WO2013065831A1 - Copper foil for printed circuit - Google Patents

Copper foil for printed circuit Download PDF

Info

Publication number
WO2013065831A1
WO2013065831A1 PCT/JP2012/078509 JP2012078509W WO2013065831A1 WO 2013065831 A1 WO2013065831 A1 WO 2013065831A1 JP 2012078509 W JP2012078509 W JP 2012078509W WO 2013065831 A1 WO2013065831 A1 WO 2013065831A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nickel
copper foil
copper
alloy plating
Prior art date
Application number
PCT/JP2012/078509
Other languages
French (fr)
Japanese (ja)
Inventor
新井 英太
敦史 三木
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Publication of WO2013065831A1 publication Critical patent/WO2013065831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a copper foil for a printed circuit, for example, a copper foil for a printed circuit suitable for a fine pattern printed circuit and a magnetic head FPC (Flexible Circuit).
  • a copper foil for a printed circuit for example, a copper foil for a printed circuit suitable for a fine pattern printed circuit and a magnetic head FPC (Flexible Circuit).
  • Copper and copper alloy foils have greatly contributed to the development of electrical and electronic industries, and are indispensable particularly as printed circuit materials.
  • Copper foil for printed circuit is generally used to produce a copper-clad laminate by laminating and bonding to an insulating substrate such as a synthetic resin board or film through an adhesive or under high temperature and high pressure without using an adhesive.
  • an insulating substrate such as a synthetic resin board or film
  • an adhesive such as a synthetic resin board or film
  • the adhesion between the insulating substrate and the conductive material is one of the important characteristics.
  • a surface treatment called roughening treatment that forms irregularities on the copper foil surface is performed. It is generally done. For example, by using a copper sulfate acidic plating bath on the M surface (rough surface) of the electrolytic copper foil, a large number of copper is electrodeposited in a dendritic or small spherical shape to form fine irregularities, and the adhesion is improved by the anchoring effect. There is.
  • Patent Document 1 As a technique developed from the roughening treatment by copper electrodeposition grains, for example, as described in JP-A-4-96395 (Patent Document 1) and JP-A-10-18075 (Patent Document 2), A technique is known in which the surface of a copper foil is subjected to a roughening treatment by copper-cobalt-nickel alloy plating.
  • black has the advantage of high alignment accuracy and high heat absorption.
  • components such as an IC, a resistor, and a capacitor are mounted in an automatic process, and chip mounting is performed while reading a circuit with a sensor.
  • the roughened surface may be aligned through a film such as Kapton.
  • Kapton This also applies to positioning when forming a through hole.
  • the closer the processing surface is to black the better the light absorption, and the higher the positioning accuracy.
  • the copper foil and the insulating substrate are often cured and bonded while applying heat. At this time, when heating is performed by using long waves such as far infrared rays and infrared rays, the heating efficiency is improved when the color tone of the treated surface is black.
  • the black surface is obtained by the roughening treatment by the copper-cobalt-nickel alloy plating described in Patent Document 1 or Patent Document 2, it is composed of the copper-cobalt-nickel alloy plating formed on the surface of the copper foil. Since the shape of the roughened particles is dendritic, it peels off from the upper part or the root of the tree branch, and there is a problem generally called a powder-off phenomenon. This powder-off phenomenon is a troublesome problem, and the roughened layer of copper-cobalt-nickel alloy plating is characterized by excellent adhesion to the resin layer and excellent heat resistance. Nevertheless, the particles easily fall off due to an external force, and peeling due to “rubbing” during processing, contamination of the roll with peeling powder, and etching residue due to peeling powder are generated.
  • the object of the present invention is to provide a roughened copper foil having a black surface and good etching properties, and preferably to provide a roughened copper foil with further improved powder-off problem. is there.
  • the further subject of this invention is providing the copper clad laminated board provided with such a roughening process copper foil.
  • a non-black roughening layer and a nickel-tungsten alloy plating layer are formed in this order on at least one surface of the copper foil, and the nickel of the nickel-tungsten alloy plating layer It is a copper foil for printed circuits whose amount is 2000 ⁇ g / dm 2 or more.
  • the nickel amount of the nickel-tungsten alloy plating layer is 2000 to 5000 ⁇ g / dm 2 .
  • a heat-resistant layer is formed on the nickel-tungsten alloy plating layer.
  • a rust prevention layer is formed on the nickel-tungsten alloy plating layer or on the heat-resistant layer formed on the nickel-tungsten alloy plating layer.
  • a copper-cobalt-nickel alloy is formed on the primary particle layer.
  • the secondary particle layer is formed.
  • the primary particle layer of the copper has an average particle diameter of 0.25 to 0.45 ⁇ m, and is a secondary made of a copper-cobalt-nickel alloy.
  • the average particle size of the particle layer is 0.05 to 0.25 ⁇ m.
  • the primary particle layer and the secondary particle layer are electroplated layers.
  • the present invention is a copper clad laminate provided with the printed circuit copper foil according to the present invention.
  • the present invention is a printed circuit board made of the copper clad laminate according to the present invention.
  • a roughened copper foil that has a black surface and good etching properties, and preferably provides a roughened copper foil that further improves the problem of powder falling. be able to.
  • FIG. 3 is a conceptual explanatory diagram of a roughening treatment layer formed by previously forming a primary particle layer of copper on a copper foil and forming a secondary particle layer made of copper-cobalt-nickel alloy plating on the primary particle layer. It is the microscope picture of the surface at the time of performing the roughening process which consists of copper-cobalt-nickel alloy plating on copper foil.
  • FIG. 5 is a photomicrograph of a copper foil treated surface layer without powder falling, in which a primary particle layer is formed in advance on a copper foil, and a secondary particle layer made of copper-cobalt-nickel alloy plating is formed on the primary particle layer. .
  • a roughening treatment layer and a nickel-tungsten alloy plating layer are formed in this order on at least one surface of the copper foil.
  • a black surface can be obtained by forming a nickel-tungsten alloy plating layer on a roughened layer that is not black.
  • the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil.
  • the surface of the copper foil that adheres to an insulating substrate such as a resin, that is, the roughened surface is coated with a “detergent” on the surface of the copper foil after degreasing for the purpose of improving the peel strength of the copper foil after lamination.
  • a roughening treatment is performed for electrodeposition in the form of a hump.
  • the M surface of the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
  • the processing contents may be somewhat different between rolled copper foil and electrolytic copper foil.
  • a known treatment related to copper foil roughening is included as necessary, and is referred to as “roughening treatment”.
  • Examples of the roughening treatment include a method of forming an electrodeposited copper particle layer on the surface of the copper foil.
  • a preferred method for increasing the peel strength is a method of forming a copper-cobalt-nickel alloy plating layer on the surface of the copper foil.
  • the copper-cobalt-nickel alloy plating layer is used alone, the problem of powder falling remains. Therefore, the present inventor has found that a method of forming an electrodeposited copper particle layer as a primary particle layer and forming a secondary particle layer of copper-cobalt-nickel alloy plating thereon is preferable.
  • peeling due to “rubbing” during processing, dirt on the roll due to peeling powder, etching residue due to peeling powder can be eliminated, that is, a phenomenon called powder falling and processing unevenness can be suppressed, and peel strength can be suppressed.
  • the copper foil for printed circuits which can improve heat resistance and can improve heat resistance can be obtained.
  • FIG. 3 shows a photomicrograph of the surface of the copper foil in which a copper-cobalt-nickel alloy plating layer is formed on the copper foil.
  • fine particles developed in a dendritic shape can be seen.
  • the fine particles developed in a dendritic shape shown in FIG. 3 are produced at a high current density. When processed at such a high current density, particle nucleation during initial electrodeposition is suppressed, and new particle nuclei are formed at the tip of the particle. Will grow.
  • FIG. 1 is a conceptual explanatory diagram showing the state of powder falling when a copper-cobalt-nickel alloy plating layer as shown in FIG. 3 is formed.
  • the cause of this powder fall is that fine particles are formed in a dendritic shape on the copper foil as described above. However, the dendritic particles are easily broken by an external force and fall off from the root. The fine dendritic particles cause peeling due to “rubbing” during the process, contamination of the roll with peeling powder, and etching residue due to peeling powder.
  • FIG. 4 shows a micrograph in this case. From the viewpoint of preventing powder falling, it is desirable that the average particle size of the primary particle layer is larger than the average particle size of the secondary particle layer.
  • the primary particle layer has an average particle size of 0.25 to 0.45 ⁇ m
  • the secondary particle layer made of a copper-cobalt-nickel alloy has an average particle size of 0.05 to 0.25 ⁇ m, typically 0. 1 to 0.25 ⁇ m is the optimum condition for preventing powder falling, as is apparent from the examples shown below.
  • the primary particle layer and the secondary particle layer are formed by an electroplating layer.
  • the secondary particles are characterized by one or more dendritic particles grown on the primary particles.
  • the average particle size of the secondary particle layer is as small as 0.05 to 0.25 ⁇ m, but this particle size can also be called the particle height. That is, it can be said that one of the features of the present invention is that the height of the secondary particles is suppressed and the separation (powder off) of the particles is suppressed.
  • the copper foil for a printed circuit having the roughened layer composed of the primary particle layer and the secondary particle layer formed on the surface thereof has an adhesive strength of 0.80 kg / cm or more with the insulating substrate, and further has an adhesive strength of 0. .90 kg / cm or more can be achieved.
  • Ni adhesion amount When the Ni adhesion amount is less than 50 ⁇ g / dm 2 , the heat resistance deteriorates. On the other hand, when the Ni adhesion amount exceeds 500 ⁇ g / dm 2 , the etching property is lowered. That is, although it is not at a level where etching remains and etching cannot be performed, it becomes difficult to form a fine pattern.
  • Preferred Co deposition amount is 500 ⁇ 2000 ⁇ g / dm 2, and preferably nickel coating weight is 50 ⁇ 300 ⁇ g / dm 2.
  • copper - cobalt - deposition of nickel alloy plating it may be desirable is 10 ⁇ 30mg / dm 2 of copper -100 ⁇ 3000 ⁇ g / dm 2 of cobalt -50 ⁇ 500 ⁇ g / dm 2 of nickel.
  • Each adhesion amount of the ternary alloy layer is a desirable condition, and a range exceeding this amount is not denied.
  • a nickel-tungsten alloy plating layer is formed on the roughening treatment layer and contributes to blackening of the copper foil surface.
  • the roughening treatment layer composed of the primary particle layer made of copper and the secondary particle layer made of a copper-cobalt-nickel alloy is gray.
  • a black color can be obtained by forming a nickel-tungsten alloy layer on the surface of the roughened layer.
  • the reason why the binary alloy plating of nickel and tungsten is used is that the blackening effect can be obtained by nickel and the etching property can be secured by tungsten.
  • the nickel - tungsten alloy plating layer is preferably from the viewpoint of blackening and the adhesion amount of nickel 2000 [mu] g / dm 2 or more, and more preferably, 3000 ⁇ g / dm 2 or more.
  • the nickel-tungsten alloy plating layer does not need to have an upper limit for the amount of nickel deposited from the viewpoint of blackening, but the economy is reduced even if the amount of deposited is excessively increased. For example, 15000 ⁇ g / dm 2 or less, Alternatively 10000 / dm 2 or less, or 8000 ⁇ g / dm 2 or less, or may be a 7000 ⁇ g / dm 2 or less.
  • Typical plating bath compositions and plating conditions are as follows. Liquid composition: nickel 10-40 g / L, tungsten 10-30 mg / L pH: 3-4 Liquid temperature: 35-45 ° C Current density: 2 to 3 A / dm 2 Coulomb amount: 15-25 As / dm 2
  • a heat-resistant layer, particularly a zinc-nickel alloy plated layer may be formed on the nickel-tungsten alloy plated layer.
  • the processing performed in the manufacturing process of the printed circuit becomes much higher, and there is heat generation during use of the device after it has become a product.
  • the resin receives heat of 300 ° C. or higher. Even in such a situation, it is necessary to prevent a decrease in bonding force between the copper foil and the resin base material, and this zinc-nickel alloy plating is effective.
  • the total amount of the zinc-nickel alloy plating layer is preferably 150 to 500 ⁇ g / dm 2 and the nickel ratio is preferably 16 to 40% by mass. As a result, it has a role as a heat-resistant rust-proof layer and suppresses penetration of an etching agent used in soft etching (eg, etching solution of H 2 SO 4 : 10 wt%, H 2 O 2 : 2 wt%), It can have the effect that the weakening of the joint strength of the circuit can be prevented due to corrosion.
  • an etching agent used in soft etching eg, etching solution of H 2 SO 4 : 10 wt%, H 2 O 2 : 2 wt%
  • Zinc - The total amount is less than 150 [mu] g / dm 2 of nickel alloy plating layer, it is difficult to play a role as a heat-resistant layer resistant force is reduced, when the total amount is more than 500 [mu] g / dm 2, the hydrochloric acid resistance will deteriorate Tend. Moreover, if the lower limit of the nickel ratio in the alloy layer is less than 16% by mass, the amount of penetration at the time of soft etching exceeds 9 ⁇ m, which is not preferable.
  • the upper limit value of 40% by mass of the nickel ratio is a technical limit value at which a zinc-nickel alloy plating layer can be formed.
  • Typical plating bath compositions and plating conditions are as follows. Liquid composition: Nickel 2-30 g / L, Zinc 2-30 g / L pH: 3-4 Liquid temperature: 30-50 ° C Current density: 1 to 2 A / dm 2 Coulomb amount: 1 to 2 As / dm 2
  • a rust prevention layer particularly a rust prevention layer of a chromate layer may be formed on the nickel-tungsten alloy plating layer or a heat-resistant layer formed on the nickel-tungsten alloy plating layer.
  • a preferable antirust treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide.
  • Chromium oxide and zinc / zinc oxide mixture film treatment is a method of forming zinc or zinc oxide comprising zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coat
  • At least one kind of dichromate such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt such as ZnO 2, ZnSO 4 ⁇ 7H are used.
  • a mixed aqueous solution of at least one kind of 2 O and an alkali hydroxide is used.
  • a typical plating bath composition and electrolysis conditions are as follows. In the following, conditions for the immersion chromate treatment are shown, but electrolytic chromate treatment may be used.
  • Liquid composition potassium dichromate 1-10 g / L, zinc 0-5 g / L pH: 3-4 Liquid temperature: 50-60 ° C Current density: 0-2A / dm 2 (for immersion chromate treatment) Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
  • a silane treatment for applying a silane coupling agent to at least the roughened surface on the rust-preventing layer may be performed mainly for the purpose of improving the adhesive force between the copper foil and the resin substrate.
  • the silane coupling agent used for the silane treatment include olefin silane, epoxy silane, acrylic silane, amino silane, and mercapto silane, which can be appropriately selected and used.
  • the application method may be any of spraying a silane coupling agent solution by spraying, coating with a coater, dipping, pouring and the like. For example, Japanese Patent Publication No.
  • 60-15654 describes that the adhesion between a copper foil and a resin substrate is improved by subjecting the rough surface of the copper foil to a chromate treatment followed by a silane coupling agent treatment. . Refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving the ductility of the copper foil.
  • the copper foil thus obtained has excellent heat resistance peel strength, oxidation resistance and hydrochloric acid resistance.
  • a printed circuit having a pitch of 150 ⁇ m or less can be etched with a CuCl 2 etching solution, and alkali etching can be performed. In addition, penetration into the circuit edge portion during soft etching can be suppressed.
  • the soft etching solution an aqueous solution of H 2 SO 4 : 10 wt% and H 2 O 2 : 2 wt% can be used. Processing time and temperature can be adjusted arbitrarily.
  • alkaline etching solution for example, NH 4 OH: 6 mol / liter, NH 4 Cl: 5 mol / liter, CuCl 2 : 2 mol / liter (temperature: 50 ° C.) and the like are known.
  • a present Example is an example to the last, and is not restrict
  • standard rolled copper foil TPC was used for the raw foil of the following examples.
  • Example 1 A primary particle layer (Cu) and a secondary particle layer (copper-cobalt-nickel alloy plating) were formed on the rolled copper foil under the conditions shown below. As a result, the primary particle system was 0.40 ⁇ m, and the secondary particle size was 0.15 ⁇ m. The average particle diameter of the primary particle layer and the secondary particle layer was measured from the SEM image using a cutting method. The average particle diameter of the primary particle layer was measured before forming the secondary particle layer.
  • the bath composition and plating conditions used are as follows. [Bath composition and plating conditions]
  • a nickel-tungsten alloy plating layer was further formed on the secondary particle layer (after the roughening treatment) under the following conditions.
  • (Plating conditions for forming nickel-tungsten alloy plating layer) Liquid composition: nickel 25 g / L, tungsten 20 mg / L pH: 3.6 Liquid temperature: 40 ° C
  • the current density and coulomb amount are shown in Table 1.
  • the results are shown in Table 1. In the case where the nickel content of the nickel-tungsten alloy plating layer was 2000 ⁇ g / dm 2 or more, a black color was obtained and the etching property was good.
  • the nickel plating layer was formed on the secondary particle layer under the above conditions as a liquid composition not containing tungsten (No. A), it was black, but compared with the case where the nickel-tungsten alloy plating layer was formed. As a result, the etching property was inferior.
  • Example 2 Next, a primary particle layer (Cu) and a secondary particle layer (copper-cobalt-nickel alloy plating) were formed under the same conditions as in Example 1. Further, as shown in Table 2, nickel-tungsten alloy plating layers were formed by changing the current density and the amount of coulomb. The results are shown in Table 2. In an example where the nickel adhesion amount of the nickel-tungsten alloy plating layer exceeds 5000 ⁇ g / dm 2 , the peel strength is reduced.
  • Example 3 A primary particle layer (Cu) and a secondary particle layer (copper-cobalt-nickel alloy plating) were formed on the rolled copper foil under the conditions shown below.
  • the bath composition and plating conditions used were as follows, and the primary particle current conditions and secondary particle current conditions are shown in Table 3.
  • no. 14 (Cu layer), No. 14 15 (copper-cobalt-nickel alloy plating layer) is a reference example of a conventional roughening treatment.
  • a nickel-tungsten alloy plating layer on the secondary particle layer (after the roughening treatment) was formed under the following conditions.
  • (Plating conditions for forming nickel-tungsten alloy plating layer) Liquid composition: nickel 25 g / L, tungsten 20 mg / L pH: 3.6 Liquid temperature: 40 ° C Current density: 2 A / dm 2 Coulomb amount: 20 As / dm 2
  • No. For 14, 15, and 16, not a nickel-tungsten alloy plating layer but a Co—Ni alloy plating layer was formed. The results are shown in Table 3.
  • a black surface can be obtained by forming a nickel-tungsten alloy plating layer.
  • No. 1 having a Co—Ni alloy plating layer. 16 had a gray surface.
  • the secondary particle layer is too large. Nos. 17, 18, and 19 are not preferable because they fall off.
  • the roughened particles formed in a dendritic shape peel off from the surface of the copper foil, It has an excellent effect of being able to suppress the so-called phenomenon.

Abstract

Provided is a roughened copper foil that has a black surface and good etching properties. This copper foil for a printed circuit has a non-black roughened layer and a nickel-tungsten alloy plating layer formed in this order on at least one of the surfaces of the copper foil, and the amount of nickel in the nickel-tungsten alloy plating layer is 2,000 µg/dm2 or more.

Description

印刷回路用銅箔Copper foil for printed circuit
 本発明は、印刷回路用銅箔に関し、例えばファインパターン印刷回路及び磁気ヘッド用FPC( Flexible Printed Circuit )に好適な印刷回路用銅箔に関する。 The present invention relates to a copper foil for a printed circuit, for example, a copper foil for a printed circuit suitable for a fine pattern printed circuit and a magnetic head FPC (Flexible Circuit).
 銅及び銅合金箔(以下銅箔と称する)は、電気・電子関連産業の発展に大きく寄与しており、特に印刷回路材として不可欠の存在となっている。印刷回路用銅箔は一般に、合成樹脂ボード、フィルム等の絶縁基板に接着剤を介して、又は接着剤を使用せずに高温高圧下で積層接着して銅張積層板を製造し、その後目的とする回路を形成するために、レジスト塗布及び露光工程を経て必要な回路を印刷した後、不要部を除去するエッチング処理が施される。
 最終的に、所要の素子が半田付けされて、エレクトロニクスデバイス用の種々の印刷回路板を形成する。
Copper and copper alloy foils (hereinafter referred to as copper foils) have greatly contributed to the development of electrical and electronic industries, and are indispensable particularly as printed circuit materials. Copper foil for printed circuit is generally used to produce a copper-clad laminate by laminating and bonding to an insulating substrate such as a synthetic resin board or film through an adhesive or under high temperature and high pressure without using an adhesive. In order to form a circuit, a necessary circuit is printed through a resist coating and exposure process, and then an etching process for removing unnecessary portions is performed.
Finally, the required elements are soldered to form various printed circuit boards for the electronic device.
 銅張積層板において絶縁基板と導電性材料の接着性は重要な特性のひとつであり、絶縁基板との接着性を向上させるために粗化処理と呼ばれる銅箔表面に凹凸を形成する表面処理を施すことが一般に行われている。例えば電解銅箔のM面(粗面)に硫酸銅酸性めっき浴を用いて、樹枝状又は小球状に銅を多数電着せしめて微細な凹凸を形成し、投錨効果によって接着性を改善させる方法がある。 In copper-clad laminates, the adhesion between the insulating substrate and the conductive material is one of the important characteristics. In order to improve the adhesion to the insulating substrate, a surface treatment called roughening treatment that forms irregularities on the copper foil surface is performed. It is generally done. For example, by using a copper sulfate acidic plating bath on the M surface (rough surface) of the electrolytic copper foil, a large number of copper is electrodeposited in a dendritic or small spherical shape to form fine irregularities, and the adhesion is improved by the anchoring effect. There is.
 また、銅電着粒による粗化処理を発展させた技術として、例えば、特開平4-96395号公報(特許文献1)及び特開平10-18075号公報(特許文献2)に記載のように、銅箔の表面に銅-コバルト-ニッケル合金めっきによる粗化処理を行う技術が知られている。 Further, as a technique developed from the roughening treatment by copper electrodeposition grains, for example, as described in JP-A-4-96395 (Patent Document 1) and JP-A-10-18075 (Patent Document 2), A technique is known in which the surface of a copper foil is subjected to a roughening treatment by copper-cobalt-nickel alloy plating.
特開平4-96395号公報Japanese Patent Laid-Open No. 4-96395 特開平10-18075号公報JP-A-10-18075
 印刷回路用銅箔に要求されるもう一つの重要な特性として、黒色である点が挙げられる。第一に、黒色は位置合わせ精度及び熱吸収率の高いという利点を有する。印刷回路板の作成過程では、ICや抵抗、コンデンサ等の部品を自動工程で搭載していくが、その際センサーにより回路を読み取りながらチップマウントを行なっている。このとき、カプトンなどのフィルムを通して粗化処理面での位置合わせを行なうことがある。また、スルーホール形成時の位置決めも同様である。そして、処理面が黒に近い程、光の吸収が良いため、位置決めの精度が高くなる。
 第二に、印刷回路板を作製する際、銅箔と絶縁基板を熱を加えながらキュワリングして接着させることが多い。このとき、遠赤外線、赤外線等の長波を用いることにより加熱する場合、処理面の色調が黒い方が、加熱効率が良くなる。
Another important characteristic required for printed circuit copper foil is that it is black. First, black has the advantage of high alignment accuracy and high heat absorption. In the process of creating a printed circuit board, components such as an IC, a resistor, and a capacitor are mounted in an automatic process, and chip mounting is performed while reading a circuit with a sensor. At this time, the roughened surface may be aligned through a film such as Kapton. This also applies to positioning when forming a through hole. And the closer the processing surface is to black, the better the light absorption, and the higher the positioning accuracy.
Secondly, when a printed circuit board is manufactured, the copper foil and the insulating substrate are often cured and bonded while applying heat. At this time, when heating is performed by using long waves such as far infrared rays and infrared rays, the heating efficiency is improved when the color tone of the treated surface is black.
 この点、銅電着粒による伝統的な粗化処理では表面が赤色化するため不都合である。また、特許文献1や特許文献2に記載の銅-コバルト-ニッケル合金めっきによる粗化処理によれば黒色表面が得られるものの、銅箔の表面に形成された銅-コバルト-ニッケル合金めっきからなる粗化粒子の形状が樹枝状であるために、この樹枝の上部又は根元から剥がれ落ち、一般に粉落ち現象と言われる問題があった。この粉落ち現象は厄介な問題であり、銅-コバルト-ニッケル合金めっきの粗化処理層は、樹脂層との密着性に優れており、耐熱性にも優れているという特徴を有しているにもかかわらず、外力により粒子が脱落し易く、処理中の「こすれ」による剥離、剥離粉によるロールの汚れ、剥離粉によるエッチング残渣が生ずる。 This point is inconvenient because the surface is reddish in the traditional roughening process using copper electrodeposited grains. Further, although the black surface is obtained by the roughening treatment by the copper-cobalt-nickel alloy plating described in Patent Document 1 or Patent Document 2, it is composed of the copper-cobalt-nickel alloy plating formed on the surface of the copper foil. Since the shape of the roughened particles is dendritic, it peels off from the upper part or the root of the tree branch, and there is a problem generally called a powder-off phenomenon. This powder-off phenomenon is a troublesome problem, and the roughened layer of copper-cobalt-nickel alloy plating is characterized by excellent adhesion to the resin layer and excellent heat resistance. Nevertheless, the particles easily fall off due to an external force, and peeling due to “rubbing” during processing, contamination of the roll with peeling powder, and etching residue due to peeling powder are generated.
 更に、ファインパターン形成の観点からは、エッチング後にエッチング残りがないことも要求される。 Furthermore, from the viewpoint of fine pattern formation, it is also required that there is no etching residue after etching.
 そこで、本発明の課題は、表面が黒色であり、エッチング性も良好である粗化処理銅箔を提供、好ましくは、更に粉落ちの問題が改善された粗化処理銅箔を提供することである。また、本発明の更なる課題は、そのような粗化処理銅箔を備えた銅張積層板を提供することである。 Therefore, the object of the present invention is to provide a roughened copper foil having a black surface and good etching properties, and preferably to provide a roughened copper foil with further improved powder-off problem. is there. Moreover, the further subject of this invention is providing the copper clad laminated board provided with such a roughening process copper foil.
 本発明は、一側面において、銅箔の少なくとも一方の表面に、黒色ではない粗化処理層と、ニッケル-タングステン合金めっき層とがこの順に形成されており、当該ニッケル-タングステン合金めっき層のニッケル量が2000μg/dm2以上である印刷回路用銅箔である。 In one aspect of the present invention, a non-black roughening layer and a nickel-tungsten alloy plating layer are formed in this order on at least one surface of the copper foil, and the nickel of the nickel-tungsten alloy plating layer It is a copper foil for printed circuits whose amount is 2000 μg / dm 2 or more.
 本発明に係る印刷回路用銅箔の一実施形態においては、前記ニッケル-タングステン合金めっき層のニッケル量が2000~5000μg/dm2である。 In one embodiment of the copper foil for printed circuit according to the present invention, the nickel amount of the nickel-tungsten alloy plating layer is 2000 to 5000 μg / dm 2 .
 本発明に係る印刷回路用銅箔の別の一実施形態においては、前記ニッケル-タングステン合金めっき層の上に耐熱層が形成されている。 In another embodiment of the copper foil for printed circuit according to the present invention, a heat-resistant layer is formed on the nickel-tungsten alloy plating layer.
 本発明に係る印刷回路用銅箔の更に別の一実施形態においては、前記ニッケル-タングステン合金めっき層の上、又は、前記ニッケル-タングステン合金めっき層の上に形成された耐熱層の上に、防錆層が形成されている。 In yet another embodiment of the copper foil for printed circuits according to the present invention, on the nickel-tungsten alloy plating layer or on the heat-resistant layer formed on the nickel-tungsten alloy plating layer, A rust prevention layer is formed.
 本発明に係る印刷回路用銅箔の更に別の一実施形態においては、上記粗化処理層が、銅の一次粒子層を形成した後、該一次粒子層の上に、銅-コバルト-ニッケル合金の二次粒子層を形成したものである。 In still another embodiment of the copper foil for printed circuit according to the present invention, after the roughening layer forms a primary particle layer of copper, a copper-cobalt-nickel alloy is formed on the primary particle layer. The secondary particle layer is formed.
 本発明に係る印刷回路用銅箔の更に別の一実施形態においては、前記銅の一次粒子層の平均粒子径が0.25~0.45μmであり、銅-コバルト-ニッケル合金からなる二次粒子層の平均粒子径が0.05~0.25μmである。 In still another embodiment of the copper foil for printed circuit according to the present invention, the primary particle layer of the copper has an average particle diameter of 0.25 to 0.45 μm, and is a secondary made of a copper-cobalt-nickel alloy. The average particle size of the particle layer is 0.05 to 0.25 μm.
 本発明に係る印刷回路用銅箔の更に別の一実施形態においては、前記一次粒子層及び二次粒子層が、電気めっき層である。 In yet another embodiment of the copper foil for printed circuit according to the present invention, the primary particle layer and the secondary particle layer are electroplated layers.
 本発明は別の一側面において、本発明に係る印刷回路用銅箔を備えた銅張積層板である。 In another aspect, the present invention is a copper clad laminate provided with the printed circuit copper foil according to the present invention.
 本発明は更に別の一側面において、本発明に係る銅張積層板を材料とする印刷回路板である。 In yet another aspect, the present invention is a printed circuit board made of the copper clad laminate according to the present invention.
 本発明によれば、表面が黒色であり、エッチング性も良好である粗化処理銅箔を提供することができ、好ましくは、更に粉落ちの問題が改善された粗化処理銅箔を提供することができる。 According to the present invention, it is possible to provide a roughened copper foil that has a black surface and good etching properties, and preferably provides a roughened copper foil that further improves the problem of powder falling. be able to.
従来の銅箔上に、銅-コバルト-ニッケル合金めっきからなる粗化処理を行った場合の粉落ちの様子を示す概念説明図である。It is a conceptual explanatory view showing a state of powder falling when a roughening treatment comprising copper-cobalt-nickel alloy plating is performed on a conventional copper foil. 銅箔上に予め銅の一次粒子層を形成し、この一次粒子層の上に銅-コバルト-ニッケル合金めっきからなる二次粒子層を形成してなる粗化処理層の概念説明図である。FIG. 3 is a conceptual explanatory diagram of a roughening treatment layer formed by previously forming a primary particle layer of copper on a copper foil and forming a secondary particle layer made of copper-cobalt-nickel alloy plating on the primary particle layer. 銅箔上に、銅-コバルト-ニッケル合金めっきからなる粗化処理を行った場合の表面の顕微鏡写真である。It is the microscope picture of the surface at the time of performing the roughening process which consists of copper-cobalt-nickel alloy plating on copper foil. 銅箔上に予め一次粒子層を形成し、この一次粒子層の上に銅-コバルト-ニッケル合金めっきからなる二次粒子層を形成した粉落ちのない銅箔処理面の層の顕微鏡写真である。FIG. 5 is a photomicrograph of a copper foil treated surface layer without powder falling, in which a primary particle layer is formed in advance on a copper foil, and a secondary particle layer made of copper-cobalt-nickel alloy plating is formed on the primary particle layer. .
 本発明に係る印刷回路用銅箔の一実施形態においては、銅箔の少なくとも一方の表面に、粗化処理層と、ニッケル-タングステン合金めっき層とがこの順に形成されている。例えば、黒くない粗化処理層上にニッケル-タングステン合金めっき層を形成することで、黒い表面を得ることができる。 In one embodiment of the copper foil for printed circuit according to the present invention, a roughening treatment layer and a nickel-tungsten alloy plating layer are formed in this order on at least one surface of the copper foil. For example, a black surface can be obtained by forming a nickel-tungsten alloy plating layer on a roughened layer that is not black.
<粗化処理層>
 本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂等の絶縁基板と接着する面即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面に、「ふしこぶ」状の電着を行なう粗化処理が施される。電解銅箔のM面は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。
<Roughening treatment layer>
The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. In general, the surface of the copper foil that adheres to an insulating substrate such as a resin, that is, the roughened surface, is coated with a “detergent” on the surface of the copper foil after degreasing for the purpose of improving the peel strength of the copper foil after lamination. A roughening treatment is performed for electrodeposition in the form of a hump. Although the M surface of the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
 圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。本発明においては、こうした前処理及び仕上げ処理をも含め、銅箔粗化と関連する公知の処理を必要に応じて含め、「粗化処理」と云っている。 The processing contents may be somewhat different between rolled copper foil and electrolytic copper foil. In the present invention, including such pretreatment and finishing treatment, a known treatment related to copper foil roughening is included as necessary, and is referred to as “roughening treatment”.
 粗化処理の方法としては、例えば、銅箔表面に電着銅粒子層を形成する方法が挙げられる。また、ピール強度を高めるための好ましい方法としては、銅-コバルト-ニッケル合金めっき層を銅箔表面に形成する方法がある。ただし、銅-コバルト-ニッケル合金めっき層単独だと、粉落ちの問題は残る。そこで、本発明者は電着銅粒子層を一次粒子層とし、この上に銅-コバルト-ニッケル合金めっきの二次粒子層を形成する方法が好ましいことを見出した。この好ましい方法によれば、処理中の「こすれ」による剥離、剥離粉によるロールの汚れ、剥離粉によるエッチング残渣が無くなり、すなわち粉落ちと言われる現象と処理ムラを抑制することができ、ピール強度を高め、かつ耐熱性を向上させることのできる印刷回路用銅箔を得ることができる。 Examples of the roughening treatment include a method of forming an electrodeposited copper particle layer on the surface of the copper foil. A preferred method for increasing the peel strength is a method of forming a copper-cobalt-nickel alloy plating layer on the surface of the copper foil. However, if the copper-cobalt-nickel alloy plating layer is used alone, the problem of powder falling remains. Therefore, the present inventor has found that a method of forming an electrodeposited copper particle layer as a primary particle layer and forming a secondary particle layer of copper-cobalt-nickel alloy plating thereon is preferable. According to this preferred method, peeling due to “rubbing” during processing, dirt on the roll due to peeling powder, etching residue due to peeling powder can be eliminated, that is, a phenomenon called powder falling and processing unevenness can be suppressed, and peel strength can be suppressed. The copper foil for printed circuits which can improve heat resistance and can improve heat resistance can be obtained.
 電着銅粒子層を一次粒子層とし、この上に銅-コバルト-ニッケル合金めっきの二次粒子層を形成してなる粗化処理層について詳述する。
 単純に銅箔の上に銅-コバルト-ニッケル合金めっき層を形成しただけでは、樹枝状となるために、上記の通り粉落ちの問題が発生する。
 銅箔の上に銅-コバルト-ニッケル合金めっき層を形成した銅箔の表面の顕微鏡写真を図3に示す。この図3に示すように、樹枝状に発達した微細な粒子を見ることができる。一般に、この図3に示す樹枝状に発達した微細な粒子は高電流密度で作製される。
 このような高電流密度で処理された場合には、初期電着における粒子の核生成が抑制されるため、粒子先端に新たな粒子の核が形成されるため、次第に樹枝状に、細く長く粒子が成長することになる。
A roughening treatment layer obtained by forming an electrodeposited copper particle layer as a primary particle layer and forming a secondary particle layer of copper-cobalt-nickel alloy plating thereon will be described in detail.
If the copper-cobalt-nickel alloy plating layer is simply formed on the copper foil, it becomes dendritic, and thus the problem of powder falling occurs as described above.
FIG. 3 shows a photomicrograph of the surface of the copper foil in which a copper-cobalt-nickel alloy plating layer is formed on the copper foil. As shown in FIG. 3, fine particles developed in a dendritic shape can be seen. In general, the fine particles developed in a dendritic shape shown in FIG. 3 are produced at a high current density.
When processed at such a high current density, particle nucleation during initial electrodeposition is suppressed, and new particle nuclei are formed at the tip of the particle. Will grow.
 図3に示すような銅-コバルト-ニッケル合金めっき層が形成された場合の、粉落ちの様子を、図1の概念説明図に示す。この粉落ちの原因は、上記の通り銅箔上に樹枝状に微細な粒子が生ずるためであるが、この樹枝状の粒子は、外力により樹枝の一部が折れ易く、又根元から脱落する。この微細な樹枝状の粒子は、処理中の「こすれ」による剥離、剥離粉によるロールの汚れ、剥離粉によるエッチング残渣が生ずる原因となる。 FIG. 1 is a conceptual explanatory diagram showing the state of powder falling when a copper-cobalt-nickel alloy plating layer as shown in FIG. 3 is formed. The cause of this powder fall is that fine particles are formed in a dendritic shape on the copper foil as described above. However, the dendritic particles are easily broken by an external force and fall off from the root. The fine dendritic particles cause peeling due to “rubbing” during the process, contamination of the roll with peeling powder, and etching residue due to peeling powder.
 一方で、電着銅粒子層を一次粒子層とし、この上に銅-コバルト-ニッケル合金めっきの二次粒子層を形成してなる粗化処理層の場合、図2に示すように、粒径の大きな一次粒子層の上に、これよりも粒径の小さな二次粒子層が形成されているため、ピール強度の確保と粉落ち防止の両立を図ることができる。図4にはこの場合の顕微鏡写真を掲載してある。粉落ち防止の観点からは、一次粒子層の平均粒子径は二次粒子層の平均粒子径よりも大きくすることが望ましい。そして、前記一次粒子層の平均粒子径を0.25~0.45μm、銅-コバルト-ニッケル合金からなる二次粒子層の平均粒子径を0.05~0.25μm、典型的には0.1~0.25μmとするのが、下記に示す実施例から明らかなように、粉落ちを防止する最適な条件である。
 上記一次粒子層及び二次粒子層は、電気めっき層により形成する。この二次粒子の特徴は、前記一次粒子の上に成長した1又は複数個の樹枝状の粒子である。
 上記の通り、二次粒子層の平均粒子径を0.05~0.25μmと小さくしているが、この粒子径は粒子の高さと言い換えることもできる。すなわち、二次粒子の高さを抑制し、粒子の剥離(粉落ち)を抑制したのが、本願発明の特徴の一つとも言える。
On the other hand, in the case of a roughened layer obtained by forming an electrodeposited copper particle layer as a primary particle layer and forming a secondary particle layer of copper-cobalt-nickel alloy plating thereon, as shown in FIG. Since the secondary particle layer having a smaller particle diameter than this is formed on the large primary particle layer, it is possible to ensure both peel strength and prevention of powder falling. FIG. 4 shows a micrograph in this case. From the viewpoint of preventing powder falling, it is desirable that the average particle size of the primary particle layer is larger than the average particle size of the secondary particle layer. The primary particle layer has an average particle size of 0.25 to 0.45 μm, and the secondary particle layer made of a copper-cobalt-nickel alloy has an average particle size of 0.05 to 0.25 μm, typically 0. 1 to 0.25 μm is the optimum condition for preventing powder falling, as is apparent from the examples shown below.
The primary particle layer and the secondary particle layer are formed by an electroplating layer. The secondary particles are characterized by one or more dendritic particles grown on the primary particles.
As described above, the average particle size of the secondary particle layer is as small as 0.05 to 0.25 μm, but this particle size can also be called the particle height. That is, it can be said that one of the features of the present invention is that the height of the secondary particles is suppressed and the separation (powder off) of the particles is suppressed.
 このようにして形成された一次粒子層及び二次粒子層からなる粗化処理層を表面に有する印刷回路用銅箔は、絶縁基板との接着強度0.80kg/cm以上、さらには接着強度0.90kg/cm以上を達成することができる。 The copper foil for a printed circuit having the roughened layer composed of the primary particle layer and the secondary particle layer formed on the surface thereof has an adhesive strength of 0.80 kg / cm or more with the insulating substrate, and further has an adhesive strength of 0. .90 kg / cm or more can be achieved.
(銅の一次粒子のめっき条件)
 銅の一次粒子のめっき条件の一例を挙げると、下記の通りである。
 なお、このめっき条件はあくまで好適な例を示すものであり、銅の一次粒子は銅箔上に形成される平均粒子径が粉落ち防止の役割を担うものである。したがって、平均粒子径が本願発明の範囲に入るものであれば、下記に表示する以外のめっき条件であることは何ら妨げるものではない。本願発明はこれらを包含するものである。
 液組成  :銅10~20g/L、硫酸50~100g/L
 液温   :25~50℃
 電流密度 :1~58A/dm2
 クーロン量:4~81As/dm2
(Copper primary particle plating conditions)
An example of the plating conditions for the primary particles of copper is as follows.
In addition, this plating condition shows a suitable example to the last, and the average particle diameter formed on copper foil plays the role of powder omission prevention in the primary particle of copper. Therefore, as long as the average particle diameter falls within the scope of the present invention, the plating conditions other than those indicated below are not disturbed. The present invention includes these.
Liquid composition: Copper 10-20 g / L, sulfuric acid 50-100 g / L
Liquid temperature: 25-50 ° C
Current density: 1 to 58 A / dm 2
Coulomb amount: 4 to 81 As / dm 2
(二次粒子のめっき条件)
 なお、上記と同様に、このめっき条件はあくまで好適な例を示すものであり、二次粒子は一次粒子の上に形成されるものであり、平均粒子径が粉落ち防止の役割を担うものである。したがって、平均粒子径が本願発明の範囲に入るものであれば、下記に表示する以外のめっき条件であることは何ら妨げるものではない。本願発明はこれらを包含するものである。
 液組成  :銅10~20g/L、ニッケル5~15g/L、コバルト5~15g/L
 pH   :2~3
 液温   :30~50℃
 電流密度 :24~50A/dm2
 クーロン量:34~48As/dm2
(Plating conditions for secondary particles)
As described above, this plating condition is merely a suitable example, the secondary particles are formed on the primary particles, and the average particle diameter plays a role in preventing powder falling. is there. Therefore, as long as the average particle diameter falls within the scope of the present invention, the plating conditions other than those indicated below are not disturbed. The present invention includes these.
Liquid composition: Copper 10-20 g / L, Nickel 5-15 g / L, Cobalt 5-15 g / L
pH: 2-3
Liquid temperature: 30-50 ° C
Current density: 24 to 50 A / dm 2
Coulomb amount: 34 to 48 As / dm 2
 Ni付着量が50μg/dm2未満であると、耐熱性が悪くなる。他方、Ni付着量が500μg/dm2を超えると、エッチング性が低下する。すなわち、エッチング残ができ、またエッチングできないというレベルではないが、ファインパターン化が難しくなる。好ましいCo付着量は500~2000μg/dm2であり、そして好ましいニッケル付着量は50~300μg/dm2である。
 以上から、銅-コバルト-ニッケル合金めっきの付着量は、10~30mg/dm2銅-100~3000μg/dm2コバルト-50~500μg/dm2ニッケルであることが望ましいと言える。この3元系合金層の各付着量はあくまで、望ましい条件であり、この量を超える範囲を否定するものではない。
When the Ni adhesion amount is less than 50 μg / dm 2 , the heat resistance deteriorates. On the other hand, when the Ni adhesion amount exceeds 500 μg / dm 2 , the etching property is lowered. That is, although it is not at a level where etching remains and etching cannot be performed, it becomes difficult to form a fine pattern. Preferred Co deposition amount is 500 ~ 2000μg / dm 2, and preferably nickel coating weight is 50 ~ 300μg / dm 2.
From the above, copper - cobalt - deposition of nickel alloy plating, it may be desirable is 10 ~ 30mg / dm 2 of copper -100 ~ 3000μg / dm 2 of cobalt -50 ~ 500μg / dm 2 of nickel. Each adhesion amount of the ternary alloy layer is a desirable condition, and a range exceeding this amount is not denied.
<黒色化層>
 粗化処理層の上にはニッケル-タングステン合金めっき層が形成され、銅箔表面の黒色化に寄与する。例えば、上述した銅からなる一次粒子層と銅-コバルト-ニッケル合金からなる二次粒子層で構成される粗化処理層は灰色である。しかし、粗化処理層の表面にニッケル-タングステン合金層を形成することで黒い色が得られる。ニッケルとタングステンの二元系合金めっきとしたのは、ニッケルによって黒色化効果が得られる上に、タングステンによってエッチング性も確保することができるからである。このニッケル-タングステン合金めっき層は、黒色化の観点からニッケルの付着量を2000μg/dm2以上とするのが好ましく、3000μg/dm2以上とするのがより好ましい。ニッケル-タングステン合金めっき層は、黒色化の観点からはニッケルの付着量の上限を特に設ける必要はないが付着量を過度に多くしても経済性が低下するので、例えば15000μg/dm2以下、あるいは10000μg/dm2以下、あるいは8000μg/dm2以下、あるいは7000μg/dm2以下とすることができる。また、ニッケル-タングステン合金めっき層はニッケルの付着量が多すぎる場合は、ピール強度が低下し始めるので、5500μg/dm2以下とするのが好ましく、5000μg/dm2以下とするのがより好ましい。タングステンは合金めっき層中に共存すればよい。
<Blackening layer>
A nickel-tungsten alloy plating layer is formed on the roughening treatment layer and contributes to blackening of the copper foil surface. For example, the roughening treatment layer composed of the primary particle layer made of copper and the secondary particle layer made of a copper-cobalt-nickel alloy is gray. However, a black color can be obtained by forming a nickel-tungsten alloy layer on the surface of the roughened layer. The reason why the binary alloy plating of nickel and tungsten is used is that the blackening effect can be obtained by nickel and the etching property can be secured by tungsten. The nickel - tungsten alloy plating layer is preferably from the viewpoint of blackening and the adhesion amount of nickel 2000 [mu] g / dm 2 or more, and more preferably, 3000μg / dm 2 or more. The nickel-tungsten alloy plating layer does not need to have an upper limit for the amount of nickel deposited from the viewpoint of blackening, but the economy is reduced even if the amount of deposited is excessively increased. For example, 15000 μg / dm 2 or less, Alternatively 10000 / dm 2 or less, or 8000μg / dm 2 or less, or may be a 7000μg / dm 2 or less. Also, nickel - if tungsten alloy plating layer deposition amount of nickel is too large, because the peel strength begins to decrease, it is preferable to be 5500μg / dm 2 or less, and more preferably, 5000 [mu] g / dm 2 or less. Tungsten may be present in the alloy plating layer.
(黒色化層を形成するめっき条件)
 代表的なめっき浴組成とめっき条件は次の通りである。
 液組成  :ニッケル10~40g/L、タングステン10~30mg/L
 pH   :3~4
 液温   :35~45℃
 電流密度 :2~3A/dm2
 クーロン量:15~25As/dm2
(Plating conditions for forming the blackened layer)
Typical plating bath compositions and plating conditions are as follows.
Liquid composition: nickel 10-40 g / L, tungsten 10-30 mg / L
pH: 3-4
Liquid temperature: 35-45 ° C
Current density: 2 to 3 A / dm 2
Coulomb amount: 15-25 As / dm 2
<耐熱層>
 前記ニッケル-タングステン合金めっき層の上に、耐熱層、特に亜鉛-ニッケル合金めっき層の耐熱層を形成してもよい。印刷回路の製造工程で行われる処理が一段と高温となり、また製品となった後の機器使用中の熱発生がある。例えば、樹脂に銅箔を熱圧着で接合する、いわゆる二層材では、接合の際に300℃以上の熱を受ける。このような状況の中でも、銅箔と樹脂基材との間での接合力の低下を防止することが必要であり、この亜鉛-ニッケル合金めっきは有効である。
<Heat resistant layer>
A heat-resistant layer, particularly a zinc-nickel alloy plated layer may be formed on the nickel-tungsten alloy plated layer. The processing performed in the manufacturing process of the printed circuit becomes much higher, and there is heat generation during use of the device after it has become a product. For example, in a so-called two-layer material in which a copper foil is bonded to a resin by thermocompression bonding, the resin receives heat of 300 ° C. or higher. Even in such a situation, it is necessary to prevent a decrease in bonding force between the copper foil and the resin base material, and this zinc-nickel alloy plating is effective.
 亜鉛-ニッケル合金めっき層の総量を150~500μg/dm2とし、かつニッケルの比率を16~40質量%とすることが好ましい。これにより、耐熱防錆層という役割を備えると共に、ソフトエッチングの際に使用するエッチング剤(例:H2SO4:10wt%、H22:2wt%のエッチング水溶液)の染み込みを抑制し、腐食に回路の接合強度の弱体化を防止することができるという効果を有することができる。亜鉛-ニッケル合金めっき層の総量が150μg/dm2未満では、耐熱力が低下して耐熱層としての役割を担うことが難しくなり、同総量が500μg/dm2を超えると、耐塩酸性が悪くなる傾向がある。また、合金層中のニッケル比率の下限値が16質量%未満では、ソフトエッチングの際の染み込み量が9μmを超えるので、好ましくない。ニッケル比率の上限値40質量%については、亜鉛-ニッケル合金めっき層を形成できる技術上の限界値である。 The total amount of the zinc-nickel alloy plating layer is preferably 150 to 500 μg / dm 2 and the nickel ratio is preferably 16 to 40% by mass. As a result, it has a role as a heat-resistant rust-proof layer and suppresses penetration of an etching agent used in soft etching (eg, etching solution of H 2 SO 4 : 10 wt%, H 2 O 2 : 2 wt%), It can have the effect that the weakening of the joint strength of the circuit can be prevented due to corrosion. Zinc - The total amount is less than 150 [mu] g / dm 2 of nickel alloy plating layer, it is difficult to play a role as a heat-resistant layer resistant force is reduced, when the total amount is more than 500 [mu] g / dm 2, the hydrochloric acid resistance will deteriorate Tend. Moreover, if the lower limit of the nickel ratio in the alloy layer is less than 16% by mass, the amount of penetration at the time of soft etching exceeds 9 μm, which is not preferable. The upper limit value of 40% by mass of the nickel ratio is a technical limit value at which a zinc-nickel alloy plating layer can be formed.
(耐熱層を形成するめっき条件)
 代表的なめっき浴組成とめっき条件は次の通りである。
 液組成  :ニッケル2~30g/L、亜鉛2~30g/L
 pH   :3~4
 液温   :30~50℃
 電流密度 :1~2A/dm2
 クーロン量:1~2As/dm2
(Plating conditions for forming a heat-resistant layer)
Typical plating bath compositions and plating conditions are as follows.
Liquid composition: Nickel 2-30 g / L, Zinc 2-30 g / L
pH: 3-4
Liquid temperature: 30-50 ° C
Current density: 1 to 2 A / dm 2
Coulomb amount: 1 to 2 As / dm 2
<防錆層>
 また、前記ニッケル-タングステン合金めっき層の上、又は、前記ニッケル-タングステン合金めっき層の上に形成された耐熱層の上に、防錆層、特にクロメート層の防錆層を形成してもよい。本発明において好ましい防錆処理は、クロム酸化物単独の皮膜処理或いはクロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理である。クロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理とは、亜鉛塩または酸化亜鉛とクロム酸塩とを含むめっき浴を用いて電気めっきにより亜鉛または酸化亜鉛とクロム酸化物とより成る亜鉛-クロム基混合物の防錆層を被覆する処理である。
<Rust prevention layer>
Further, a rust prevention layer, particularly a rust prevention layer of a chromate layer may be formed on the nickel-tungsten alloy plating layer or a heat-resistant layer formed on the nickel-tungsten alloy plating layer. . In the present invention, a preferable antirust treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide. Chromium oxide and zinc / zinc oxide mixture film treatment is a method of forming zinc or zinc oxide comprising zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coat | covers the antirust layer of a chromium group mixture.
 めっき浴としては、代表的には、K2Cr27、Na2Cr27等の重クロム酸塩やCrO3等の少なくとも一種と、水溶性亜鉛塩、例えばZnO 、ZnSO4・7H2Oなど少なくとも一種と、水酸化アルカリとの混合水溶液が用いられる。代表的なめっき浴組成と電解条件例は次の通りである。下記においては、浸漬クロメート処理の条件を示したが、電解クロメート処理でも良い。 As the plating bath, typically, at least one kind of dichromate such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt such as ZnO 2, ZnSO 4 · 7H are used. A mixed aqueous solution of at least one kind of 2 O and an alkali hydroxide is used. A typical plating bath composition and electrolysis conditions are as follows. In the following, conditions for the immersion chromate treatment are shown, but electrolytic chromate treatment may be used.
(防錆層を形成するめっき条件)
 液組成  :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 pH   :3~4
 液温   :50~60℃
 電流密度 :0~2A/dm2(浸漬クロメート処理のため)
 クーロン量:0~2As/dm2(浸漬クロメート処理のため)
(Plating conditions for forming a rust prevention layer)
Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0-2A / dm 2 (for immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
<シラン処理>
 最後に、必要に応じ、銅箔と樹脂基板との接着力の改善を主目的として、防錆層上の少なくとも粗化面にシランカップリング剤を塗布するシラン処理が施してもよい。このシラン処理に使用するシランカップリング剤としては、オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シランを挙げることができるが、これらを適宜選択して使用することができる。
 塗布方法は、シランカップリング剤溶液のスプレーによる吹付け、コーターでの塗布、浸漬、流しかけ等いずれでもよい。例えば、特公昭60-15654号は、銅箔の粗面側にクロメート処理を施した後シランカップリング剤処理を行なうことによって銅箔と樹脂基板との接着力を改善することを記載している。詳細はこれを参照されたい。この後、必要なら、銅箔の延性を改善する目的で焼鈍処理を施すこともある。
<Silane treatment>
Finally, if necessary, a silane treatment for applying a silane coupling agent to at least the roughened surface on the rust-preventing layer may be performed mainly for the purpose of improving the adhesive force between the copper foil and the resin substrate. Examples of the silane coupling agent used for the silane treatment include olefin silane, epoxy silane, acrylic silane, amino silane, and mercapto silane, which can be appropriately selected and used. .
The application method may be any of spraying a silane coupling agent solution by spraying, coating with a coater, dipping, pouring and the like. For example, Japanese Patent Publication No. 60-15654 describes that the adhesion between a copper foil and a resin substrate is improved by subjecting the rough surface of the copper foil to a chromate treatment followed by a silane coupling agent treatment. . Refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving the ductility of the copper foil.
 こうして得られた銅箔は、優れた耐熱性剥離強度、耐酸化性及び耐塩酸性を有する。また、CuCl2エッチング液で150μmピッチ回路巾以下の印刷回路をエッチングでき、しかもアルカリエッチングも可能とする。また、ソフトエッチングの際の、回路エッジ部への染み込みを抑制できる。
 ソフトエッチング液には、H2SO4:10wt%、H22:2wt%の水溶液が使用できる。処理時間と温度は任意に調節できる。
 アルカリエッチング液としては、例えば、NH4OH:6モル/リットル、NH4Cl:5モル/リットル、CuCl2:2モル/リットル(温度50℃)等の液が知られている。
The copper foil thus obtained has excellent heat resistance peel strength, oxidation resistance and hydrochloric acid resistance. In addition, a printed circuit having a pitch of 150 μm or less can be etched with a CuCl 2 etching solution, and alkali etching can be performed. In addition, penetration into the circuit edge portion during soft etching can be suppressed.
As the soft etching solution, an aqueous solution of H 2 SO 4 : 10 wt% and H 2 O 2 : 2 wt% can be used. Processing time and temperature can be adjusted arbitrarily.
As the alkaline etching solution, for example, NH 4 OH: 6 mol / liter, NH 4 Cl: 5 mol / liter, CuCl 2 : 2 mol / liter (temperature: 50 ° C.) and the like are known.
 以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明に含まれる他の態様または変形を包含するものである。なお、以下の実施例の原箔には、標準圧延銅箔TPCを使用した。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited only to this example. That is, it includes other aspects or modifications included in the present invention. In addition, standard rolled copper foil TPC was used for the raw foil of the following examples.
(実施例1)
 圧延銅箔に、下記に示す条件範囲で、一次粒子層(Cu)、二次粒子層(銅-コバルト-ニッケル合金めっき)形成した。結果、一次粒子系は0.40μm、二次粒子径は0.15μmを得ることが出来た。一次粒子層及び二次粒子層の平均粒子径はSEM像より切断法を用いて計測した。一次粒子層の平均粒子径は二次粒子層を形成する前に測定した。
 使用した浴組成及びめっき条件は、次の通りである。
[浴組成及びめっき条件]
Example 1
A primary particle layer (Cu) and a secondary particle layer (copper-cobalt-nickel alloy plating) were formed on the rolled copper foil under the conditions shown below. As a result, the primary particle system was 0.40 μm, and the secondary particle size was 0.15 μm. The average particle diameter of the primary particle layer and the secondary particle layer was measured from the SEM image using a cutting method. The average particle diameter of the primary particle layer was measured before forming the secondary particle layer.
The bath composition and plating conditions used are as follows.
[Bath composition and plating conditions]
(A)一次粒子層の形成(Cuめっき)
  液組成  :銅15g/L、硫酸75g/L
  液温   :35℃
  電流密度 :2~58A/dm2
  クーロン量:8~81As/dm2
(B)二次粒子層の形成(Cu-Co-Ni合金めっき)
 液組成  :銅15g/L、ニッケル8g/L、コバルト8g/L
 pH   :2
 液温   :40℃
 電流密度 :24~31A/dm2
 クーロン量:34~44As/dm2
(A) Formation of primary particle layer (Cu plating)
Liquid composition: Copper 15g / L, sulfuric acid 75g / L
Liquid temperature: 35 ° C
Current density: 2 to 58 A / dm 2
Coulomb amount: 8 to 81 As / dm 2
(B) Formation of secondary particle layer (Cu—Co—Ni alloy plating)
Liquid composition: Copper 15g / L, nickel 8g / L, cobalt 8g / L
pH: 2
Liquid temperature: 40 ° C
Current density: 24-31 A / dm 2
Coulomb amount: 34 to 44 As / dm 2
 次に、上記二次粒子層の上(粗化処理後)に、さらにニッケル-タングステン合金めっき層を以下の条件で形成した。
(ニッケル-タングステン合金めっき層を形成するめっき条件)
 液組成  :ニッケル25g/L、タングステン20mg/L
 pH   :3.6
 液温   :40℃
 なお、電流密度とクーロン量については表1に示した。
 結果を表1に示した。ニッケル-タングステン合金めっき層のニッケル量が2000μg/dm2以上の例では黒色が得られ、エッチング性も良好であった。
 なお、タングステンを含有しない液組成として上記条件で二次粒子層の上にニッケルめっき層を形成した場合(番号A)は、黒色であったが、ニッケル-タングステン合金めっき層を形成した場合に比べてエッチング性に劣る結果となった。
Next, a nickel-tungsten alloy plating layer was further formed on the secondary particle layer (after the roughening treatment) under the following conditions.
(Plating conditions for forming nickel-tungsten alloy plating layer)
Liquid composition: nickel 25 g / L, tungsten 20 mg / L
pH: 3.6
Liquid temperature: 40 ° C
The current density and coulomb amount are shown in Table 1.
The results are shown in Table 1. In the case where the nickel content of the nickel-tungsten alloy plating layer was 2000 μg / dm 2 or more, a black color was obtained and the etching property was good.
When the nickel plating layer was formed on the secondary particle layer under the above conditions as a liquid composition not containing tungsten (No. A), it was black, but compared with the case where the nickel-tungsten alloy plating layer was formed. As a result, the etching property was inferior.
・黒色か否かの判定は色見本を用いて行った。
・ピール強度はFR-4基材10mm回路テストピースで測定した。
・ニッケル-タングステン合金めっき層のNiの付着量はめっき層溶解液をICPにて測定した。
・粉落ちの評価はテープ転写法により行い、テープに粗化粒子の転写が全くない場合を◎とし、局部的に軽微な粗化粒子転写が存在する場合を○とし、全体に粗化粒子の転写が観察される場合(軽微であっても全面の場合)を×とした。
・エッチング性はアルカリエッチング液に溶解した場合の残渣有無により評価した。
-Determination of whether it was black was performed using the color sample.
Peel strength was measured with a FR-4 substrate 10 mm circuit test piece.
-The amount of Ni deposited on the nickel-tungsten alloy plating layer was measured by ICP of the plating layer solution.
・ Evaluation of powder omission was performed by the tape transfer method. ◎ indicates that there is no transfer of rough particles on the tape, and ○ indicates that there is local, coarse transfer of coarse particles. The case where the transfer was observed (when it was slight, the entire surface) was marked with x.
-Etching property was evaluated by the presence or absence of residue when dissolved in an alkaline etching solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 次に、実施例1と同様な条件で、一次粒子層(Cu)、二次粒子層(銅-コバルト-ニッケル合金めっき)形成した。さらに、表2に示すように、電流密度とクーロン量を変化させてニッケル-タングステン合金めっき層を形成した。
 結果を表2に示す。ニッケル-タングステン合金めっき層のNi付着量が5000μg/dm2を超える例ではピール強度の低下が見られた。
(Example 2)
Next, a primary particle layer (Cu) and a secondary particle layer (copper-cobalt-nickel alloy plating) were formed under the same conditions as in Example 1. Further, as shown in Table 2, nickel-tungsten alloy plating layers were formed by changing the current density and the amount of coulomb.
The results are shown in Table 2. In an example where the nickel adhesion amount of the nickel-tungsten alloy plating layer exceeds 5000 μg / dm 2 , the peel strength is reduced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例3)
 圧延銅箔に、以下に示す条件範囲で、一次粒子層(Cu)、二次粒子層(銅-コバルト-ニッケル合金めっき)形成した。使用した浴組成及びめっき条件は、次の通りであり、一次粒子電流条件および二次粒子電流条件は表3に示した。ただし、No.14(Cu層)、No.15(銅―コバルト-ニッケル合金めっき層)は、従来の粗化処理の参考例である。
Example 3
A primary particle layer (Cu) and a secondary particle layer (copper-cobalt-nickel alloy plating) were formed on the rolled copper foil under the conditions shown below. The bath composition and plating conditions used were as follows, and the primary particle current conditions and secondary particle current conditions are shown in Table 3. However, no. 14 (Cu layer), No. 14 15 (copper-cobalt-nickel alloy plating layer) is a reference example of a conventional roughening treatment.
[浴組成及びめっき条件]
(A)一次粒子層の形成(Cuめっき)
  液組成  :銅15g/L、硫酸75g/L
  液温   :35℃
(B)二次粒子層の形成(Cu-Co-Ni合金めっき)
 液組成  :銅15g/L、ニッケル8g/L、コバルト8g/L
 pH   :2
 液温   :40℃
[Bath composition and plating conditions]
(A) Formation of primary particle layer (Cu plating)
Liquid composition: Copper 15g / L, sulfuric acid 75g / L
Liquid temperature: 35 ° C
(B) Formation of secondary particle layer (Cu—Co—Ni alloy plating)
Liquid composition: Copper 15g / L, nickel 8g / L, cobalt 8g / L
pH: 2
Liquid temperature: 40 ° C
 上記二次粒子層の上(粗化処理後)のニッケル-タングステン合金めっき層を以下の条件で形成した。
(ニッケル-タングステン合金めっき層を形成するめっき条件)
 液組成  :ニッケル25g/L、タングステン20mg/L
 pH   :3.6
 液温   :40℃
 電流密度 :2A/dm2
 クーロン量:20As/dm2
 なお、No.14、15、16についてはニッケル-タングステン合金めっき層ではなく、Co-Ni合金めっき層を形成した。
 結果を表3に示したが、ニッケル-タングステン合金めっき層を形成することで黒色の表面が得られる。一方、Co-Ni合金めっき層を有するNo.16は表面が灰色であった。また、二次粒子層が大きすぎるNo.17、18、19では、粉落ちをするため、好ましくない。
A nickel-tungsten alloy plating layer on the secondary particle layer (after the roughening treatment) was formed under the following conditions.
(Plating conditions for forming nickel-tungsten alloy plating layer)
Liquid composition: nickel 25 g / L, tungsten 20 mg / L
pH: 3.6
Liquid temperature: 40 ° C
Current density: 2 A / dm 2
Coulomb amount: 20 As / dm 2
In addition, No. For 14, 15, and 16, not a nickel-tungsten alloy plating layer but a Co—Ni alloy plating layer was formed.
The results are shown in Table 3. A black surface can be obtained by forming a nickel-tungsten alloy plating layer. On the other hand, No. 1 having a Co—Ni alloy plating layer. 16 had a gray surface. Moreover, the secondary particle layer is too large. Nos. 17, 18, and 19 are not preferable because they fall off.
 上記の通り、銅-コバルト-ニッケル合金めっきからなる二次粒子層(粗化処理)を形成する際に、樹枝状に形成される粗化粒子が銅箔の表面から剥がれ落ち、一般に粉落ちと言われる現象を抑制することができるという優れた効果を有するものである。 As described above, when forming a secondary particle layer (roughening treatment) composed of copper-cobalt-nickel alloy plating, the roughened particles formed in a dendritic shape peel off from the surface of the copper foil, It has an excellent effect of being able to suppress the so-called phenomenon.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (9)

  1.  銅箔の少なくとも一方の表面に、黒色ではない粗化処理層と、ニッケル-タングステン合金めっき層とがこの順に形成されており、当該ニッケル-タングステン合金めっき層のニッケル量が2000μg/dm2以上である印刷回路用銅箔。 A non-black roughening layer and a nickel-tungsten alloy plating layer are formed in this order on at least one surface of the copper foil, and the nickel amount of the nickel-tungsten alloy plating layer is 2000 μg / dm 2 or more. A copper foil for printed circuit.
  2.  前記ニッケル-タングステン合金めっき層のニッケル量が2000~5000μg/dm2である請求項1記載の印刷回路用銅箔。 Said nickel - printed circuit copper foil according to claim 1, wherein the nickel content is 2000 ~ 5000μg / dm 2 of the tungsten alloy plating layer.
  3.  前記ニッケル-タングステン合金めっき層の上に耐熱層が形成されている請求項1又は2記載の印刷回路用銅箔。 3. The copper foil for printed circuit according to claim 1, wherein a heat-resistant layer is formed on the nickel-tungsten alloy plating layer.
  4.  前記ニッケル-タングステン合金めっき層の上、又は、前記ニッケル-タングステン合金めっき層の上に形成された耐熱層の上に、防錆層が形成されている請求項1~3何れか一項記載の印刷回路用銅箔。 The rust preventive layer is formed on the nickel-tungsten alloy plating layer or on the heat-resistant layer formed on the nickel-tungsten alloy plating layer. Copper foil for printed circuits.
  5.  上記粗化処理層が、銅の一次粒子層を形成した後、該一次粒子層の上に、銅-コバルト-ニッケル合金の二次粒子層を形成したものである請求項1~4何れか一項記載の印刷回路用銅箔。 5. The roughening treatment layer is obtained by forming a primary particle layer of copper and then forming a secondary particle layer of a copper-cobalt-nickel alloy on the primary particle layer. The copper foil for printed circuits of description.
  6.  前記銅の一次粒子層の平均粒子径が0.25~0.45μmであり、銅-コバルト-ニッケル合金からなる二次粒子層の平均粒子径が0.05~0.25μmである請求項5記載の印刷回路用銅箔。 The average particle size of the primary particle layer of copper is 0.25 to 0.45 μm, and the average particle size of the secondary particle layer made of a copper-cobalt-nickel alloy is 0.05 to 0.25 μm. The copper foil for printed circuits of description.
  7.  前記一次粒子層及び二次粒子層が、電気めっき層である請求項5又は6記載の印刷回路用銅箔。 The copper foil for printed circuit according to claim 5 or 6, wherein the primary particle layer and the secondary particle layer are electroplating layers.
  8.  請求項1~7の何れか一項記載の印刷回路用銅箔を備えた銅張積層板。 A copper-clad laminate comprising the printed circuit copper foil according to any one of claims 1 to 7.
  9.  請求項8記載の銅張積層板を材料とする印刷回路板。 A printed circuit board made of the copper clad laminate according to claim 8.
PCT/JP2012/078509 2011-11-04 2012-11-02 Copper foil for printed circuit WO2013065831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011242706A JP5985812B2 (en) 2011-11-04 2011-11-04 Copper foil for printed circuit
JP2011-242706 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065831A1 true WO2013065831A1 (en) 2013-05-10

Family

ID=48192168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078509 WO2013065831A1 (en) 2011-11-04 2012-11-02 Copper foil for printed circuit

Country Status (3)

Country Link
JP (1) JP5985812B2 (en)
TW (2) TW201509246A (en)
WO (1) WO2013065831A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102170097B1 (en) * 2013-10-31 2020-10-26 스미토모 긴조쿠 고잔 가부시키가이샤 Electrically conductive substrate and method for manufacturing electrically conductive substrate
CN106460188B (en) * 2014-06-24 2018-11-20 奥野制药工业株式会社 Copper system metal or silver are the Darkening process composition of metal
JP6365422B2 (en) * 2015-06-04 2018-08-01 住友金属鉱山株式会社 Method for manufacturing conductive substrate
WO2018211951A1 (en) * 2017-05-19 2018-11-22 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295308B2 (en) * 1996-06-28 2002-06-24 株式会社日鉱マテリアルズ Electrolytic copper foil
JP2003171781A (en) * 2001-09-28 2003-06-20 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuit board, and production method therefor
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
WO2011138876A1 (en) * 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429290B2 (en) * 2000-09-18 2003-07-22 日本電解株式会社 Manufacturing method of copper foil for fine wiring
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP3709142B2 (en) * 2001-01-19 2005-10-19 福田金属箔粉工業株式会社 Copper foil for printed wiring board and method for producing the same
JP2004263300A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2007314855A (en) * 2006-05-29 2007-12-06 Furukawa Circuit Foil Kk Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP4955106B2 (en) * 2008-12-26 2012-06-20 Jx日鉱日石金属株式会社 Rolled copper foil or electrolytic copper foil for electronic circuit and method for forming electronic circuit using these

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295308B2 (en) * 1996-06-28 2002-06-24 株式会社日鉱マテリアルズ Electrolytic copper foil
JP2003171781A (en) * 2001-09-28 2003-06-20 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuit board, and production method therefor
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
WO2011138876A1 (en) * 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit

Also Published As

Publication number Publication date
TW201509246A (en) 2015-03-01
TW201325336A (en) 2013-06-16
TWI590719B (en) 2017-07-01
JP2013096003A (en) 2013-05-20
JP5985812B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5654581B2 (en) Copper foil for printed circuit, copper-clad laminate, printed circuit board, printed circuit and electronic equipment
JP5654416B2 (en) Liquid crystal polymer copper clad laminate and copper foil used for the laminate
JP5932705B2 (en) Copper foil for printed circuit
JP5512273B2 (en) Copper foil and copper clad laminate for printed circuit
JP5913356B2 (en) Copper foil for printed circuit
JP4172704B2 (en) Surface-treated copper foil and substrate using the same
JP2016188436A (en) Copper foil for printed circuit
JP5985812B2 (en) Copper foil for printed circuit
JP5913355B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
TWI530591B (en) Rolled copper or copper alloy foil with roughened surface
JP6273317B2 (en) Copper foil for printed circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846525

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846525

Country of ref document: EP

Kind code of ref document: A1