 A / dm 2 using a liquid temperature of 40 ° C. for 180 seconds to form a bulk copper layer on the release layer.
  • the current density was 5 A / dm after electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds. 2 for 70 seconds to form a roughened copper layer on the bulk copper layer.
  • electrolytic treatment was performed at a current density of 0.5 A / dm 2 for 2.5 seconds using a rust prevention treatment tank (sodium dichromate dihydrate: 3.5 g / L, liquid temperature 28 ° C.) to prevent rust. Processed.
  • Production Example 7 An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
  • the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer.
  • a plating bath copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.
  • electrolytic treatment is performed at a current density of 3.5 A / dm 2 for 150 seconds.
  • a second bulk copper layer was formed on the first bulk copper layer. Thereby, a bulk copper layer was formed.
  • Production Example 8 An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
  • the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer.
  • a plating bath copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.
  • a plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name: PBF, weight average molecular weight (MW) 3000): 20 ppm, liquid temperature: 40 ° C.)
  • Electrolytic treatment was performed at a current density of 3.5 A / dm 2 for 150 seconds to form a second bulk copper layer on the first bulk copper layer. Thereby, a bulk copper layer was formed.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name AP, weight average molecular weight (MW) 8000): 30 ppm, chloride ion: 5 ppm, liquid
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name AP, weight average molecular weight (MW) 8000): 30 ppm, chloride ion: 5 ppm
  • the second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
  • plating bath copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBF, weight average molecular weight (MW) 3000): 5 ppm, chloride ion: 5 ppm, liquid
  • the second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
  • Vickers hardness was measured at 23 ° C. using a micro hardness tester (model number MVK-2H) manufactured by Akashi Corporation according to JIS Z 2244 according to the following procedure.
  • a normal sample an ultrathin copper foil with a carrier immediately after forming a bulk copper layer was used.
  • the measurement conditions were as follows: an indentation was made on a cut sample under conditions of a load speed of 3 ⁇ m / second, a test load of 5 gf, and a holding time of 15 seconds, Vickers hardness was calculated from the measurement result of the indentation, and an average of five arbitrary Vickers hardnesses measured The value was the value of the condition.
  • Etching rate V1, V2 1.
  • stacked the ultrathin copper foil from which carrier foil was removed on both surfaces is cut
  • 4-2 Put pure water into the beaker used in 4-1 to make a total of 1000 cc.
  • 4-3 Stir for 3 minutes at 30 ° C. ⁇ 1 ° C. using a magnetic stirrer.
  • 4-4 Weigh 20 cc of 34.5% hydrogen peroxide water (Kanto Chemical Co., Ltd., deer grade 1), put it in the beaker used in 4-1, make a total of 1020 cc, then 3 minutes at 30 ° C ⁇ 1 ° C Stir.
  • an etching solution containing 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide water is obtained. 5.
  • the sample piece is immersed in the etching solution (liquid temperature 30 ° C. ⁇ 1 ° C., stirring condition: magnetic stirrer, 250 rpm). 6).
  • the weight W1 of the sample piece is measured every 30 seconds (including the substrate weight) until the ultrathin copper foil bulk layer is completely etched. 7).
  • the etching rate V1 ( ⁇ m / min) of the bulk copper layer K1 (g / sec ⁇ m 2 ) ⁇ 8.92 (copper specific gravity) g / cm 3 ) ⁇ 60 (sec / min) is calculated. 8). Thereafter, the weight W2 of the sample piece is measured every 10 seconds (however, including the substrate weight) until the rough copper layer of the ultrathin copper foil is completely etched. 9.
  • the dry film was exposed with an exposure apparatus (Ono Sokki EV-0800) using the glass mask, and developed with an aqueous sodium carbonate solution. Thereby, a resist mask was formed.
  • electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) was performed at 3 A / dm 2 for 25 minutes using the ultrathin copper foil layer as a power supply layer electrode to form a copper wiring pattern having a thickness of about 20 ⁇ m.
  • the resist mask was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine. 3.
  • Wiring shape (or circuit linearity) 1.
  • the printed wiring board obtained in the above (4) was used. 2.
  • the contour of the circuit bottom when the circuit after etching was observed from directly above was evaluated.
  • the wiring shape at the time of observing the cross section of the circuit after an etching using the microscope was evaluated.
  • the code is as follows. A: When observed from directly above, the outline of the circuit bottom portion looks straight. Moreover, there is no bottom hem expansion in the cross section.
  • When observed from directly above, the outline of the circuit bottom portion looks straight. In addition, the bottom hem is small in the cross section.
  • X When observed from directly above, there is a portion where the outline of the circuit bottom portion looks like a curve. Moreover, the bottom hem is large in the cross section.
  • the grain boundary diameter was measured according to JIS H 0501. The procedure is as follows. 1. After processing the board

Abstract

Provided is a laminated board that is provided with an insulating layer and copper foil positioned on at least one surface of the insulating layer, and that is used in a device mounting substrate obtained by forming a conductor circuit by etching the copper foil. The copper foil etching rate is between 0.68µm/min and 1.25µm/min under conditions where the laminated board it immersed in a sulfuric acid/hydrogen peroxide etching liquid comprising 55.9g/L of sulfuric acid and 19.6cc/L of 34.5% hydrogen peroxide and at a temperature of 30°C+1°C.

Description

積層板及びプリント配線板の製造方法LAMINATED BOARD AND PRINTED WIRING BOARD MANUFACTURING METHOD
 本発明は、積層板及びプリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a laminated board and a printed wiring board.
 電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、さらには高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型薄型化、高密度化、及び多層化が進んでいる。 With the demand for higher functionality of electronic equipment, etc., high-density integration of electronic parts, and further high-density mounting, etc. are progressing. In addition, miniaturization, thinning, high density, and multilayering are progressing.
 プリント配線板の基板上に高密度でパターン精度の高い導体回路層を効率よく形成する方法としてセミアディティブ法が行われ始めている。セミアディティブ法を用いたプリント配線板の製造方法は、たとえば、特許文献1、および特許文献2に記載されている。 The semi-additive method is beginning to be performed as a method for efficiently forming a high-density and high-pattern conductor circuit layer on a printed wiring board substrate. The printed wiring board manufacturing method using the semi-additive method is described in, for example, Patent Document 1 and Patent Document 2.
 特許文献1および2に記載の製造方法は、まず、絶縁層の一面に銅箔を張り付けた積層板を準備し、該積層板上にレジストパターンを形成する。続いて、レジストパターンの開口部内にめっき層を充填する。続いて、レジストパターンを除去する。この後、めっき層のパターンをマスクとして、下層の銅箔をエッチングすることにより、めっき層及び銅箔から構成される導体回路を形成する。 In the manufacturing methods described in Patent Documents 1 and 2, first, a laminated board in which a copper foil is attached to one surface of an insulating layer is prepared, and a resist pattern is formed on the laminated board. Subsequently, a plating layer is filled in the openings of the resist pattern. Subsequently, the resist pattern is removed. Thereafter, the lower copper foil is etched using the plating layer pattern as a mask, thereby forming a conductor circuit composed of the plating layer and the copper foil.
特開2003-69218号公報JP 2003-69218 A 特開2003-60341号公報JP 2003-60341 A
 特許文献1及び2の製造過程において、絶縁層の表面に形成された微細な凹凸部分に銅箔の残渣が発生することがあった。導体回路の間に残存する銅箔のエッチング残渣は、微細化が進むにつれて、導体回路の絶縁不良などの短絡の原因となる。このため、絶縁層の表面上の銅箔のエッチング残渣は除去される方が好ましい。 In the manufacturing process of Patent Documents 1 and 2, a copper foil residue may be generated on a fine uneven portion formed on the surface of the insulating layer. Etching residue of the copper foil remaining between the conductor circuits causes a short circuit such as an insulation failure of the conductor circuit as the miniaturization progresses. For this reason, it is preferable to remove the etching residue of the copper foil on the surface of the insulating layer.
 銅箔のエッチング残渣を除去するには、絶縁層の表面を過剰にエッチングする必要がある。しかしながら、絶縁層を過剰にエッチングすると、導体回路も過剰にエッチングされることになるため、導体回路の形成異常や、導体回路の切れ、飛びが発生する場合がある。過剰なエッチングを実施しつつも、配線形状を所望の形状に維持することは難しい。 In order to remove the etching residue of the copper foil, it is necessary to etch the surface of the insulating layer excessively. However, if the insulating layer is etched excessively, the conductor circuit is also etched excessively, so that there are cases where abnormal formation of the conductor circuit, breakage or jumping of the conductor circuit occurs. It is difficult to maintain the wiring shape in a desired shape while performing excessive etching.
 以上のように、特許文献1及び2の積層板において、銅箔のエッチング残渣の低減と配線形状の維持のバランスに改善の余地があった。 As described above, in the laminates of Patent Documents 1 and 2, there is room for improvement in the balance between reducing the etching residue of the copper foil and maintaining the wiring shape.
 本発明によれば、
 絶縁層と前記絶縁層の少なくとも一方の面に位置する銅箔とを備えていて、前記銅箔をエッチングすることにより導体回路を形成することで得られる素子搭載基板に用いる積層板であって、
 硫酸55.9g/L、及び34.5%過酸化水素水19.6cc/Lからなり、かつ液温が30℃±1℃である硫酸/過酸化水素系のエッチング液に、前記積層板を浸漬させる条件下での前記銅箔のエッチングレートが0.68μm/min以上、1.25μm/min以下である、積層板が提供される。
According to the present invention,
A laminated plate used for an element mounting substrate, comprising an insulating layer and a copper foil located on at least one surface of the insulating layer, and obtained by forming a conductor circuit by etching the copper foil,
The laminate was placed in a sulfuric acid / hydrogen peroxide etching solution comprising 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide solution and having a liquid temperature of 30 ° C. ± 1 ° C. There is provided a laminate having an etching rate of the copper foil under the dipping conditions of 0.68 μm / min or more and 1.25 μm / min or less.
 本発明者らは、銅箔のエッチングレートを高めることにより、銅箔のエッチング残渣の低減と、配線形状の維持の両立を実現できると考えた。
 さらに検討した結果、エッチングレートの評価方法において、エッチャントの成分や、成分濃度、及び液温の条件により、結果がバラつくことが判明した。
 そこで、エッチャントを硫酸、純水、及び過酸化水素水とし、成分濃度を決定し、さらに、液温を30℃±1℃という条件を、評価方法の前提することにより、結果のバラツキが低減されることを見出した。
 さらに、本発明者らは、前提条件下において銅のエッチングレートについて、各種の実験を行った結果、銅のエッチングレートの下限値を0.68μm/min以上とすることにより、銅箔のエッチング残渣が低減され、配線形状が良好となることを見出し、本発明の完成に至ったものである。
The inventors of the present invention have thought that by increasing the etching rate of the copper foil, it is possible to achieve both reduction of the etching residue of the copper foil and maintenance of the wiring shape.
As a result of further investigation, it has been found that the results of the etching rate evaluation method vary depending on the components of the etchant, the component concentration, and the liquid temperature.
Therefore, by using sulfuric acid, pure water, and hydrogen peroxide solution as the etchant, determining the concentration of the components, and further assuming that the liquid temperature is 30 ° C. ± 1 ° C. I found out.
Furthermore, the present inventors conducted various experiments on the copper etching rate under the preconditions. As a result, the lower limit value of the copper etching rate was set to 0.68 μm / min or more, whereby the etching residue of the copper foil was As a result, the inventors have found that the wiring shape is improved and the present invention has been completed.
 また、本発明によれば、絶縁層と前記絶縁層の少なくとも一面に位置する銅箔とを備える積層板を準備する工程と、前記銅箔を選択的に除去することにより導体回路を形成する工程と、を含み、前記積層板が上述の積層板である、プリント配線板の製造方法が提供される。 Moreover, according to this invention, the process of preparing a laminated board provided with an insulating layer and the copper foil located in at least one surface of the said insulating layer, The process of forming a conductor circuit by selectively removing the said copper foil A method for manufacturing a printed wiring board is provided, wherein the laminated board is the laminated board described above.
 本発明によれば、銅箔のエッチング残渣が低減され、配線形状が良好となる積層板が提供される。 According to the present invention, there is provided a laminated board in which the etching residue of copper foil is reduced and the wiring shape is good.
第1の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 1st Embodiment. 第1の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 1st Embodiment. 第2の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 2nd Embodiment. 第2の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 2nd Embodiment. 第2の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 2nd Embodiment. 第3の実施の形態のプリント配線板の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the printed wiring board of 3rd Embodiment. 第3の実施の形態のプリント配線板の製造方法の変形例を模式的に示す断面図である。It is sectional drawing which shows typically the modification of the manufacturing method of the printed wiring board of 3rd Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施の形態)
 図1及び図2は、第1の実施の形態のプリント配線板の製造方法の工程手順を示す断面図である。
 まず、本実施の形態のプリント配線基板101の概要を説明する。
 本実施の形態のプリント配線基板101の製造方法は、次の工程を含むものである。まず、絶縁層102と絶縁層102の少なくとも一面に位置する銅箔(銅箔層104)とを備える積層板(銅張積層板100)を準備する。次いで、銅箔を選択的に除去することにより導体回路(導体回路119)を形成する。プリント配線基板101は素子搭載基板に用いられる。
(First embodiment)
1 and 2 are cross-sectional views showing process steps of the method for manufacturing a printed wiring board according to the first embodiment.
First, an outline of the printed wiring board 101 of the present embodiment will be described.
The manufacturing method of the printed wiring board 101 of the present embodiment includes the following steps. First, a laminate (copper-clad laminate 100) including an insulating layer 102 and a copper foil (copper foil layer 104) located on at least one surface of the insulating layer 102 is prepared. Next, a conductor circuit (conductor circuit 119) is formed by selectively removing the copper foil. The printed wiring board 101 is used as an element mounting board.
 本実施の形態のプリント配線基板101の製造方法は、銅箔をエッチングすることにより導体回路を形成することで得られる積層板(銅張積層板100)を使用する。
 積層板(銅張積層板100)において、銅箔(銅箔層104)のエッチングレートは、硫酸55.9g/L、及び34.5%過酸化水素水19.6cc/Lからなり、かつ液温が30℃±1℃である硫酸/過酸化水素系のエッチング液に、積層板を浸漬させる条件下で、0.68μm/min以上、1.25μm/min以下であると特定される。
The manufacturing method of the printed wiring board 101 of this Embodiment uses the laminated board (copper clad laminated board 100) obtained by forming a conductor circuit by etching a copper foil.
In the laminate (copper-clad laminate 100), the etching rate of the copper foil (copper foil layer 104) is composed of 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide, and a liquid. It is specified as 0.68 μm / min or more and 1.25 μm / min or less under the condition that the laminate is immersed in a sulfuric acid / hydrogen peroxide etching solution having a temperature of 30 ° C. ± 1 ° C.
 銅張積層板100において、銅箔層104のエッチングレートが0.68μm/min以上で特定されている。このため、プリント配線基板101の製造過程において、銅箔層104が導体回路119の間の絶縁層102上に残存することを抑制できるとともに、導体回路119の配線形状を良好とすることができる。 In the copper clad laminate 100, the etching rate of the copper foil layer 104 is specified to be 0.68 μm / min or more. For this reason, in the manufacturing process of the printed wiring board 101, it can suppress that the copper foil layer 104 remains on the insulating layer 102 between the conductor circuits 119, and can make the wiring shape of the conductor circuit 119 favorable.
 以下、本実施の形態のプリント配線基板101の製造工程について詳細を説明する。 Hereinafter, details of the manufacturing process of the printed wiring board 101 of the present embodiment will be described.
 まず、図1(a)に示すように、絶縁層102の両面にキャリア箔層106とともに銅箔層104を張り合わせたキャリア箔付き銅張積層板10を準備する。キャリア箔付き銅張積層板10は、絶縁層102、銅箔層104及びキャリア箔層106を備える。絶縁層102の両面には、銅箔層104とともにキャリア箔層106が貼り付けられている。本実施の形態では、絶縁層102の両面に銅箔層104が形成されているが、絶縁層102の片面のみに銅箔層104が形成されていてもよい。 First, as shown in FIG. 1A, a copper clad laminate 10 with a carrier foil in which a copper foil layer 104 and a carrier foil layer 106 are bonded to both surfaces of an insulating layer 102 is prepared. The copper clad laminate 10 with a carrier foil includes an insulating layer 102, a copper foil layer 104, and a carrier foil layer 106. A carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104. In this embodiment, the copper foil layer 104 is formed on both surfaces of the insulating layer 102, but the copper foil layer 104 may be formed only on one surface of the insulating layer 102.
 キャリア箔付き銅張積層板10としては、たとえば、銅張積層板100の少なくとも一面に剥離可能なキャリア箔層106が積層されている。銅張積層板100は(以下、積層板と呼称することもある)、特に限定されないが、例えば、基材入りの絶縁樹脂層を有する絶縁層102の少なくとも一面に銅箔層104が積層されたものを用いることができる(図では、繊維基材を省略している)。積層板は、単層でもよいが多層構造を有していてもよい。すなわち、積層板としては、コア層のみで構成されていてもよいが、コア層上にビルドアップ層が形成されているものを用いてもよい。積層板は、例えば、プリプレグを複数枚重ね合わせたもの等を用いることができる。プリプレグは、特に限定されないが、例えば、ガラスクロス等の基材に、硬化性樹脂、硬化剤、及び充填剤等を含有した樹脂組成物を含浸させる等の方法によって得られる。そして、積層板としては、少なくとも片面にキャリア箔付き極薄金属箔を重ね合わせて加熱加圧成形したもの等を用いることができる。また、ビルドアップ層の層間絶縁層には、コア層と同じ材料のものを用いてもよいが、基材または樹脂組成物が異なっていてもよい。本実施の形態では、絶縁層102は、コア層またはビルドアップ層を構成する絶縁樹脂層に相当するものであり、単層又は多層構造のいずれでもよい。ビルドアップ層を備える積層板を用いた例については、第2の実施の形態にて後述する。 As the copper clad laminate 10 with carrier foil, for example, a peelable carrier foil layer 106 is laminated on at least one surface of the copper clad laminate 100. The copper clad laminate 100 (hereinafter sometimes referred to as a laminate) is not particularly limited. For example, a copper foil layer 104 is laminated on at least one surface of an insulating layer 102 having an insulating resin layer containing a base material. A thing can be used (a fiber base material is abbreviate | omitted in the figure). The laminate may be a single layer or may have a multilayer structure. That is, as a laminated board, you may be comprised only by the core layer, However, You may use what has the buildup layer formed on the core layer. For example, a laminate in which a plurality of prepregs are stacked can be used. The prepreg is not particularly limited, and can be obtained by, for example, a method of impregnating a base material such as glass cloth with a resin composition containing a curable resin, a curing agent, a filler, and the like. And as a laminated board, what superposed | stacked the ultra-thin metal foil with a carrier foil on at least one surface and heat-press-molded etc. can be used. Moreover, the same material as that of the core layer may be used for the interlayer insulating layer of the buildup layer, but the base material or the resin composition may be different. In the present embodiment, the insulating layer 102 corresponds to an insulating resin layer constituting a core layer or a build-up layer, and may be either a single layer or a multilayer structure. An example using a laminated board having a build-up layer will be described later in the second embodiment.
 本実施の形態に用いられる積層板、および層間絶縁層を構成する樹脂組成物は、プリント配線板の絶縁材料として用いられる公知の樹脂(以下、絶縁樹脂組成物とも称する)を用いることができ、通常、耐熱性、耐薬品性の良好な硬化性樹脂が主に用いられる。上記樹脂組成物は、特に限定されず、少なくとも熱および/または光照射により硬化する硬化性樹脂が含まれる樹脂組成物であることが好ましい。 As the resin composition constituting the laminate and the interlayer insulating layer used in the present embodiment, a known resin used as an insulating material of a printed wiring board (hereinafter also referred to as an insulating resin composition) can be used. Usually, curable resins having good heat resistance and chemical resistance are mainly used. The said resin composition is not specifically limited, It is preferable that it is a resin composition containing the curable resin hardened | cured by heat and / or light irradiation at least.
 硬化性樹脂としては、例えば、ユリア(尿素)樹脂、メラミン樹脂、マレイミド化合物、ポリウレタン樹脂、不飽和ポリエステル樹脂、ベンゾオキサジン環を有する樹脂、ビスアリルナジイミド化合物、ビニルベンジル樹脂、ビニルベンジルエーテル樹脂、ベンゾシクロブテン樹脂、シアネート樹脂、エポキシ樹脂等が挙げられる。これらの中でも、硬化性樹脂は、ガラス転移温度が200℃以上になる組合せが好ましい。例えば、スピロ環含有、複素環式、トリメチロール型、ビフェニル型、ナフタレン型、アントラン型、ノボラック型の2または3官能以上のエポキシ樹脂、シアネート樹脂(シアネート樹脂のプレポリマーを含む)、マレイミド化合物、ベンゾシクロブテン樹脂、ベンゾオキサジン環を有する樹脂を用いるのが好ましい。エポキシ樹脂および/またはシアネート樹脂を用いる場合には、線膨張が小さくなり、耐熱性が著しく向上する。また、エポキシ樹脂および/またはシアネート樹脂を高充填量の充填材と組み合わせると、難燃性、耐熱性、耐衝撃性、高剛性、および電気特性(低誘電率、低誘電正接)に優れるというメリットがある。ここで、耐熱性の向上は、上記硬化性樹脂の硬化反応後にガラス転移温度が200℃以上になること、硬化後の樹脂組成物の熱分解温度が高くなること、250℃以上での反応残渣などの低分子量が低減することに起因すると考えられる。更に、また、難燃性の向上は、芳香族系の硬化性樹脂のためその構造上ベンゼン環の割合が高いため、このベンゼン環が炭化(グラファイト化)し易く、炭化部分が生じることに起因すると考えられる。 Examples of the curable resin include urea (urea) resin, melamine resin, maleimide compound, polyurethane resin, unsaturated polyester resin, resin having a benzoxazine ring, bisallyl nadiimide compound, vinyl benzyl resin, vinyl benzyl ether resin, Examples include benzocyclobutene resin, cyanate resin, and epoxy resin. Among these, the curable resin is preferably a combination having a glass transition temperature of 200 ° C. or higher. For example, spiro ring-containing, heterocyclic, trimethylol type, biphenyl type, naphthalene type, anthran type, novolak type bifunctional or trifunctional epoxy resin, cyanate resin (including prepolymer of cyanate resin), maleimide compound, It is preferable to use a benzocyclobutene resin or a resin having a benzoxazine ring. When using an epoxy resin and / or a cyanate resin, the linear expansion is reduced and the heat resistance is remarkably improved. In addition, combining epoxy resin and / or cyanate resin with a high amount of fillers has the advantage of excellent flame retardancy, heat resistance, impact resistance, high rigidity, and electrical properties (low dielectric constant, low dielectric loss tangent) There is. Here, the improvement in heat resistance is that the glass transition temperature becomes 200 ° C. or higher after the curing reaction of the curable resin, the thermal decomposition temperature of the cured resin composition increases, and the reaction residue at 250 ° C. or higher. This is considered to be due to the reduction of the low molecular weight. Furthermore, the improvement in flame retardancy is attributed to the fact that the benzene ring is easily carbonized (graphitized) and a carbonized portion is generated because of the high proportion of the benzene ring due to its structure because of the aromatic curable resin. I think that.
 上記樹脂組成物は、さらに、本発明の効果を損なわない範囲で難燃剤を含有しても良いが、環境の側面から非ハロゲン系難燃剤が好ましい。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA-HQ、HCA-NQ等のホスフィン化合物、昭和高分子(株)製のHFB-2006M等のリン含有ベンゾオキサジン化合物、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX310等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルミド化合物、大塚化学(株)社製のSPB100、SPE100、(株)伏見製作所製FP-series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD650、UD653等の水酸化マグネシウム、住友化学(株)製CL310、昭和電工(株)製、HP-350等の水酸化アルミニウム等が挙げられる。 The resin composition may further contain a flame retardant as long as the effects of the present invention are not impaired, but a non-halogen flame retardant is preferred from the environmental aspect. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Examples of organophosphorus flame retardants include phosphine compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd. Phosphoric acid ester compounds such as PPQ manufactured by Clariant Co., Ltd., OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289 and FX310 manufactured by Toto Kasei Co., Ltd. Examples thereof include phosphorus-containing phenoxy resins such as ERF001 manufactured by Co., Ltd. Examples of organic nitrogen-containing phosphorus compounds include phosphate ester compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Seisakusho Co., Ltd. Examples thereof include phosphazene compounds. Examples of the metal hydroxide include magnesium hydroxide such as UD650 and UD653 manufactured by Ube Materials Co., Ltd., CL310 manufactured by Sumitomo Chemical Co., Ltd., aluminum hydroxide such as HP-350 manufactured by Showa Denko Co., Ltd., and the like. It is done.
 上記樹脂組成物に用いるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル変性エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。これらの中でも、エポキシ樹脂は、ナフタレン型、アリールアルキレン型エポキシ樹脂であるのが好ましい。アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に芳香族基とメチレン等のアルキレン基の組合せを一つ以上含むエポキシ樹脂のことをいい、耐熱性、難燃性、および機械的強度に優れる。ナフタレン型、アリールアルキレン型エポキシ樹脂を用いることにより、得られる積層板において、吸湿半田耐熱性(吸湿後の半田耐熱性)および難燃性を向上させることができる。ナフタレン型エポキシとしては、DIC(株)製のHP-4700、HP-4770、HP-4032D、HP-5000、HP-6000、日本化薬(株)製のNC-7300L、新日鐵化学(株)製のESN-375等が挙げられ、アリールアルキレン型エポキシ樹脂としては、日本化薬(株)製のNC-3000、NC-3000L、NC-3000-FH、日本化薬(株)製のNC-7300L、新日鐵化学(株)製のESN-375等が挙げられる。 Examples of the epoxy resin used in the resin composition include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl novolac type epoxy resin, Anthracene type epoxy resin, dihydroanthracene type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkyl modified epoxy resin, alicyclic epoxy resin, polyol type epoxy resin , Glycidylamine, glycidyl ester, butadiene epoxidized compounds, hydroxyl group-containing silicone resins and epichlorohydrin Obtained compounds. Among these, the epoxy resin is preferably a naphthalene type or arylalkylene type epoxy resin. The aryl alkylene type epoxy resin refers to an epoxy resin containing one or more combinations of an aromatic group and an alkylene group such as methylene in the repeating unit, and is excellent in heat resistance, flame retardancy, and mechanical strength. By using a naphthalene type or aryl alkylene type epoxy resin, moisture absorption solder heat resistance (solder heat resistance after moisture absorption) and flame retardancy can be improved in the resulting laminate. Naphthalene type epoxy includes DIC Corporation's HP-4700, HP-4770, HP-4032D, HP-5000, HP-6000, Nippon Kayaku Co., Ltd. NC-7300L, Nippon Steel Chemical Co., Ltd. ESN-375 manufactured by Nippon Kayaku Co., Ltd., NC-3000, NC-3000L, NC-3000-FH manufactured by Nippon Kayaku Co., Ltd., NC manufactured by Nippon Kayaku Co., Ltd. -7300L, ESN-375 manufactured by Nippon Steel Chemical Co., Ltd.
 上記樹脂組成物に用いるシアネート樹脂は、例えばハロゲン化シアン化合物とフェノール類とを反応させることにより得ることができる。シアネート樹脂の具体例としては、例えばフェノールノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂等のノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニル型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールAD型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。 The cyanate resin used in the resin composition can be obtained, for example, by reacting a cyanogen halide compound with phenols. Specific examples of cyanate resins include novolak cyanate resins such as phenol novolac type cyanate resins and cresol novolak type cyanate resins, naphthol aralkyl type cyanate resins, dicyclopentadiene type cyanate resins, biphenyl type cyanate resins, and bisphenol A type cyanate resins. And bisphenol type cyanate resins such as bisphenol AD type cyanate resin and tetramethyl bisphenol F type cyanate resin.
 これらの中でも特にノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニル型シアネート樹脂を含むことが好ましい。さらに、樹脂組成物は、このシアネート樹脂を樹脂組成物の全固形分中に10重量%以上含むことが好ましい。これにより、プリプレグの耐熱性(ガラス転移温度、熱分解温度)を向上できる。またプリプレグの熱膨張係数(特に、プリプレグの厚さ方向の熱膨張係数)を低下することができる。プリプレグの厚さ方向の熱膨張係数が低下すると、多層プリント配線の応力歪みを軽減できる。更に、微細な層間接続部を有する多層プリント配線板においては、その接続信頼性を大幅に向上することができる。 Among these, it is particularly preferable to include a novolak type cyanate resin, a naphthol aralkyl type cyanate resin, a dicyclopentadiene type cyanate resin, and a biphenyl type cyanate resin. Furthermore, the resin composition preferably contains 10% by weight or more of this cyanate resin in the total solid content of the resin composition. Thereby, the heat resistance (glass transition temperature, thermal decomposition temperature) of a prepreg can be improved. Further, the thermal expansion coefficient of the prepreg (particularly, the thermal expansion coefficient in the thickness direction of the prepreg) can be reduced. When the thermal expansion coefficient in the thickness direction of the prepreg is lowered, the stress strain of the multilayer printed wiring can be reduced. Furthermore, in a multilayer printed wiring board having fine interlayer connection portions, the connection reliability can be greatly improved.
 上記樹脂組成物に用いるノボラック型シアネート樹脂の中でも好適なものとしては、下記式(1)で表わされるノボラック型シアネート樹脂が挙げられる。重量平均分子量が2000以上、より好ましくは2,000~10,000、更に好ましくは2,200~3,500の式(1)で表わされるノボラック型シアネート樹脂と、重量平均分子量が1500以下、より好ましくは200~1,300の式(1)で表わされるノボラック型シアネート樹脂とを組み合わせて用いることが好ましい(以下、「~」は、特に明示しない限り、上限値と下限値を含むことを表す)。なお、本実施の形態において重量平均分子量は、ポリスチレン換算のゲルパーミエーションクロマトグラフィー法で測定した値である。 Among the novolak type cyanate resins used in the resin composition, a novolak type cyanate resin represented by the following formula (1) is preferable. A novolac cyanate resin represented by the formula (1) having a weight average molecular weight of 2,000 or more, more preferably 2,000 to 10,000, still more preferably 2,200 to 3,500, and a weight average molecular weight of 1500 or less, more It is preferably used in combination with a novolak-type cyanate resin represented by the formula (1) of 200 to 1,300 (hereinafter, “to” represents that it includes an upper limit value and a lower limit value unless otherwise specified). ). In the present embodiment, the weight average molecular weight is a value measured by a gel-permeation chromatography method in terms of polystyrene.
Figure JPOXMLDOC01-appb-C000001
 式(1)中、nは0以上の整数を示す。
 また、シアネート樹脂としては、下記一般式(2)で表わされるシアネート樹脂も好適に用いられる。下記一般式(2)で表わされるシアネート樹脂は、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシリレングリコール、α,α'-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものである。一般式(2)のnは1以上であるが、10以下であることがさらに望ましい。nが10以下の場合、樹脂粘度が高くならず、基材への含浸性が良好で、積層板としての性能の低下を抑制できる。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる。
Figure JPOXMLDOC01-appb-C000001
In formula (1), n represents an integer of 0 or more.
Moreover, as cyanate resin, the cyanate resin represented by following General formula (2) is also used suitably. Cyanate resins represented by the following general formula (2) include naphthols such as α-naphthol and β-naphthol, p-xylylene glycol, α, α'-dimethoxy-p-xylene, 1,4-di (2- It is obtained by condensing naphthol aralkyl resin obtained by reaction with hydroxy-2-propyl) benzene and cyanic acid. In the general formula (2), n is 1 or more, but is more preferably 10 or less. When n is 10 or less, the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminate can be suppressed. In addition, intramolecular polymerization hardly occurs at the time of synthesis, and the liquid separation property at the time of washing with water can be improved, so that the yield can be prevented from being lowered.
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rは水素原子またはメチル基を示し、Rは同一でも異なっていてもよく、nは1以上の整数を示す。
Figure JPOXMLDOC01-appb-C000002
In formula (2), R represents a hydrogen atom or a methyl group, R may be the same or different, and n represents an integer of 1 or more.
 また、シアネート樹脂としては、下記一般式(3)で表わされるジシクロペンタジエン型シアネート樹脂も好適に用いられる。下記一般式(3)で表わされジシクロペンタジエン型シアネート樹脂は、下記一般式(3)のnは0以上8以下であることがさらに望ましい。nが8以下の場合、樹脂粘度が高くならず、基材への含浸性が良好で、積層板としての性能の低下を防止できる。また、ジシクロペンタジエン型シアネート樹脂を用いることで、低吸湿性、および耐薬品に優れる。 Further, as the cyanate resin, a dicyclopentadiene type cyanate resin represented by the following general formula (3) is also preferably used. In the dicyclopentadiene type cyanate resin represented by the following general formula (3), n in the following general formula (3) is more preferably 0 or more and 8 or less. When n is 8 or less, the resin viscosity is not high, the impregnation property to the base material is good, and the deterioration of the performance as a laminated board can be prevented. Moreover, by using a dicyclopentadiene type cyanate resin, it is excellent in low hygroscopicity and chemical resistance.
Figure JPOXMLDOC01-appb-C000003
 式(3)中、nは0~8の整数を示す。
Figure JPOXMLDOC01-appb-C000003
In the formula (3), n represents an integer of 0 to 8.
 また、樹脂組成物はさらに硬化促進剤を含有しても良い。例えば、硬化性樹脂がエポキシ樹脂やシアネート樹脂であれば、フェノール樹脂やエポキシ樹脂やシアネート樹脂の硬化促進剤を用いることができる。フェノール樹脂は、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アリールアルキレン型ノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等が挙げられる。上記フェノール樹脂としては、フェノールノボラック又はクレゾールノボラック樹脂が好ましい。中でも、ビフェニルアラルキル変性フェノールノボラック樹脂が、吸湿半田耐熱性の点から好ましい。
 これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
Moreover, the resin composition may further contain a curing accelerator. For example, if the curable resin is an epoxy resin or a cyanate resin, a curing accelerator for a phenol resin, an epoxy resin, or a cyanate resin can be used. The phenol resin is not particularly limited. For example, a phenol novolak resin, a cresol novolak resin, a bisphenol A novolak resin, an arylalkylene type novolak resin or the like novolak type phenol resin, an unmodified resole phenol resin, tung oil, linseed oil, walnut oil Examples thereof include resol type phenol resins such as oil-modified resol phenol resins modified with the above. As said phenol resin, a phenol novolak or a cresol novolak resin is preferable. Among these, biphenyl aralkyl-modified phenol novolac resin is preferable from the viewpoint of moisture absorption solder heat resistance.
One of these can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more of these prepolymers can be used in combination.
 上記硬化促進剤は、特に限定されないが、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、1-ベンジルー2-メチルイミダゾール、1-ベンジルー2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチルー2-エチルー4-メチルイミダゾール、1-シアノエチルー2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾール、2,3-ジヒドロ-1H-ピロロ(1,2-a)ベンズイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、オニウム塩化合物等またはこの混合物が挙げられる。これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。 The curing accelerator is not particularly limited. For example, organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), and the like. Salts, tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl-4-methyl Imidazoles such as 5-hydroxyimidazole, 2-phenyl-4,5-dihydroxyimidazole, 2,3-dihydro-1H-pyrrolo (1,2-a) benzimidazole, phenolic compounds such as phenol, bisphenol A, nonylphenol, Examples include acetic acid, benzoic acid, salicylic acid, organic acids such as p-toluenesulfonic acid, onium salt compounds, and the like, or mixtures thereof. One of these can be used alone, including derivatives thereof, or two or more of these can be used in combination.
 また、上記硬化性樹脂中には、耐熱性の点から、マレイミド化合物が含まれていてもよい。マレイミド化合物は1分子中に1個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、これらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどが挙げられる。 The curable resin may contain a maleimide compound from the viewpoint of heat resistance. The maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule. Specific examples thereof include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, polyphenylmethanemaleimide, these maleimide compounds Or a prepolymer of a maleimide compound and an amine compound.
 また、上記硬化性樹脂中には、金属箔との密着性の点から、フェノキシ樹脂、ポリビニルアルコール系樹脂、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂が含まれていてもよい。 The curable resin may contain a phenoxy resin, a polyvinyl alcohol resin, a polyimide, a polyamide, a polyamideimide, a polyethersulfone resin, or a polyphenylene ether resin from the viewpoint of adhesion to the metal foil. .
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。
 これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いるのが好ましい。これにより、ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂と金属との密着性を向上させることができる。その結果、絶縁層102の耐熱性の向上を図ることができるとともに、多層基板を製造する際に、絶縁層102に対する配線部(導体回路118)の密着性を向上させることができる。また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いるのも好ましい。これにより、多層基板の製造時に、配線部の絶縁層102への密着性をさらに向上させることができる。
Examples of the phenoxy resin include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton. A phenoxy resin having a structure having a plurality of these skeletons can also be used.
Among these, it is preferable to use a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin. Thereby, the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion between the phenoxy resin and the metal can be improved due to the presence of the bisphenol S skeleton. As a result, the heat resistance of the insulating layer 102 can be improved, and the adhesion of the wiring portion (conductor circuit 118) to the insulating layer 102 can be improved when a multilayer substrate is manufactured. It is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin. Thereby, the adhesiveness to the insulating layer 102 of a wiring part can further be improved at the time of manufacture of a multilayer substrate.
 フェノキシ樹脂の市販品としては、東都化成(株)製FX280およびFX293、ジャパンエポキシレジン(株)製YX8100、YX6954、YL6974、YL7482、YL7553、YL6794、YL7213およびYL7290等が挙げられる。フェノキシ樹脂の分子量は、特に限定されないが、重量平均分子量が5,000~70,000であるのが好ましく、10,000~60,000であるのがより好ましい。
 フェノキシ樹脂を用いる場合、その含有量は、特に限定されないが、樹脂組成物全体の1~40重量%であるのが好ましく、5~30重量%であるのがより好ましい。
Examples of commercially available phenoxy resins include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954, YL6974, YL7482, YL7553, YL6793, YL7213, and YL7290 manufactured by Japan Epoxy Resin Co., Ltd. The molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, and more preferably 10,000 to 60,000.
When the phenoxy resin is used, its content is not particularly limited, but it is preferably 1 to 40% by weight, more preferably 5 to 30% by weight based on the entire resin composition.
 ポリビニルアルコール系樹脂の市販品としては、電気化学工業(株)製電化ブチラール4000-2、5000-A、6000-Cおよび6000-EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズおよびBMシリーズ等が挙げられる。特に、ガラス転移温度が80℃以上のものが特に好ましい。 Examples of commercially available polyvinyl alcohol resins include Denka Butylal 4000-2, 5000-A, 6000-C and 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd., S-Rec BH Series, BX Series, KS manufactured by Sekisui Chemical Co., Ltd. Series, BL series, BM series and the like. Particularly preferred are those having a glass transition temperature of 80 ° C. or higher.
 ポリイミド、ポリアミド、ポリアミドイミド、の市販品としては、東洋紡績(株)社製「バイロマックスHR11NN(登録商標)」及び「HR-16NN」「HR15ET」、日立化成工業(株)製ポリアミドイミド「KS-9300」などが挙げられる。三菱ガス化学(株)社製「ネオプリムC-1210」、新日本理化(株)社製の可溶性ポリイミド「リカコートSN20(登録商標)」及び「リカコートPN20(登録商標)」、日本GEプラスチックス(株)社製のポリエーテルイミド「ウルテム(登録商標)」、DIC(株)製「V8000」及び「V8002」及び「V8005」:日本化薬(株)製「BPAM155」等が挙げられる。 Commercially available products of polyimide, polyamide, and polyamideimide include “Viromax HR11NN (registered trademark)” and “HR-16NN” and “HR15ET” manufactured by Toyobo Co., Ltd., and polyamide imide “KS” manufactured by Hitachi Chemical Co., Ltd. -9300 "and the like. “Neoprim C-1210” manufactured by Mitsubishi Gas Chemical Company, Inc., soluble polyimide “Rika Coat SN20 (registered trademark)” and “Rika Coat PN20 (registered trademark)” manufactured by Shin Nippon Rika Co., Ltd., GE Plastics Co., Ltd. Polyetherimide “Ultem (registered trademark)” manufactured by DIC Corporation, “V8000” and “V8002” and “V8005” manufactured by DIC Corporation: “BPAM155” manufactured by Nippon Kayaku Co., Ltd. and the like.
 ポリエーテルスルホン樹脂の市販品としては、公知のものを用いることができ、例えば、住友化学社製のPES4100P、PES4800P、PES5003P、およびPES5200Pなどを挙げることができる。 As a commercial item of polyethersulfone resin, a well-known thing can be used, for example, PES4100P, PES4800P, PES5003P, and PES5200P by Sumitomo Chemical Co., Ltd. can be mentioned.
 ポリフェニレンエーテル樹脂としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)オキサイド、ポリ(2,6-ジエチル-1,4-フェニレン)オキサイド、ポリ(2-メチル-6-エチル-1,4-フェニレン)オキサイド、ポリ(2-メチル-6-プロピル-1,4-フェニレン)オキサイド、ポリ(2、6-ジプロピル-1,4-フェニレン)オキサイド、ポリ(2-エチル-6-プロピル-1,4-フェニレン)オキサイド等が挙げられる。市販品としては、例えば、日本G.E.プラスチック社製「ノリルPX9701(登録商標)」(数平均分子量Mn=14,000)、「ノリル640-111(登録商標)」(数平均分子量Mn=25,000)、及び旭化成社製「SA202」(数平均分子量Mn=20,000)などがあり、これらを公知の方法で低分子量化して用いることができる。 Examples of polyphenylene ether resins include poly (2,6-dimethyl-1,4-phenylene) oxide, poly (2,6-diethyl-1,4-phenylene) oxide, and poly (2-methyl-6-ethyl-). 1,4-phenylene) oxide, poly (2-methyl-6-propyl-1,4-phenylene) oxide, poly (2,6-dipropyl-1,4-phenylene) oxide, poly (2-ethyl-6- And propyl-1,4-phenylene) oxide. Examples of commercially available products include Japanese G.P. E. “Noryl PX9701 (registered trademark)” (number average molecular weight Mn = 14,000), “Noryl 640-111 (registered trademark)” (number average molecular weight Mn = 25,000) manufactured by Plastic, and “SA202” manufactured by Asahi Kasei Corporation (Number average molecular weight Mn = 20,000) and the like, and these can be used by reducing the molecular weight by a known method.
 これらの中でも、末端を官能基で変性した反応性オリゴフェニレンオキサイドが好ましい。これにより、硬化性樹脂との相溶性が向上し、ポリマー間の3次元架橋構造を形成することできるため機械強度に優れる。例えば、特開2006-28111号公報に記載されている2,2′,3,3′,5,5′-ヘキサメチルビフェニル‐4,4′-ジオール-2,6-ジメチルフェノール重縮合物とクロロメチルスチレンとの反応生成物が挙げられる。
 このような反応性オリゴフェニレンオキサイドは、公知の方法により製造することができる。また、市販品を用いることもできる。例えば、OPE-2st 2200(三菱瓦斯化学社製)を好適に使用することができる。
 反応性オリゴフェニレンオキサイドの重量平均分子量は、2,000~20,000であることが好ましく、4、000~15、000であることがより好ましい。反応性オリゴフェニレンオキサイドの重量平均分子量が20,000を超えると、揮発性溶剤に溶解し難くなる。一方、重量平均分子量が2,000未満であると、架橋密度が高くなりすぎるため、硬化物の弾性率や可撓性に悪影響がでる。
Among these, reactive oligophenylene oxide having a terminal modified with a functional group is preferable. Thereby, compatibility with the curable resin is improved, and a three-dimensional cross-linked structure between the polymers can be formed, so that the mechanical strength is excellent. For example, 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4′-diol-2,6-dimethylphenol polycondensate described in JP-A-2006-28111 and A reaction product with chloromethylstyrene is mentioned.
Such reactive oligophenylene oxide can be produced by a known method. Commercial products can also be used. For example, OPE-2st 2200 (manufactured by Mitsubishi Gas Chemical Co., Inc.) can be preferably used.
The weight average molecular weight of the reactive oligophenylene oxide is preferably 2,000 to 20,000, and more preferably 4,000 to 15,000. When the weight average molecular weight of reactive oligophenylene oxide exceeds 20,000, it becomes difficult to dissolve in a volatile solvent. On the other hand, when the weight average molecular weight is less than 2,000, the crosslink density becomes too high, which adversely affects the elastic modulus and flexibility of the cured product.
 本実施の形態に用いる樹脂組成物中の硬化性樹脂の量は、その目的に応じて適宜調整されれば良く特に限定されないが、樹脂組成物の全固形分中に、硬化性樹脂は10~90重量%であることが好ましく、更に20~70重量%、より更に25~50重量%であることが好ましい。
 また、硬化性樹脂として、エポキシ樹脂及び/又はシアネート樹脂を用いる場合には、上記樹脂組成物の全固形分中に、エポキシ樹脂は5~50重量%であることが好ましく、更にエポキシ樹脂は5~25重量%であることが好ましい。また、樹脂組成物の全固形分中に、シアネート樹脂は5~50重量%であることが好ましく、更にシアネート樹脂は10~25重量%であることが好ましい。
The amount of the curable resin in the resin composition used in the present embodiment is not particularly limited as long as it is appropriately adjusted according to the purpose, but the curable resin is 10 to 10% in the total solid content of the resin composition. It is preferably 90% by weight, more preferably 20 to 70% by weight, still more preferably 25 to 50% by weight.
When an epoxy resin and / or cyanate resin is used as the curable resin, the epoxy resin is preferably 5 to 50% by weight in the total solid content of the resin composition, and the epoxy resin is preferably 5% by weight. Preferably it is ˜25% by weight. The total solid content of the resin composition is preferably 5 to 50% by weight of the cyanate resin, and more preferably 10 to 25% by weight of the cyanate resin.
 上記樹脂組成物中には、無機充填材を含有することが、低熱膨張と機械強度の点から好ましい。無機充填材は、特に限定されないが、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、ベーマイト(AlO(OH)、「擬」ベーマイトと通常呼ばれるベーマイト(すなわち、Al2O3・xH2O、ここで、x=1から2)、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。 It is preferable from the viewpoint of low thermal expansion and mechanical strength that the resin composition contains an inorganic filler. The inorganic filler is not particularly limited, but for example, silicates such as talc, fired clay, unfired clay, mica, glass, oxides such as titanium oxide, alumina, silica, fused silica, calcium carbonate, magnesium carbonate, hydrous Carbonates such as talcite, aluminum hydroxide, boehmite (AlO (OH), boehmite commonly referred to as “pseudo” boehmite (ie, Al 2 O 3 .xH 2 O, where x = 1 to 2), magnesium hydroxide, calcium hydroxide Metal hydroxides such as barium sulfate, calcium sulfate, calcium sulfite, sulfates or sulfites, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, etc. borate, aluminum nitride Boron nitride, silicon nitride, carbon nitride nitride, etc., titanium titanate Lithium, and titanium salt such as barium titanate. It is possible to use one kind among these alone, it can be used in combination of two or more.
 これらの中でも水酸化マグネシウム、水酸化アルミニウム、ベーマイト、シリカ、溶融シリカ、タルク、焼成タルク、アルミナが好ましい。低熱膨張性、および絶縁信頼性の点で特にシリカが好しく、更に好ましくは、球状の溶融シリカである。また、耐燃性の点で、水酸化アルミニウムが好ましい。また、本実施の形態では、無機充填材であっても含浸しやすい基材を用いるため、上記樹脂組成物中に無機充填材の量を多くすることができる。樹脂組成物中に無機充填材が高濃度の場合、ドリル摩耗性が悪化するが、無機充填材がベーマイトの場合にはドリル摩耗性が良好になる点から好ましい。 Among these, magnesium hydroxide, aluminum hydroxide, boehmite, silica, fused silica, talc, calcined talc, and alumina are preferable. Silica is particularly preferable in terms of low thermal expansion and insulation reliability, and spherical fused silica is more preferable. Moreover, aluminum hydroxide is preferable in terms of flame resistance. Moreover, in this Embodiment, since it is a base material which is easy to impregnate even if it is an inorganic filler, the quantity of an inorganic filler can be increased in the said resin composition. When the inorganic filler has a high concentration in the resin composition, the drill wearability is deteriorated, but when the inorganic filler is boehmite, the drill wearability is preferable.
 無機充填材の粒径は、特に限定されないが、平均粒径が単分散の無機充填材を用いることもできるし、平均粒径が多分散の無機充填材を用いることができる。さらに平均粒径が単分散及び/または、多分散の無機充填材を1種類または2種類以上併用したりすることもできる。無機充填材の平均粒径は、特に限定されないが、0.1μm~5.0μmが好ましく、特に0.1μm~3.0μmが好ましい。無機充填材の粒径が前記下限値未満であると樹脂組成物の粘度が高くなるため、プリプレグ作製時の作業性に影響を与える場合がある。また、前記上限値を超えると、樹脂組成物中で無機充填材の沈降等の現象が起こる場合がある。尚、平均粒径は、レーザー回折/散乱式粒度分布測定装置(島津製作所製、SALD-7000等の一般的な機器)を用いて測定することができる。 The particle diameter of the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter can be used, or an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one or two or more inorganic fillers having an average particle size of monodisperse and / or polydisperse may be used in combination. The average particle size of the inorganic filler is not particularly limited, but is preferably 0.1 μm to 5.0 μm, and particularly preferably 0.1 μm to 3.0 μm. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the resin composition becomes high, which may affect workability during prepreg production. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the resin composition. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Shimadzu Corporation, general equipment such as SALD-7000).
 無機充填材の含有量は、特に限定されないが、上記樹脂組成物の全固形分中に10~90重量%であることが好ましく、更に30~80重量%、より更に50~75重量%であることが好ましい。上記樹脂組成物中にシアネート樹脂及び/又はそのプレポリマーを含有する場合には、上記無機充填材の含有量は、樹脂組成物の全固形分中に50~75重量%であることが好ましい。無機充填材含有量が上記上限値を超えると樹脂組成物の流動性が極めて悪くなるため好ましくない場合があり、上記下限値未満であると樹脂組成物からなる絶縁層の強度が十分でなく、好ましくない場合がある。 The content of the inorganic filler is not particularly limited, but is preferably 10 to 90% by weight, further 30 to 80% by weight, and further 50 to 75% by weight based on the total solid content of the resin composition. It is preferable. In the case where the resin composition contains a cyanate resin and / or a prepolymer thereof, the content of the inorganic filler is preferably 50 to 75% by weight in the total solid content of the resin composition. If the inorganic filler content exceeds the above upper limit, the fluidity of the resin composition may be extremely poor, which may be undesirable, and if it is less than the lower limit, the strength of the insulating layer made of the resin composition is not sufficient, It may not be preferable.
 また、本実施の形態に用いる樹脂組成物は、ゴム成分も配合することができ、例えば、本実施の形態で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子等が挙げられる。 The resin composition used in the present embodiment can also contain a rubber component. For example, preferable examples of the rubber particles that can be used in the present embodiment include core-shell type rubber particles and crosslinked acrylonitrile butadiene rubber particles. Cross-linked styrene butadiene rubber particles, acrylic rubber particles, silicone particles and the like.
 コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のもの等が挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物等で構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)等で構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成(株)製)、メタブレンKW-4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR(株)製)等が挙げられる。 The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size 0.5 μm, manufactured by JSR Corporation).
 架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒子径0.5μm、JSR(株)製)等が挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒子径0.1μm)、W450A(平均粒子径0.2μm)(三菱レイヨン(株)製)等が挙げられる。 Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle diameter 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include methabrene W300A (average particle size 0.1 μm), W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like.
 シリコーン粒子は、オルガノポリシロキサンで形成されたゴム弾性微粒子であれば特に限定されず、例えば、シリコーンゴム(オルガノポリシロキサン架橋エラストマー)そのものからなる微粒子、及び二次元架橋主体のシリコーンからなるコア部を三次元架橋型主体のシリコーンで被覆したコアシェル構造粒子等が挙げられる。シリコーンゴム微粒子としては、KMP-605、KMP-600、KMP-597、KMP-594(信越化学(株)製)、トレフィルE-500、トレフィルE-600(東レ・ダウコーニング(株)製)等の市販品を用いることができる。 The silicone particles are not particularly limited as long as they are rubber elastic fine particles formed of organopolysiloxane. For example, fine particles made of silicone rubber (organopolysiloxane crosslinked elastomer) itself, and a core portion made of silicone mainly composed of two-dimensional crosslinking. Examples thereof include core-shell structured particles coated with silicone mainly composed of a three-dimensional crosslinking type. Silicone rubber fine particles include KMP-605, KMP-600, KMP-597, KMP-594 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil E-500, Trefil E-600 (manufactured by Toray Dow Corning Co., Ltd.), etc. Commercial products can be used.
 上記樹脂組成物には、更にカップリング剤を含有しても良い。カップリング剤は、硬化性樹脂と無機充填材との界面の濡れ性を向上させることにより、基材に対して樹脂および無機充填材を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を改良するために配合する。 The above resin composition may further contain a coupling agent. The coupling agent improves the wettability of the interface between the curable resin and the inorganic filler, thereby uniformly fixing the resin and the inorganic filler to the base material, heat resistance, especially solder heat resistance after moisture absorption Is added to improve the quality.
 上記カップリング剤は、特に限定されないが、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤、シリコーンオイル型カップリング剤等が挙げられる。これにより、無機充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることできる。
 上記カップリング剤の添加量は、特に限定されないが、無機充填材100重量部に対して0.05~3重量部が好ましく、特に0.1~2重量部が好ましい。含有量が前記下限値未満であると無機充填材を十分に被覆できないため耐熱性を向上する効果が低下する場合があり、前記上限値を超えると反応に影響を与え、曲げ強度等が低下する場合がある。
Although the said coupling agent is not specifically limited, For example, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, a silicone oil type coupling agent etc. are mentioned. Thereby, the wettability with the interface of an inorganic filler can be made high, and thereby heat resistance can be improved more.
The amount of the coupling agent to be added is not particularly limited, but is preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic filler. If the content is less than the lower limit, the inorganic filler cannot be sufficiently coated, and thus the effect of improving the heat resistance may be reduced. If the content exceeds the upper limit, the reaction is affected, and the bending strength is reduced. There is a case.
 本実施の形態に用いる樹脂組成物には、必要に応じて、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、シリコーンパウダー等の難燃助剤、イオン捕捉剤等の上記成分以外の添加物を添加しても良い。 The resin composition used in the present embodiment includes an antifoaming agent, a leveling agent, an ultraviolet absorber, a foaming agent, an antioxidant, a flame retardant, a flame retardant aid such as silicone powder, and an ion scavenger as necessary. You may add additives other than the said components, such as.
 上記樹脂組成物は、プリプレグの低線膨張化、高剛性化、及び高耐熱化を実現しやすい点から、少なくともエポキシ樹脂、シアネート樹脂、及び無機充填材を含むことが好ましい。中でも、樹脂組成物の固形分中に、エポキシ樹脂を5~50重量%、シアネート樹脂を5~50重量%、及び無機充填材を10~90重量%含むことが好ましく、更に、エポキシ樹脂を5~25重量%、シアネート樹脂を10~25重量%、及び無機充填材を30~80重量%含むことが好ましい。 The above resin composition preferably contains at least an epoxy resin, a cyanate resin, and an inorganic filler, from the viewpoint of easily realizing low linear expansion, high rigidity, and high heat resistance of the prepreg. Among them, the solid content of the resin composition preferably contains 5 to 50% by weight of epoxy resin, 5 to 50% by weight of cyanate resin, and 10 to 90% by weight of inorganic filler, and further contains 5 to 50% of epoxy resin. Preferably, it contains ˜25 wt%, cyanate resin 10˜25 wt%, and inorganic filler 30˜80 wt%.
 本実施の形態に用いるプリプレグは、基材に樹脂組成物のワニスを含浸又は塗工してなるものであり、基材としては各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。基材の材質の例としては、Eガラス、Dガラス、NEガラス、Tガラス、Sガラス又はQガラス等の無機物繊維、ポリイミド、ポリエステル又はテトラフルオロエチレン等の有機繊維、及びそれらの混合物等が挙げられる。これらの基材は、例えば織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され必要により単独もしくは2種類以上の材質及び形状からの使用が可能である。基材の厚みには特に制限はないが、通常0.01~0.5mm程度のものを使用し、シランカップリング剤等で表面処理したものや機械的に開繊処理、および扁平化を施したものは耐熱性や耐湿性、加工性の面から好適である。また、プリプレグは、通常、その樹脂含有率が乾燥後で20~90重量%となるように基材に樹脂を含浸又は塗工し、120~220℃の温度で1~20分加熱乾燥し、半硬化状態(Bステージ状態)とすることで得ることができる。さらに、このプリプレグを通常1~20枚重ね、さらにその両面にキャリア箔付き極薄銅箔を配置した構成で加熱加圧して積層することで、積層板を得ることができる。複数枚のプリプレグ層の厚みは用途によって異なるが、通常0.03~2mmの厚みのものが良い。積層方法としては通常の積層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、通常、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の条件で積層したり、真空ラミネート装置などを用いてラミネート条件50~150℃、0.1~5MPa、真空圧1.0~760mmHgの条件でラミネートすることができる。 The prepreg used in the present embodiment is obtained by impregnating or coating a base material with a varnish of a resin composition. As the base material, well-known ones used for various types of laminates for electrical insulating materials are used. Can be used. Examples of the material for the substrate include inorganic fibers such as E glass, D glass, NE glass, T glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. It is done. These base materials have shapes such as woven fabric, non-woven fabric, low-ink, chopped strand mat, surfacing mat, etc., and the material and shape are selected depending on the intended use and performance of the molded product, and can be used alone or as required. It can be used from more than a variety of materials and shapes. The thickness of the base material is not particularly limited, but usually about 0.01 to 0.5 mm is used, and the surface is treated with a silane coupling agent or the like, or mechanically opened and flattened. These are suitable in terms of heat resistance, moisture resistance and processability. The prepreg is usually impregnated or coated with a resin so that the resin content is 20 to 90% by weight after drying, and is heated and dried at a temperature of 120 to 220 ° C. for 1 to 20 minutes. A semi-cured state (B stage state) can be obtained. Furthermore, a laminated sheet can be obtained by laminating 1 to 20 sheets of this prepreg and laminating them by heating and pressing in a configuration in which an ultrathin copper foil with a carrier foil is disposed on both sides thereof. The thickness of the plurality of prepreg layers varies depending on the application, but a thickness of 0.03 to 2 mm is usually preferable. As a laminating method, a normal laminating method can be applied. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine or the like is used, and the temperature is usually 100 to 250 ° C., the pressure is 0.2 to 10 MPa, and the heating time is used. Lamination can be performed under conditions of 0.1 to 5 hours, or lamination can be performed under conditions of lamination conditions of 50 to 150 ° C., 0.1 to 5 MPa, and vacuum pressure of 1.0 to 760 mmHg using a vacuum laminating apparatus.
 また、キャリア箔付き極薄銅箔(銅箔層104)は、その極薄銅箔の粗化面にこぶ状の電着物層(ヤケめっきといわれる。たとえば、特開平9-195096参照)の形成や酸化処理、還元処理、エッチングなどによる粗化面処理がされていてもよい。これにより、銅箔層104のバルク部分の一面にこぶ付け部分(以下、粗化足部分ともいう。)が形成される。 Further, the ultrathin copper foil with a carrier foil (copper foil layer 104) is formed with a bumpy electrodeposited layer (called burnt plating on the roughened surface of the ultrathin copper foil; see, for example, JP-A-9-195096). Or roughening surface treatment by oxidation treatment, reduction treatment, etching, or the like. Thereby, a bumped portion (hereinafter also referred to as a roughened foot portion) is formed on one surface of the bulk portion of the copper foil layer 104.
 また、本実施の形態においては、銅箔層104としては、銅からなる銅箔(製造工程上に不可避に混入する混入物を除く)の他に、ニッケルやアルミなどの添加金属成分を含む銅箔でもよい(この場合、銅の含有量は、特に限定されないが、銅箔層104を構成する全金属成分の重量の合計値に対して、90重量%以上が好ましく、95重量%以上がより好ましく、99重量%以上がさらに好ましい。また、添加金属成分としては、単独でもよいし、複数種併用しても良い)。また、銅箔層104に代えて、ニッケル箔、アルミ箔などの金属箔を用いてもよい。 Further, in the present embodiment, as the copper foil layer 104, copper containing an additive metal component such as nickel or aluminum in addition to copper foil made of copper (excluding contaminants inevitably mixed in the manufacturing process) is used. Foil may be used (in this case, the copper content is not particularly limited, but is preferably 90% by weight or more, more preferably 95% by weight or more based on the total weight of all metal components constituting the copper foil layer 104). It is preferably 99% by weight or more, and the additive metal component may be used alone or in combination of two or more. Further, instead of the copper foil layer 104, a metal foil such as a nickel foil or an aluminum foil may be used.
 ここで、銅箔層104に用いるピーラブルタイプの銅箔の詳細な形成方法を説明する。
 本実施の形態に用いる銅箔の製造方法としては、特に限定されず、例えば、キャリアを有するピーラブルタイプの銅箔を製造する場合、厚み10~50μmのキャリア箔上に剥離層となる金属等の無機化合物或いは有機化合物層を形成し、その剥離層上に銅箔をめっき処理により形成する。めっき液としては、例えば硫酸銅、またはピロリン酸銅等を用いて行うことができる。また、銅箔の物性や平滑性を考慮して、上記浴中に各種添加剤を添加してもよい。なお、ピーラブルタイプの金属箔とは、キャリアを有する金属箔であり、キャリアが引き剥がし可能な金属箔である。
Here, a detailed method of forming a peelable type copper foil used for the copper foil layer 104 will be described.
The method for producing the copper foil used in the present embodiment is not particularly limited. For example, in the case of producing a peelable type copper foil having a carrier, a metal that becomes a release layer on a carrier foil having a thickness of 10 to 50 μm, etc. An inorganic compound or organic compound layer is formed, and a copper foil is formed on the release layer by plating. As the plating solution, for example, copper sulfate or copper pyrophosphate can be used. Further, various additives may be added to the bath in consideration of the physical properties and smoothness of the copper foil. Note that the peelable type metal foil is a metal foil having a carrier and is a metal foil that can be peeled off by the carrier.
 本実施の形成において、剥離層上への銅箔の形成は、例えば添加物としてゼラチンおよび塩化物イオンを含有する硫酸銅めっき浴を用いて陰極電解処理することにより行うことができる。硫酸銅めっき浴は、例えば平均分子量が5000以下のゼラチンを15~35ppm含有する。また、硫酸銅めっき浴は、例えば塩化物イオン濃度として0.1~100ppm、好ましくは0.5~50ppm、特に好ましくは1~25ppm含有する。
 この場合、銅箔の形成は、剥離層を形成したキャリア箔を陰極とし、上記の硫酸銅めっき浴を用いて電解処理して剥離層上に銅めっきすることにより行われる。このような銅箔の形成方法によれば、高温加熱後も適度な機械的強度を有し、エッチング性に優れ、かつハンドリング性にも優れる銅箔を形成することができる。このような効果は、ゼラチンを添加することにより、銅箔を構成する結晶を微細化できることに起因する。
In the formation of the present embodiment, the formation of the copper foil on the release layer can be performed by, for example, cathodic electrolysis using a copper sulfate plating bath containing gelatin and chloride ions as additives. The copper sulfate plating bath contains, for example, 15 to 35 ppm of gelatin having an average molecular weight of 5000 or less. Further, the copper sulfate plating bath contains, for example, a chloride ion concentration of 0.1 to 100 ppm, preferably 0.5 to 50 ppm, particularly preferably 1 to 25 ppm.
In this case, the formation of the copper foil is performed by using the carrier foil on which the release layer is formed as a cathode, performing electrolytic treatment using the copper sulfate plating bath, and copper plating on the release layer. According to such a method for forming a copper foil, it is possible to form a copper foil that has an appropriate mechanical strength even after high-temperature heating, is excellent in etching properties, and is excellent in handling properties. Such an effect results from the fact that the crystals constituting the copper foil can be made finer by adding gelatin.
 ゼラチンの平均分子量が5000以下である場合、加熱による薄銅層の再結晶を抑制することができる。これにより、加熱後における結晶の微細化が実現される。この理由については十分に解明されていないが、ゼラチンの分子量を一定値以下とすることで、ゼラチンがめっき時に結晶粒界に取り込まれやすくなり、結果として再結晶が進むことを抑制することができるためと考えられる。ゼラチンの平均分子量は、500~5000であることが好ましく、1000~5000であることがより好ましい。ゼラチンの平均分子量を500以上とすることで、硫酸銅めっき浴に添加したゼラチンが酸性溶液中で分解されて、低分子量のアミノ酸等の有機化合物に分解されることを抑制することができる。これにより、ゼラチンがめっき時に結晶粒界に取り込まれることにより再結晶を防止する、という効果が低下してしまうことを抑制することができる。 When the average molecular weight of gelatin is 5000 or less, recrystallization of the thin copper layer due to heating can be suppressed. Thereby, miniaturization of the crystal after heating is realized. Although the reason for this has not been fully elucidated, by making the molecular weight of gelatin below a certain value, it becomes easier for gelatin to be taken into the grain boundaries during plating, and as a result, it is possible to suppress the progress of recrystallization. This is probably because of this. The average molecular weight of gelatin is preferably 500 to 5000, and more preferably 1000 to 5000. By setting the average molecular weight of gelatin to 500 or more, it is possible to suppress the gelatin added to the copper sulfate plating bath from being decomposed in an acidic solution and decomposed into an organic compound such as a low molecular weight amino acid. Thereby, it can suppress that the effect of preventing recrystallization by gelatin being taken in into a crystal grain boundary at the time of plating falls.
 硫酸銅めっき浴中のゼラチンの濃度は15~35ppmであることが好ましい。ゼラチンの濃度が15ppm以上である場合、加熱による再結晶の抑制効果を十分に得ることができる。このため、加熱後において微細な結晶状態を維持することが可能となる。ゼラチンの濃度が35ppm以下である場合、めっきにより形成される銅箔の内部応力が高くなることを抑制することができる。これにより、キャリア箔付極薄銅箔がカールして、搬送時に不具合が発生することを抑制することができる。 The gelatin concentration in the copper sulfate plating bath is preferably 15 to 35 ppm. When the gelatin concentration is 15 ppm or more, the effect of suppressing recrystallization by heating can be sufficiently obtained. For this reason, it becomes possible to maintain a fine crystal state after heating. When the gelatin concentration is 35 ppm or less, it is possible to suppress an increase in internal stress of the copper foil formed by plating. Thereby, it can suppress that an ultra-thin copper foil with a carrier foil curls, and a malfunction generate | occur | produces at the time of conveyance.
 硫酸銅めっき浴としては、例えば、硫酸銅5水和物、硫酸、ゼラチン及び塩素を含有する硫酸酸性硫酸銅メッキ浴が好適に用いられる。硫酸銅めっき浴中の硫酸銅5水和物の濃度は、好ましくは50g/L~300g/L、より好ましくは100g/L~200g/Lである。硫酸の濃度は、好ましくは40g/L~160g/L、より好ましくは80g/L~120g/Lである。ゼラチンの濃度は、上記のとおりである。塩化物イオン濃度は、好ましくは1~20ppm、より好ましくは3~10ppmである。めっき浴の溶媒は、通常、水である。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは1~15A/dm2であり、より好ましくは2~10A/dm2である。 As the copper sulfate plating bath, for example, a sulfuric acid copper sulfate plating bath containing copper sulfate pentahydrate, sulfuric acid, gelatin and chlorine is preferably used. The concentration of copper sulfate pentahydrate in the copper sulfate plating bath is preferably 50 g / L to 300 g / L, more preferably 100 g / L to 200 g / L. The concentration of sulfuric acid is preferably 40 g / L to 160 g / L, more preferably 80 g / L to 120 g / L. The concentration of gelatin is as described above. The chloride ion concentration is preferably 1 to 20 ppm, more preferably 3 to 10 ppm. The solvent for the plating bath is usually water. The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 1 to 15 A / dm 2, more preferably 2 to 10 A / dm 2.
 銅箔を形成する際、上記の硫酸銅めっき浴を用いる電解処理前に、ピンホールの発生を防止するため、いわゆる付きまわりの良いめっき浴を用いたストライクめっきを用いることができる。ストライクめっきに用いられるめっき浴としては、例えば、ピロリン酸銅めっき浴、クエン酸銅めっき浴、クエン酸銅ニッケルめっき浴等が挙げられる。 When forming the copper foil, strike plating using a so-called good plating bath can be used before the electrolytic treatment using the copper sulfate plating bath to prevent the generation of pinholes. Examples of the plating bath used for strike plating include a copper pyrophosphate plating bath, a copper citrate plating bath, a copper citrate nickel plating bath, and the like.
 ピロリン酸銅めっき浴としては、例えば、ピロリン酸銅及びピロリン酸カリウムを含有するめっき浴が好適である。ピロリン酸銅めっき浴中のピロリン酸銅の濃度は、好ましくは60g/L~110g/L、より好ましくは70g/L~90g/Lである。ピロリン酸カリウムの濃度は、好ましくは240g/L~470g/L、より好ましくは300g/L~400g/Lである。めっき浴の溶媒は、通常、水である。めっき浴のpHは、好ましくは8.0~9.0、より好ましくは8.2~8.8である。pH値調整のために、アンモニア水等を添加してもよい(以下同様)。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは0.5~10A/dmであり、より好ましくは1~7A/dmである。電解処理時間は、好ましくは5~40秒、より好ましくは10~30秒である。 As the copper pyrophosphate plating bath, for example, a plating bath containing copper pyrophosphate and potassium pyrophosphate is suitable. The concentration of copper pyrophosphate in the copper pyrophosphate plating bath is preferably 60 g / L to 110 g / L, more preferably 70 g / L to 90 g / L. The concentration of potassium pyrophosphate is preferably 240 g / L to 470 g / L, more preferably 300 g / L to 400 g / L. The solvent for the plating bath is usually water. The pH of the plating bath is preferably 8.0 to 9.0, more preferably 8.2 to 8.8. In order to adjust the pH value, ammonia water or the like may be added (hereinafter the same). The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 0.5 to 10 A / dm 2 , more preferably 1 to 7 A / dm 2 . The electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
 クエン酸銅めっき浴としては、例えば、硫酸銅5水和物及びクエン酸3ナトリウム2水和物を含有するめっき浴が好適である。クエン酸銅めっき浴中の硫酸銅5水和物の濃度は、好ましくは10g/L~50g/L、より好ましくは20g/L~40g/Lである。クエン酸3ナトリウム2水和物の濃度は、好ましくは20g/L~60g/L、より好ましくは30g/L~50g/Lである。めっき浴の溶媒は、通常、水である。めっき浴のpHは、好ましくは5.5~7.5、より好ましくは6.0~7.0である。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは0.5~8A/dmであり、より好ましくは1~4A/dmである。電解処理時間は、好ましくは5~40秒、より好ましくは10~30秒である。 As the copper citrate plating bath, for example, a plating bath containing copper sulfate pentahydrate and trisodium citrate dihydrate is suitable. The concentration of copper sulfate pentahydrate in the copper citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L. The concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L. The solvent for the plating bath is usually water. The pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0. The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 . The electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
 クエン酸銅ニッケルめっき浴としては、例えば、硫酸銅5水和物、硫酸ニッケル6水和物及びクエン酸3ナトリウム2水和物を含有するめっき浴が好適である。クエン酸銅ニッケルめっき浴中の硫酸銅5水和物の濃度は、好ましくは10g/L~50g/L、より好ましくは20g/L~40g/Lである。硫酸ニッケル6水和物の濃度は、好ましくは1g/L~10g/L、より好ましくは3g/L~8g/Lである。クエン酸3ナトリウム2水和物の濃度は、好ましくは20g/L~60g/L、より好ましくは30g/L~50g/Lである。めっき浴の溶媒は、通常、水である。めっき浴のpHは、好ましくは5.5~7.5、より好ましくは6.0~7.0である。めっき浴の温度は、好ましくは20~60℃、より好ましくは30~50℃である。電解処理時の電流密度は、好ましくは0.5~8A/dmであり、より好ましくは1~4A/dmである。電解処理時間は、好ましくは5~40秒、より好ましくは10~30秒である。 As the copper nickel citrate plating bath, for example, a plating bath containing copper sulfate pentahydrate, nickel sulfate hexahydrate and trisodium citrate dihydrate is suitable. The concentration of copper sulfate pentahydrate in the copper nickel citrate plating bath is preferably 10 g / L to 50 g / L, more preferably 20 g / L to 40 g / L. The concentration of nickel sulfate hexahydrate is preferably 1 g / L to 10 g / L, more preferably 3 g / L to 8 g / L. The concentration of trisodium citrate dihydrate is preferably 20 g / L to 60 g / L, more preferably 30 g / L to 50 g / L. The solvent for the plating bath is usually water. The pH of the plating bath is preferably 5.5 to 7.5, more preferably 6.0 to 7.0. The temperature of the plating bath is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. The current density during the electrolytic treatment is preferably 0.5 to 8 A / dm 2 , more preferably 1 to 4 A / dm 2 . The electrolytic treatment time is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
 上記剥離層は、金属酸化物等の無機化合物或いは有機化合物層であり、積層時の100~300℃の間の熱処理を受けても剥離可能であれば公知のものを用いることができる。金属酸化物としては、例えば、亜鉛、クロム、ニッケル、銅、モリブデン、合金系、金属と金属化合物との混合物が用いられる。有機化合物としては、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなるものを用いることが好ましい。 The release layer is an inorganic compound or organic compound layer such as a metal oxide, and a known layer can be used as long as it can be peeled off even when subjected to heat treatment at 100 to 300 ° C. during lamination. As the metal oxide, for example, zinc, chromium, nickel, copper, molybdenum, an alloy system, or a mixture of a metal and a metal compound is used. As an organic compound, it is preferable to use what consists of 1 type, or 2 or more types selected from a nitrogen-containing organic compound, a sulfur-containing organic compound, and carboxylic acid.
 上記窒素含有有機化合物は、置換基を有する窒素含有有機化合物であることが好ましい。具体的には、置換基を有するトリアゾール化合物である1,2,3-ベンゾトリアゾール(以下、「BTA」と称する。)、カルボキシベンゾトリアゾール(以下、「CBTA」と称する。)、N',N'-ビス(ベンゾトリアゾリルメチル)ユリア(以下、「BTD-U」と称する。)、1H-1,2,4-トリアゾール(以下、「TA」と称する。)及び3-アミノ-1H-1,2,4-トリアゾール(以下、「ATA」と称する。)等を用いることが好ましい。 The nitrogen-containing organic compound is preferably a nitrogen-containing organic compound having a substituent. Specifically, 1,2,3-benzotriazole (hereinafter referred to as “BTA”) which is a triazole compound having a substituent, carboxybenzotriazole (hereinafter referred to as “CBTA”), N ′, N '-Bis (benzotriazolylmethyl) urea (hereinafter referred to as “BTD-U”), 1H-1,2,4-triazole (hereinafter referred to as “TA”) and 3-amino-1H— 1,2,4-triazole (hereinafter referred to as “ATA”) or the like is preferably used.
 硫黄含有有機化合物としては、メルカプトベンゾチアゾール(以下、「MBT」と称する。)、チオシアヌル酸(以下、「TCA」と称する。)及び2-ベンズイミダゾールチオール(以下、「BIT」と称する)等を用いることが好ましい。 Examples of the sulfur-containing organic compound include mercaptobenzothiazole (hereinafter referred to as “MBT”), thiocyanuric acid (hereinafter referred to as “TCA”), 2-benzimidazolethiol (hereinafter referred to as “BIT”), and the like. It is preferable to use it.
 カルボン酸としては、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。 As the carboxylic acid, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid or the like.
 以上のように、電解密度を高くしたり、膜厚を薄くしたりする等、製法を適切に制御することにより、本実施の形態の銅箔層104の上面において、所望の配向性を実現することができる。 As described above, a desired orientation is realized on the upper surface of the copper foil layer 104 of the present embodiment by appropriately controlling the manufacturing method such as increasing the electrolytic density or reducing the film thickness. be able to.
 また、本実施の形態に用いる銅箔層104の少なくとも下面22(絶縁層102の一面と接する面)には、銅箔層104と絶縁層102との密着性を実用レベルもしくはそれ以上とするために表面処理が施されていてもよい。銅箔層104に用いる金属箔に対する表面処理としては、例えば、防錆処理、クロメート処理、シランカップリング処理のいずれか、もしくはこれらの組み合わせなどが挙げられる。絶縁層102を構成する樹脂材料に合わせて、適切にいずれの表面処理手段を選択することができる。 Further, at least the lower surface 22 (the surface in contact with one surface of the insulating layer 102) of the copper foil layer 104 used in this embodiment is used to make the adhesion between the copper foil layer 104 and the insulating layer 102 at a practical level or higher. The surface treatment may be performed. Examples of the surface treatment for the metal foil used for the copper foil layer 104 include rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. Any surface treatment means can be appropriately selected in accordance with the resin material constituting the insulating layer 102.
 上記防錆処理は、例えば、ニッケル、錫、亜鉛、クロム、モリブデン、コバルトなどの金属のいずれか、若しくはそれらの合金を、スパッタや電気めっき、無電解めっきにより金属箔上に薄膜形成することで施すことができる。コストの面からは電気めっきが好ましい。金属イオンの析出を容易にするためにクエン酸塩、酒石酸塩、スルファミン酸等の錯化剤を必要量添加することも出来る。めっき液は、通常酸性領域で用い、室温(たとえば、25℃)~80℃の温度で行う。めっき条件は、電流密度0.1~10A/dm、通電時間1~60秒、好ましくは1~30秒の範囲から適宜選択する。防錆処理金属の量は、金属の種類によって異なるが、合計で10~2000μg/dmが好適である。防錆処理が厚すぎるとエッチング阻害と電気特性の低下を引き起こし、薄すぎると樹脂とのピール強度低下の要因となりうる。 The rust prevention treatment is performed by forming a thin film on a metal foil by sputtering, electroplating, or electroless plating, for example, any one of metals such as nickel, tin, zinc, chromium, molybdenum, and cobalt, or an alloy thereof. Can be applied. From the viewpoint of cost, electroplating is preferable. In order to facilitate the precipitation of metal ions, a complexing agent such as citrate, tartrate or sulfamic acid can be added in the required amount. The plating solution is usually used in an acidic region and is performed at a temperature of room temperature (for example, 25 ° C.) to 80 ° C. The plating conditions are appropriately selected from the range of current density of 0.1 to 10 A / dm 2 , energization time of 1 to 60 seconds, preferably 1 to 30 seconds. The amount of the rust-proofing metal varies depending on the type of metal, but is preferably 10 to 2000 μg / dm 2 in total. If the rust preventive treatment is too thick, it may cause etching inhibition and deterioration of electrical characteristics, and if it is too thin, it may cause a reduction in peel strength with the resin.
 また、絶縁層102を構成する樹脂組成物中にシアネート樹脂を含む場合には、防錆処理がニッケルを含む金属により行われていることが好ましい。この組み合わせにおいては、耐熱劣化試験や耐湿劣化試験におけるピール強度の低下が少なく有用である。 Moreover, when the cyanate resin is contained in the resin composition constituting the insulating layer 102, it is preferable that the rust prevention treatment is performed with a metal containing nickel. This combination is useful in that there is little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.
 上記クロメート処理として、好ましくは六価クロムイオンを含む水溶液を用いる。クロメート処理は単純な浸漬処理でも可能であるが、好ましくは陰極処理で行う。重クロム酸ナトリウム0.1~50g/L、pH1~13、浴温0~60℃、電流密度0.1~5A/dm、電解時間0.1~100秒の条件で行うことが好ましい。重クロム酸ナトリウムの代わりにクロム酸或いは重クロム酸カリウムを用いて行うことも出来る。また、上記クロメート処理は上記防錆処理上に重ねて施すことが好ましい。これにより、絶縁樹脂組成物層(絶縁層102)と金属箔(銅箔層104)との密着性をより向上させることができる。 As the chromate treatment, an aqueous solution containing hexavalent chromium ions is preferably used. The chromate treatment can be performed by a simple immersion treatment, but is preferably performed by a cathode treatment. Sodium dichromate is preferably used under the conditions of 0.1 to 50 g / L, pH 1 to 13, bath temperature 0 to 60 ° C., current density 0.1 to 5 A / dm 2 , and electrolysis time 0.1 to 100 seconds. It can also carry out using chromic acid or potassium dichromate instead of sodium dichromate. Further, the chromate treatment is preferably performed on the rust preventive treatment. Thereby, the adhesiveness of an insulating resin composition layer (insulating layer 102) and metal foil (copper foil layer 104) can be improved more.
 上記シランカップリング処理に用いるシランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性シラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルメチルジメトキシシラン等のアミノ官能性シラン、ビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のオレフィン官能性シラン、3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランなどが用いられる。これらは単独で用いても良いし、複数を混合して用いても良い。これらのカップリング剤は水などの溶媒に0.1~15g/Lの濃度で溶解させて用い、得られた溶液を室温~50℃の温度で金属箔に塗布または電着させることで、金属箔にシランカップリング剤を吸着させる。これらのシランカップリング剤が金属箔表面の防錆処理金属の水酸基と縮合結合することで、金属箔上に被膜が形成される。シランカップリング処理後は、加熱、紫外線照射等によって、かかる結合を安定的にさせる。加熱処理においては、たとえば、100~200℃の温度、2~60秒の乾燥を行うことが好ましい。紫外線照射は、例えば、波長200~400nm、200~2500mJ/cmの範囲で行うことが好ましい。また、シランカップリング処理は金属箔の最外層に行うことが好ましい。絶縁層102を構成する絶縁樹脂組成物中にシアネート樹脂を含む場合には、アミノシラン系のカップリング剤で処理されていることが好ましい。この組み合わせは、耐熱劣化試験や耐湿劣化試験におけるピール強度の低下が少なく有用である。 Examples of the silane coupling agent used in the silane coupling treatment include epoxy-functional silanes such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-amino Amino-functional silanes such as propyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyl Olefin-functional silanes such as trimethoxysilane and vinyltris (2-methoxyethoxy) silane, acrylic-functional silanes such as 3-acryloxypropyltrimethoxysilane, and methacryl-functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3 - And mercapto-functional silanes such as Le mercaptopropyl trimethoxysilane is used. These may be used alone or in combination. These coupling agents are used by dissolving in a solvent such as water at a concentration of 0.1 to 15 g / L, and applying the obtained solution to a metal foil at a temperature of room temperature to 50 ° C. Adsorb the silane coupling agent on the foil. A coating film is formed on the metal foil by these silane coupling agents being condensed and bonded to the hydroxyl group of the rust-preventing metal on the surface of the metal foil. After the silane coupling treatment, such bonding is stabilized by heating, ultraviolet irradiation or the like. In the heat treatment, for example, drying at a temperature of 100 to 200 ° C. for 2 to 60 seconds is preferable. The ultraviolet irradiation is preferably performed in a wavelength range of 200 to 400 nm and 200 to 2500 mJ / cm 2 , for example. The silane coupling treatment is preferably performed on the outermost layer of the metal foil. When the insulating resin composition constituting the insulating layer 102 contains a cyanate resin, it is preferably treated with an aminosilane-based coupling agent. This combination is useful with little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.
 また、シランカップリング処理に用いるシランカップリング剤としては、好ましくは60~200℃、より好ましくは80~150℃の加熱により、絶縁層102を構成する絶縁樹脂組成物と化学反応するものであることが好ましい。これにより、上記絶縁樹脂組成物中の官能基とシランカップリング剤の官能基が化学反応し、より優れた密着性を得ることが可能となる。例えば、エポキシ基が含まれる絶縁樹脂組成物に対しては、アミノ官能性シランを含むシランカップリング剤を用いることが好ましい。これは、熱によりエポキシ基とアミノ基が容易に強固な化学結合を形成し、この結合が熱や水分に対して極めて安定であることに起因する。このように化学結合を形成する組み合わせとして、エポキシ基-アミノ基、エポキシ基-エポキシ基、エポキシ基-メルカプト基、エポキシ基-水酸基、エポキシ基-カルボキシル基、エポキシ基-シアナト基、アミノ基-水酸基、アミノ基-カルボキシル基、アミノ基-シアナト基などが例示される。 Further, the silane coupling agent used for the silane coupling treatment preferably reacts with the insulating resin composition constituting the insulating layer 102 by heating at 60 to 200 ° C., more preferably 80 to 150 ° C. It is preferable. Thereby, the functional group in the said insulating resin composition and the functional group of a silane coupling agent react chemically, and it becomes possible to obtain the more excellent adhesiveness. For example, it is preferable to use a silane coupling agent containing an amino-functional silane for an insulating resin composition containing an epoxy group. This is because the epoxy group and amino group easily form a strong chemical bond by heat, and this bond is extremely stable against heat and moisture. As a combination for forming a chemical bond in this way, epoxy group-amino group, epoxy group-epoxy group, epoxy group-mercapto group, epoxy group-hydroxyl group, epoxy group-carboxyl group, epoxy group-cyanato group, amino group-hydroxyl group And amino group-carboxyl group, amino group-cyanato group and the like.
 また、本実施の形態に用いる絶縁樹脂組成物の絶縁樹脂として、常温で液状のエポキシ樹脂を用いることが好ましく、この場合、溶融時の粘度が大幅に低下するため、接着界面における濡れ性が向上し、エポキシ樹脂とシランカップリング剤の化学反応が起こりやすくなり、その結果、強固なピール強度が得られる。具体的にはエポキシ当量200程度のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂が好ましい。 In addition, it is preferable to use an epoxy resin that is liquid at room temperature as the insulating resin of the insulating resin composition used in this embodiment, and in this case, the viscosity at the time of melting is greatly reduced, so that the wettability at the adhesion interface is improved In addition, a chemical reaction between the epoxy resin and the silane coupling agent is likely to occur, and as a result, a strong peel strength can be obtained. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin having an epoxy equivalent of about 200 are preferable.
 また、絶縁樹脂組成物が硬化剤を含む場合、硬化剤としては、特に加熱硬化型潜在性硬化剤を用いることが好ましい。すなわち、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基が化学反応する場合は、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基の反応温度が絶縁樹脂組成物の硬化反応が開始される温度より低くなるように硬化剤を選択することが好ましい。これにより、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基の反応が優先的、選択的に行われ、金属箔(銅箔層104)と絶縁樹脂組成物層(絶縁層102)の密着性がより高くなる。エポキシ樹脂を含む絶縁樹脂組成物に対する熱硬化型潜在性硬化剤としては、例えば、ジシアンジアミド、ジヒドラジド化合物、イミダゾール化合物、アミン-エポキシアダクトなどの固体分散-加熱溶解型硬化剤や尿素化合物、オニウム塩類、ボロントリクロライド・アミン塩類、ブロックカルボン酸化合物などの反応性基ブロック型硬化剤が挙げられる。 Further, when the insulating resin composition contains a curing agent, it is particularly preferable to use a thermosetting latent curing agent as the curing agent. That is, when the functional group in the insulating resin composition and the functional group of the silane coupling agent chemically react, the reaction temperature of the functional group in the insulating resin composition and the functional group of the silane coupling agent is the same as that of the insulating resin composition. It is preferable to select the curing agent so that it is lower than the temperature at which the curing reaction is initiated. Thereby, the reaction between the functional group in the insulating resin composition and the functional group of the silane coupling agent is preferentially and selectively performed, and the metal foil (copper foil layer 104) and the insulating resin composition layer (insulating layer 102) The adhesion of becomes higher. Examples of the thermosetting latent curing agent for the insulating resin composition containing an epoxy resin include solid dispersion-heat-dissolving curing agents such as dicyandiamide, dihydrazide compounds, imidazole compounds, and amine-epoxy adducts, urea compounds, onium salts, Examples thereof include reactive group block type curing agents such as boron trichloride / amine salts and block carboxylic acid compounds.
 以上、絶縁樹脂組成物を含有するプリプレグと、キャリア箔付き極薄銅箔とを前述の方法により積層一体化することで、図1(a)に示すような、キャリア箔付き銅張積層板10を得ることができる。続いて、図1(b)に示すように、キャリア箔層106を引きはがすことにより、銅箔層104を絶縁層102の両面に有する銅張積層板100が得られる。なお、この態様に限定されず、銅箔層104は、絶縁層102の少なくとも一面に形成されていればよく、また、絶縁層102の全面または一部に形成されていてもよい。また、本実施の形態の銅箔層104は、バルク部分と粗化足部分とを有することが好ましい。 As described above, the prepreg containing the insulating resin composition and the ultrathin copper foil with the carrier foil are laminated and integrated by the above-described method, whereby the copper clad laminate 10 with the carrier foil as shown in FIG. Can be obtained. Subsequently, as shown in FIG. 1 (b), the copper clad laminate 100 having the copper foil layers 104 on both surfaces of the insulating layer 102 is obtained by peeling off the carrier foil layer 106. Note that the present invention is not limited thereto, and the copper foil layer 104 may be formed on at least one surface of the insulating layer 102 or may be formed on the entire surface or a part of the insulating layer 102. Moreover, it is preferable that the copper foil layer 104 of this Embodiment has a bulk part and a roughening foot part.
 ここで、積層板(銅張積層板100)の詳細を説明する。 Here, the details of the laminate (copper-clad laminate 100) will be described.
 銅箔層104(薄層銅箔)の前述の条件下のエッチングレートは、0.68μm/min以上1.25μm/min以下であり、より好ましくは0.68μm/min以上、1.24μm/min以下であり、さらに好ましくは0.69μm/min以上、1.23μm/min以下である。ここで記載する銅箔層104のエッチングレートは、とくに、バルク部分のエッチングレートのみを指し示す。 The etching rate of the copper foil layer 104 (thin layer copper foil) under the above-described conditions is 0.68 μm / min or more and 1.25 μm / min or less, more preferably 0.68 μm / min or more and 1.24 μm / min. Or less, more preferably 0.69 μm / min or more and 1.23 μm / min or less. The etching rate of the copper foil layer 104 described here particularly indicates only the etching rate of the bulk portion.
 本実施の形態において、銅箔層104のエッチングレートを下限値以上とすることにより、銅箔層104のエッチング残渣を低減できるとともに、配線形状を良好とすることができる。また、銅箔のエッチングレートを上限値以下とすることにより、銅箔層104の側壁に切り欠きが形成され、配線と絶縁層との密着性が低下することを抑制できる。つまり、銅箔層104の粗化足部分までエッチングする際に、銅箔層104のバルク部分に異常なくびれが発生することを抑制することができる。 In the present embodiment, by setting the etching rate of the copper foil layer 104 to the lower limit value or more, the etching residue of the copper foil layer 104 can be reduced and the wiring shape can be improved. In addition, by setting the etching rate of the copper foil to the upper limit value or less, it is possible to prevent a notch from being formed in the side wall of the copper foil layer 104 and to reduce the adhesion between the wiring and the insulating layer. That is, when etching up to the roughened foot portion of the copper foil layer 104, it is possible to suppress the occurrence of abnormal constriction in the bulk portion of the copper foil layer 104.
 本実施の形態において、銅箔のバルク部分のエッチングレートは、以下の方法により測定できる。
1.キャリア箔(キャリア箔層106)を除去した極薄銅箔を両面に積層した基板(銅張積層板100)を、40mm×80mmに裁断してサンプル片を得る。サンプル片をノギスで、小数点以下2桁まで読み取り、サンプル片の片面積を算出する。
2.水平乾燥ラインにて、80℃ 1分×3回の乾燥処理をサンプル片に行う。
3.サンプル片の初期重量W0を測定する(ただし、基板重量含む)。
4.エッチング液を調整する。
 4-1:95%硫酸(和光純薬社製、特級)を60g秤量し、1Lのビーカーに入れる。
 4-2:純水を4-1で用いたビーカーに投入し、計1000ccにする。
 4-3:マグネチックスターラーで30℃±1℃で、3分攪拌する。 
 4-4:34.5%過酸化水素水(関東化学社製、鹿一級)を20cc秤量し、4-1で用いたビーカーに入れ、計1020ccにした後、30℃±1℃で3分攪拌する。これにより、硫酸55.9g/L、及び34.5%過酸化水素水19.6cc/Lのエッチング液が得られる。
5.上記エッチング液(液温30℃±1℃、攪拌条件マグネチックスターラー、250rmp)にサンプル片を浸漬する。
6.極薄銅箔のバルク部分が完全にエッチングされるまで、30秒ごとにサンプル片の重量W1を測定する(ただし、基板重量含む)。
7.エッチング重量(W0-W1)/(浸漬させた両面面積=m)を算出し、X軸にエッチング時間(秒)、Y軸にエッチング質量(g/m)をプロットする。0~150秒の間に対し最小二乗法を用いて、傾きKを算出する。
In this Embodiment, the etching rate of the bulk part of copper foil can be measured with the following method.
1. A substrate (copper-clad laminate 100) on which the ultrathin copper foil from which the carrier foil (carrier foil layer 106) has been removed is laminated on both sides is cut into 40 mm × 80 mm to obtain sample pieces. Read the sample piece with a caliper to 2 digits after the decimal point, and calculate the area of the sample piece.
2. The sample piece is dried at 80 ° C. for 1 minute × 3 times in a horizontal drying line.
3. The initial weight W0 of the sample piece is measured (however, including the substrate weight).
4). Adjust the etchant.
4-1: Weigh 60 g of 95% sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and place in a 1 L beaker.
4-2: Put pure water into the beaker used in 4-1 to make a total of 1000 cc.
4-3: Stir with a magnetic stirrer at 30 ° C. ± 1 ° C. for 3 minutes.
4-4: Weigh 20 cc of 34.5% hydrogen peroxide water (Kanto Chemical Co., Ltd., deer grade 1), put it in the beaker used in 4-1, make a total of 1020 cc, then 3 minutes at 30 ° C ± 1 ° C Stir. As a result, an etching solution containing 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide water is obtained.
5. The sample piece is immersed in the etching solution (liquid temperature 30 ° C. ± 1 ° C., stirring condition magnetic stirrer, 250 rpm).
6). The weight W1 of the sample piece is measured every 30 seconds (including the substrate weight) until the bulk portion of the ultrathin copper foil is completely etched.
7). The etching weight (W0-W1) / (area of both surfaces immersed = m 2 ) is calculated, and the etching time (seconds) is plotted on the X axis and the etching mass (g / m 2 ) is plotted on the Y axis. The slope K is calculated using the method of least squares between 0 and 150 seconds.
 本実施の形態のエッチングレートの換算式を示す。
 エッチングレート(μm/min)=K(g/sec・m)÷8.92(銅比重g/cm)×60(sec/min)
The conversion formula of the etching rate of this Embodiment is shown.
Etching rate (μm / min) = K (g / sec · m 2 ) ÷ 8.92 (copper specific gravity g / cm 3 ) × 60 (sec / min)
 230℃、1時間の条件の加熱処理の前後における、銅箔層104のビッカース硬度の差は、好ましくは0Hv以上50Hv以下であり、より好ましくは0Hv以上30Hv以下である。銅箔層104のビッカース硬度の差を上限値以下とすることにより、加熱によって銅箔層104の再結晶が進んで結晶粒度が大きくなることでエッチング速度が遅くなることを抑制したり、エッチング後の細回路の歪みが蓄積することを抑制したりできる。ここでは、230℃、1時間の条件の加熱処理の前後における銅箔層104のビッカース硬度の差の絶対値を、好ましくは0Hv以上50Hv以下とし、より好ましくは0Hv以上30Hv以下とするものである。 The difference in Vickers hardness of the copper foil layer 104 before and after heat treatment at 230 ° C. for 1 hour is preferably 0 Hv or more and 50 Hv or less, more preferably 0 Hv or more and 30 Hv or less. By setting the difference in Vickers hardness of the copper foil layer 104 to the upper limit value or less, the recrystallization of the copper foil layer 104 proceeds by heating and the crystal grain size is increased, thereby suppressing the etching rate from being slowed or after etching. It is possible to suppress accumulation of distortion of the fine circuit. Here, the absolute value of the difference in Vickers hardness of the copper foil layer 104 before and after the heat treatment at 230 ° C. for 1 hour is preferably 0 Hv or more and 50 Hv or less, more preferably 0 Hv or more and 30 Hv or less. .
 また、銅箔層104は、230℃、1時間加熱処理後のビッカース硬度が、好ましくは180Hv以上240Hv以下であり、より好ましくは185Hv以上235Hv以下である。加熱後のビッカース硬度を180Hv以上とすることにより、加熱によって薄銅層(銅箔層104)の再結晶が進んで結晶粒度が大きくなることを抑制したり、エッチング後の回路直線性が低下することを抑制したりできる。一方、加熱後のビッカース硬度を240Hv以下とすることにより、薄銅層が硬くなり過ぎて脆くなることに起因してハンドリング時に割れが発生することを抑制すること、および、形成した微細配線の冷熱衝撃耐性を向上させることができる。 Further, the copper foil layer 104 has a Vickers hardness after heat treatment at 230 ° C. for 1 hour, preferably from 180 Hv to 240 Hv, more preferably from 185 Hv to 235 Hv. By setting the Vickers hardness after heating to 180 Hv or more, it is possible to suppress recrystallization of the thin copper layer (copper foil layer 104) due to heating and to increase the crystal grain size, or to reduce circuit linearity after etching. Can be suppressed. On the other hand, by setting the Vickers hardness after heating to 240 Hv or less, it is possible to suppress the occurrence of cracks during handling due to the thin copper layer becoming too hard and brittle, and cooling the formed fine wiring Impact resistance can be improved.
 本実施の形態において、ビッカース硬度は、例えば以下の方法により測定できる。
 すなわち、ビッカース硬度の測定は、JIS Z 2244に準拠し、以下の手順で、アカシ社製、微小硬度計(型番MVK-2H)を用いて23℃で行う。(1)銅箔層まで形成したキャリア箔付き極薄銅箔を230℃に加熱したオーブン(窒素雰囲気)中に1時間放置した後、10×10mm角にカットする。(2)カット試料に負荷速度3μm/秒、試験荷重5gf、保持時間15秒の条件で圧痕をつけ、圧痕の測定結果からビッカース硬度を算出する。(3)任意の5点のビッカース硬度を測定した平均値を、本実施の形態のビッカース硬度の値とする。
 なお、試料としては、銅箔層まで形成した直後であって、加熱処理を行っていないキャリア箔付極薄銅箔を用いることもできる。
In the present embodiment, the Vickers hardness can be measured by, for example, the following method.
That is, the measurement of Vickers hardness is performed at 23 ° C. using a micro hardness meter (model number MVK-2H) manufactured by Akashi Corporation according to JIS Z 2244 according to the following procedure. (1) The ultrathin copper foil with carrier foil formed up to the copper foil layer is left in an oven (nitrogen atmosphere) heated to 230 ° C. for 1 hour, and then cut into 10 × 10 mm squares. (2) An indentation is made on the cut sample under conditions of a load speed of 3 μm / second, a test load of 5 gf, and a holding time of 15 seconds, and Vickers hardness is calculated from the measurement result of the indentation. (3) Let the average value which measured the Vickers hardness of arbitrary 5 points | pieces be the value of the Vickers hardness of this Embodiment.
In addition, as a sample, it is also possible to use an ultrathin copper foil with a carrier foil that has just been formed up to the copper foil layer and has not been subjected to heat treatment.
 また、銅箔層104において、230℃、1時間加熱処理後の断面の結晶粒度は、好ましくは2.0μm以下であり、より好ましくは0.5μm以下であり、さらに好ましくは0.25μm以上0.5μm以下である。銅箔層104の結晶粒度を上限値以下とすることにより、エッチング後の回路直線性が低下することを抑制することができる。銅箔層104の結晶粒度を下限値以上とすることにより、薄銅層めっき後加熱前の内部応力(引張応力)が高くなりすぎることを抑制して、支持体付極薄銅箔全体がカールして搬送時に不具合が発生することを抑制することができる。 Further, in the copper foil layer 104, the crystal grain size of the cross section after heat treatment at 230 ° C. for 1 hour is preferably 2.0 μm or less, more preferably 0.5 μm or less, and further preferably 0.25 μm or more and 0. .5 μm or less. By setting the crystal grain size of the copper foil layer 104 to the upper limit value or less, it is possible to prevent the circuit linearity after etching from being lowered. By setting the crystal grain size of the copper foil layer 104 to the lower limit value or more, it is possible to suppress the internal stress (tensile stress) before heating after the thin copper layer plating from becoming too high, and the entire ultrathin copper foil with support is curled. As a result, it is possible to suppress the occurrence of problems during conveyance.
 本実施の形態において、銅箔層104の結晶粒度は、以下の方法により測定できる。
 すなわち、銅箔層104の結晶粒度は、JIS H 0501に準じて測定した。具体的な手順は下記のとおりである。まず、積層板(銅張積層板100)をFIB(収束イオンビーム)加工装置で加工し、SIM(Scanning Ion Microscope)観察写真を撮影する。撮影した写真の断面の結晶粒度をJIS H 0501に規定される比較法の標準写真から算出する。
In the present embodiment, the crystal grain size of the copper foil layer 104 can be measured by the following method.
That is, the crystal grain size of the copper foil layer 104 was measured according to JIS H 0501. The specific procedure is as follows. First, a laminated board (copper-clad laminated board 100) is processed with a FIB (focused ion beam) processing apparatus, and a SIM (Scanning Ion Microscope) observation photograph is taken. The crystal grain size of the cross section of the photograph taken is calculated from the standard photograph of the comparative method specified in JIS H 0501.
 本実施の形態では、銅箔層104の結晶粒度を小さくすること、加熱後のビッカース硬度の変化を小さくすること、粗化足部分のエッチング速度を高めることなどにより、銅箔層104(とくに、バルク部分)のエッチング速度を高めることができる。また、粗化足部分のエッチング速度は、通常、バルク部分よりもエッチング速度が遅いものであるが、たとえば、電解密度を小さくすることにより高めることが可能となる。 In the present embodiment, the copper foil layer 104 (particularly, by reducing the crystal grain size of the copper foil layer 104, reducing the change in Vickers hardness after heating, increasing the etching rate of the roughened foot portion, etc.) The etching rate of the bulk portion can be increased. In addition, the etching rate of the roughened foot portion is usually slower than that of the bulk portion, but can be increased by reducing the electrolytic density, for example.
 銅箔層104の膜厚は、用途に応じて任意に設定することができる。たとえば、銅箔層104の膜厚は、好ましくは0.1μm以上5μm以下であり、より好ましくは1μm以上4μm以下である。銅箔層104の膜厚を上記範囲内とすることにより、良好な微細回路を形成することができる。 The film thickness of the copper foil layer 104 can be arbitrarily set according to the application. For example, the film thickness of the copper foil layer 104 is preferably 0.1 μm or more and 5 μm or less, and more preferably 1 μm or more and 4 μm or less. By setting the film thickness of the copper foil layer 104 within the above range, a good fine circuit can be formed.
 次いで、図1(c)に示すように、銅張積層板100に、その上面から下面に貫通する層間接続用の貫通孔108を形成する。貫通孔108を形成する方法は、各種の公知の手段を用いることができるが、たとえば、孔径が100μm以上の貫通孔108を形成する場合には、生産性の観点から、ドリル等を用いる手段が適しており、100μm以下の貫通孔108を形成する場合には、炭酸ガスやエキシマ等の気体レーザーやYAG等の固体レーザーを用いる手段が適している。 Next, as shown in FIG. 1C, a through hole 108 for interlayer connection penetrating from the upper surface to the lower surface is formed in the copper clad laminate 100. Various known means can be used as a method of forming the through hole 108. For example, when forming the through hole 108 having a hole diameter of 100 μm or more, means using a drill or the like is used from the viewpoint of productivity. In order to form the through-hole 108 of 100 μm or less, means using a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG is suitable.
 次いで、少なくとも銅箔層104上に触媒核を付与することもできるが、本実施の形態では、銅箔層104の全面上および貫通孔108の内壁面上に触媒核を付与する。この触媒核としては、特に限定されないが、例えば、貴金属イオンやパラジウムコロイドを用いることができる。引き続き、この触媒核を核として無電解めっき層を形成するが、この無電解めっき処理前に、銅箔層104や貫通孔108の表面上に対して、例えば薬液によるスミア除去等を行っても良い。デスミア処理としては、特に限定されず、有機物分解作用を有する酸化剤溶液等を使用した湿式法、及び対象物となるものに直接酸化作用の強い活性種(プラズマ、ラジカル等)を照射して有機物残渣を除去するプラズマ法等の乾式法等の公知の方法を用いることができる。湿式法のデスミア処理としては、具体的には、樹脂表面の膨潤処理を施した後、アルカリ処理によりエッチングを行い、続いて中和処理を行う方法等が挙げられる。 Next, at least a catalyst nucleus can be provided on the copper foil layer 104, but in this embodiment, the catalyst nucleus is provided on the entire surface of the copper foil layer 104 and on the inner wall surface of the through hole 108. The catalyst nucleus is not particularly limited. For example, a noble metal ion or palladium colloid can be used. Subsequently, an electroless plating layer is formed using this catalyst nucleus as a nucleus. Before the electroless plating treatment, for example, smear removal with a chemical solution or the like may be performed on the surface of the copper foil layer 104 or the through hole 108. good. The desmear treatment is not particularly limited, and is a wet method using an oxidant solution having an organic substance decomposing action, and an organic substance by irradiating a target object with active species (plasma, radical, etc.) having a strong oxidizing action directly. A known method such as a dry method such as a plasma method for removing the residue can be used. Specific examples of the wet desmear treatment include a method in which the resin surface is subjected to a swelling treatment, etched by an alkali treatment, and then subjected to a neutralization treatment.
 次いで、図1(d)に示すように、触媒核を付与した銅箔層104上および貫通孔108の内壁上に、無電解めっき処理により薄層の無電解めっき層110を形成する。この無電解めっき層110は、絶縁層102の上面上の銅箔層104とその下面上の銅箔層104とを電気的に接続している。無電解めっきには、例えば、硫酸銅、ホルマリン、錯化剤、水酸化ナトリウム等を含むものを用いる事ができる。なお、無電解めっき後に、100~250℃の加熱処理を施し、めっき被膜を安定化させることが好ましい。120~180℃の加熱処理が酸化を抑制できる被膜を形成できる点で、特に好ましい。また、無電解めっき層110の平均厚さは、次の電気めっきが行うことができる厚さであればよく、例えば、0.1~1μm程度で十分である。また、貫通孔108の内部は、導電ペースト、又は絶縁ペーストを充填してもよいし、電気パターンめっきで充填してもよい。 Next, as shown in FIG. 1 (d), a thin electroless plating layer 110 is formed on the copper foil layer 104 provided with catalyst nuclei and the inner walls of the through holes 108 by electroless plating. The electroless plating layer 110 electrically connects the copper foil layer 104 on the upper surface of the insulating layer 102 and the copper foil layer 104 on the lower surface thereof. For electroless plating, for example, one containing copper sulfate, formalin, complexing agent, sodium hydroxide or the like can be used. In addition, it is preferable to stabilize the plating film by performing a heat treatment at 100 to 250 ° C. after the electroless plating. A heat treatment at 120 to 180 ° C. is particularly preferable in that a film capable of suppressing oxidation can be formed. Further, the average thickness of the electroless plating layer 110 may be any thickness that allows the next electroplating to be performed. For example, about 0.1 to 1 μm is sufficient. Further, the inside of the through hole 108 may be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
 次いで、図1(e)に示すように、銅箔層104上に設けられた無電解めっき層110上に所定の開口パターンを有するレジスト層112を形成する。この開口パターンは、後述の導体回路パターンに相当する。このため、レジスト層112は銅箔層104上の非回路形成領域を覆うように設けられている。言い換えると、レジスト層112は、貫通孔108上と銅箔層104上の導体回路形成領域には形成されていない。レジスト層112としては、特に限定されず、公知の材料を用いることができるが、液状およびドライフィルムを用いることができる。微細配線形成の場合には、レジスト層112としては、感光性ドライフィルム等を用いることが好ましい。レジスト層112を形成するには、例えば、無電解めっき層110上に感光性ドライフィルムを積層し、非回路形成領域を露光して光硬化させ、未露光部を現像液で溶解、除去する。なお、残存する硬化した感光性ドライフィルムが、レジスト層112となる。レジスト層112の厚さは、その後めっきする導体(めっき層114)の厚さと同程度かより厚い膜厚にするのが好適である。 Next, as shown in FIG. 1 (e), a resist layer 112 having a predetermined opening pattern is formed on the electroless plating layer 110 provided on the copper foil layer 104. This opening pattern corresponds to a conductor circuit pattern described later. Therefore, the resist layer 112 is provided so as to cover the non-circuit formation region on the copper foil layer 104. In other words, the resist layer 112 is not formed in the conductive circuit formation region on the through hole 108 and the copper foil layer 104. The resist layer 112 is not particularly limited, and a known material can be used, but liquid and dry films can be used. In the case of forming fine wiring, it is preferable to use a photosensitive dry film or the like as the resist layer 112. In order to form the resist layer 112, for example, a photosensitive dry film is laminated on the electroless plating layer 110, the non-circuit formation region is exposed and photocured, and the unexposed portion is dissolved and removed with a developer. The remaining cured photosensitive dry film becomes the resist layer 112. It is preferable that the thickness of the resist layer 112 be equal to or greater than the thickness of the conductor (plating layer 114) to be subsequently plated.
 次いで、図2(a)に示すように、少なくともレジスト層112の開口パターン内部かつ無電解めっき層110上に、電気めっき処理によりめっき層114を形成する。このとき銅箔層104は給電層として働く。本実施の形態では、絶縁層102の上面、貫通孔108の内壁及びその下面に亘って、連続してめっき層114が設けられていてもよい。こうした電気めっきとしては、特に限定されないが、通常のプリント配線板で用いられる公知の方法を使用することができ、例えば、硫酸銅等のめっき液中に浸漬させた状態で、かかるめっき液に電流を流す等の方法を使用することができる。めっき層114の厚さは、特に限定されないが、回路導体として使用できればよく、例えば、1~100μmの範囲であることが好ましく、5~50μmの範囲であることがより好ましい。めっき層114は単層でもよく多層構造を有していてもよい。めっき層114の材料としては、特に限定されないが、例えば、銅、銅合金、42合金、ニッケル、鉄、クロム、タングステン、金、半田などを用いることができる。 Next, as shown in FIG. 2A, a plating layer 114 is formed by electroplating at least inside the opening pattern of the resist layer 112 and on the electroless plating layer 110. At this time, the copper foil layer 104 serves as a power feeding layer. In the present embodiment, the plating layer 114 may be provided continuously over the upper surface of the insulating layer 102, the inner wall of the through hole 108, and the lower surface thereof. Such electroplating is not particularly limited, but a known method used in ordinary printed wiring boards can be used. For example, in a state where the plating solution is immersed in a plating solution such as copper sulfate, an electric current is supplied to the plating solution. A method such as flowing a stream can be used. The thickness of the plating layer 114 is not particularly limited as long as it can be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm. The plating layer 114 may be a single layer or may have a multilayer structure. The material of the plating layer 114 is not particularly limited, and for example, copper, copper alloy, 42 alloy, nickel, iron, chromium, tungsten, gold, solder, or the like can be used.
 次いで、図2(b)に示すように、アルカリ性剥離液や硫酸又は市販のレジスト剥離液等を用いてレジスト層112を除去する。 Next, as shown in FIG. 2B, the resist layer 112 is removed using an alkaline stripping solution, sulfuric acid, a commercially available resist stripping solution, or the like.
 次いで、図2(c)に示すように、めっき層114が形成されている領域以外の無電解めっき層110および銅箔層104を除去する。この銅箔層104を除去する手法は、例えば、ソフトエッチング(フラッシュエッチング)等を用いる。これにより、銅箔層104及び金属層116(無電解めっき層110及びめっき層114)が積層して構成される導体回路118のパターンを形成することができる。 Next, as shown in FIG. 2C, the electroless plating layer 110 and the copper foil layer 104 other than the region where the plating layer 114 is formed are removed. As a technique for removing the copper foil layer 104, for example, soft etching (flash etching) or the like is used. Thereby, the pattern of the conductor circuit 118 comprised by laminating | stacking the copper foil layer 104 and the metal layer 116 (the electroless-plating layer 110 and the plating layer 114) can be formed.
 ここで、本実施の形態のソフトエッチングに用いるエッチング液について以下説明する。エッチング液としては、特に限定されないが、従来の拡散律速タイプのエッチング液を用いた場合、配線の微細な部分はどうしても液の交換が悪くなるため回路形成性が悪化してしまう傾向がある。このため、エッチング液は、銅とエッチング液の反応が拡散律速ではなく、反応律速で進行するタイプを用いることが望ましい。銅とエッチング液の反応が反応律速であれば、拡散をそれ以上強めたとしてもエッチング速度は変わらない。即ち液交換の良い場所と悪い場所でのエッチング速度差が生じない。このような反応律速エッチング液としては、例えば、過酸化水素とハロゲン元素を含まない酸とを主成分とするものが挙げられる。酸化剤として過酸化水素を用いるので、その濃度を管理することで厳密なエッチング速度制御が可能になる。尚、エッチング液にハロゲン元素が混入すると、溶解反応が拡散律速になりやすい。ハロゲンを含まない酸としては、硝酸、硫酸、有機酸等が使用できるが、硫酸であることが安価で好ましい。更に硫酸と過酸化水素が主成分である場合には、それぞれの濃度を5~300g/L、5~200g/Lとする事がエッチング速度、液の安定性の面から好ましい。例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸ソーダ系などが挙げられる。 Here, the etching solution used for the soft etching of this embodiment will be described below. The etching solution is not particularly limited. However, when a conventional diffusion-controlled etching solution is used, circuit formation tends to be deteriorated because the exchange of the solution is inevitably worsened for fine portions of the wiring. For this reason, it is desirable to use an etching solution in which the reaction between copper and the etching solution proceeds not at a diffusion rate but at a reaction rate. If the reaction between copper and the etchant is reaction-controlled, the etching rate does not change even if diffusion is further increased. That is, there is no difference in etching rate between a place where the liquid exchange is good and a place where the liquid exchange is bad. As such a reaction-limited etching solution, for example, one containing hydrogen peroxide and an acid not containing a halogen element as main components can be mentioned. Since hydrogen peroxide is used as the oxidizing agent, strict etching rate control becomes possible by managing the concentration. If a halogen element is mixed in the etching solution, the dissolution reaction tends to be diffusion-limited. As the acid not containing halogen, nitric acid, sulfuric acid, organic acid, and the like can be used, but sulfuric acid is preferable because it is inexpensive. Further, when sulfuric acid and hydrogen peroxide are the main components, the respective concentrations are preferably 5 to 300 g / L and 5 to 200 g / L from the viewpoints of etching rate and liquid stability. Examples thereof include ammonium persulfate, sodium persulfate, and sodium persulfate.
 エッチング方法としては、各種の態様を採用できる。たとえば、ビーカー等の液溜容器に溜めたエッチング液の中に銅張積層板100を浸漬させてもよいし、シャワー方式でエッチング液を銅箔層104に塗布してもよい。 Various modes can be adopted as the etching method. For example, the copper clad laminate 100 may be immersed in an etching solution stored in a liquid storage container such as a beaker, or the etching solution may be applied to the copper foil layer 104 by a shower method.
 このように、銅箔層104のエッチングレートを適切に選択することにより、所望の形状の導体回路118が得られる。以上により、絶縁層102の両面に導体回路118が形成されたプリント配線板200が得られる。 As described above, by appropriately selecting the etching rate of the copper foil layer 104, a conductor circuit 118 having a desired shape can be obtained. As described above, the printed wiring board 200 in which the conductor circuit 118 is formed on both surfaces of the insulating layer 102 is obtained.
 なお、図2(d-1)に示すように、絶縁層102上および導体回路118の一部を覆うようにソルダーレジスト層120を形成してもよい。ソルダーレジスト層120としては、例えば、絶縁性に優れた、フィラー、または基材を含んでも良く、感光性樹脂、硬化性樹脂、及び熱可塑性樹脂等の耐熱性樹脂組成物を用いる。次いで、ソルダーレジスト層120の開口部が設けられている導体回路118上に、第1のめっき層122および第2のめっき層124を更に形成してもよい。これにより、金属層116を2以上の多層構造としてもよい。これらの第1のめっき層122および第2のめっき層124としては、金めっき層を採用することができる。金めっきの方法としては、従来公知の方法でよく、特に限定されないが、例えば、めっき層114上に、無電解ニッケルめっきを0.1~10μm程度行い、置換金めっきを0.01~0.5μm程度行った後に無電解金めっきを0.1~2μm程度行うなどの方法がある。以上により、図2(d-1)に示すプリント配線板202が得られる。
 また、図2(d-2)に示すように、ソルダーレジスト層120を形成せずに、導体回路118の周囲に、第1のめっき層122および第2のめっき層124を形成してもよい。これらの第1のめっき層122および第2のめっき層124としては、例えば、ニッケルめっき層および金めっき層の積層体を採用してもよい。以上により、図2(d-2)に示すプリント配線板204が得られる。
As shown in FIG. 2D-1, a solder resist layer 120 may be formed so as to cover the insulating layer 102 and a part of the conductor circuit 118. As the solder resist layer 120, for example, a filler or a substrate excellent in insulating properties may be included, and a heat-resistant resin composition such as a photosensitive resin, a curable resin, and a thermoplastic resin is used. Next, the first plating layer 122 and the second plating layer 124 may be further formed on the conductor circuit 118 provided with the opening of the solder resist layer 120. Thereby, the metal layer 116 may have a multilayer structure of two or more. As the first plating layer 122 and the second plating layer 124, a gold plating layer can be adopted. The gold plating method may be a conventionally known method, and is not particularly limited. For example, electroless nickel plating is performed on the plating layer 114 to about 0.1 to 10 μm, and displacement gold plating is performed to 0.01 to 0. There is a method of performing electroless gold plating about 0.1 to 2 μm after about 5 μm. As a result, the printed wiring board 202 shown in FIG. 2D-1 is obtained.
In addition, as shown in FIG. 2D-2, the first plating layer 122 and the second plating layer 124 may be formed around the conductor circuit 118 without forming the solder resist layer 120. . As these 1st plating layer 122 and 2nd plating layer 124, you may employ | adopt the laminated body of a nickel plating layer and a gold plating layer, for example. Thus, the printed wiring board 204 shown in FIG. 2 (d-2) is obtained.
 また、これらのプリント配線板200、202、及び204上に不図示の半導体チップを実装して、半導体装置を得ることができる。 Also, a semiconductor device (not shown) can be mounted on these printed wiring boards 200, 202, and 204 to obtain a semiconductor device.
(第2の実施の形態)
 次に、第2の実施の形態のプリント配線板の製造方法について説明する。
 図3~図5は、第3の実施の形態のプリント配線板の製造方法の製造工程の手順を示す断面図である。第3の実施の形態のプリント配線板の製造方法は、たとえば、第2の実施の形態で得られたプリント配線板200、202、及び204を内層回路基板として用い、この内層回路基板上にビルドアップ層をさらに形成するものである。
(Second Embodiment)
Next, the manufacturing method of the printed wiring board of 2nd Embodiment is demonstrated.
3 to 5 are cross-sectional views showing the steps of the manufacturing process of the printed wiring board manufacturing method according to the third embodiment. The printed wiring board manufacturing method of the third embodiment uses, for example, the printed wiring boards 200, 202, and 204 obtained in the second embodiment as inner layer circuit boards, and builds on the inner layer circuit boards. An up layer is further formed.
 まず、内層回路基板として、図2(c)で得たプリント配線板200を採用する。このプリント配線板200の内層回路(導体回路118)に対して、粗化処理を施す。ここで、粗化処理とは、導体回路表面に薬液処理、およびプラズマ処理等を実施することを意味する。粗化処理としては、例えば、酸化還元を利用した黒化処理、または、硫酸-過酸化水素系の公知の粗化液を利用した薬液処理等を用いることができる。これにより、絶縁層130を構成する層間絶縁材料とプリント配線板200の導体回路118との密着性を向上させることができる。また、内層回路基板は、第2の実施の形態で得られたプリント配線板200に代えて、特に限定されないが、メッキスルーホール法やビルドアップ法等により、プリプレグ又は基材を含まない樹脂組成物層等が積層された通常の多層プリント配線板を用いることもできる。内層回路となる導体回路層は、従来公知の回路形成方法によって形成しても良い。また、多層プリント配線板においては、そのコア層となる積層体(プリプレグを複数積層させて得られた積層体)及び金属張積層板に、ドリル加工、レーザー加工等を行うことによりスルーホールを形成し、次いで、めっき等で両面の内層回路を電気的接続することもできる。 First, the printed wiring board 200 obtained in FIG. 2C is adopted as the inner layer circuit board. The inner layer circuit (conductor circuit 118) of the printed wiring board 200 is subjected to a roughening process. Here, the roughening treatment means performing a chemical treatment, a plasma treatment, or the like on the surface of the conductor circuit. As the roughening treatment, for example, a blackening treatment using oxidation reduction or a chemical solution treatment using a known roughening solution of sulfuric acid-hydrogen peroxide system can be used. Thereby, the adhesiveness of the interlayer insulation material which comprises the insulating layer 130, and the conductor circuit 118 of the printed wiring board 200 can be improved. In addition, the inner layer circuit board is not particularly limited in place of the printed wiring board 200 obtained in the second embodiment, but the resin composition does not include a prepreg or a base material by a plated through hole method, a build-up method, or the like. A normal multilayer printed wiring board in which physical layers and the like are laminated can also be used. The conductor circuit layer serving as the inner layer circuit may be formed by a conventionally known circuit forming method. In multilayer printed wiring boards, through-holes are formed by drilling, laser processing, etc. on the laminate (a laminate obtained by laminating multiple prepregs) and metal-clad laminate as the core layer. Then, the inner circuit on both sides can be electrically connected by plating or the like.
 次いで、図3(a)に示すように、導体回路表面が粗化されたプリント配線板200の両側に、それぞれ、絶縁層130(プリプレグ)、及びキャリア箔層107付き銅箔層105(キャリア箔付き極薄銅箔)を配置する。次いで、図3(b)に示すように、これらを重ねた積層体を加熱加圧処理することにより、多層積層板を形成する。続いて、図3(c)に示すように、キャリア箔層107を剥離除去する。 Next, as shown in FIG. 3A, an insulating layer 130 (prepreg) and a copper foil layer 105 with a carrier foil layer 107 (carrier foil) are formed on both sides of a printed wiring board 200 with a roughened conductor circuit surface, respectively. With ultra-thin copper foil). Next, as shown in FIG. 3B, a multilayer laminate is formed by subjecting the laminate in which these layers are stacked to heat and pressure. Subsequently, as shown in FIG. 3C, the carrier foil layer 107 is peeled and removed.
 次いで、図3(d)に示すように、絶縁層130および銅箔層105の一部を除去して孔109を形成する。孔109の底面においては、導体回路118の表面の一部が露出している。この孔109を形成する手法としては、特に限定されないが、例えば、炭酸ガスやエキシマ等の気体レーザーやYAG等の固体レーザーを用いて、孔径100μm以下のブラインドビアホールを形成する手法などを用いることができる。なお、孔109は図3(d)では、非貫通孔で表しているが、貫通孔でもよい。また、貫通孔の場合は、レーザー照射でも、ドリル加工機を用いて形成してもよい。 Next, as shown in FIG. 3D, a part of the insulating layer 130 and the copper foil layer 105 is removed to form a hole 109. A part of the surface of the conductor circuit 118 is exposed at the bottom surface of the hole 109. The method of forming the hole 109 is not particularly limited, and for example, a method of forming a blind via hole having a hole diameter of 100 μm or less using a gas laser such as carbon dioxide or excimer or a solid laser such as YAG is used. it can. Although the hole 109 is shown as a non-through hole in FIG. 3D, it may be a through hole. In the case of a through hole, it may be formed by laser irradiation or using a drilling machine.
 次いで、図4(a)に示すように、前述の触媒核を付与した導体回路118上、孔109の内壁上、及び銅箔層105上に、薄層の無電解めっき層111を形成する。無電解めっき層111は、前述の無電解めっき層110と同様にして形成する。この無電解めっき前には、前述の通り、薬液によるスミア除去等のデスミア処理を行ってもよい。また、無電解めっき層110の厚さは、次の電気めっきが行うことができる厚さであればよく、0.1~1μm程度で十分である。また、孔109(ブラインドビアホール)の内部は、導電ペースト、あるいは、絶縁ペーストを充填することもでき、電気パターンめっきで充填しておいてもよい。 Next, as shown in FIG. 4A, a thin electroless plating layer 111 is formed on the conductor circuit 118 provided with the above-described catalyst nucleus, on the inner wall of the hole 109, and on the copper foil layer 105. The electroless plating layer 111 is formed in the same manner as the electroless plating layer 110 described above. Before this electroless plating, as described above, desmear treatment such as smear removal with a chemical solution may be performed. Further, the thickness of the electroless plating layer 110 may be any thickness that allows subsequent electroplating to be performed, and about 0.1 to 1 μm is sufficient. Further, the inside of the hole 109 (blind via hole) can be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
 次いで、無電解めっき層110上に、導体回路パターンに相当する開口パターンを有するレジスト層113を形成する。言い換えると、レジスト層113を形成することにより、非回路形成部をマスクする。このレジスト層113としては、前述のレジスト層112と同様のものを用いることができる。レジスト層113の厚さは、その後めっきする導体回路の厚さと同程度かより厚い膜厚にするのが好適である。 Next, a resist layer 113 having an opening pattern corresponding to the conductor circuit pattern is formed on the electroless plating layer 110. In other words, the non-circuit forming portion is masked by forming the resist layer 113. As this resist layer 113, the thing similar to the above-mentioned resist layer 112 can be used. The thickness of the resist layer 113 is preferably set to be approximately the same as or thicker than that of the conductor circuit to be subsequently plated.
 次いで、図4(c)に示すように、レジスト層113の開口パターン内部にめっき層132を形成する。このめっき層132は、孔109内部の導体回路118上に形成してもよいし、上記開口パターン内部の無電解めっき層111上に形成してもよい。めっき層132を形成する電気めっきは、前述のめっき層114と同様の手法を用いることができる。このめっき層132の厚さは、回路導体として使用できればよく、例えば、1~100μmの範囲である事が好ましく、5~50μmの範囲である事がより好ましい。 Next, as shown in FIG. 4C, a plating layer 132 is formed inside the opening pattern of the resist layer 113. The plating layer 132 may be formed on the conductor circuit 118 inside the hole 109 or may be formed on the electroless plating layer 111 inside the opening pattern. The electroplating for forming the plating layer 132 can use the same technique as that for the plating layer 114 described above. The thickness of the plating layer 132 may be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm.
 次いで、図5(a)に示すように、前述のレジスト層112と同様にして、レジスト層113の剥離を行う。次いで、図5(b)に示すように、前述の銅箔層104と同様にして、銅箔層105及び無電解めっき層111をソフトエッチング(フラッシュエッチング)により除去する。これにより、銅箔層105、無電解めっき層111及びめっき層132から構成される導体回路パターンを形成することができる。また、導体回路118上には、それと電気的に接続するビア及びパッドをめっき層132により形成することができる。以上により、プリント配線板201が得られる。 Next, as shown in FIG. 5A, the resist layer 113 is peeled in the same manner as the resist layer 112 described above. Next, as shown in FIG. 5B, the copper foil layer 105 and the electroless plating layer 111 are removed by soft etching (flash etching) in the same manner as the copper foil layer 104 described above. Thereby, the conductor circuit pattern comprised from the copper foil layer 105, the electroless-plating layer 111, and the plating layer 132 can be formed. Further, vias and pads that are electrically connected to the conductor circuit 118 can be formed by the plating layer 132. The printed wiring board 201 is obtained as described above.
 なお、図5(c-1)に示すように、絶縁層130上、導体回路パターンのめっき層132上および、パッドのめっき層132の一部上にソルダーレジスト層121を形成してもよい。ソルダーレジスト層121としては、前述のソルダーレジスト層120と同様のものを用いることができる。次いで、ソルダーレジスト層121の開口部が設けられているめっき層132上に、例えば、ニッケルめっき層および金めっき層から構成される第1のめっき層123および第2のめっき層125を更に形成してもよい。以上により、図5(c-1)に示すプリント配線板203が得られる。
 また、図5(c-2)に示すように、ソルダーレジスト層121を形成せずに、導体回路パターンの周囲およびパッドの周囲に、前述の第1のめっき層123および第2のめっき層125を形成してもよい。以上により、図5(c-2)に示すプリント配線板205が得られる。第2の実施の形態においても、第1の実施の形態と同様の効果が得られる。
As shown in FIG. 5C-1, a solder resist layer 121 may be formed on the insulating layer 130, the conductive circuit pattern plating layer 132, and a part of the pad plating layer 132. As the solder resist layer 121, the same thing as the above-mentioned solder resist layer 120 can be used. Next, a first plating layer 123 and a second plating layer 125 made of, for example, a nickel plating layer and a gold plating layer are further formed on the plating layer 132 in which the opening of the solder resist layer 121 is provided. May be. Thus, the printed wiring board 203 shown in FIG. 5C-1 is obtained.
Further, as shown in FIG. 5 (c-2), the first plating layer 123 and the second plating layer 125 described above are formed around the conductor circuit pattern and the pad without forming the solder resist layer 121. May be formed. As a result, the printed wiring board 205 shown in FIG. 5C-2 is obtained. Also in the second embodiment, the same effect as the first embodiment can be obtained.
(第3の実施の形態)
 次いで、第3の実施の形態のプリント配線基板101の製造工程について詳細を説明する。
 図6(a)に示すように、キャリア箔付き銅張積層板10を準備する。続いて、図6(b)に示すように、キャリア箔付き銅張積層板10からキャリア箔層106を引きはがす等して除去する。続いて、図6(c)に示すように、残された銅箔層104上に所定の開口パターンを有するレジスト層112を形成する。レジスト層112の開口パターン内および銅箔層104上に、めっき処理によりめっき層(金属層115)を形成する(図6(d))。引き続き、図6(e)に示すように、レジスト層112を除去する。これにより、銅箔層104上に所定の金属層115のパターンを選択に形成できる。この後、図6(f)に示すように、金属層115に覆われていない領域における銅箔層104を、例えば、ソフトエッチングにより除去する。このような銅箔層104の除去工程の後、残された銅箔層104と金属層115とにより、導体回路119のパターンを形成することができる。以上の工程により、第3の実施の形態のプリント配線板101が得られる。第3の実施の形態においても、第1の実施の形態と同様の効果が得られる。
(Third embodiment)
Next, details of the manufacturing process of the printed wiring board 101 according to the third embodiment will be described.
As shown to Fig.6 (a), the copper clad laminated board 10 with a carrier foil is prepared. Subsequently, as shown in FIG. 6 (b), the carrier foil layer 106 is removed from the copper clad laminate 10 with the carrier foil by peeling off. Subsequently, as shown in FIG. 6C, a resist layer 112 having a predetermined opening pattern is formed on the remaining copper foil layer 104. A plating layer (metal layer 115) is formed by plating in the opening pattern of the resist layer 112 and on the copper foil layer 104 (FIG. 6D). Subsequently, as shown in FIG. 6E, the resist layer 112 is removed. Thereby, the pattern of the predetermined metal layer 115 can be selectively formed on the copper foil layer 104. Thereafter, as shown in FIG. 6F, the copper foil layer 104 in the region not covered with the metal layer 115 is removed by, for example, soft etching. After such a step of removing the copper foil layer 104, the pattern of the conductor circuit 119 can be formed by the remaining copper foil layer 104 and the metal layer 115. Through the above steps, the printed wiring board 101 of the third embodiment is obtained. In the third embodiment, the same effect as in the first embodiment can be obtained.
(第4の実施の形態)
 次いで、第4の実施の形態のプリント配線基板101の製造工程について詳細を説明する。
 まず、図7(a)に示すように、キャリア箔付き銅張積層板10を準備する。キャリア箔付き銅張積層板10においては、絶縁層102の両面に銅箔層104とともにキャリア箔層106が貼り付けられている。続いて、図7(b)に示すように、キャリア箔付き銅張積層板10からキャリア箔層106を引きはがす。続いて、図7(c)に示すように、銅箔層104の全面上に金属層115(めっき層)をめっき処理により形成する。続いて、図7(d)に示すように、プレーン形状の金属層115上に所定の開口パターンを有するレジスト層112を形成する。引き続き、図7(e)に示すように、このレジスト層112の開口パターン内の金属層115および銅箔層104を、例えば、エッチングにより除去する。この後、図7(f)に示すように、レジスト層112を除去する。これにより、銅箔層104および金属層115から構成される導体回路119のパターンを形成することができる。以上の工程により、第4の実施の形態のプリント配線板101が得られる。第4の実施の形態においても、第1の実施の形態と同様の効果が得られる。
(Fourth embodiment)
Next, details of the manufacturing process of the printed wiring board 101 according to the fourth embodiment will be described.
First, as shown to Fig.7 (a), the copper clad laminated board 10 with carrier foil is prepared. In the copper clad laminate 10 with a carrier foil, a carrier foil layer 106 is attached to both surfaces of the insulating layer 102 together with the copper foil layer 104. Then, as shown in FIG.7 (b), the carrier foil layer 106 is peeled from the copper clad laminated board 10 with carrier foil. Subsequently, as shown in FIG. 7C, a metal layer 115 (plating layer) is formed on the entire surface of the copper foil layer 104 by plating. Subsequently, as shown in FIG. 7D, a resist layer 112 having a predetermined opening pattern is formed on the plane-shaped metal layer 115. Subsequently, as shown in FIG. 7E, the metal layer 115 and the copper foil layer 104 in the opening pattern of the resist layer 112 are removed by, for example, etching. Thereafter, as shown in FIG. 7F, the resist layer 112 is removed. Thereby, the pattern of the conductor circuit 119 comprised from the copper foil layer 104 and the metal layer 115 can be formed. Through the above steps, the printed wiring board 101 of the fourth embodiment is obtained. In the fourth embodiment, the same effect as in the first embodiment can be obtained.
 以上のように、本実施の形態によれば、キャリア箔付き極薄銅箔の微細回路加工、微細回路の形状、および絶縁信頼性に優れたプリント配線板の製造方法、およびそのプリント配線板を提供することが可能となる。 As described above, according to the present embodiment, a fine circuit processing of an ultrathin copper foil with a carrier foil, a fine circuit shape, a method of manufacturing a printed wiring board excellent in insulation reliability, and the printed wiring board It becomes possible to provide.
 本実施の形態のプリント配線板の製造方法は、プリント配線板用基板の両面に導体回路層を形成する場合だけでなく、プリント配線板用基板の片面のみに導体回路層を形成する場合にも適用することができる。また、図2(c)に示すように両面プリント配線板を内層回路板として、第3の実施の形態の多層プリント配線板の場合も適用することができる。従って、本実施の形態のプリント配線板の製造方法によって、片面プリント配線板、両面プリント配線板、及び多層プリント配線板のいずれも製造することができる。 The printed wiring board manufacturing method of the present embodiment is not only for forming a conductor circuit layer on both sides of a printed wiring board substrate, but also for forming a conductor circuit layer only on one side of the printed wiring board substrate. Can be applied. Further, as shown in FIG. 2 (c), the double-sided printed wiring board can be used as the inner layer circuit board, and the case of the multilayer printed wiring board of the third embodiment can also be applied. Therefore, any of a single-sided printed wiring board, a double-sided printed wiring board, and a multilayer printed wiring board can be produced by the method for producing a printed wiring board of the present embodiment.
 以下、本発明に係るキャリア箔付極薄銅箔、およびその銅箔を用いた銅張積層板を製造し、本発明のプリント配線板の製造方法の実施の形態について説明する。ここではキャリア箔に電解銅箔を用いた場合を中心に説明するものとする。本発明を実施例及び比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
 特に記載しない限り、以下に記載の「部」は「重量部」、「%」は「重量%」を示す。
Hereinafter, an ultrathin copper foil with a carrier foil according to the present invention and a copper clad laminate using the copper foil will be manufactured, and an embodiment of a method for manufacturing a printed wiring board according to the present invention will be described. Here, the case where an electrolytic copper foil is used as the carrier foil will be mainly described. The present invention will be described in detail based on examples and comparative examples, but the present invention is not limited thereto.
Unless otherwise specified, “parts” described below indicates “parts by weight” and “%” indicates “% by weight”.
1.キャリア箔付き極薄銅箔の製造
 以下、キャリア箔付き極薄銅箔の製造について説明する。
(製造例1)
 キャリア箔(支持金属箔)として、18μm厚の電解銅箔の光沢面に、剥離層および極薄銅箔層を順次形成した。製造条件は次のようである。
 まず、キャリア箔を酸洗浄槽(硫酸:30g/L)に5秒間浸漬し表面の油分、酸化被膜等の除去を行った。次に、剥離層の形成槽(硫酸ニッケル6水和物:30g/L、モリブデン酸ナトリウム2水和物:3g/L、クエン酸3ナトリウム2水和物:30g/L、液温30℃)を用いて電流密度20A/dmで5秒間電解処理し、キャリア箔の光沢面に剥離層を形成した。次に、剥離層上にバルク部分(以下、バルク銅層)を形成した。バルク銅層は、次のように形成した。まず、めっき浴(ピロリン酸銅:80g/L、ピロリン酸カリウム:320g/L、アンモニア水:2ml/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PBH、重量平均分子量(MW)5000):15ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。次に、めっき浴(硫酸銅5水和物:150g/L、硫酸:100g/L、液温30℃)を用いて、電流密度30A/dmで3秒電解処理した後に電流密度5A/dmで70秒電解処理して、バルク銅層上に粗化足部分(以下、粗化銅層)を形成した。次に、防錆処理槽(重クロム酸ナトリウム2水和物:3.5g/L、液温28℃)を用いて電流密度0.5A/dmで2.5秒電解処理し、防錆処理を行った。次に、N-フェニルアミノプロピルトリメトキシシラン1wt%の水溶液に浸漬し、表面処理を行った。その後、80℃で10分間乾燥した。これにより、製造例1に係るキャリア箔付き極薄銅箔が形成された。
1. Production of Ultrathin Copper Foil with Carrier Foil Hereinafter, production of an ultrathin copper foil with a carrier foil will be described.
(Production Example 1)
As a carrier foil (supporting metal foil), a release layer and an ultrathin copper foil layer were sequentially formed on the glossy surface of an electrolytic copper foil having a thickness of 18 μm. The manufacturing conditions are as follows.
First, the carrier foil was immersed in an acid cleaning tank (sulfuric acid: 30 g / L) for 5 seconds to remove surface oil, oxide film, and the like. Next, a release layer formation tank (nickel sulfate hexahydrate: 30 g / L, sodium molybdate dihydrate: 3 g / L, trisodium citrate dihydrate: 30 g / L, liquid temperature: 30 ° C.) Was used for 5 seconds at a current density of 20 A / dm 2 to form a release layer on the glossy surface of the carrier foil. Next, a bulk portion (hereinafter referred to as a bulk copper layer) was formed on the release layer. The bulk copper layer was formed as follows. First, electrolytic treatment was performed for 15 seconds at a current density of 2.0 A / dm 2 using a plating bath (copper pyrophosphate: 80 g / L, potassium pyrophosphate: 320 g / L, ammonia water: 2 ml / L, liquid temperature: 40 ° C.). A first bulk copper layer was formed on the release layer. Next, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBH, weight average molecular weight (MW) 5000): 15 ppm, chloride ion: 5 ppm, liquid The second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed. Next, using a plating bath (copper sulfate pentahydrate: 150 g / L, sulfuric acid: 100 g / L, liquid temperature: 30 ° C.), the current density was 5 A / dm after electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds. 2 for 70 seconds to form a roughened foot portion (hereinafter referred to as a roughened copper layer) on the bulk copper layer. Next, electrolytic treatment was performed at a current density of 0.5 A / dm 2 for 2.5 seconds using a rust prevention treatment tank (sodium dichromate dihydrate: 3.5 g / L, liquid temperature 28 ° C.) to prevent rust. Processed. Next, it was immersed in an aqueous solution of 1 wt% of N-phenylaminopropyltrimethoxysilane to perform surface treatment. Then, it dried for 10 minutes at 80 degreeC. As a result, an ultrathin copper foil with a carrier foil according to Production Example 1 was formed.
(製造例2)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PBF、重量平均分子量(MW)3000):20ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 2)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer. Next, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBF, weight average molecular weight (MW) 3000): 20 ppm, chloride ion: 5 ppm, liquid The second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
(製造例3)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PA-10、重量平均分子量(MW)1000):25ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 3)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer. Next, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PA-10, weight average molecular weight (MW) 1000): 25 ppm, chloride ion: 5 ppm And a liquid temperature of 40 ° C. for 150 seconds at a current density of 3.5 A / dm 2 to form a second bulk copper layer on the first bulk copper layer. Thereby, a bulk copper layer was formed.
(製造例4)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、硫酸ニッケル6水和物:5g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PA-10、重量平均分子量(MW)1000):35ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 4)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, current density using a plating bath (copper sulfate pentahydrate: 30 g / L, nickel sulfate hexahydrate: 5 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) Electrolytic treatment was carried out at 2.0 A / dm 2 for 15 seconds to form a first bulk copper layer on the release layer. Next, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PA-10, weight average molecular weight (MW) 1000): 35 ppm, chloride ion: 5 ppm And a liquid temperature of 40 ° C. for 150 seconds at a current density of 3.5 A / dm 2 to form a second bulk copper layer on the first bulk copper layer. Thereby, a bulk copper layer was formed.
(製造例5)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、硫酸ニッケル6水和物:5g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PBH、重量平均分子量(MW)5000):30ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 5)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, current density using a plating bath (copper sulfate pentahydrate: 30 g / L, nickel sulfate hexahydrate: 5 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) Electrolytic treatment was carried out at 2.0 A / dm 2 for 15 seconds to form a first bulk copper layer on the release layer. Next, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBH, weight average molecular weight (MW) 5000): 30 ppm, chloride ion: 5 ppm, liquid The second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
(製造例6)
 キャリア箔(支持金属箔)として、18μm厚の電解銅箔の光沢面に、剥離層および極薄銅箔層を順次形成した。製造条件は次のようである。
 まず、キャリア箔を酸洗浄槽(硫酸:50g/L)に15秒間浸漬し表面の油分、酸化被膜等の除去を行った。次に、剥離層の形成槽(カルボキシベンゾトリアゾール溶液:試薬、液温40℃)に15秒間浸漬し、キャリア箔の光沢表面に剥離層を形成した。次に、めっき浴(硫酸銅5水和物:150g/L、硫酸:150g/L、ゼラチン(ニッピ社製、商品名PBH、重量平均分子量(MW)5000):15ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度10A/dmで180秒間電解処理し、剥離層上にバルク銅層を形成した。次に、めっき浴(硫酸銅5水和物:150g/L、硫酸:100g/L、液温30℃)を用いて、電流密度30A/dmで3秒電解処理した後に電流密度5A/dmで70秒電解処理して、バルク銅層上に粗化銅層を形成した。次に、防錆処理槽(重クロム酸ナトリウム2水和物:3.5g/L、液温28℃)を用いて電流密度0.5A/dmで2.5秒電解処理し、防錆処理を行った。次に、N-フェニルアミノプロピルトリメトキシシラン1wt%の水溶液に浸漬し、表面処理を行った。その後、80℃で10分間乾燥した。これにより、製造例6に係るキャリア箔付き極薄銅箔が形成された。
(Production Example 6)
As a carrier foil (supporting metal foil), a release layer and an ultrathin copper foil layer were sequentially formed on the glossy surface of an electrolytic copper foil having a thickness of 18 μm. The manufacturing conditions are as follows.
First, the carrier foil was immersed in an acid cleaning tank (sulfuric acid: 50 g / L) for 15 seconds to remove surface oil, oxide film, and the like. Next, the film was immersed in a release layer formation tank (carboxybenzotriazole solution: reagent, liquid temperature 40 ° C.) for 15 seconds to form a release layer on the glossy surface of the carrier foil. Next, plating bath (copper sulfate pentahydrate: 150 g / L, sulfuric acid: 150 g / L, gelatin (manufactured by Nippi, trade name PBH, weight average molecular weight (MW) 5000): 15 ppm, chloride ion: 5 ppm, Electrolytic treatment was performed at a current density of 10 A / dm 2 using a liquid temperature of 40 ° C. for 180 seconds to form a bulk copper layer on the release layer. Next, using a plating bath (copper sulfate pentahydrate: 150 g / L, sulfuric acid: 100 g / L, liquid temperature: 30 ° C.), the current density was 5 A / dm after electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds. 2 for 70 seconds to form a roughened copper layer on the bulk copper layer. Next, electrolytic treatment was performed at a current density of 0.5 A / dm 2 for 2.5 seconds using a rust prevention treatment tank (sodium dichromate dihydrate: 3.5 g / L, liquid temperature 28 ° C.) to prevent rust. Processed. Next, it was immersed in an aqueous solution of 1 wt% of N-phenylaminopropyltrimethoxysilane to perform surface treatment. Then, it dried for 10 minutes at 80 degreeC. As a result, an ultrathin copper foil with a carrier foil according to Production Example 6 was formed.
(製造例7)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 7)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer. Next, using a plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, chloride ion: 5 ppm, liquid temperature 40 ° C.), electrolytic treatment is performed at a current density of 3.5 A / dm 2 for 150 seconds. A second bulk copper layer was formed on the first bulk copper layer. Thereby, a bulk copper layer was formed.
(製造例8)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PBF、重量平均分子量(MW)3000):20ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 8)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer. Subsequently, a plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name: PBF, weight average molecular weight (MW) 3000): 20 ppm, liquid temperature: 40 ° C.) Electrolytic treatment was performed at a current density of 3.5 A / dm 2 for 150 seconds to form a second bulk copper layer on the first bulk copper layer. Thereby, a bulk copper layer was formed.
(製造例9)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名AP、重量平均分子量(MW)8000):30ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 9)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer. Then, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name AP, weight average molecular weight (MW) 8000): 30 ppm, chloride ion: 5 ppm, liquid The second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
(製造例10)
 バルク銅層の製造条件を除いて、製造例1と同様にキャリア箔付き極薄銅箔を形成した。
 本製造例において、バルク銅層は、次のように形成した。まず、めっき浴(硫酸銅5水和物:30g/L、クエン酸3ナトリウム2水和物:40g/L、液温40℃)を用いて電流密度2.0A/dmで15秒間電解処理し、剥離層上に第1バルク銅層を形成した。次いで、めっき浴(硫酸銅5水和物:160g/L、硫酸:100g/L、ゼラチン(ニッピ社製、商品名PBF、重量平均分子量(MW)3000):5ppm、塩化物イオン:5ppm、液温40℃)を用いて電流密度3.5A/dmで150秒電解処理し、第1バルク銅層上に第2バルク銅層を形成した。これにより、バルク銅層が形成された。
(Production Example 10)
An ultrathin copper foil with a carrier foil was formed in the same manner as in Production Example 1 except for the production conditions for the bulk copper layer.
In this production example, the bulk copper layer was formed as follows. First, using a plating bath (copper sulfate pentahydrate: 30 g / L, trisodium citrate dihydrate: 40 g / L, liquid temperature: 40 ° C.) at a current density of 2.0 A / dm 2 for 15 seconds. Then, a first bulk copper layer was formed on the release layer. Next, plating bath (copper sulfate pentahydrate: 160 g / L, sulfuric acid: 100 g / L, gelatin (manufactured by Nippi, trade name PBF, weight average molecular weight (MW) 3000): 5 ppm, chloride ion: 5 ppm, liquid The second bulk copper layer was formed on the first bulk copper layer by electrolytic treatment at a current density of 3.5 A / dm 2 using a temperature of 40 ° C. for 150 seconds. Thereby, a bulk copper layer was formed.
2.樹脂ワニスの製造
 ナフチレンエーテル型エポキシ樹脂(DIC社製、HP-6000)20重量部、ナフタレン型エポキシ樹脂(DIC(株)製、HP4032D)5重量部、シアネート樹脂(ロンザジャパン社製、PT-30)17重量部、ビスマレイミド樹脂(ケイアイ化成工業社製、BMI-70)7.5重量%、シリカ粒子(トクヤマ社製 NSS-5N、平均粒径70nm)を7重量部、球状シリカ(アドマテックス社製 SO-25R、平均粒径0.5μm)35.5重量部、シリコーン粒子(信越化学工業(株)製、KMP600、平均粒径5μm)7.5重量部、オクチル酸亜鉛0.01重量部、エポキシシラン(信越化学工業社製、KBM-403E)0.5重量部を、メチルエチルケトンに溶解・混合させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。
2. Manufacture of resin varnish 20 parts by weight of naphthylene ether type epoxy resin (manufactured by DIC, HP-6000), 5 parts by weight of naphthalene type epoxy resin (manufactured by DIC, HP 4032D), cyanate resin (manufactured by Lonza Japan, PT- 30) 17 parts by weight, bismaleimide resin (manufactured by Keiai Chemical Industry Co., Ltd., BMI-70) 7.5% by weight, silica particles (NSS-5N manufactured by Tokuyama Co., Ltd., average particle size 70 nm), 7 parts by weight, spherical silica (ad Matex Corporation SO-25R, average particle size 0.5 μm) 35.5 parts by weight, silicone particles (manufactured by Shin-Etsu Chemical Co., Ltd., KMP600, average particle size 5 μm) 7.5 parts by weight, zinc octylate 0.01 Part by weight and 0.5 part by weight of epoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403E) were dissolved and mixed in methyl ethyl ketone. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and the resin varnish was prepared.
3.プリプレグの製造
 繊維基材としてガラス織布(日東紡績社製、Tガラス織布、WTX-1078、坪質量48g/m、厚さ45μm)を用い、前記で調整した樹脂ワニスを含侵塗布させ、180℃の加熱炉で2分乾燥させて、厚さ0.05mmのプリプレグを得た。
3. Manufacture of prepreg Glass woven fabric (manufactured by Nitto Boseki Co., Ltd., T glass woven fabric, WTX-1078, basis weight 48 g / m 2 , thickness 45 μm) is used as a fiber base material, and the resin varnish prepared above is impregnated and applied. And dried in a heating furnace at 180 ° C. for 2 minutes to obtain a prepreg having a thickness of 0.05 mm.
4.銅張積層板の製造
 前記で得られたプリプレグを4枚重ね、その両面にキャリア箔付き極薄銅箔(2μm)を重ねて、圧力3MPa、温度200℃で60分(200℃に到達した後、60分間加熱)加熱加圧成形することによって両面に銅箔を有する銅張積層板を得た。なお、各実施例および比較例において用いられるキャリア箔付き極薄銅箔は、表1および表2に記載のとおりである。
4). Production of copper-clad laminate Four prepregs obtained as described above are stacked, and an ultrathin copper foil (2 μm) with a carrier foil is stacked on both sides, and the pressure is 3 MPa and the temperature is 200 ° C. for 60 minutes (after reaching 200 ° C. , Heated for 60 minutes) A copper-clad laminate having copper foil on both sides was obtained by heat and pressure molding. In addition, the ultrathin copper foil with a carrier foil used in each Example and Comparative Example is as described in Table 1 and Table 2.
5.評価
 各実施例および比較例で得られたキャリア付き極薄銅箔を用いて、以下の評価を行った。評価項目を内容と共に示し、得られた結果を表1および表2に示す。
5. Evaluation The following evaluation was performed using the ultra-thin copper foil with a carrier obtained by each Example and the comparative example. The evaluation items are shown together with the contents, and the obtained results are shown in Tables 1 and 2.
(1)ビッカース硬度の測定
 ビッカース硬度の測定は、JIS Z 2244に準拠し、以下の手順で、アカシ社製、微小硬度計(型番MVK-2H)を用いて23℃で行った。常態のサンプルとしては、バルク銅層まで形成した直後のキャリア付き極薄銅箔を用いた。また、熱処理後のサンプルとしては、バルク銅層まで形成したキャリア付き極薄銅箔を230℃に加熱したオーブン(窒素雰囲気)中に1時間放置した後のものを用いた。測定条件は、カット試料に負荷速度3μm/秒、試験荷重5gf、保持時間15秒の条件で圧痕をつけ、圧痕の測定結果からビッカース硬度を算出し、任意の5点のビッカース硬度を測定した平均値をその条件の値とした。
(1) Measurement of Vickers Hardness Vickers hardness was measured at 23 ° C. using a micro hardness tester (model number MVK-2H) manufactured by Akashi Corporation according to JIS Z 2244 according to the following procedure. As a normal sample, an ultrathin copper foil with a carrier immediately after forming a bulk copper layer was used. As the sample after the heat treatment, a sample after leaving the ultrathin copper foil with a carrier formed up to the bulk copper layer in an oven (nitrogen atmosphere) heated to 230 ° C. for 1 hour was used. The measurement conditions were as follows: an indentation was made on a cut sample under conditions of a load speed of 3 μm / second, a test load of 5 gf, and a holding time of 15 seconds, Vickers hardness was calculated from the measurement result of the indentation, and an average of five arbitrary Vickers hardnesses measured The value was the value of the condition.
(2)エッチング速度(V1、V2)
1.キャリア箔を除去した極薄銅箔を両面に積層した基板を、40mm×80mmに裁断してサンプル片を得る。サンプル片をノギスで、小数点以下2桁まで読み取り、サンプル片の片面積を算出する。
2.水平乾燥ラインにて、80℃ 1分×3回の乾燥処理をサンプル片に対し行う。
3.サンプル片の初期重量W0を測定する(ただし、基板重量含む)。
4.エッチング液を調整する。
 4-1:95%硫酸(和光純薬社製、特級)を60g秤量し、1Lのビーカーに入れる。
 4-2:純水を4-1で用いたビーカーに投入し、計1000ccにする。
 4-3:マグネチックスターラーを用いて、30℃±1℃で3分攪拌する。
 4-4:34.5%過酸化水素水(関東化学社製、鹿一級)を20cc秤量し、4-1で用いたビーカーに入れ、計1020ccにした後、30℃±1℃で3分攪拌する。これにより、硫酸55.9g/L、及び34.5%過酸化水素水19.6cc/Lのエッチング液が得られる。
5.上記エッチング液(液温30℃±1℃、攪拌条件:マグネチックスターラー、250rmp)にサンプル片を浸漬する。
6.極薄銅箔のバルク層が完全にエッチングされるまで、30秒ごとにサンプル片の重量W1を測定する(ただし、基板重量含む)。
7.エッチング重量(W0-W1)/(浸漬させた両面面積=m)を算出し、X軸にエッチング時間(秒)、Y軸にエッチング質量(g/m)をプロットする。0~150秒の間に対し最小二乗法を用いて算出された傾きK1から、バルク銅層のエッチングレートV1(μm/min)=K1(g/sec・m)÷8.92(銅比重g/cm)×60(sec/min)を算出する。
8.その後、極薄銅箔の粗化銅層が完全にエッチングされるまで、10秒ごとにサンプル片の重量W2を測定する(ただし、基板重量含む)。
9.エッチング重量(W0-W2)/(浸漬させた両面面積=m)を算出し、X軸にエッチング時間(秒)、Y軸にエッチング質量(g/m)をプロットする。0~30秒の間に対し最小二乗法を用いて算出された傾きK2から、粗化銅層のエッチングレートV2(μm/min)=K2(g/sec・m)÷8.92(銅比重g/cm)×60(sec/min)を算出する。
(2) Etching rate (V1, V2)
1. The board | substrate which laminated | stacked the ultrathin copper foil from which carrier foil was removed on both surfaces is cut | judged to 40 mm x 80 mm, and a sample piece is obtained. Read the sample piece with a caliper to 2 digits after the decimal point, and calculate the area of the sample piece.
2. In the horizontal drying line, the sample piece is dried at 80 ° C. for 1 minute × 3 times.
3. The initial weight W0 of the sample piece is measured (however, including the substrate weight).
4). Adjust the etchant.
4-1: Weigh 60 g of 95% sulfuric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and place in a 1 L beaker.
4-2: Put pure water into the beaker used in 4-1 to make a total of 1000 cc.
4-3: Stir for 3 minutes at 30 ° C. ± 1 ° C. using a magnetic stirrer.
4-4: Weigh 20 cc of 34.5% hydrogen peroxide water (Kanto Chemical Co., Ltd., deer grade 1), put it in the beaker used in 4-1, make a total of 1020 cc, then 3 minutes at 30 ° C ± 1 ° C Stir. As a result, an etching solution containing 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide water is obtained.
5. The sample piece is immersed in the etching solution (liquid temperature 30 ° C. ± 1 ° C., stirring condition: magnetic stirrer, 250 rpm).
6). The weight W1 of the sample piece is measured every 30 seconds (including the substrate weight) until the ultrathin copper foil bulk layer is completely etched.
7). The etching weight (W0-W1) / (area of both surfaces immersed = m 2 ) is calculated, and the etching time (seconds) is plotted on the X axis and the etching mass (g / m 2 ) is plotted on the Y axis. From the slope K1 calculated using the method of least squares for 0 to 150 seconds, the etching rate V1 (μm / min) of the bulk copper layer = K1 (g / sec · m 2 ) ÷ 8.92 (copper specific gravity) g / cm 3 ) × 60 (sec / min) is calculated.
8). Thereafter, the weight W2 of the sample piece is measured every 10 seconds (however, including the substrate weight) until the rough copper layer of the ultrathin copper foil is completely etched.
9. The etching weight (W0−W2) / (both surface area immersed = m 2 ) is calculated, and the etching time (seconds) is plotted on the X axis and the etching mass (g / m 2 ) is plotted on the Y axis. From the slope K2 calculated using the least square method for 0 to 30 seconds, the etching rate V2 (μm / min) of the roughened copper layer = K2 (g / sec · m 2 ) ÷ 8.92 (copper Specific gravity g / cm 3 ) × 60 (sec / min) is calculated.
(3)凹凸評価方法
 後述する(4)で得られたプリント配線板を真上から観察して得られたSEM像(2000倍)を用いて、配線間の銅残りを2値化(Media Cybernetics社製、画像処理ソフト;Image Pro Prus ver5.1)して残銅度を算出した。
Figure JPOXMLDOC01-appb-I000001
 表1および表2における各符号は以下の通りである。
◎:2以下
○:2より上10以下
×:10以上
(3) Concavity and convexity evaluation method Using the SEM image (2000 times) obtained by observing the printed wiring board obtained in (4), which will be described later, from the top, binarize the copper residue between the wirings (Media Cybernetics) Residual copper degree was calculated by using image processing software (Image Pro Plus ver. 5.1) manufactured by the company.
Figure JPOXMLDOC01-appb-I000001
Each code | symbol in Table 1 and Table 2 is as follows.
◎: 2 or less ○: 10 or less above 2 ×: 10 or more
(4)細線間の絶縁性
1.キャリア箔を除去した極薄銅箔を両面に積層した基板の表面に対し、化学研磨液(三菱瓦斯化学(株)製、商品名:CPB-60)で5秒間、23℃でソフトエッチングし酸化銅を除去した。次いで、厚さ25μmの紫外線感光性ドライフィルム(旭化成社製、サンフォートUFG-255)を、ホットロールラミネーターにより基板上に貼り合わせた。次いで、最小線幅/線間が20/20μmのパターンが描画されたガラスマスク(トピック社製)の位置合わせを行った。次いで、上記ドライフィルムに対し、上記ガラスマスクを用いて露光装置(小野測器EV-0800)にて露光、炭酸ソーダ水溶液にて現像を行った。これにより、レジストマスクを形成した。
2.次に、極薄銅箔層を給電層電極として、電解銅めっき(奥野製薬社製81-HL)を3A/dm、25分間行って、厚さ約20μmの銅配線のパターンを形成した。次に、剥離機を用いて、モノエタノールアミン溶液(三菱ガス化学社製R-100)により、前記レジストマスクを剥離した。
3.そして給電層である極薄銅箔層をフラッシュエッチング(エッチングレートと同じ液)により除去して、L/S=20/20μmのパターンを形成した(パターン状エッチング)。これにより、プリント配線板を得た。
4.試験サンプルとしては、ソルダーレジストの代わりに絶縁樹脂シート(住友ベークライト社製、BLA-3700GS)を積層、温度220℃で硬化したサンプルを用いて、温度130℃、湿度85%、印加電圧10Vの条件で連続湿中絶縁抵抗を評価した。尚、抵抗値10Ω以下を故障とした。
 符号は以下の通りである。
◎:300時間以上故障なし
○:150~300時間未満で故障あり
×:150時間未満で故障あり
(4) Insulation between thin wires The surface of the substrate on which the ultrathin copper foil from which the carrier foil has been removed is laminated on both sides is soft-etched with a chemical polishing liquid (Mitsubishi Gas Chemical Co., Ltd., product name: CPB-60) for 5 seconds at 23 ° C. Copper was removed. Next, an ultraviolet-sensitive dry film having a thickness of 25 μm (manufactured by Asahi Kasei Co., Ltd., Sunfort UFG-255) was bonded onto the substrate by a hot roll laminator. Next, alignment of a glass mask (manufactured by Topic) on which a pattern having a minimum line width / line spacing of 20/20 μm was drawn was performed. Next, the dry film was exposed with an exposure apparatus (Ono Sokki EV-0800) using the glass mask, and developed with an aqueous sodium carbonate solution. Thereby, a resist mask was formed.
2. Next, electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) was performed at 3 A / dm 2 for 25 minutes using the ultrathin copper foil layer as a power supply layer electrode to form a copper wiring pattern having a thickness of about 20 μm. Next, the resist mask was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine.
3. Then, the ultrathin copper foil layer as the power feeding layer was removed by flash etching (the same solution as the etching rate) to form a pattern of L / S = 20/20 μm (patterned etching). Thereby, a printed wiring board was obtained.
4). As a test sample, an insulating resin sheet (manufactured by Sumitomo Bakelite Co., Ltd., BLA-3700GS) is laminated instead of a solder resist, and a sample cured at a temperature of 220 ° C. is used. Conditions of a temperature of 130 ° C., a humidity of 85%, and an applied voltage of 10V The continuous wet insulation resistance was evaluated. A resistance value of 10 6 Ω or less was regarded as a failure.
The symbols are as follows.
◎: No failure for 300 hours or more ○: Failure in 150 to less than 300 hours ×: Failure in less than 150 hours
(5)配線形状(又は回路直線性)
1.サンプルは、上記(4)で得られたプリント配線板を用いた。
2.顕微鏡を用いて、エッチング後の回路を真上から観察した際の、回路ボトム部の輪郭を評価した。また、顕微鏡を用いて、エッチング後の回路の断面を観察した際の、配線形状を評価した。
 符号は以下の通り。
◎:真上から観察した際に、回路ボトム部の輪郭が直線に見える。また、断面においてボトムの裾拡がりがない。
○:真上から観察した際に、回路ボトム部の輪郭が直線に見える。また、断面においてボトムの裾が小さい。
×:真上から観察した際に、回路ボトム部の輪郭が曲線状に見える部分がある。また、断面においてボトムの裾が大きい。
(5) Wiring shape (or circuit linearity)
1. As the sample, the printed wiring board obtained in the above (4) was used.
2. Using a microscope, the contour of the circuit bottom when the circuit after etching was observed from directly above was evaluated. Moreover, the wiring shape at the time of observing the cross section of the circuit after an etching using the microscope was evaluated.
The code is as follows.
A: When observed from directly above, the outline of the circuit bottom portion looks straight. Moreover, there is no bottom hem expansion in the cross section.
○: When observed from directly above, the outline of the circuit bottom portion looks straight. In addition, the bottom hem is small in the cross section.
X: When observed from directly above, there is a portion where the outline of the circuit bottom portion looks like a curve. Moreover, the bottom hem is large in the cross section.
(6)結晶粒界径(μm)
 JIS H 0501に準じて結晶粒界径を測定した。手順は下記のとおりである。
1.キャリア箔を除去した極薄銅箔を両面に積層した基板を、FIB(収束イオンビーム)加工装置を用いて加工した後、SIM(Scanning Ion Microscope)観察写真を撮影する。
2.撮影した写真の断面の結晶粒度を、JIS H 0501に規定される比較法の標準写真から算出する。なお、この規格の付図には75倍で観察した結晶粒度0.010mmまでしか示されていないので、最も類似した図と観察時の倍率を勘案して算出した。
(6) Grain boundary diameter (μm)
The grain boundary diameter was measured according to JIS H 0501. The procedure is as follows.
1. After processing the board | substrate which laminated | stacked the ultra-thin copper foil which removed the carrier foil on both surfaces using a FIB (focused ion beam) processing apparatus, a SIM (Scanning Ion Microscope) observation photograph is image | photographed.
2. The crystal grain size of the cross section of the photograph taken is calculated from the standard photograph of the comparative method specified in JIS H 0501. In addition, since the attached drawing of this standard shows only the crystal grain size of 0.010 mm observed at 75 times, it was calculated considering the most similar figure and the magnification at the time of observation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、当然ながら、上述した実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。 Of course, the embodiment and the plurality of modifications described above can be combined within a range in which the contents do not conflict with each other. Further, in the above-described embodiments and modifications, the structure of each part has been specifically described, but the structure and the like can be changed in various ways within a range that satisfies the present invention.
 この出願は、2012年3月16日に出願された日本特許出願特願2012-059742を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-059742 filed on Mar. 16, 2012, the entire disclosure of which is incorporated herein.

Claims (6)

  1.  絶縁層と前記絶縁層の少なくとも一方の面に位置する銅箔とを備えていて、前記銅箔をエッチングすることにより導体回路を形成することで得られる素子搭載基板に用いる積層板であって、
     硫酸55.9g/L、及び34.5%過酸化水素水19.6cc/Lからなり、かつ液温が30℃±1℃である硫酸/過酸化水素系のエッチング液に、前記積層板を浸漬させる条件下での前記銅箔のエッチングレートが0.68μm/min以上、1.25μm/min以下である、積層板。
    A laminated plate used for an element mounting substrate, comprising an insulating layer and a copper foil located on at least one surface of the insulating layer, and obtained by forming a conductor circuit by etching the copper foil,
    The laminate was placed in a sulfuric acid / hydrogen peroxide etching solution comprising 55.9 g / L of sulfuric acid and 19.6 cc / L of 34.5% hydrogen peroxide solution and having a liquid temperature of 30 ° C. ± 1 ° C. The laminated board whose etching rate of the said copper foil on the conditions made to immerse is 0.68 micrometer / min or more and 1.25 micrometers / min or less.
  2.  請求項1に記載の積層板において、
     以下の条件の加熱処理の前後における、前記銅箔のビッカース硬度の差が0Hv以上50Hv以下である、積層板。
     条件:加熱温度が230℃、加熱時間が1時間である。
    The laminate according to claim 1,
    The laminated board whose difference of the Vickers hardness of the said copper foil is 0 Hv or more and 50 Hv or less before and after the heat processing of the following conditions.
    Conditions: The heating temperature is 230 ° C. and the heating time is 1 hour.
  3.  請求項1または2に記載の積層板において、
     前記銅箔の膜厚が0.1μm以上5μm以下である、積層板。
    In the laminated board of Claim 1 or 2,
    The laminated board whose film thickness of the said copper foil is 0.1 micrometer or more and 5 micrometers or less.
  4.  請求項1から3のいずれか1項に記載の積層板において、
     230℃、1時間加熱処理後における、前記銅箔のビッカース硬度が180Hv以上240Hv以下である、積層板。
    In the laminated board of any one of Claim 1 to 3,
    The laminated board whose Vickers hardness of the said copper foil is 230 Hv or more and 240 Hv or less after heat processing at 230 degreeC for 1 hour.
  5.  請求項1から4のいずれか1項に記載の積層板において、
     230℃、1時間加熱処理後の前記銅箔の断面結晶粒度が2.0μm以下である、積層板。
    In the laminated board of any one of Claim 1 to 4,
    The laminated board whose cross-sectional grain size of the said copper foil after 230 degreeC and 1 hour heat processing is 2.0 micrometers or less.
  6.  絶縁層と前記絶縁層の少なくとも一面に位置する銅箔とを備える積層板を準備する工程と、
     前記銅箔を選択的に除去することにより導体回路を形成する工程と、を含み、
     前記積層板が請求項1から5のいずれか1項に記載の積層板である、プリント配線板の製造方法。
    Preparing a laminate comprising an insulating layer and a copper foil located on at least one surface of the insulating layer;
    Forming a conductor circuit by selectively removing the copper foil,
    The manufacturing method of the printed wiring board whose said laminated board is a laminated board of any one of Claim 1 to 5.
PCT/JP2013/001432 2012-03-16 2013-03-07 Manufacturing method for laminated board and printed wiring board WO2013136729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147028063A KR101528444B1 (en) 2012-03-16 2013-03-07 Laminate and method for manufacturing printed circuit board
CN201380014295.1A CN104170532B (en) 2012-03-16 2013-03-07 Manufacturing method for laminated board and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-059742 2012-03-16
JP2012059742 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013136729A1 true WO2013136729A1 (en) 2013-09-19

Family

ID=49160662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001432 WO2013136729A1 (en) 2012-03-16 2013-03-07 Manufacturing method for laminated board and printed wiring board

Country Status (5)

Country Link
JP (1) JP5378620B2 (en)
KR (1) KR101528444B1 (en)
CN (1) CN104170532B (en)
TW (1) TWI590718B (en)
WO (1) WO2013136729A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
US9287566B1 (en) 2015-04-17 2016-03-15 Chang Chun Petrochemical Co., Ltd. Anti-curl copper foil
EP3327838A4 (en) * 2015-07-24 2019-02-20 KCF Technologies Co., Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same
CN113265685A (en) * 2021-05-27 2021-08-17 益阳市菲美特新材料有限公司 Porous copper foil and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613947B (en) * 2015-04-09 2018-02-01 柏彌蘭金屬化研究股份有限公司 Pre-drilling wet plating metal clad laminate amd method for manufacturing the same
KR101831227B1 (en) * 2015-04-15 2018-02-22 손경애 Method for manufacturing pcb
CN107087341B (en) * 2016-01-28 2019-03-08 庆鼎精密电子(淮安)有限公司 Circuit board and preparation method thereof
KR101927479B1 (en) * 2016-05-09 2018-12-10 강성원 Method for manufacturing pcb and pcb manufactured using the same
CN109906670A (en) * 2016-08-18 2019-06-18 卡特拉姆有限责任公司 Laminate is catalyzed with the plasma etching of trace and through-hole
US10405418B2 (en) 2016-12-21 2019-09-03 Industrial Technology Research Institute Differential signal transmitting circuit board
TWI605734B (en) * 2016-12-21 2017-11-11 財團法人工業技術研究院 Differential signal transmitting circuit board
JP7228468B2 (en) * 2019-05-28 2023-02-24 上村工業株式会社 Method for manufacturing printed wiring board
CN112752412A (en) * 2019-10-29 2021-05-04 深南电路股份有限公司 Etching method and processing method of circuit board
CN110820021B (en) * 2019-11-15 2021-01-05 安徽德科科技有限公司 Anti-stripping copper foil for circuit board and preparation method thereof
CN114845874A (en) * 2019-12-17 2022-08-02 三菱瓦斯化学株式会社 Resin sheet and printed wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JPH11172467A (en) * 1997-12-10 1999-06-29 Ebara Densan Ltd Etching solution
JP2000188460A (en) * 1998-12-24 2000-07-04 Ngk Spark Plug Co Ltd Manufacture of wiring substrate
JP2005005341A (en) * 2003-06-10 2005-01-06 Mitsubishi Gas Chem Co Inc Method for manufacturing printed circuit board
JP2007294923A (en) * 2006-03-31 2007-11-08 Nikko Kinzoku Kk Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
JP2008294432A (en) * 2007-04-26 2008-12-04 Mitsui Mining & Smelting Co Ltd Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
WO2009101948A1 (en) * 2008-02-12 2009-08-20 Mitsubishi Paper Mills Limited Etching method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130455A (en) * 1977-11-08 1978-12-19 Dart Industries Inc. Dissolution of metals-utilizing H2 O2 -H2 SO4 -thiosulfate etchant
US4401509A (en) * 1982-09-07 1983-08-30 Fmc Corporation Composition and process for printed circuit etching using a sulfuric acid solution containing hydrogen peroxide
DE68923904T2 (en) * 1988-05-20 1996-03-14 Mitsubishi Gas Chemical Co Method for producing a substrate for circuit boards laminated with a thin copper foil.
US4875972A (en) * 1988-07-27 1989-10-24 E. I. Du Pont De Nemours And Company Hydrogen peroxide compositions containing a substituted oxybenzene compound
US6254758B1 (en) * 1998-02-02 2001-07-03 Shinko Electric Industries Co., Ltd. Method of forming conductor pattern on wiring board
JP3951938B2 (en) * 2002-03-01 2007-08-01 日立化成工業株式会社 Etching method and printed wiring board manufacturing method using the same
JP4037784B2 (en) * 2003-04-11 2008-01-23 新日鐵化学株式会社 Etching method of copper-clad circuit board with hydrogen peroxide / sulfuric acid based etchant
JP4488188B2 (en) * 2004-06-29 2010-06-23 三菱瓦斯化学株式会社 Semi-additive process etchant for printed wiring board manufacturing
JP5273710B2 (en) * 2007-11-27 2013-08-28 メック株式会社 Etching agent
JP2009289312A (en) * 2008-05-28 2009-12-10 Nippon Steel Chem Co Ltd Metal-clad laminate and wiring integration type suspension
JP5531708B2 (en) * 2010-03-26 2014-06-25 メック株式会社 Copper etching solution and substrate manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JPH11172467A (en) * 1997-12-10 1999-06-29 Ebara Densan Ltd Etching solution
JP2000188460A (en) * 1998-12-24 2000-07-04 Ngk Spark Plug Co Ltd Manufacture of wiring substrate
JP2005005341A (en) * 2003-06-10 2005-01-06 Mitsubishi Gas Chem Co Inc Method for manufacturing printed circuit board
JP2007294923A (en) * 2006-03-31 2007-11-08 Nikko Kinzoku Kk Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
JP2008294432A (en) * 2007-04-26 2008-12-04 Mitsui Mining & Smelting Co Ltd Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
WO2009101948A1 (en) * 2008-02-12 2009-08-20 Mitsubishi Paper Mills Limited Etching method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287566B1 (en) 2015-04-17 2016-03-15 Chang Chun Petrochemical Co., Ltd. Anti-curl copper foil
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
EP3327838A4 (en) * 2015-07-24 2019-02-20 KCF Technologies Co., Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same
US10243216B2 (en) 2015-07-24 2019-03-26 Kcf Technologies Co., Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
CN113265685A (en) * 2021-05-27 2021-08-17 益阳市菲美特新材料有限公司 Porous copper foil and preparation method thereof
CN113265685B (en) * 2021-05-27 2024-01-23 益阳市菲美特新材料有限公司 Porous copper foil and preparation method thereof

Also Published As

Publication number Publication date
JP2013219337A (en) 2013-10-24
TW201352085A (en) 2013-12-16
CN104170532A (en) 2014-11-26
CN104170532B (en) 2017-02-22
JP5378620B2 (en) 2013-12-25
TWI590718B (en) 2017-07-01
KR101528444B1 (en) 2015-06-11
KR20140133910A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5378620B2 (en) LAMINATED BOARD AND PRINTED WIRING BOARD MANUFACTURING METHOD
JP5929219B2 (en) Printed wiring board and printed wiring board manufacturing method
JP5929220B2 (en) Printed wiring board and printed wiring board manufacturing method
JP5950005B2 (en) Resin composition
TWI737649B (en) Resin composition
JP6379038B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
WO2006051864A1 (en) Metal foil provided with adhesion auxiliary material and printed wiring board using same
JP5521099B1 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP2004025835A (en) Resin coated metal foil, metal-clad laminate, printed wiring board using the same, and its manufacturing process
JP5002943B2 (en) Metal foil with adhesive aid and printed wiring board using the same
JP2007001291A (en) Metallic foil with adhesion adjuvant, printed-wiring board using the same, and manufacturing method for printed-wiring board
JP6415033B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
CN111465496A (en) Copper foil with insulating resin layer
JP4913328B2 (en) Metal foil with adhesive aid and printed wiring board using the same
WO2012101992A1 (en) Method for producing printed wiring board
JP2015078421A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminated plate, and method of producing printed wiring board
JP5516657B2 (en) Metal foil with adhesion aid, printed wiring board using the same, and method for producing the same
JP6848950B2 (en) Resin composition
JP5364972B2 (en) Method for manufacturing printed wiring board
JP2005216902A (en) Method of manufacturing printed circuit board and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147028063

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761940

Country of ref document: EP

Kind code of ref document: A1