JP5481553B1 - Copper foil with carrier - Google Patents

Copper foil with carrier Download PDF

Info

Publication number
JP5481553B1
JP5481553B1 JP2012271631A JP2012271631A JP5481553B1 JP 5481553 B1 JP5481553 B1 JP 5481553B1 JP 2012271631 A JP2012271631 A JP 2012271631A JP 2012271631 A JP2012271631 A JP 2012271631A JP 5481553 B1 JP5481553 B1 JP 5481553B1
Authority
JP
Japan
Prior art keywords
layer
copper
carrier
copper foil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012271631A
Other languages
Japanese (ja)
Other versions
JP2014129555A (en
Inventor
友太 永浦
倫也 古曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012271631A priority Critical patent/JP5481553B1/en
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to PCT/JP2013/082283 priority patent/WO2014084385A1/en
Priority to MYPI2015701635A priority patent/MY171825A/en
Priority to KR1020157015151A priority patent/KR101797333B1/en
Priority to CN201380062754.3A priority patent/CN104822525B/en
Priority to TW102143728A priority patent/TWI503456B/en
Application granted granted Critical
Publication of JP5481553B1 publication Critical patent/JP5481553B1/en
Publication of JP2014129555A publication Critical patent/JP2014129555A/en
Priority to PH12015501163A priority patent/PH12015501163A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

【課題】L/S=20μm/20μmよりも微細な配線、例えばL/S=15μm/15μmの微細な配線を形成することが可能なキャリア付銅箔を提供する。
【解決手段】銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔であって、前記中間層はNiを含み、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上300μg/dm2以下であるキャリア付銅箔。
【選択図】図1
Provided is a copper foil with a carrier capable of forming wiring finer than L / S = 20 μm / 20 μm, for example, fine wiring of L / S = 15 μm / 15 μm.
A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer, the intermediate layer being Ni After heating the copper foil with a carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer according to JIS C 6471, the surface of the intermediate layer side of the ultrathin copper layer is made of Ni. adhesion amount 5 [mu] g / dm 2 or more 300 [mu] g / dm 2 or less is a copper foil with a carrier.
[Selection] Figure 1

Description

本発明は、キャリア付銅箔に関する。より詳細には、本発明はプリント配線板の材料として使用されるキャリア付銅箔に関する。   The present invention relates to a copper foil with a carrier. In more detail, this invention relates to the copper foil with a carrier used as a material of a printed wiring board.

プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。   Generally, a printed wiring board is manufactured through a process in which an insulating substrate is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern is formed on the copper foil surface by etching. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.

ファインピッチ化に対応して、最近では厚さ9μm以下、更には厚さ5μm以下の銅箔が要求されているが、このような極薄の銅箔は機械的強度が低くプリント配線板の製造時に破れたり、皺が発生したりしやすいので、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を電着させたキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後、キャリアは剥離層を介して剥離除去される。露出した極薄銅層上にレジストで回路パターンを形成した後に、極薄銅層を硫酸-過酸化水素系のエッチャントでエッチング除去する手法(MSAP:Modified-Semi-Additive-Process)により、微細回路が形成される。   Recently, copper foils with a thickness of 9 μm or less and further with a thickness of 5 μm or less have been required in response to the fine pitch, but such ultra-thin copper foils have low mechanical strength and are used in the manufacture of printed wiring boards. Copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is electrodeposited through a release layer, since it is easily broken or wrinkled. After bonding the surface of the ultrathin copper layer to an insulating substrate and thermocompression bonding, the carrier is peeled and removed through the peeling layer. After forming a circuit pattern with resist on the exposed ultra-thin copper layer, the micro-thin copper layer is etched with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi-Additive-Process). Is formed.

ここで、樹脂との接着面となるキャリア付き銅箔の極薄銅層の表面に対しては、主として、極薄銅層と樹脂基材との剥離強度が十分であること、そしてその剥離強度が高温加熱、湿式処理、半田付け、薬品処理等の後でも十分に保持されていることが要求される。極薄銅層と樹脂基材の間の剥離強度を高める方法としては、一般的に、表面のプロファイル(凹凸、粗さ)を大きくした極薄銅層の上に多量の粗化粒子を付着させる方法が代表的である。   Here, for the surface of the ultrathin copper layer of the copper foil with a carrier that becomes the adhesive surface with the resin, the peel strength between the ultrathin copper layer and the resin base material is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like. As a method of increasing the peel strength between the ultrathin copper layer and the resin base material, generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.

しかしながら、プリント配線板の中でも特に微細な回路パターンを形成する必要のある半導体パッケージ基板に、このようなプロファイル(凹凸、粗さ)の大きい極薄銅層を使用すると、回路エッチング時に不要な銅粒子が残ってしまい、回路パターン間の絶縁不良等の問題が発生する。   However, if a very thin copper layer with such a large profile (irregularity, roughness) is used on a semiconductor package substrate that needs to form a particularly fine circuit pattern among printed wiring boards, unnecessary copper particles during circuit etching Will remain, causing problems such as poor insulation between circuit patterns.

このため、WO2004/005588号(特許文献1)では、半導体パッケージ基板をはじめとする微細回路用途のキャリア付銅箔として、極薄銅層の表面に粗化処理を施さないキャリア付銅箔を用いることが試みられている。このような粗化処理を施さない極薄銅層と樹脂との密着性(剥離強度)は、その低いプロファイル(凹凸、粗度、粗さ)の影響で一般的なプリント配線板用銅箔と比較すると低下する傾向がある。そのため、キャリア付銅箔について更なる改善が求められている。   For this reason, in WO2004 / 005588 (Patent Document 1), a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried. The adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated | required about copper foil with a carrier.

そこで、特開2007−007937号公報(特許文献2)及び特開2010−006071号公報(特許文献3)では、キャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面に、Ni層又は/及びNi合金層を設けること、クロメート層を設けること、Cr層又は/及びCr合金層を設けること、Ni層とクロメート層とを設けること、Ni層とCr層とを設けることが記載されている。これらの表面処理層を設けることにより、ポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)しながら所望の接着強度を得ている。更に、シランカップリング剤で表面処理したり、防錆処理を施したりすることも記載されている。   Therefore, in Japanese Patent Application Laid-Open No. 2007-007937 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2010-006071 (Patent Document 3), the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been. By providing these surface treatment layers, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.

WO2004/005588号WO2004 / 005588 特開2007−007937号公報JP 2007-007937 A 特開2010−006071号公報JP 2010-006071 A

キャリア付銅箔の開発においては、これまで極薄銅層と樹脂基材との剥離強度を確保することに重きが置かれていた。そのため、ファインピッチ化に関しては未だ十分な検討がなされておらず、未だ改善の余地が残されている。特に、従来の技術では、L(ライン)/S(スペース)=15μm/15μm等のファインピッチ回路を製造することができていない。そこで、本発明はファインピッチ形成に好適なキャリア付銅箔を提供することを課題とする。具体的には、これまでのMSAPで形成できる限界と考えられていたL/S=20μm/20μmよりも微細な配線、例えば、L/S=15μm/15μm等の微細な配線を形成することが可能なキャリア付銅箔を提供することを課題とする。   In the development of a copper foil with a carrier, the emphasis has so far been on ensuring the peel strength between the ultrathin copper layer and the resin substrate. For this reason, the fine pitch has not been sufficiently studied yet, and there is still room for improvement. In particular, the conventional technology cannot manufacture a fine pitch circuit such as L (line) / S (space) = 15 μm / 15 μm. Then, this invention makes it a subject to provide the copper foil with a carrier suitable for fine pitch formation. Specifically, wiring finer than L / S = 20 μm / 20 μm, which has been considered to be the limit that can be formed by MSAP, for example, fine wiring such as L / S = 15 μm / 15 μm can be formed. It is an object to provide a copper foil with a carrier that can be used.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、所定の加熱処理がなされたキャリア付銅箔から極薄銅層を剥がしたときの、極薄銅層の剥離側表面のNiの付着量を制御することが、極薄銅層に対するファインピッチ形成に極めて効果的であることを見出した。   In order to achieve the above object, the present inventor conducted extensive research and found that the Ni on the peel-side surface of the ultrathin copper layer when the ultrathin copper layer was peeled off from the copper foil with carrier that had been subjected to the predetermined heat treatment. It has been found that controlling the amount of adhesion is extremely effective for fine pitch formation on an ultrathin copper layer.

本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔であって、前記中間層はNiを含み、前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上300μg/dm2以下であるキャリア付銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. When the intermediate layer contains Ni and the copper foil with carrier is heated at 220 ° C. for 2 hours, and then peels off the ultrathin copper layer according to JIS C 6471, It is a copper foil with a carrier in which the adhesion amount of Ni on the surface of the ultrathin copper layer on the intermediate layer side is 5 μg / dm 2 or more and 300 μg / dm 2 or less.

本発明のキャリア付銅箔は一実施形態において、前記キャリア付銅箔を220℃で2時間加熱した後、前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上250μg/dm2以下である。 In one embodiment, the carrier-attached copper foil of the present invention is a surface on the intermediate layer side of the ultrathin copper layer when the ultrathin copper layer is peeled off after heating the copper foil with carrier at 220 ° C. for 2 hours. The adhesion amount of Ni is 5 μg / dm 2 or more and 250 μg / dm 2 or less.

本発明のキャリア付銅箔は別の一実施形態において、前記キャリア付銅箔を220℃で2時間加熱した後、前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上200μg/dm2以下である。 In another embodiment of the copper foil with a carrier according to the present invention, when the copper foil with a carrier is heated at 220 ° C. for 2 hours and then the ultrathin copper layer is peeled off, the intermediate layer side of the ultrathin copper layer is provided. The adhesion amount of Ni on the surface is 5 μg / dm 2 or more and 200 μg / dm 2 or less.

本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層のNi含有量が、100μg/dm2以上5000μg/dm2以下である。 In one embodiment copper foil yet another carrier of the present invention, Ni content of the intermediate layer is 100 [mu] g / dm 2 or more 5000 [mu] g / dm 2 or less.

本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層が、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含む。
In another embodiment of the copper foil with a carrier according to the present invention, the intermediate layer is made of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, an alloy thereof, or a water thereof. 1 type or 2 types or more selected from the group which consists of a Japanese thing, these oxides, and organic substance are included.

本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層が、Crを含む場合は、Crを5〜100μg/dm2含有し、Moを含む場合は、Moを50μg/dm2以上1000μg/dm 2 以下含有し、Znを含む場合は、Znを1μg/dm2以上120μg/dm2以下含有する。
In still another embodiment of the copper foil with a carrier according to the present invention, when the intermediate layer contains Cr, it contains 5 to 100 μg / dm 2 of Cr, and when it contains Mo, 50 μg / dm 2 of Mo. In the case of containing 1000 μg / dm 2 or less and containing Zn, Zn is contained 1 μg / dm 2 or more and 120 μg / dm 2 or less.

本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層が有機物を厚みで25nm以上80nm以下含有する。   In another embodiment of the copper foil with a carrier of the present invention, the intermediate layer contains an organic substance in a thickness of 25 nm or more and 80 nm or less.

本発明のキャリア付銅箔は更に別の一実施形態において、前記有機物が、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなる有機物である。   In another embodiment of the copper foil with a carrier of the present invention, the organic substance is an organic substance composed of one or more selected from nitrogen-containing organic compounds, sulfur-containing organic compounds and carboxylic acids.

本発明は別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。   In another aspect, the present invention is a printed wiring board manufactured using the copper foil with a carrier of the present invention.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント基板である。   In still another aspect, the present invention is a printed board manufactured using the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、絶縁樹脂板と、前記絶縁樹脂板の上に設けられた銅回路とを有し、前記銅回路は前記絶縁樹脂板側から順に銅層、前記銅層の上に設けられたNi層、前記Ni層の上に設けられた銅メッキ層を含み、前記Ni層のNiの付着量が5μg/dm2以上300μg/dm2以下であり、前記銅回路の回路幅が20μm未満であり、隣接する銅回路間のスペースの幅が20μm未満であるプリント配線板である。 In yet another aspect, the present invention includes an insulating resin plate and a copper circuit provided on the insulating resin plate, wherein the copper circuit includes a copper layer and the copper layer in order from the insulating resin plate side. A copper layer including a Ni layer provided on the copper layer and a copper plating layer provided on the Ni layer, wherein the Ni adhesion amount of the Ni layer is 5 μg / dm 2 or more and 300 μg / dm 2 or less; A printed wiring board having a width of less than 20 μm and a width of a space between adjacent copper circuits of less than 20 μm.

本発明のプリント配線板は一実施形態において、前記銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下である。   In one embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 17 μm or less, and the width of the space between adjacent copper circuits is 17 μm or less.

本発明は更に別の一側面において、絶縁樹脂板と、絶縁樹脂板の上に設けられた銅回路とを有し、前記銅回路は絶縁樹脂板側から順に銅層、前記銅層の上に設けられた銅メッキ層を含み、前記銅回路の回路幅が20μm未満であり、前記銅回路と銅回路との間のスペースの幅が20μm未満であるプリント配線板である。   In yet another aspect of the present invention, the present invention includes an insulating resin plate and a copper circuit provided on the insulating resin plate, and the copper circuit is sequentially formed on the copper layer and the copper layer from the insulating resin plate side. The printed wiring board includes a provided copper plating layer, the circuit width of the copper circuit is less than 20 μm, and the width of the space between the copper circuit and the copper circuit is less than 20 μm.

本発明のプリント配線板は一実施形態において、前記銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下である。   In one embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 17 μm or less, and the width of the space between adjacent copper circuits is 17 μm or less.

本発明は更に別の一側面において、絶縁樹脂板と、前記絶縁樹脂板の上に設けられた銅回路とを有し、前記銅回路は前記絶縁樹脂板側から順に銅層、前記銅層の上に設けられたNi層を含み、前記Ni層のNiの付着量が5μg/dm2以上300μg/dm2以下であり、前記銅回路の回路幅が20μm未満であり、隣接する銅回路間のスペースの幅が20μm未満であるプリント配線板である。 In yet another aspect, the present invention includes an insulating resin plate and a copper circuit provided on the insulating resin plate, wherein the copper circuit includes a copper layer and the copper layer in order from the insulating resin plate side. An Ni layer provided on the Ni layer, wherein the Ni layer has a Ni adhesion amount of 5 μg / dm 2 or more and 300 μg / dm 2 or less, the circuit width of the copper circuit is less than 20 μm, and between adjacent copper circuits The printed wiring board has a space width of less than 20 μm.

本発明のプリント配線板は一実施形態において、前記銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下である。   In one embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 17 μm or less, and the width of the space between adjacent copper circuits is 17 μm or less.

本発明のプリント配線板は別の一実施形態において、前記銅回路の回路幅が10μm以下であり、隣接する銅回路間のスペースの幅が10μm以下である。   In another embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 10 μm or less, and the width of the space between adjacent copper circuits is 10 μm or less.

本発明のプリント配線板は更に別の一実施形態において、前記銅回路の回路幅が5μm以下であり、隣接する銅回路間のスペースの幅が5μm以下である。   In another embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 5 μm or less, and the width of the space between adjacent copper circuits is 5 μm or less.

本発明は更に別の一側面において、絶縁樹脂板と、絶縁樹脂板の上に設けられた銅回路とを有し、前記銅回路の回路幅が20μm未満であり、前記銅回路と銅回路との間のスペースの幅が20μm未満であるプリント配線板である。   In another aspect of the present invention, the present invention includes an insulating resin plate and a copper circuit provided on the insulating resin plate, the circuit width of the copper circuit is less than 20 μm, the copper circuit and the copper circuit, Is a printed wiring board having a space width of less than 20 μm.

本発明のプリント配線板は一実施形態において、前記銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下である。   In one embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 17 μm or less, and the width of the space between adjacent copper circuits is 17 μm or less.

本発明のプリント配線板は別の一実施形態において、前記銅回路の回路幅が10μm以下であり、隣接する銅回路間のスペースの幅が10μm以下である。   In another embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 10 μm or less, and the width of the space between adjacent copper circuits is 10 μm or less.

本発明のプリント配線板は一実施形態において、前記銅回路の回路幅が5μm以下であり、隣接する銅回路間のスペースの幅が5μm以下である。   In one embodiment of the printed wiring board of the present invention, the circuit width of the copper circuit is 5 μm or less, and the width of the space between adjacent copper circuits is 5 μm or less.

本発明に係るキャリア付銅箔はファインピッチ形成に好適であり、例えば、MSAP工程で形成できる限界と考えられていたL/S=20μm/20μmよりも微細な配線、例えばL/S=15μm/15μmの微細な配線を形成することが可能となる。   The copper foil with a carrier according to the present invention is suitable for fine pitch formation, for example, a wiring finer than L / S = 20 μm / 20 μm, which has been considered as a limit that can be formed by the MSAP process, for example, L / S = 15 μm / It becomes possible to form fine wiring of 15 μm.

実施例における回路パターンの幅方向の横断面の模式図、及び、該模式図を用いたエッチングファクター(EF)の計算方法の概略である。It is the schematic of the cross section of the width direction of the circuit pattern in an Example, and the outline of the calculation method of the etching factor (EF) using this schematic diagram.

<キャリア付銅箔>
本発明のキャリア付銅箔は、銅箔キャリアと、銅箔キャリア上にNiを含む中間層と、中間層の上に積層された極薄銅層とを備える。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後に銅箔キャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。
<Copper foil with carrier>
The copper foil with a carrier of the present invention comprises a copper foil carrier, an intermediate layer containing Ni on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. After thermocompression bonding, the copper foil carrier was peeled off and adhered to the insulating substrate An ultra-thin copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board.

本発明のキャリア付銅箔は、220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、極薄銅層の中間層側の表面のNiの付着量が5μg/dm2以上300μg/dm2以下である。キャリア付銅箔を絶縁基板に貼り合わせて熱圧着後に銅箔キャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングするが、このとき、極薄銅層の表面(絶縁基板との接着側とは反対側の表面)に付着するNiの量が多いと、極薄銅層がエッチングされ難くなり、ファインピッチ回路を形成することが困難となる。このため、本発明のキャリア付銅箔は、上記のような剥離後の極薄銅層の表面のNi付着量が300μg/dm2以下となるように制御されている。当該Ni付着量が300μg/dm2を超えると、極薄銅層をエッチングして、L/S=20μm/20μmよりも微細な配線、例えばL/S=15μm/15μmの微細な配線を形成することが困難となる。なお、上記「220℃で2時間加熱」は、キャリア付銅箔を絶縁基板に貼り合わせて熱圧着する場合の典型的な加熱条件を示している。 When the copper foil with a carrier of the present invention is heated at 220 ° C. for 2 hours and then peeled off the ultrathin copper layer according to JIS C 6471, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer is It is 5 μg / dm 2 or more and 300 μg / dm 2 or less. The copper foil with a carrier is bonded to an insulating substrate, the copper foil carrier is peeled off after thermocompression bonding, and the ultrathin copper layer bonded to the insulating substrate is etched into the intended conductor pattern. At this time, the surface of the ultrathin copper layer ( If the amount of Ni adhering to the surface on the side opposite to the side bonded to the insulating substrate is large, the ultrathin copper layer is difficult to be etched and it is difficult to form a fine pitch circuit. For this reason, the copper foil with a carrier of the present invention is controlled so that the Ni adhesion amount on the surface of the ultrathin copper layer after peeling as described above becomes 300 μg / dm 2 or less. When the Ni adhesion amount exceeds 300 μg / dm 2 , the ultra-thin copper layer is etched to form wiring finer than L / S = 20 μm / 20 μm, for example, fine wiring with L / S = 15 μm / 15 μm. It becomes difficult. The “heating at 220 ° C. for 2 hours” indicates a typical heating condition in the case where a copper foil with a carrier is bonded to an insulating substrate and thermocompression bonded.

上記のような剥離後の極薄銅層の表面のNi付着量が少な過ぎると、銅箔キャリアのCuが極薄銅層側へ拡散する場合がある。そのような場合は、銅箔キャリアと極薄銅層の結合の程度が強くなり過ぎてしてしまい、極薄銅層を剥がす際に極薄銅層にピンホールが発生しやすくなる。このため、当該Niの付着量は、5μg/dm2以上となるように制御されている。また、当該Ni付着量は、好ましくは5μg/dm2以上250μg/dm2以下であり、より好ましくは5μg/dm2以上200μg/dm2以下である。 If the amount of Ni deposited on the surface of the ultrathin copper layer after peeling as described above is too small, Cu in the copper foil carrier may diffuse to the ultrathin copper layer side. In such a case, the degree of bonding between the copper foil carrier and the ultrathin copper layer becomes too strong, and pinholes are easily generated in the ultrathin copper layer when the ultrathin copper layer is peeled off. For this reason, the adhesion amount of Ni is controlled to be 5 μg / dm 2 or more. The Ni adhesion amount is preferably 5 μg / dm 2 or more and 250 μg / dm 2 or less, more preferably 5 μg / dm 2 or more and 200 μg / dm 2 or less.

<銅箔キャリア>
本発明に用いることのできる銅箔キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<Copper foil carrier>
The copper foil carrier that can be used in the present invention is typically provided in the form of a rolled copper foil or an electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできる銅箔キャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、銅箔キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。   Although there is no restriction | limiting in particular also about the thickness of the copper foil carrier which can be used for this invention, What is necessary is just to adjust suitably to the thickness suitable for fulfill | performing the role as a carrier, for example, can be 12 micrometers or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the copper foil carrier is typically 12-70 μm, more typically 18-35 μm.

<中間層>
銅箔キャリアの片面又は両面上にはNiを含む中間層を設ける。中間層は、Niの他、Cr、Mo、Zn、有機物等を含んでいる。上述のように、本発明のキャリア付銅箔は、220℃で2時間加熱した後、極薄銅層を剥がしたとき、極薄銅層の中間層側の表面のNiの付着量が300μg/dm2以下となるが、このように剥離後の極薄銅層表面のNi付着量を制御するためには、中間層のNi含有量を少なくするとともに、Niが極薄銅層側へ拡散するのを抑制する金属種(Cr、Mo、Zn等)や有機物を中間層が含んでいる必要がある。このような観点から、中間層のNi含有量は、100μg/dm2以上5000μg/dm2以下であるのが好ましく、200μg/dm2以上4000μg/dm2以下であるのが更に好ましく、300μg/dm2以上3000μg/dm2以下であるのが更に好ましく、400μg/dm2以上2000μg/dm2以下であるのが更に好ましい。また、中間層が含有する金属種としては、Cr、Mo、Znからなる群から選択される一種又は二種以上が好ましい。Crを含む場合は、Crを5〜100μg/dm2含有するのが好ましく、5μg/dm2以上50μg/dm2以下含有するのがより好ましい。Moを含む場合は、Moを50μg/dm2以上1000μg/dm 2 以下含有するのが好ましく、70μg/dm2以上650μg/dm2以下含有するのがより好ましい。Znを含む場合は、Znを1μg/dm2以上120μg/dm2以下含有するのが好ましく、2μg/dm2以上70μg/dm2以下含有するのがより好ましく、5μg/dm2以上50μg/dm2以下含有するのがより好ましい。
<Intermediate layer>
An intermediate layer containing Ni is provided on one side or both sides of the copper foil carrier. The intermediate layer contains Ni, Cr, Mo, Zn, organic matter, and the like. As described above, when the copper foil with a carrier of the present invention was heated at 220 ° C. for 2 hours and then peeled off the ultrathin copper layer, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer was 300 μg / the dm 2 below, in order to control the Ni deposition amount of the thus ultrathin copper layer surface after delamination, as well as reducing the Ni content in the intermediate layer, Ni is diffused into the ultra-thin copper layer-side It is necessary that the intermediate layer contains a metal species (Cr, Mo, Zn, etc.) or an organic substance that suppresses the above. From this point of view, Ni content of the intermediate layer is preferably at 100 [mu] g / dm 2 or more 5000 [mu] g / dm 2 or less, more preferably at 200 [mu] g / dm 2 or more 4000μg / dm 2 or less, 300 [mu] g / dm more preferably at 2 or more 3000μg / dm 2 or less, and even more preferably 400 [mu] g / dm 2 or more 2000 [mu] g / dm 2 or less. Moreover, as a metal seed | species which an intermediate | middle layer contains, 1 type, or 2 or more types selected from the group which consists of Cr, Mo, and Zn is preferable. When containing Cr is preferably contained 5~100μg / dm 2 of Cr, it is more preferable to contain 5 [mu] g / dm 2 or more 50 [mu] g / dm 2 or less. When containing Mo is preferably contains Mo 50 [mu] g / dm 2 or more 1000 μg / dm 2 or less, and more preferably contains 70 [mu] g / dm 2 or more 650μg / dm 2 or less. When containing Zn is preferably contained 1 [mu] g / dm 2 or more 120 [mu] g / dm 2 or less of Zn, more preferably containing 2 [mu] g / dm 2 or more 70 [mu] g / dm 2 or less, 5 [mu] g / dm 2 or more 50 [mu] g / dm 2 It is more preferable to contain the following.

中間層が含有する有機物としては、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなるものを用いることが好ましい。窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸のうち、窒素含有有機化合物は、置換基を有する窒素含有有機化合物を含んでいる。具体的な窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3−ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール等を用いることが好ましい。
硫黄含有有機化合物には、メルカプトベンゾチアゾール、チオシアヌル酸及び2−ベンズイミダゾールチオール等を用いることが好ましい。
カルボン酸としては、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。
前述の有機物は厚みで25nm以上80nm以下含有するのが好ましく、30nm以上70nm以下含有するのがより好ましい。中間層は前述の有機物を複数種類(一種以上)含んでもよい。
As an organic substance contained in the intermediate layer, it is preferable to use one or two or more selected from nitrogen-containing organic compounds, sulfur-containing organic compounds and carboxylic acids. Among the nitrogen-containing organic compound, the sulfur-containing organic compound, and the carboxylic acid, the nitrogen-containing organic compound includes a nitrogen-containing organic compound having a substituent. Specific nitrogen-containing organic compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1 which are triazole compounds having a substituent. 2,4-triazole, 3-amino-1H-1,2,4-triazole and the like are preferably used.
As the sulfur-containing organic compound, it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.
As the carboxylic acid, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.
The organic material is preferably contained in a thickness of 25 nm to 80 nm, more preferably 30 nm to 70 nm. The intermediate layer may contain a plurality of types (one or more) of the aforementioned organic substances.

中間層が含有する有機物の使用方法について、以下に、キャリア箔上への中間層の形成方法についても述べつつ説明する。銅箔キャリア上への中間層の形成は、上述した有機物を溶媒に溶解させ、その溶媒中に銅箔キャリアを浸漬させるか、中間層を形成しようとする面に対するシャワーリング、噴霧法、滴下法及び電着法等を用いて行うことができ、特に限定した手法を採用する必要性はない。このときの溶媒中の有機系剤の濃度は、上述した有機物の全てにおいて、濃度0.01g/L〜30g/L、液温20〜60℃の範囲が好ましい。有機物の濃度は、特に限定されるものではなく、本来濃度が高くとも低くとも問題のないものである。   The method for using the organic substance contained in the intermediate layer will be described below with reference to the method for forming the intermediate layer on the carrier foil. The intermediate layer is formed on the copper foil carrier by dissolving the above-mentioned organic substances in a solvent and immersing the copper foil carrier in the solvent, or showering, spraying method, dropping method on the surface on which the intermediate layer is to be formed. In addition, there is no need to employ a particularly limited method. At this time, the concentration of the organic agent in the solvent is preferably in the range of a concentration of 0.01 g / L to 30 g / L and a liquid temperature of 20 to 60 ° C. in all the organic substances described above. The concentration of the organic substance is not particularly limited, and there is no problem even if the concentration is originally high or low.

本発明のキャリア付銅箔の中間層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含んでも良い。また、中間層は複数の層であっても良い。
例えば、中間層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素からなる合金層を形成し、その上にCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素の水和物または酸化物からなる層を形成することで構成することができる。
中間層を片面にのみ設ける場合、銅箔キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。また、キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点からシャイニー面に中間層を設けることが好ましい。なお、中間層をクロメート処理や亜鉛クロメート処理やめっき処理で設けた場合には、クロムや亜鉛など、付着した金属の一部は水和物や酸化物となっている場合があると考えられる。
The intermediate layer of the carrier-attached copper foil of the present invention is made of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, and organic substances. One or two or more selected from the group may be included. The intermediate layer may be a plurality of layers.
For example, the intermediate layer is a single metal layer made of one kind of element selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al , Zn from the carrier side, or Forming an alloy layer composed of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al , Zn Forms a layer made of a hydrate or oxide of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al , and Zn. It can be configured by doing.
When providing an intermediate layer only on one side, it is preferable to provide a rust prevention layer such as a Ni plating layer on the opposite side of the copper foil carrier. Moreover, when using an electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes. When the intermediate layer is provided by chromate treatment, zinc chromate treatment, or plating treatment, it is considered that some of the attached metal such as chromium and zinc may be hydrates or oxides.

<極薄銅層>
中間層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には2〜5μmである。
<Ultrathin copper layer>
An ultrathin copper layer is provided on the intermediate layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5-12 μm, more typically 2-5 μm.

<粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層または防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。
<Roughening treatment>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer is a single layer selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt and zinc, or a layer made of an alloy containing one or more of them. Also good. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, 2 layers or more, 3 layers or more, etc.).

<プリント配線板及びプリント基板>
本発明のキャリア付銅箔を用いて、プリント配線板又はプリント基板を常法(例えばサブトラクティブ法や修正されたセミアディティブ法(MSAP))に従って製造することができる。本発明のプリント配線板は、絶縁樹脂板と、絶縁樹脂板の上に設けられた銅回路とを有し、銅回路は前記絶縁樹脂板側から順に銅層、銅層の上に設けられたNi層、Ni層の上に設けられた銅メッキ層を含み、Ni層のNiの付着量が5μg/dm2以上300μg/dm2以下であり、銅回路の回路幅が20μm未満であり、隣接する銅回路間のスペースの幅が20μm未満である。また、銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下であるのが好ましい。また、銅回路の回路幅が15μm以下であり、隣接する銅回路間のスペースの幅が15μm以下であるのが好ましい。また、銅回路の回路幅が10μm以下であり、隣接する銅回路間のスペースの幅が10μm以下であるのがより好ましい。また、銅回路の回路幅が5μm以下であり、隣接する銅回路間のスペースの幅が5μm以下であるのが更により好ましい。また、回路幅の下限を設ける必要は無いが、例えば銅回路の回路幅は3μm以上であり、隣接する銅回路間のスペースの幅が3μm以上であり、例えば銅回路の回路幅は5μm以上であり、隣接する銅回路間のスペースの幅が5μm以上であり、例えば銅回路の回路幅は7μm以上であり、隣接する銅回路間のスペースの幅が7μm以上であり、例えば銅回路の回路幅は9μm以上であり、隣接する銅回路間のスペースの幅が9μm以上である。なお、前述の銅メッキ層は極薄銅層を形成するために用いためっき液の条件など、周知の条件で形成することが出来る。
また、本発明のプリント配線板は、絶縁樹脂板と、絶縁樹脂板の上に設けられた銅回路とを有し、銅回路は絶縁樹脂板側から順に銅層、銅層の上に設けられた銅メッキ層を含み、銅回路の回路幅が20μm未満であり、銅回路と銅回路との間のスペースの幅が20μm未満であってもよい。また、このとき、銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下であるのが好ましい。また、このとき、銅回路の回路幅が15μm以下であり、隣接する銅回路間のスペースの幅が15μm以下であるのが好ましい。また、銅回路の回路幅が10μm以下であり、隣接する銅回路間のスペースの幅が10μm以下であるのがより好ましい。また、銅回路の回路幅が5μm以下であり、隣接する銅回路間のスペースの幅が5μm以下であるのが更により好ましい。また、回路幅の下限を設ける必要は無いが、例えば銅回路の回路幅は3μm以上であり、隣接する銅回路間のスペースの幅が3μm以上であり、例えば銅回路の回路幅は5μm以上であり、隣接する銅回路間のスペースの幅が5μm以上であり、例えば銅回路の回路幅は7μm以上であり、隣接する銅回路間のスペースの幅が7μm以上であり、例えば銅回路の回路幅は9μm以上であり、隣接する銅回路間のスペースの幅が9μm以上である。
また、本発明のプリント配線板は、絶縁樹脂板と、絶縁樹脂板の上に設けられた銅回路とを有し、銅回路は前記絶縁樹脂板側から順に銅層、銅層の上に設けられたNi層を含み、Ni層のNiの付着量が5μg/dm2以上300μg/dm2以下であり、銅回路の回路幅が20μm未満であり、隣接する銅回路間のスペースの幅が20μm未満であってもよい。また、このとき、銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下であるのが好ましい。また、このとき、銅回路の回路幅が15μm以下であり、隣接する銅回路間のスペースの幅が15μm以下であるのが好ましい。また、このとき、銅回路の回路幅が10μm以下であり、隣接する銅回路間のスペースの幅が10μm以下であるのがより好ましい。また、銅回路の回路幅が5μm以下であり、隣接する銅回路間のスペースの幅が5μm以下であるのが更により好ましい。また、回路幅の下限を設ける必要は無いが、例えば銅回路の回路幅は3μm以上であり、隣接する銅回路間のスペースの幅が3μm以上であり、例えば銅回路の回路幅は5μm以上であり、隣接する銅回路間のスペースの幅が5μm以上であり、例えば銅回路の回路幅は7μm以上であり、隣接する銅回路間のスペースの幅が7μm以上であり、例えば銅回路の回路幅は9μm以上であり、隣接する銅回路間のスペースの幅が9μm以上である。
また、本発明のプリント配線板は、絶縁樹脂板と、絶縁樹脂板の上に設けられた銅回路とを有し、銅回路の回路幅が20μm未満であり、銅回路と銅回路との間のスペースの幅が20μm未満であってもよい。また、このとき、銅回路の回路幅が17μm以下であり、隣接する銅回路間のスペースの幅が17μm以下であるのが好ましい。また、このとき、銅回路の回路幅が15μm以下であり、隣接する銅回路間のスペースの幅が15μm以下であるのが好ましい。また、回路幅の下限を設ける必要は無いが、例えば銅回路の回路幅は3μm以上であり、隣接する銅回路間のスペースの幅が3μm以上であり、例えば銅回路の回路幅は5μm以上であり、隣接する銅回路間のスペースの幅が5μm以上であり、例えば銅回路の回路幅は7μm以上であり、隣接する銅回路間のスペースの幅が7μm以上であり、例えば銅回路の回路幅は9μm以上であり、隣接する銅回路間のスペースの幅が9μm以上である。
本発明のプリント配線板及びプリント基板の銅回路は、キャリア付銅箔を極薄銅層側から絶縁樹脂板に貼り付けて熱圧着させ、銅箔キャリアを剥がした後、極薄銅層部分をエッチングすることにより形成することができる。ここで用いる絶縁樹脂板はプリント配線板に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム等を使用する事ができる。このようにして作製したプリント配線板及びプリント基板は、搭載部品の高密度実装が要求される各種電子部品に搭載することができる。
<Printed wiring board and printed circuit board>
Using the copper foil with a carrier of the present invention, a printed wiring board or a printed board can be produced according to a conventional method (for example, a subtractive method or a modified semi-additive method (MSAP)). The printed wiring board of the present invention has an insulating resin plate and a copper circuit provided on the insulating resin plate, and the copper circuit is provided on the copper layer and the copper layer sequentially from the insulating resin plate side. Ni layer, including a copper plating layer provided on the Ni layer, the adhesion amount of Ni in the Ni layer is 5 μg / dm 2 or more and 300 μg / dm 2 or less, the circuit width of the copper circuit is less than 20 μm, and adjacent The width of the space between the copper circuits is less than 20 μm. Moreover, it is preferable that the circuit width of a copper circuit is 17 micrometers or less, and the width of the space between adjacent copper circuits is 17 micrometers or less. Moreover, it is preferable that the circuit width of a copper circuit is 15 micrometers or less, and the width of the space between adjacent copper circuits is 15 micrometers or less. Moreover, it is more preferable that the circuit width of the copper circuit is 10 μm or less, and the width of the space between adjacent copper circuits is 10 μm or less. It is even more preferable that the circuit width of the copper circuit is 5 μm or less and the width of the space between adjacent copper circuits is 5 μm or less. Although it is not necessary to provide a lower limit of the circuit width, for example, the circuit width of the copper circuit is 3 μm or more, and the width of the space between adjacent copper circuits is 3 μm or more. For example, the circuit width of the copper circuit is 5 μm or more. Yes, the width of the space between adjacent copper circuits is 5 μm or more, for example, the circuit width of the copper circuit is 7 μm or more, and the width of the space between adjacent copper circuits is 7 μm or more, for example, the circuit width of the copper circuit Is 9 μm or more, and the width of the space between adjacent copper circuits is 9 μm or more. In addition, the above-mentioned copper plating layer can be formed on well-known conditions, such as the conditions of the plating solution used in order to form an ultra-thin copper layer.
The printed wiring board of the present invention has an insulating resin plate and a copper circuit provided on the insulating resin plate, and the copper circuit is provided on the copper layer and the copper layer in this order from the insulating resin plate side. In addition, the circuit width of the copper circuit may be less than 20 μm, and the width of the space between the copper circuit and the copper circuit may be less than 20 μm. At this time, the circuit width of the copper circuit is preferably 17 μm or less, and the width of the space between adjacent copper circuits is preferably 17 μm or less. At this time, the circuit width of the copper circuit is preferably 15 μm or less, and the width of the space between adjacent copper circuits is preferably 15 μm or less. Moreover, it is more preferable that the circuit width of the copper circuit is 10 μm or less, and the width of the space between adjacent copper circuits is 10 μm or less. It is even more preferable that the circuit width of the copper circuit is 5 μm or less and the width of the space between adjacent copper circuits is 5 μm or less. Although it is not necessary to provide a lower limit of the circuit width, for example, the circuit width of the copper circuit is 3 μm or more, and the width of the space between adjacent copper circuits is 3 μm or more. For example, the circuit width of the copper circuit is 5 μm or more. Yes, the width of the space between adjacent copper circuits is 5 μm or more, for example, the circuit width of the copper circuit is 7 μm or more, and the width of the space between adjacent copper circuits is 7 μm or more, for example, the circuit width of the copper circuit Is 9 μm or more, and the width of the space between adjacent copper circuits is 9 μm or more.
The printed wiring board of the present invention has an insulating resin plate and a copper circuit provided on the insulating resin plate, and the copper circuit is provided on the copper layer and the copper layer in this order from the insulating resin plate side. The amount of Ni deposited on the Ni layer is 5 μg / dm 2 or more and 300 μg / dm 2 or less, the circuit width of the copper circuit is less than 20 μm, and the width of the space between adjacent copper circuits is 20 μm It may be less. At this time, the circuit width of the copper circuit is preferably 17 μm or less, and the width of the space between adjacent copper circuits is preferably 17 μm or less. At this time, the circuit width of the copper circuit is preferably 15 μm or less, and the width of the space between adjacent copper circuits is preferably 15 μm or less. At this time, the circuit width of the copper circuit is preferably 10 μm or less, and the width of the space between adjacent copper circuits is more preferably 10 μm or less. It is even more preferable that the circuit width of the copper circuit is 5 μm or less and the width of the space between adjacent copper circuits is 5 μm or less. Although it is not necessary to provide a lower limit of the circuit width, for example, the circuit width of the copper circuit is 3 μm or more, and the width of the space between adjacent copper circuits is 3 μm or more. For example, the circuit width of the copper circuit is 5 μm or more. Yes, the width of the space between adjacent copper circuits is 5 μm or more, for example, the circuit width of the copper circuit is 7 μm or more, and the width of the space between adjacent copper circuits is 7 μm or more, for example, the circuit width of the copper circuit Is 9 μm or more, and the width of the space between adjacent copper circuits is 9 μm or more.
Moreover, the printed wiring board of this invention has an insulating resin board and the copper circuit provided on the insulating resin board, and the circuit width of a copper circuit is less than 20 micrometers, Between a copper circuit and a copper circuit The width of the space may be less than 20 μm. At this time, the circuit width of the copper circuit is preferably 17 μm or less, and the width of the space between adjacent copper circuits is preferably 17 μm or less. At this time, the circuit width of the copper circuit is preferably 15 μm or less, and the width of the space between adjacent copper circuits is preferably 15 μm or less. Although it is not necessary to provide a lower limit of the circuit width, for example, the circuit width of the copper circuit is 3 μm or more, and the width of the space between adjacent copper circuits is 3 μm or more. For example, the circuit width of the copper circuit is 5 μm or more. Yes, the width of the space between adjacent copper circuits is 5 μm or more, for example, the circuit width of the copper circuit is 7 μm or more, and the width of the space between adjacent copper circuits is 7 μm or more, for example, the circuit width of the copper circuit Is 9 μm or more, and the width of the space between adjacent copper circuits is 9 μm or more.
The copper circuit of the printed wiring board and the printed circuit board of the present invention is obtained by attaching a copper foil with a carrier to an insulating resin plate from the ultrathin copper layer side, thermocompression bonding, peeling off the copper foil carrier, and then removing the ultrathin copper layer portion. It can be formed by etching. The insulating resin board used here is not particularly limited as long as it has characteristics applicable to a printed wiring board. For example, a paper base phenolic resin, a paper base epoxy resin, a synthetic fiber cloth base for rigid PWB are used. Material epoxy resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin, glass cloth base material epoxy resin, etc. can be used, polyester film or polyimide film etc. can be used for FPC it can. The printed wiring board and the printed board thus produced can be mounted on various electronic components that require high-density mounting of the mounted components.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

1.キャリア付銅箔の製造
銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)を用意した。この銅箔のシャイニー面に対して、中間層を形成した。中間層の形成は、表1の「中間層」の項目に記載の処理順により行った。すなわち、例えば「Ni/クロメート」と表記されているものは、まず「Ni」の処理を行った後、「クロメート」の処理を行ったことを示している。また、当該「中間層」の項目において、「Ni」と表記されているのは純ニッケルめっきを行ったことを意味し、「Ni−Zn」と表記されているのはニッケル亜鉛合金めっきを行ったことを意味し、「Cr」と表記されているのはクロムめっきを行ったことを意味し、「クロメート」と表記されているのは純クロメート処理を行ったことを意味し、「Zn−クロメート」と表記されているのは亜鉛クロメート処理を行ったことを意味し、「Ni−Mo」と表記されているのはニッケルモリブデン合金めっきを行ったことを意味し、「有機」と表記されているのは有機物層形成処理を行ったことを意味し、「Ni酸化物」と表記されているのは酸化ニッケル層形成処理を行ったことを意味する。以下に、各処理条件を示す。なお、Ni、Zn、Cr、Moの付着量を多くする場合には、電流密度を高めに設定すること、および/または、めっき時間を長めに設定すること、および/または、めっき液中の各元素の濃度を高くすることを行った。また、Ni、Zn、Cr、Moの付着量を少なくする場合には、電流密度を低めに設定すること、および/または、めっき時間を短めに設定すること、および/または、めっき液中の各元素の濃度を低くすることを行った。また、中間層が有機物であり、有機物層の厚みを厚くする場合には、有機物の層をキャリア上に設ける処理に使用する液中の有機物の濃度を高くすること、および/または、前記有機物層をキャリア上に設ける処理の時間を長くすることを行った。また、めっき液等の液組成の残部は水である。
1. Production of Copper Foil with Carrier A long electrolytic copper foil (JTC made by JX Nippon Mining & Metals) having a thickness of 35 μm was prepared as a copper foil carrier. An intermediate layer was formed on the shiny surface of the copper foil. The formation of the intermediate layer was performed according to the processing order described in the item “intermediate layer” in Table 1. That is, for example, what is described as “Ni / chromate” indicates that “Ni” is first processed and then “chromate” is processed. In the “intermediate layer” item, “Ni” means that pure nickel plating was performed, and “Ni—Zn” means that nickel zinc alloy plating was performed. "Cr" means that chromium plating was performed, and "chromate" means that pure chromate treatment was performed, and "Zn- “Chromate” means that the zinc chromate treatment was performed, and “Ni-Mo” means that the nickel-molybdenum alloy plating was performed, and “organic” was indicated. This means that the organic layer forming process has been performed, and “Ni oxide” means that the nickel oxide layer forming process has been performed. Each processing condition is shown below. In addition, when increasing the adhesion amount of Ni, Zn, Cr, and Mo, setting the current density higher and / or setting the plating time longer, and / or each in the plating solution The element concentration was increased. Moreover, when reducing the adhesion amount of Ni, Zn, Cr, and Mo, the current density should be set low and / or the plating time should be set short, and / or each in the plating solution The element concentration was lowered. Further, when the intermediate layer is organic and the thickness of the organic layer is increased, the concentration of the organic substance in the liquid used for the treatment of providing the organic layer on the carrier is increased and / or the organic layer The processing time for providing the substrate on the carrier was lengthened. The balance of the liquid composition such as a plating solution is water.

・「Ni」:ニッケルめっき
(液組成)硫酸ニッケル:270〜280g/L、塩化ニッケル:35〜45g/L、酢酸ニッケル:10〜20g/L、クエン酸三ナトリウム:15〜25g/L、光沢剤:サッカリン、ブチンジオール等、ドデシル硫酸ナトリウム:55〜75ppm
(pH)4〜6
(液温)55〜65℃
(電流密度)1〜11A/dm2
(通電時間)1〜20秒
"Ni": Nickel plating (Liquid composition) Nickel sulfate: 270-280 g / L, Nickel chloride: 35-45 g / L, Nickel acetate: 10-20 g / L, Trisodium citrate: 15-25 g / L, luster Agents: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 55-75 ppm
(PH) 4-6
(Liquid temperature) 55-65 degreeC
(Current density) 1 to 11 A / dm 2
(Energization time) 1 to 20 seconds

・「Ni−Zn」:ニッケル亜鉛合金めっき
上記ニッケルめっきの形成条件において、ニッケルめっき液中に硫酸亜鉛(ZnSO4)の形態の亜鉛を添加し、亜鉛濃度:0.05〜5g/Lの範囲で調整してニッケル亜鉛合金めっきを形成した。
- "Ni-Zn": in the formation conditions of the nickel-zinc alloy plating the nickel plating, was added in the form of zinc of zinc sulfate (ZnSO 4) in the nickel plating solution, zinc concentration: 0.05-5 g / L range In this way, a nickel zinc alloy plating was formed.

・「Cr」:クロムめっき
(液組成)CrO3:200〜400g/L、H2SO4:1.5〜4g/L
(pH)1〜4
(液温)45〜60℃
(電流密度)10〜40A/dm2
(通電時間)1〜20秒
- "Cr": chromium plating (liquid composition) CrO 3: 200~400g / L, H 2 SO 4: 1.5~4g / L
(PH) 1-4
(Liquid temperature) 45-60 ° C
(Current density) 10-40 A / dm 2
(Energization time) 1 to 20 seconds

・「クロメート」:電解純クロメート処理
(液組成)重クロム酸カリウム:1〜10g/L、亜鉛:0g/L
(pH)7〜10
(液温)40〜60℃
(電流密度)0.1〜2.6A/dm2
(クーロン量)0.5〜90As/dm2
(通電時間)1〜30秒
"Chromate": Electrolytic pure chromate treatment (Liquid composition) Potassium dichromate: 1-10 g / L, Zinc: 0 g / L
(PH) 7-10
(Liquid temperature) 40-60 ° C
(Current density) 0.1-2.6 A / dm 2
(Coulomb amount) 0.5 to 90 As / dm 2
(Energization time) 1 to 30 seconds

・「Zn−クロメート」:亜鉛クロメート処理
上記電解純クロメート処理条件において、液中に硫酸亜鉛(ZnSO4)の形態の亜鉛を添加し、亜鉛濃度:0.05〜5g/Lの範囲で調整して亜鉛クロメート処理を行った。
· "Zn- Chromate": In Zinc chromate treatment the electrolytic pure chromate treatment conditions, the addition of zinc in the form of zinc sulfate (ZnSO 4) in the liquid zinc concentration was adjusted within the range of 0.05-5 g / L The zinc chromate treatment was performed.

・「Ni−Mo」:ニッケルモリブデン合金めっき
(液組成)硫酸Ni六水和物:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
(液温)30℃
(電流密度)1〜4A/dm2
(通電時間)3〜25秒
"Ni-Mo": nickel molybdenum alloy plating (Liquid composition) Ni sulfate hexahydrate: 50 g / dm 3 , sodium molybdate dihydrate: 60 g / dm 3 , sodium citrate: 90 g / dm 3
(Liquid temperature) 30 ° C
(Current density) 1 to 4 A / dm 2
(Energization time) 3 to 25 seconds

・「有機」:有機物層形成処理
濃度1〜30g/Lのカルボキシベンゾトリアゾール(CBTA)を含む、液温40℃、pH5の水溶液を、20〜120秒間シャワーリングして噴霧することにより行った。
“Organic”: Organic substance layer forming treatment An aqueous solution containing carboxybenzotriazole (CBTA) at a concentration of 1 to 30 g / L and having a liquid temperature of 40 ° C. and a pH of 5 was showered and sprayed for 20 to 120 seconds.

・「Ni酸化物」:酸化ニッケル層形成処理
酸化ニッケル層形成処理として、まず、下記条件のNiめっきによってNi層を形成した後、そのNi層に対して下記条件のアノード処理を行ってNi層を酸化することで、酸化ニッケル層を形成した。
−Niめっき条件−
(液組成)硫酸ニッケル:240g/L、塩化ニッケル:45g/L、ホウ酸:30g/L
(pH)5
(液温)40℃
(電流密度)10A/dm2
(電解時間)20秒
−アノード処理条件−
(処理溶液)硫酸溶液:0.5mol/L
(液温)25℃
(電流密度)10A/dm2
(処理時間)30秒
"Ni oxide": Nickel oxide layer formation treatment As a nickel oxide layer formation treatment, first, a Ni layer is formed by Ni plating under the following conditions, and then the Ni layer is subjected to an anodic treatment under the following conditions. Was oxidized to form a nickel oxide layer.
-Ni plating conditions-
(Liquid composition) Nickel sulfate: 240 g / L, Nickel chloride: 45 g / L, Boric acid: 30 g / L
(PH) 5
(Liquid temperature) 40 ° C
(Current density) 10 A / dm 2
(Electrolysis time) 20 seconds -Anodic treatment conditions-
(Treatment solution) Sulfuric acid solution: 0.5 mol / L
(Liquid temperature) 25 ° C
(Current density) 10 A / dm 2
(Processing time) 30 seconds

・「Ni−Co」:ニッケルコバルト合金めっき
(液組成)Co:1〜2g/L、Ni:30〜70g/L
(pH)1.5〜3.5
(液温)30〜80℃
(電流密度)1.0〜20.0A/dm2
(通電時間)0.5〜4秒
"Ni-Co": Nickel cobalt alloy plating (Liquid composition) Co: 1-2 g / L, Ni: 30-70 g / L
(PH) 1.5 to 3.5
(Liquid temperature) 30-80 ° C
(Current density) 1.0-20.0 A / dm 2
(Energization time) 0.5-4 seconds

・「Ni−P」:ニッケルリン合金めっき
(液組成)Ni:30〜70g/L、P:0.2〜1.2g/L
(pH)1.5〜2.5
(液温)30〜40℃
(電流密度)1.0〜10.0A/dm2
(通電時間)0.5〜30秒
"Ni-P": Nickel phosphorus alloy plating (Liquid composition) Ni: 30 to 70 g / L, P: 0.2 to 1.2 g / L
(PH) 1.5-2.5
(Liquid temperature) 30-40 ° C
(Current density) 1.0-10.0 A / dm < 2 >
(Energization time) 0.5-30 seconds

・「Ni−Cu−Co」:ニッケル銅コバルト合金めっき
(液組成)Ni:30〜70g/L、Cu:1〜2g/L、Co:1〜2g/L
(pH)1〜4
(液温)30〜50℃
(電流密度)1.0〜10.0A/dm2
(通電時間)0.5〜30秒
"Ni-Cu-Co": Nickel copper cobalt alloy plating (Liquid composition) Ni: 30-70 g / L, Cu: 1-2 g / L, Co: 1-2 g / L
(PH) 1-4
(Liquid temperature) 30-50 ° C
(Current density) 1.0-10.0 A / dm < 2 >
(Energization time) 0.5-30 seconds

・「Ni−Fe」:スパッタリングによるニッケル鉄合金乾式めっき
Ni:99mass%、Fe:1mass%の組成のスパッタリングターゲットを用いてニッケル鉄合金層を形成した。
ターゲット:Ni:99mass%、Fe:1mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
"Ni-Fe": Nickel iron alloy dry plating by sputtering A nickel iron alloy layer was formed using a sputtering target having a composition of Ni: 99 mass% and Fe: 1 mass%.
Target: Ni: 99 mass%, Fe: 1 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa

・「Ni−Ti」:スパッタリングによるニッケルチタン合金乾式めっき
Ni:99mass%、Ti:1mass%の組成のスパッタリングターゲットを用いてニッケルチタン合金層を形成した。
ターゲット:Ni:99mass%、Ti:1mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
"Ni-Ti": Nickel-titanium alloy dry plating by sputtering A nickel-titanium alloy layer was formed using a sputtering target having a composition of Ni: 99 mass% and Ti: 1 mass%.
Target: Ni: 99 mass%, Ti: 1 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa

・「Ni−Al」:スパッタリングによるニッケルアルミニウム合金乾式めっき
Ni:99mass%、Al:1mass%の組成のスパッタリングターゲットを用いてニッケルアルミニウム合金層を形成した。
ターゲット:Ni:99mass%、Al:1mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
"Ni-Al": Nickel aluminum alloy dry plating by sputtering A nickel aluminum alloy layer was formed using a sputtering target having a composition of Ni: 99 mass% and Al: 1 mass%.
Target: Ni: 99 mass%, Al: 1 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa

中間層の形成後、中間層の上に厚み1〜10μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
After forming the intermediate layer, an ultrathin copper layer having a thickness of 1 to 10 μm was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

2.キャリア付銅箔の評価
上記のようにして得られたキャリア付銅箔について、以下の方法で各評価を実施した。
<中間層の金属付着量>
ニッケル付着量はサンプルを濃度20質量%の硝酸で溶解してICP発光分析によって測定し、亜鉛、クロム及びモリブデン付着量はサンプルを濃度7質量%の塩酸にて溶解して、原子吸光法により定量分析を行うことで測定した。なお、前記ニッケル、亜鉛、クロム、モリブデン付着量の測定は以下のようにして行った。まず、キャリア付銅箔から極薄銅層を剥離した後、極薄銅層の中間層側の表面付近のみを溶解して(面から0.5μm厚みのみ溶解する。すなわち、後述の表1及び2に示すように極薄銅層の厚みが5μmである実施例1〜8、14〜28及び比較例1〜4、9〜13については、極薄銅層の厚みの10%溶解する。また、極薄銅層の厚みが4μmである実施例10及び比較例5については、極薄銅層の厚みの12.5%溶解する。また、極薄銅層の厚みが3μmである実施例9、11及び比較例6については、極薄銅層の厚みの16.7%溶解する。また、極薄銅層の厚みが2μmである実施例12及び比較例7については、極薄銅層の厚みの25%溶解する。また、極薄銅層の厚みが1μmである実施例13及び比較例8については、極薄銅層の厚みの50%溶解する。)、極薄銅層の中間層側の表面の付着量を測定する。また、極薄銅層を剥離した後に、キャリアの中間層側の表面付近のみを溶解して(面から0.5μm厚みのみ溶解する)、キャリアの中間層側の表面の付着量を測定する。そして、極薄銅層の中間層側の表面の付着量とキャリアの中間層側の表面の付着量とを合計した値を、中間層の金属付着量とした。
2. Evaluation of copper foil with carrier The copper foil with carrier obtained as described above was evaluated by the following methods.
<Metal adhesion amount of intermediate layer>
The amount of nickel deposited was measured by ICP emission analysis after dissolving the sample in nitric acid at a concentration of 20% by mass. The amount of zinc, chromium and molybdenum deposited was dissolved in hydrochloric acid at a concentration of 7% by mass and determined by atomic absorption spectrometry. It was measured by performing an analysis. In addition, the measurement of the said nickel, zinc, chromium, and molybdenum adhesion amount was performed as follows. First, after separating the ultra-thin copper layer of a copper foil with carrier, dissolved only 0.5μm thick only the dissolved near the surface of the intermediate layer side (from the front surface of the ultra-thin copper layer. In other words, Table 1 below And about Examples 1-8 and 14-28 and Comparative Examples 1-4 and 9-13 whose thickness of an ultra-thin copper layer is 5 micrometers as shown to 2 and 10% melt | dissolves in the thickness of an ultra-thin copper layer. Moreover, 12.5% of the thickness of the ultrathin copper layer is dissolved in Example 10 and Comparative Example 5 in which the thickness of the ultrathin copper layer is 4 μm, and the thickness of the ultrathin copper layer is 3 μm. 9 and 11 and Comparative Example 6 dissolve 16.7% of the thickness of the ultrathin copper layer, and for Example 12 and Comparative Example 7 where the thickness of the ultrathin copper layer is 2 μm, the ultrathin copper layer Further, Example 13 and Comparative Example 8 in which the thickness of the ultrathin copper layer is 1 μm are extremely thin. Dissolving 50% of the thickness of the layer.), To measure the deposition amount of the intermediate layer side of the surface of the ultrathin copper layer. Further, after peeling the ultra-thin copper layer, by dissolving only the vicinity of the surface of the intermediate layer side of the carrier (dissolved only 0.5μm thickness from the front surface) to measure the deposition amount of the intermediate layer side of the surface of the carrier . And the value which totaled the adhesion amount of the surface by the side of the intermediate | middle layer of an ultra-thin copper layer and the adhesion amount of the surface by the side of the intermediate | middle layer of a carrier was made into the metal adhesion amount of an intermediate | middle layer.

<中間層の有機物厚み>
キャリア付銅箔の極薄銅層をキャリアから剥離した後に、露出した極薄銅層の中間層側の表面と、露出したキャリアの中間層側の表面をXPS測定し、デプスプロファイルを作成した。そして、極薄銅層の中間層側の表面から最初に炭素濃度が3at%以下となった深さをA(nm)とし、キャリアの中間層側の表面から最初に炭素濃度が3at%以下となった深さをB(nm)とし、AとBとの合計を中間層の有機物の厚み(nm)とした。
XPSの稼働条件を以下に示す。
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
<Thickness of organic material in the intermediate layer>
After peeling the ultrathin copper layer of the carrier-attached copper foil from the carrier, XPS measurement was performed on the surface of the exposed ultrathin copper layer on the intermediate layer side and the surface of the exposed carrier on the intermediate layer side to create a depth profile. The depth at which the carbon concentration first becomes 3 at% or less from the surface on the intermediate layer side of the ultrathin copper layer is defined as A (nm), and the carbon concentration is initially 3 at% or less from the surface on the intermediate layer side of the carrier. The resulting depth was defined as B (nm), and the sum of A and B was defined as the thickness (nm) of the organic substance in the intermediate layer.
XPS operating conditions are shown below.
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieving vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )

<極薄銅層表面のNi付着量>
キャリア付銅箔を極薄銅層側をBT樹脂(トリアジン−ビスマレイミド系樹脂、三菱瓦斯化学株式会社製)に貼り付けて220℃で2時間加熱圧着した。その後、JIS C 6471(方法A)に準拠して極薄銅層を銅箔キャリアから剥がした。続いて、極薄銅層の中間層側の表面のNiの付着量を、サンプルを濃度20質量%の硝酸で溶解してICP発光分析することで測定した。なお、極薄銅層の中間層側の表面とは反対側の表面にNiを含む表面処理がされている場合には、極薄銅層の中間層側の表面付近のみを溶解する(面から0.5μm厚みのみ溶解する。すなわち、後述の表1及び2に示すように極薄銅層の厚みが5μmである実施例1〜8、14〜28及び比較例1〜4、9〜13については、極薄銅層の厚みの10%溶解する。また、極薄銅層の厚みが4μmである実施例10及び比較例5については、極薄銅層の厚みの12.5%溶解する。また、極薄銅層の厚みが3μmである実施例9、11及び比較例6については、極薄銅層の厚みの16.7%溶解する。また、極薄銅層の厚みが2μmである実施例12及び比較例7については、極薄銅層の厚みの25%溶解する。また、極薄銅層の厚みが1μmである実施例13及び比較例8については、極薄銅層の厚みの50%溶解する。)ことで、極薄銅層の中間層側の表面のNiの付着量を測定することができる。
<Ni adhesion amount on ultrathin copper layer surface>
The copper foil with a carrier was bonded to a BT resin (triazine-bismaleimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.) on the ultrathin copper layer side and thermocompression bonded at 220 ° C. for 2 hours. Thereafter, the ultrathin copper layer was peeled off from the copper foil carrier in accordance with JIS C 6471 (Method A). Subsequently, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer was measured by dissolving the sample with nitric acid having a concentration of 20% by mass and performing ICP emission analysis. Incidentally, the poles and the intermediate layer side of the surface of the thin copper layer if it is a surface treatment containing Ni on the surface of the opposite side, to dissolve only the vicinity of the surface of the intermediate layer side of the ultrathin copper layer (front surface In other words, as shown in Tables 1 and 2 below, Examples 1 to 8, 14 to 28 and Comparative Examples 1 to 4 and 9 to 13 in which the thickness of the ultrathin copper layer is 5 μm are dissolved. In Example 10 and Comparative Example 5 in which the thickness of the ultrathin copper layer is 4 μm, 12.5% of the thickness of the ultrathin copper layer is dissolved. Further, in Examples 9 and 11 and Comparative Example 6 in which the thickness of the ultrathin copper layer is 3 μm, 16.7% of the thickness of the ultrathin copper layer is dissolved, and the thickness of the ultrathin copper layer is 2 μm. About Example 12 and Comparative Example 7, 25% of the thickness of the ultrathin copper layer is dissolved, and the thickness of the ultrathin copper layer is 1 μm. That for Example 13 and Comparative Example 8, in.) To 50% dissolution of the thickness of the ultra-thin copper layer, it is possible to measure the deposition amount of the Ni middle layer side of the surface of the ultrathin copper layer.

<エッチングファクター>
キャリア付銅箔をポリイミド基板に貼り付けて220℃で2時間加熱圧着し、その後、極薄銅層を銅箔キャリアから剥がした。続いて、ポリイミド基板上の極薄銅層表面に、感光性レジストを塗布した後、露光工程により50本のL/S=5μm/5μm幅の回路を印刷し、銅層の不要部分を除去するエッチング処理を以下のスプレーエッチング条件にて行った。
(スプレーエッチング条件)
エッチング液:塩化第二鉄水溶液(ボーメ度:40度)
液温:60℃
スプレー圧:2.0MPa
エッチングを続け、回路トップ幅が4μmになるまでの時間を測定し、さらにそのときの回路ボトム幅(底辺Xの長さ)及びエッチングファクターを評価した。エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。図1に、回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このは回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。なお、=(X(μm)−4(μm))/2で計算した。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。本発明では、エッチングファクターが5以上をエッチング性:○、2.5以上5未満をエッチング性:△、2.5未満或いは算出不可をエッチング性:×と評価した。なお、表中「底辺Xの長さ」における「連結」は、少なくとも底辺部分において隣接する回路と連結してしまい、回路が形成できなかったことを示している。
<Etching factor>
The carrier-attached copper foil was affixed to the polyimide substrate and heat-pressed at 220 ° C. for 2 hours, and then the ultrathin copper layer was peeled off from the copper foil carrier. Subsequently, after applying a photosensitive resist to the surface of the ultra-thin copper layer on the polyimide substrate, 50 L / S = 5 μm / 5 μm wide circuits are printed by an exposure process to remove unnecessary portions of the copper layer. The etching process was performed under the following spray etching conditions.
(Spray etching conditions)
Etching solution: Ferric chloride aqueous solution (Baume degree: 40 degrees)
Liquid temperature: 60 ° C
Spray pressure: 2.0 MPa
Etching was continued, the time until the circuit top width reached 4 μm was measured, and the circuit bottom width (the length of the base X) and the etching factor at that time were evaluated. The etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging at the end (when sagging occurs) Is a ratio of a to the thickness b of the copper foil: b / a, and the larger the value, the larger the inclination angle, and the etching residue does not remain and the sagging is small. It means to become. FIG. 1 shows a schematic diagram of a cross section in the width direction of a circuit pattern and an outline of a method for calculating an etching factor using the schematic diagram. This X was measured by SEM observation from above the circuit, and the etching factor (EF = b / a) was calculated. In addition, it calculated by a = (X (micrometer) -4 (micrometer)) / 2. By using this etching factor, it is possible to easily determine whether the etching property is good or bad. In the present invention, an etching factor of 5 or higher was evaluated as an etching property: ◯, an etching factor of 2.5 or more and less than 5 was evaluated as an etching property: Δ, less than 2.5, or an uncalculated value was evaluated as an etching property: ×. In the table, “connection” in “the length of the base X” indicates that the circuit cannot be formed because it is connected to an adjacent circuit at least at the base.

<ピンホール>
キャリア付銅箔の極薄銅層側の表面をBT樹脂(トリアジン−ビスマレイミド系樹脂、三菱瓦斯化学株式会社製)に貼り付けて220℃で2時間加熱圧着した。次に、キャリア側を上に向け、キャリア付銅箔のサンプルを手で押さえながら、無理に引き剥がすことなく極薄銅層が途中で切れてしまわないように注意しながら極薄銅層からキャリアを手で剥がした。続いて、BT樹脂(トリアジン−ビスマレイミド系樹脂、三菱瓦斯化学株式会社製)上の極薄銅層表面に対し、民生用の写真用バックライトを光源にして、目視でピンホールの数を測定した。評価は以下の基準により行った。
×:ピンホール10,000個/dm2
△:ピンホール5,000個/dm2以上〜10,000個/dm2以下
○:ピンホール100個/dm2以上〜5,000個/dm2未満
◎:ピンホール20個/dm2以上〜100個/dm2未満
◎◎:ピンホール20個/dm2未満
結果を表1及び表2に示す。
<Pinhole>
The ultrathin copper layer side surface of the copper foil with a carrier was attached to BT resin (triazine-bismaleimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and thermocompression bonded at 220 ° C. for 2 hours. Next, while holding the carrier-side copper foil sample up with your hands and taking care not to tear the ultrathin copper layer halfway without forcibly peeling it off, remove the carrier from the ultrathin copper layer. Was peeled off by hand. Subsequently, the number of pinholes was visually measured using a consumer photographic backlight as the light source on the ultrathin copper layer surface on the BT resin (triazine-bismaleimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.). did. Evaluation was performed according to the following criteria.
×: More than 10,000 pinholes / dm 2 Δ: More than 5,000 pinholes / dm 2 to 10,000 / dm 2 ○: More than 100 pinholes / dm 2 to 5,000 / dm Less than 2 A : 20 pinholes / dm 2 or more to less than 100 / dm 2 A : Less than 20 pinholes / dm 2 The results are shown in Tables 1 and 2.

実施例1〜28は、いずれも、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、極薄銅層の中間層側の表面のNiの付着量が300μg/dm2以下であったため、エッチング性が良好であり、ピンホールの発生が良好に抑制されていた。
比較例1〜10は、いずれも、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、極薄銅層の中間層側の表面のNiの付着量が300μg/dm2を超えたため、エッチング性が不良であった。
比較例11〜13は、いずれも、キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して極薄銅層を剥がしたとき、極薄銅層の中間層側の表面のNiの付着量が5μg/dm2未満であったため、極薄銅層にピンホールが多く発生した。
In Examples 1 to 28, when the copper foil with a carrier was heated at 220 ° C. for 2 hours and then the ultrathin copper layer was peeled off in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer Since the adhesion amount of Ni was 300 μg / dm 2 or less, the etching property was good and the occurrence of pinholes was well suppressed.
In Comparative Examples 1 to 10, after heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer Since the adhesion amount of Ni exceeded 300 μg / dm 2 , the etching property was poor.
In Comparative Examples 11 to 13, after heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the surface on the intermediate layer side of the ultrathin copper layer Since the amount of Ni deposited was less than 5 μg / dm 2 , many pinholes were generated in the ultrathin copper layer.

<MSAPによるプリント配線板の製造>
上述の各実施例及び各比較例のキャリア付銅箔を用いて、MSAP(Modified semi additive Process:修正されたセミアディティブ工程)によりL/S=15μm/15μmのプリント配線板を作製したところ、全ての実施例と比較例11〜13のキャリア付銅箔を用いた場合においては、MSAPによりL/S=15μm/15μmのプリント配線板を製造することができた。また、比較例1〜10のキャリア付銅箔を用いた場合にはMSAPによりL/S=15μm/15μmのプリント配線板を製造することができなかった。また、実施例16、実施例21のキャリア付銅箔を用いて、MSAP(Modified semi additive Process:修正されたセミアディティブ工程)によりL/S=5μm/10μmおよびL/S=8μm/7μmのプリント配線板を作製したところ、実施例16、実施例21を用いた場合においては、L/S=5μm/10μmおよびL/S=8μm/7μmのプリント配線板を製造することができた。
<Manufacture of printed wiring boards by MSAP>
Using the copper foil with carrier of each of the above examples and comparative examples, printed wiring boards with L / S = 15 μm / 15 μm were prepared by MSAP (Modified semi additive process). In the case of using the copper foil with a carrier of Example and Comparative Examples 11 to 13, a printed wiring board with L / S = 15 μm / 15 μm could be manufactured by MSAP. Moreover, when the copper foil with a carrier of Comparative Examples 1-10 was used, the printed wiring board of L / S = 15micrometer / 15micrometer could not be manufactured by MSAP. Moreover, using the copper foil with a carrier of Example 16 and Example 21, L / S = 5 μm / 10 μm and L / S = 8 μm / 7 μm by MSAP (Modified semi additive process). When a wiring board was produced, when Example 16 and Example 21 were used, printed wiring boards with L / S = 5 μm / 10 μm and L / S = 8 μm / 7 μm could be produced.

Claims (14)

銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記中間層はNiを含み、
前記キャリア付銅箔を220℃で2時間加熱した後、JIS C 6471に準拠して前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上300μg/dm2以下であるキャリア付銅箔。
A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer,
The intermediate layer includes Ni;
After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer in accordance with JIS C 6471, the amount of Ni deposited on the surface of the ultrathin copper layer on the intermediate layer side is 5μg / dm 2 or more 300μg / dm 2 or less is a copper foil with a carrier.
前記キャリア付銅箔を220℃で2時間加熱した後、前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上250μg/dm2以下である請求項1に記載のキャリア付銅箔。 When the ultrathin copper layer is peeled off after heating the copper foil with carrier at 220 ° C. for 2 hours, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer is 5 μg / dm 2 or more and 250 μg / The copper foil with a carrier according to claim 1, which is dm 2 or less. 前記キャリア付銅箔を220℃で2時間加熱した後、前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dm2以上200μg/dm2以下である請求項2に記載のキャリア付銅箔。 After heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer is 5 μg / dm 2 or more and 200 μg / The copper foil with a carrier according to claim 2, which is dm 2 or less. 前記キャリア付銅箔を220℃で2時間加熱した後、前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dmAfter heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer is 5 μg / dm. 22 以上156μg/dm156 μg / dm 22 以下である請求項3に記載のキャリア付銅箔。The copper foil with a carrier according to claim 3, which is the following. 前記キャリア付銅箔を220℃で2時間加熱した後、前記極薄銅層を剥がしたとき、前記極薄銅層の前記中間層側の表面のNiの付着量が5μg/dmAfter heating the copper foil with carrier at 220 ° C. for 2 hours and then peeling off the ultrathin copper layer, the adhesion amount of Ni on the surface on the intermediate layer side of the ultrathin copper layer is 5 μg / dm. 22 以上108μg/dm108 μg / dm 22 以下である請求項4に記載のキャリア付銅箔。It is the following, The copper foil with a carrier of Claim 4. 前記中間層のNi含有量が、100μg/dm2以上5000μg/dm2以下である請求項1〜のいずれかに記載のキャリア付銅箔。 The Ni content of the intermediate layer, copper foil with carrier according to any one of claims 1 to 5, in 100 [mu] g / dm 2 or more 5000 [mu] g / dm 2 or less. 前記中間層が、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含む請求項1〜のいずれかに記載のキャリア付銅箔。 The intermediate layer is selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates, oxides, and organic matter. The copper foil with a carrier in any one of Claims 1-6 containing 1 type, or 2 or more types. 前記中間層が、Crを含む場合は、Crを5〜100μg/dm2含有し、Moを含む場合は、Moを50μg/dm2以上1000μg/dm2以下含有し、Znを含む場合は、Znを1μg/dm2以上120μg/dm2以下含有する請求項に記載のキャリア付銅箔。 If the intermediate layer, containing Cr is, Cr was contained 5~100μg / dm 2, when containing Mo, contains Mo 50μg / dm 2 or more 1000 [mu] g / dm 2 or less, if it contains Zn may, Zn the copper foil with carrier according to claim 7, containing 1 [mu] g / dm 2 or more 120 [mu] g / dm 2 or less. 前記中間層が有機物を厚みで25nm以上80nm以下含有する請求項又はに記載のキャリア付銅箔。 The copper foil with a carrier according to claim 7 or 8 , wherein the intermediate layer contains an organic substance in a thickness of 25 nm to 80 nm. 前記有機物が、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸の中から選択される1種又は2種以上からなる有機物である請求項のいずれかに記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 7 to 9 , wherein the organic substance is an organic substance composed of one or more selected from a nitrogen-containing organic compound, a sulfur-containing organic compound, and a carboxylic acid. 前記極薄銅層表面に粗化処理層を有する請求項1〜10のいずれかに記載のキャリア付銅箔。 The copper foil with a carrier in any one of Claims 1-10 which have a roughening process layer in the said ultra-thin copper layer surface. 前記粗化処理層が、銅、ニッケル、コバルト、りん、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項11に記載のキャリア付銅箔。 The roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium, and zinc, or an alloy containing at least one kind. Item 11. A copper foil with a carrier according to Item 11 . 前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項11又は12に記載のキャリア付銅箔。 The copper with a carrier according to claim 11 or 12 , which has one or more layers selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the roughened layer. Foil. 前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜10のいずれかに記載のキャリア付銅箔。 On the surface of the ultra-thin copper layer, heat-resistant layer, the anticorrosive layer, according to any one of claims 1 to 10 having one or more layers selected from the group consisting of chromate treatment layer and a silane coupling treatment layer Copper foil with carrier.
JP2012271631A 2012-11-30 2012-12-12 Copper foil with carrier Active JP5481553B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012271631A JP5481553B1 (en) 2012-11-30 2012-12-12 Copper foil with carrier
MYPI2015701635A MY171825A (en) 2012-11-30 2013-11-29 Copper foil with carrier
KR1020157015151A KR101797333B1 (en) 2012-11-30 2013-11-29 Copper foil with carrier
CN201380062754.3A CN104822525B (en) 2012-11-30 2013-11-29 Copper foil with carrier
PCT/JP2013/082283 WO2014084385A1 (en) 2012-11-30 2013-11-29 Copper foil with carrier
TW102143728A TWI503456B (en) 2012-11-30 2013-11-29 Attached copper foil
PH12015501163A PH12015501163A1 (en) 2012-11-30 2015-05-25 Copper foil with carrier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012263841 2012-11-30
JP2012263841 2012-11-30
JP2012271631A JP5481553B1 (en) 2012-11-30 2012-12-12 Copper foil with carrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013195804A Division JP2014128967A (en) 2012-11-30 2013-09-20 Printed wiring board and printed substrate

Publications (2)

Publication Number Publication Date
JP5481553B1 true JP5481553B1 (en) 2014-04-23
JP2014129555A JP2014129555A (en) 2014-07-10

Family

ID=50749981

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012271631A Active JP5481553B1 (en) 2012-11-30 2012-12-12 Copper foil with carrier
JP2013195804A Pending JP2014128967A (en) 2012-11-30 2013-09-20 Printed wiring board and printed substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013195804A Pending JP2014128967A (en) 2012-11-30 2013-09-20 Printed wiring board and printed substrate

Country Status (7)

Country Link
JP (2) JP5481553B1 (en)
KR (1) KR101797333B1 (en)
CN (1) CN104822525B (en)
MY (1) MY171825A (en)
PH (1) PH12015501163A1 (en)
TW (1) TWI503456B (en)
WO (1) WO2014084385A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762049B1 (en) * 2013-06-13 2017-07-26 제이엑스금속주식회사 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and production method for printed wiring board
JP2016050364A (en) * 2014-08-29 2016-04-11 Jx金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and laminate, and methods for manufacturing copper foil with carrier, copper-clad laminate, and printed wiring board
JP6509608B2 (en) * 2015-03-30 2019-05-08 Jx金属株式会社 Carrier-coated copper foil, laminate, printed wiring board, electronic device, and method of manufacturing printed wiring board
JP6854114B2 (en) * 2016-01-04 2021-04-07 Jx金属株式会社 Surface-treated copper foil
US10383222B2 (en) 2016-01-04 2019-08-13 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
WO2021157373A1 (en) * 2020-02-04 2021-08-12 三井金属鉱業株式会社 Metal foil with carrier
CN113386417A (en) * 2021-07-08 2021-09-14 江西柔顺科技有限公司 Copper-clad plate and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368365A (en) * 2001-06-04 2002-12-20 Nikko Materials Co Ltd Composite copper foil equipped with copper or copper alloy support and printed board using the same
JP2003094553A (en) * 2001-09-20 2003-04-03 Nippon Denkai Kk Composite copper foil and manufacturing method therefor
JP2004103681A (en) * 2002-09-06 2004-04-02 Nikko Materials Co Ltd Composite copper foil equipped with copper or copper-alloy substrate and printed board using the foil
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
WO2012132572A1 (en) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit
WO2012132578A1 (en) * 2011-03-29 2012-10-04 Jx日鉱日石金属株式会社 Copper foil with copper carrier, method for producing same, copper foil for electronic circuit, method for producing same, and method for forming electronic circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955263B2 (en) * 2004-12-15 2012-06-20 イビデン株式会社 Printed wiring board
CN100556228C (en) * 2004-12-15 2009-10-28 揖斐电株式会社 Printed circuit board (PCB)
JP4829647B2 (en) * 2006-03-10 2011-12-07 三菱瓦斯化学株式会社 Printed wiring board and manufacturing method thereof
US8512873B2 (en) * 2008-07-22 2013-08-20 Furukawa Electric Co., Ltd. Surface treated copper foil and copper clad laminate
JP5165773B2 (en) * 2011-02-10 2013-03-21 フリージア・マクロス株式会社 Metal foil with carrier and method for producing laminated substrate using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368365A (en) * 2001-06-04 2002-12-20 Nikko Materials Co Ltd Composite copper foil equipped with copper or copper alloy support and printed board using the same
JP2003094553A (en) * 2001-09-20 2003-04-03 Nippon Denkai Kk Composite copper foil and manufacturing method therefor
JP2004103681A (en) * 2002-09-06 2004-04-02 Nikko Materials Co Ltd Composite copper foil equipped with copper or copper-alloy substrate and printed board using the foil
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
WO2012132578A1 (en) * 2011-03-29 2012-10-04 Jx日鉱日石金属株式会社 Copper foil with copper carrier, method for producing same, copper foil for electronic circuit, method for producing same, and method for forming electronic circuit
WO2012132572A1 (en) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit

Also Published As

Publication number Publication date
PH12015501163A1 (en) 2015-08-10
JP2014128967A (en) 2014-07-10
MY171825A (en) 2019-10-31
TW201435155A (en) 2014-09-16
KR101797333B1 (en) 2017-11-13
JP2014129555A (en) 2014-07-10
CN104822525B (en) 2017-08-11
KR20150084924A (en) 2015-07-22
CN104822525A (en) 2015-08-05
TWI503456B (en) 2015-10-11
WO2014084385A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5481553B1 (en) Copper foil with carrier
JP5373995B2 (en) Copper foil with carrier
JP5228130B1 (en) Copper foil with carrier
JP5156873B1 (en) Copper foil with carrier
JP5922227B2 (en) Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board
JP5364838B1 (en) Copper foil with carrier
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5449596B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6140481B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014201829A (en) Copper foil with carrier, printed wiring board, printed circuit board, copper clad laminate sheet, and production method of printed wiring board
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6271134B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014172183A (en) Carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP6274736B2 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP2013166995A (en) Copper foil with carrier and method for producing the same
JP6246486B2 (en) Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board
JP6329731B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP6254357B2 (en) Copper foil with carrier
JP2014024315A (en) Copper foil with carrier

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250