JP5922227B2 - Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board - Google Patents

Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board Download PDF

Info

Publication number
JP5922227B2
JP5922227B2 JP2014512379A JP2014512379A JP5922227B2 JP 5922227 B2 JP5922227 B2 JP 5922227B2 JP 2014512379 A JP2014512379 A JP 2014512379A JP 2014512379 A JP2014512379 A JP 2014512379A JP 5922227 B2 JP5922227 B2 JP 5922227B2
Authority
JP
Japan
Prior art keywords
layer
carrier
copper foil
copper
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014512379A
Other languages
Japanese (ja)
Other versions
JPWO2013161334A1 (en
Inventor
美里 中願寺
美里 中願寺
友太 永浦
友太 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JPWO2013161334A1 publication Critical patent/JPWO2013161334A1/en
Application granted granted Critical
Publication of JP5922227B2 publication Critical patent/JP5922227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Description

本発明は、キャリア付銅箔、キャリア付銅箔の製造方法及びプリント配線板に関する。より詳細には、本発明はファインパターン用途のプリント配線板の材料として使用されるキャリア付銅箔、キャリア付銅箔の製造方法及びプリント配線板に関する。   The present invention relates to a copper foil with a carrier, a method for producing a copper foil with a carrier, and a printed wiring board. More specifically, the present invention relates to a copper foil with a carrier used as a material for a printed wiring board for fine patterns, a method for producing the copper foil with a carrier, and a printed wiring board.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められており、特にプリント配線板上にICチップを載せる場合、L/S=20/20以下のファインピッチ化が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and printed circuit boards. There is a demand for high frequency response, and in particular, when an IC chip is mounted on a printed wiring board, a fine pitch of L / S = 20/20 or less is required.

プリント配線板は、まず、銅箔とガラスエポキシ基板、BT樹脂、ポリイミドフィルムなどを主とする絶縁基板を貼り合わせた銅張積層体として製造される。貼り合わせは、絶縁基板と銅箔を重ね合わせて加熱加圧させて形成する方法(ラミネート法)、又は、絶縁基板材料の前駆体であるワニスを銅箔の被覆層を有する面に塗布し、加熱・硬化する方法(キャスティング法)が用いられる。   A printed wiring board is first manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film, or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (lamination method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.

ファインピッチ化に伴って銅張積層体に使用される銅箔の厚みも9μm、さらには5μm以下になるなど、箔厚が薄くなりつつある。ところが、箔厚が9μm以下になると前述のラミネート法やキャスティング法で銅張積層体を形成するときのハンドリング性が極めて悪化する。そこで、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を形成したキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着した後に、キャリアを剥離層を介して剥離するというのがキャリア付銅箔の一般的な使用方法である。   Along with the fine pitch, the thickness of the copper foil used for the copper clad laminate is also 9 μm, and further, 5 μm or less. However, when the foil thickness is 9 μm or less, the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer. A general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.

キャリア付銅箔に関する技術として、例えば特許文献1には、キャリアの表面に、拡散防止層、剥離層、電気銅めっきをこの順番に形成し、剥離層としてCr又はCr水和酸化物層を、拡散防止層としてNi、Co、Fe、Cr、Mo、Ta、Cu、Al、Pの単体又は合金を用いることで加熱プレス後の良好な剥離性を保持する方法が開示されている。   As a technique related to a copper foil with a carrier, for example, in Patent Document 1, a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer. A method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.

また、剥離層としてCr、Ni、Co、Fe、Mo、Ti、W、P又はこれらの合金又はこれらの水和物で形成することが知られている。さらに、加熱プレス等の高温使用環境における剥離性の安定化を図る上で、剥離層の下地にNi、Fe又はこれらの合金層をもうけると効果的であることが特許文献2および3に記載されている。   Further, it is known that the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof, or hydrates thereof. Furthermore, Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe, or an alloy layer thereof as a base for the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. ing.

特開2006−022406号公報JP 2006-022406 A 特開2010−006071号公報JP 2010-006071 A 特開2007−007937号公報JP 2007-007937 A

キャリア付銅箔においては、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離することは避けなければならず、一方、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離できる必要がある。また、キャリア付銅箔においては、極薄銅層側の表面にピンホールが存在するのはプリント配線板の性能不良に繋がり好ましくない。   In copper foil with a carrier, it is necessary to avoid the peeling of the ultrathin copper layer from the carrier before the lamination process on the insulating substrate, while the ultrathin copper layer from the carrier is removed after the lamination process to the insulating substrate. Must be peelable. In addition, in the copper foil with a carrier, the presence of pinholes on the surface of the ultrathin copper layer is not preferable because it leads to poor performance of the printed wiring board.

これらの点に関して、従来技術では十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明は、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後には剥離可能なキャリア付銅箔を提供することを課題とする。本発明は更に、極薄銅層側表面におけるピンホールの発生が抑制されたキャリア付銅箔を提供することも課題とする。   With respect to these points, the prior art has not been sufficiently studied, and there is still room for improvement. Therefore, an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate, while the ultrathin copper layer does not peel off from the carrier before the lamination process on the insulating substrate. . Another object of the present invention is to provide a copper foil with a carrier in which the generation of pinholes on the surface of the ultrathin copper layer is suppressed.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、キャリアとして銅箔を使用し、中間層を極薄銅層とキャリアとの間に形成し、この中間層を銅箔キャリア上から順にニッケル層及びクロメート層で構成すること、ニッケル及びクロムの付着量を制御すること、及び、中間層付近のニッケル及びクロム濃度を制御することが極めて効果的であることを見出した。   In order to achieve the above object, the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier. It has been found that it is extremely effective to form a nickel layer and a chromate layer in order, to control the adhesion amount of nickel and chromium, and to control the nickel and chromium concentrations in the vicinity of the intermediate layer.

本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、前記中間層は、前記銅箔キャリア上に、ニッケル層及びクロメート層がこの順で積層されて構成されており、前記中間層のニッケルの付着量が100〜40000μg/dm2、クロムの付着量が5〜100μg/dm2であり、前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Ni濃度の最大値が40〜95質量%であり、且つ、NiとCuとが共存する箇所のCu濃度の最小値が1〜50質量%であるキャリア付銅箔である。The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. It is copper foil with a carrier, Comprising: The said intermediate | middle layer is comprised by laminating | stacking the nickel layer and the chromate layer in this order on the said copper foil carrier, The adhesion amount of the nickel of the said intermediate | middle layer is 100-40000 microgram / dm 2 , the amount of chromium deposited is 5 to 100 μg / dm 2 , and a 50 to 1000 nm long STEM line analysis is performed in a range including all of these from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer The copper foil with a carrier has a maximum value of Ni concentration of 40 to 95% by mass and a minimum value of Cu concentration of 1 to 50% by mass of a portion where Ni and Cu coexist.

本発明に係るキャリア付銅箔の一実施形態においては、前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Cr濃度の最大値が1〜10質量%で、CrのピークがNiのピークと共存又は接触している。   In one embodiment of the copper foil with a carrier according to the present invention, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, Cr The maximum concentration is 1 to 10% by mass, and the Cr peak coexists with or is in contact with the Ni peak.

本発明に係るキャリア付銅箔の別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させたときに、前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Ni濃度の最大値が30〜95質量%であり、且つ、NiとCuとが共存する箇所のCu濃度最小値が5〜65質量%となる。In another embodiment of the copper foil with a carrier according to the present invention, when the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere. In addition, from the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when performing a 50-1000 nm long STEM line analysis in a range including all of these, the maximum value of Ni concentration is 30-95% by mass, And the minimum value of Cu density | concentration of the location where Ni and Cu coexist will be 5 to 65 mass%.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている。   In still another embodiment of the copper foil with a carrier according to the present invention, the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層表面に粗化処理層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a roughening treatment layer.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。   In still another embodiment of the copper foil with a carrier according to the present invention, the roughening treatment layer is any one selected from the group consisting of copper, nickel, cobalt and zinc, or any one or more. It is a layer made of an alloy containing.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, one or more types selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the roughening treatment layer. It has a layer of.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, one or more selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has a layer of.

本発明は別の一側面において、銅箔キャリア上に、ニッケルめっきを形成した後、電解クロメートによりクロメート層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程とを含むキャリア付銅箔の製造方法である。   In another aspect of the present invention, a nickel plating is formed on a copper foil carrier, and then an intermediate layer is formed by forming a chromate layer by electrolytic chromate, and an extremely thin layer is formed by electrolytic plating on the intermediate layer. And a step of forming a copper layer.

本発明に係るキャリア付銅箔の製造方法は一実施形態において、前記中間層のクロメート層の上に銅−リン合金でストライクめっきを施し、その上に極薄銅層を形成する。   In one embodiment of the method for producing a copper foil with a carrier according to the present invention, strike plating is performed with a copper-phosphorus alloy on the chromate layer of the intermediate layer, and an ultrathin copper layer is formed thereon.

本発明に係るキャリア付銅箔の製造方法は別の一実施形態において、前記極薄銅層上にさらに粗化処理層を形成する工程を含む。   The manufacturing method of the copper foil with a carrier which concerns on this invention in another one Embodiment includes the process of forming a roughening process layer on the said ultra-thin copper layer further.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。   In still another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil of the present invention.

本発明に係るキャリア付銅箔は、絶縁基板への積層工程前にはキャリアと極薄銅層との密着力が高い一方で、絶縁基板への積層工程後にはキャリアと極薄銅層との密着性が低下し、キャリア/極薄銅層界面で容易に剥離でき、且つ、極薄銅層側表面におけるピンホールの発生を良好に抑制することができる。   The copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness is lowered, it can be easily peeled off at the carrier / ultra-thin copper layer interface, and the occurrence of pinholes on the surface of the ultra-thin copper layer can be satisfactorily suppressed.

実施例9に係る基板圧着前の断面の濃度プロファイルである。It is a density | concentration profile of the cross section before the board | substrate crimping | compression-bonding which concerns on Example 9. FIG. 実施例9に係る基板圧着後の断面の濃度プロファイルである。It is a density | concentration profile of the cross section after the board | substrate crimping | compression-bonding which concerns on Example 9. FIG. 実施例5に係る基板圧着後の断面の濃度プロファイルである。6 is a cross-sectional concentration profile after pressure bonding of a substrate according to Example 5. 比較例3に係る基板圧着後の断面の濃度プロファイルである。It is a density | concentration profile of the cross section after the board | substrate crimping | compression-bonding which concerns on the comparative example 3. FIG.

<1.キャリア>
本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a titanium or stainless steel drum, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。   The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.

<2.中間層>
銅箔キャリア上には中間層を設ける。中間層は、銅箔キャリア上に、ニッケル層及びクロメート層がこの順で積層されて構成されている。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロムとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。
キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点からシャイニー面に中間層を設けることが好ましい。
<2. Intermediate layer>
An intermediate layer is provided on the copper foil carrier. The intermediate layer is configured by laminating a nickel layer and a chromate layer in this order on a copper foil carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
When using electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes.

中間層のうちクロメート層は極薄銅層の界面に薄く存在することが、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能であるという特性を得る上で好ましい。ニッケル層を設けずにクロメート層をキャリアと極薄銅層との境界に存在させた場合は、剥離性はほとんど向上しない。また、クロメート層が無く、ニッケル層と極薄銅層とを直接積層した場合は、ニッケル層におけるニッケル量に応じて剥離強度が強すぎたり弱すぎたりして適切な剥離強度は得られない。   Among the intermediate layers, the chromate layer is thin at the interface of the ultrathin copper layer, while the ultrathin copper layer does not peel from the carrier before the lamination process to the insulating substrate, while the carrier after the lamination process to the insulating substrate From the viewpoint of obtaining the property that the ultrathin copper layer can be peeled off. When the chromate layer is present at the boundary between the carrier and the ultrathin copper layer without providing the nickel layer, the peelability is hardly improved. In addition, when there is no chromate layer and a nickel layer and an ultrathin copper layer are directly laminated, the peel strength is too strong or too weak depending on the amount of nickel in the nickel layer, and an appropriate peel strength cannot be obtained.

クロメート層がキャリアとニッケル層との境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層との間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にクロメート層を設けた場合のみならず、極薄銅層との界面にクロメート層を設けたとしてもクロム量が多すぎると生じ得る。これは、銅とニッケルは固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、クロムと銅は固溶しにくく、相互拡散が生じにくいので、クロムと銅の界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層との間には微量のクロムしか存在しないので両者が密着して剥がれにくくなる。   If the chromate layer is present at the boundary between the carrier and the nickel layer, the intermediate layer is also peeled off along with the peeling of the ultrathin copper layer, that is, peeling occurs between the carrier and the intermediate layer. Such a situation can occur not only when the chromate layer is provided at the interface with the carrier, but also when the amount of chromium is excessive even if the chromate layer is provided at the interface with the ultrathin copper layer. This is because copper and nickel are likely to be in solid solution, so if they are in contact with each other, the adhesive force increases due to mutual diffusion and is difficult to peel off, while chromium and copper are less likely to dissolve and cause mutual diffusion. It is considered that the adhesion between the chromium and copper interface is weak and easy to peel off. Further, when the nickel amount in the intermediate layer is insufficient, since only a very small amount of chromium exists between the carrier and the ultrathin copper layer, they are in close contact with each other and are difficult to peel off.

中間層において、ニッケルの付着量が100〜40000μg/dm2、クロムの付着量が5〜100μg/dm2である。ニッケル及びクロムの付着量が増えるにつれてピンホールの量が多くなる傾向にあるが、この範囲であればピンホールの数も抑制される。極薄銅層をムラなく均一に剥離する観点、及び、ピンホールを抑制する観点からは、ニッケルの付着量を300〜10000μg/dm2、クロムの付着量を10〜50μg/dm2とすることが好ましく、ニッケルの付着量を500〜3000μg/dm2、クロムの付着量を12〜30μg/dm2とすることがより好ましい。In the intermediate layer, the adhesion amount of nickel 100~40000μg / dm 2, the amount of deposition of chromium is 5~100μg / dm 2. Although the amount of pinholes tends to increase as the adhesion amount of nickel and chromium increases, the number of pinholes is suppressed within this range. Terms of peeling ultrathin copper layer without unevenness uniformly, and, from the viewpoint of suppressing a pinhole, 300~10000μg / dm 2 adhesion amount of nickel, be 10-50 / dm 2 adhesion amount of chromium preferably, 500~3000μg / dm 2 adhesion amount of nickel, the adhesion amount of chromium and more preferably to 12~30μg / dm 2.

<3.ストライクめっき>
中間層の上には極薄銅層を設ける。その前に極薄銅層のピンホールを低減させるために中間層のクロム層上に銅−リン合金によるストライクめっきを行ってもよい。ストライクめっきの処理液にはピロリン酸銅めっき液などを用いることができる。このように、銅−リン合金によるストライクめっきを行ったキャリア付銅箔は、中間層表面と極薄銅層表面の両方にリンが存在することとなる。このため、中間層/極薄銅層間で剥離させたとき、中間層及び極薄銅層の表面からリンが検出される。また、ストライクめっきで形成されためっき層は薄くなるため、FIBやTEM等で断面観察をし、中間層上の銅リンめっき層の厚みが0.1μm以下である場合にはストライクめっきであると判定することができる。
<3. Strike plating>
An ultrathin copper layer is provided on the intermediate layer. Before that, strike plating with a copper-phosphorus alloy may be performed on the chromium layer of the intermediate layer in order to reduce pinholes in the ultrathin copper layer. A copper pyrophosphate plating solution or the like can be used as the strike plating treatment solution. Thus, the carrier-attached copper foil subjected to the strike plating with the copper-phosphorus alloy has phosphorus on both the intermediate layer surface and the ultrathin copper layer surface. For this reason, when it peels between an intermediate | middle layer / ultra thin copper layer, phosphorus is detected from the surface of an intermediate | middle layer and an ultra thin copper layer. In addition, since the plating layer formed by strike plating becomes thin, cross-sectional observation is performed with FIB, TEM, etc., and when the thickness of the copper phosphorous plating layer on the intermediate layer is 0.1 μm or less, it is strike plating. Can be determined.

<4.極薄銅層>
中間層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には2〜5μmである。
<4. Ultra-thin copper layer>
An ultrathin copper layer is provided on the intermediate layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5-12 μm, more typically 2-5 μm.

<5.粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層であってもよい。また、粗化処理をした後、又は粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体又は合金で二次粒子や三次粒子及び/又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。
<5. Roughening>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer may be a single layer selected from the group consisting of copper, nickel, cobalt and zinc, or a layer made of an alloy containing one or more of them. Further, after roughening treatment or without roughening treatment, secondary particles, tertiary particles and / or rust preventive layers are formed of nickel, cobalt, copper, zinc alone or an alloy, and further on the surface. Treatments such as chromate treatment and silane coupling treatment may be applied. That is, on the surface of the roughening treatment layer, one or more layers selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer may be formed, and on the surface of the ultrathin copper layer, You may form 1 or more types of layers selected from the group which consists of a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer.

<6.キャリア付銅箔>
このようにして、銅箔キャリアと、銅箔キャリア上に形成された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。本発明に係るキャリア付銅箔の場合、剥離箇所は主として中間層と極薄銅層の界面である。
<6. Copper foil with carrier>
Thus, the copper foil with a carrier provided with the copper foil carrier, the intermediate | middle layer formed on the copper foil carrier, and the ultra-thin copper layer laminated | stacked on the intermediate | middle layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board. In the case of the carrier-attached copper foil according to the present invention, the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer.

本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Ni濃度の最大値が40〜95質量%であり、且つ、NiとCuとが共存する箇所のCu濃度の最小値が1〜50質量%である。
このように、本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層断面を元素分析すると、中間層のニッケルの内部に銅が一定量以上で存在している。中間層中の銅濃度が高くなると、中間層/極薄銅層間の密着力が高くなる。そのため、ニッケル中の銅濃度を制御することにより剥離強度を制御できる。
When the copper foil with a carrier of the present invention is subjected to a 50 to 1000 nm long STEM line analysis in a range including all of these from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, the maximum value of the Ni concentration is 40 to The minimum value of the Cu concentration at the location where Ni and Cu coexist is 95% by mass and 1-50% by mass.
Thus, when the copper foil with a carrier of the present invention is subjected to elemental analysis of the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, copper is present in a certain amount or more inside the nickel of the intermediate layer. As the copper concentration in the intermediate layer increases, the adhesion between the intermediate layer and the ultrathin copper layer increases. Therefore, the peel strength can be controlled by controlling the copper concentration in nickel.

本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Cr濃度の最大値が1〜10質量%で、CrのピークがNiのピークと共存又は接触している。ここで、「ピーク」とは、STEM線分析で得られる山の波形の全面を示し、「共存」はそれらが重複している部分を有し、「接触」とは山の裾と裾どうしが接触していることを示す。
このように、本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層を元素分析した場合、中間層の極薄銅層寄りにクロムが一定量で存在し、且つ、ニッケルが極薄銅層に接している最表面よりも内部で濃度が高くなっている。このため、極薄銅層側表面におけるピンホールの発生が良好に抑制される。また、熱圧着後のキャリア付銅箔においても、銅箔キャリア/中間層/極薄銅層を元素分析した場合、中間層の極薄銅層寄りにクロムが一定量で存在し、且つ、ニッケルが最表面よりも内部で濃度が高くなっている。このため、極薄銅層側表面におけるピンホールの発生が良好に抑制される。
When the copper foil with a carrier of the present invention is subjected to 50 to 1000 nm long STEM line analysis in a range including all of these from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, the maximum value of the Cr concentration is 1 to 1. At 10% by mass, the Cr peak coexists with or is in contact with the Ni peak. Here, “peak” refers to the entire surface of a mountain waveform obtained by STEM line analysis, “coexistence” has a portion where they overlap, and “contact” refers to the hem and hem of the mountain. Indicates contact.
Thus, when the copper foil with carrier of the present invention is subjected to elemental analysis of copper foil carrier / intermediate layer / ultra thin copper layer, a certain amount of chromium is present near the ultra thin copper layer of the intermediate layer, and nickel Is higher in concentration than the outermost surface in contact with the ultrathin copper layer. For this reason, generation | occurrence | production of the pinhole in an ultra-thin copper layer side surface is suppressed favorably. In addition, in the copper foil with carrier after thermocompression bonding, when elemental analysis of the copper foil carrier / intermediate layer / ultra thin copper layer is performed, a certain amount of chromium is present near the ultra thin copper layer of the intermediate layer, and nickel However, the concentration is higher inside than the outermost surface. For this reason, generation | occurrence | production of the pinhole in an ultra-thin copper layer side surface is suppressed favorably.

また、本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させたときに、銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Ni濃度の最大値が30〜95質量%であり、且つ、NiとCuとが共存する箇所のCu濃度最小値が5〜65質量%となるのが好ましい。
このように、熱圧着後のキャリア付銅箔において、銅箔キャリア/中間層/極薄銅層の断面を元素分析すると、中間層の内部に銅が一定量以上で存在している。このため、熱圧着後の極端な剥離強度の低下を防止できるという効果がある。また、中間層のNiが一定量以上で存在していることで、中間層内部への過度の銅の拡散を防止し、剥離強度の極端な上昇を防止できるという効果がある。
なお、STEM測定の際に、試料の支持に用いる金属製メッシュは、その金属種により試料の元素分析値が大きく変わる。そのため、本発明のキャリア付銅箔の元素分析に影響を与えない金属、例えば、Mo製のメッシュを試料の支持に用いる。
Moreover, the copper foil with a carrier of the present invention has a copper foil carrier / intermediate when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. When a 50 to 1000 nm long STEM line analysis is performed from the cross section of the layer / ultra-thin copper layer, the maximum value of Ni concentration is 30 to 95% by mass, and Ni and Cu coexist It is preferable that the Cu concentration minimum value at the location to be 5 to 65% by mass.
As described above, in the copper foil with carrier after thermocompression bonding, when a cross section of the copper foil carrier / intermediate layer / ultra thin copper layer is subjected to elemental analysis, a certain amount or more of copper is present in the intermediate layer. For this reason, there exists an effect that the fall of the extreme peeling strength after thermocompression-bonding can be prevented. In addition, the presence of a certain amount or more of Ni in the intermediate layer has the effect of preventing excessive diffusion of copper into the intermediate layer and preventing an extreme increase in peel strength.
Note that the elemental analysis value of the metal mesh used for supporting the sample during STEM measurement varies greatly depending on the metal type. Therefore, a metal that does not affect the elemental analysis of the copper foil with a carrier of the present invention, for example, a mesh made of Mo is used for supporting the sample.

ニッケルめっきをする際の電流密度を高く設定して単位時間あたりの電着速度を高めるほど、またキャリア銅箔の搬送速度を速くするほど、ニッケル層の密度が低下する。ニッケル層の密度が低下すると、キャリア銅箔の銅がニッケル層に拡散しやすくなり、ニッケル中の銅の濃度を制御することができる。またクロメート層は、クロメート処理をする際の電流密度を高くし、キャリア銅箔の搬送速度を遅くするとクロムの濃度が高くなり、クロムの濃度を制御することができる。   The higher the current density at the time of nickel plating is set to increase the electrodeposition rate per unit time, and the higher the transport speed of the carrier copper foil, the lower the density of the nickel layer. When the density of the nickel layer is reduced, the copper of the carrier copper foil is easily diffused into the nickel layer, and the concentration of copper in the nickel can be controlled. Further, the chromate layer has a higher current density when the chromate treatment is performed, and when the transport speed of the carrier copper foil is decreased, the chromium concentration increases, and the chromium concentration can be controlled.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

1.キャリア付銅箔の製造
銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び厚さ33μmの圧延銅箔(JX日鉱日石金属社製C1100)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続ラインでキャリア表面及び極薄銅層側について順に以下の条件で表1及び表2に記載の中間層形成処理を行った。キャリア表面側と極薄銅層側との処理工程の間には、水洗及び酸洗を行った。
1. Production of Copper Foil with Carrier As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC made by JX Nippon Mining & Metals) and a rolled copper foil having a thickness of 33 μm (C1100 made by JX Nippon Mining & Metals) Prepared. With respect to the shiny surface of this copper foil, the intermediate layer formation treatment described in Tables 1 and 2 is performed under the following conditions in order on the carrier surface and the ultrathin copper layer side in a roll-to-roll type continuous line under the following conditions: Went. Washing and pickling were performed between the processing steps on the carrier surface side and the ultrathin copper layer side.

・Niめっき
硫酸ニッケル:250〜300g/L
塩化ニッケル:35〜45g/L
酢酸ニッケル:10〜20g/L
クエン酸三ナトリウム:15〜30g/L
光沢剤:サッカリン、ブチンジオール等
ドデシル硫酸ナトリウム:30〜100ppm
pH:4〜6
浴温:50〜70℃
電流密度:3〜15A/dm2
・ Ni plating Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30-100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3-15 A / dm 2

・Crめっき
液組成:無水クロム酸200〜400g/L、硫酸1.5〜4g/L
pH:1〜4
液温:45〜60℃
電流密度:10〜40A/dm2
-Cr plating solution composition: chromic anhydride 200-400 g / L, sulfuric acid 1.5-4 g / L
pH: 1-4
Liquid temperature: 45-60 degreeC
Current density: 10 to 40 A / dm 2

・電解クロメート
液組成(1):重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
液組成(2):無水クロム酸1〜10g/L
pH:3〜4
液温:50〜60℃
電流密度:0.1〜2.6A/dm2
クーロン量:0.5〜30As/dm2
Electrolytic chromate liquid composition (1): potassium dichromate 1-10 g / L, zinc 0-5 g / L
Liquid composition (2): Chromic anhydride 1-10 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0.1-2.6 A / dm 2
Coulomb amount: 0.5-30 As / dm 2

・浸漬クロメート処理
液組成(1):重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
液組成(2):無水クロム酸1〜10g/L
pH:3〜4
液温:50〜60℃
浸漬時間:1〜20秒
・ Immersion chromate treatment liquid composition (1): potassium dichromate 1-10 g / L, zinc 0-5 g / L
Liquid composition (2): Chromic anhydride 1-10 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Immersion time: 1 to 20 seconds

引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に厚さ3〜5μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を作製した。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
Subsequently, on the roll-to-roll type continuous plating line, an ultrathin copper layer having a thickness of 3 to 5 μm was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier. .
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

なお、実施例2、5については極薄銅層の表面に以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理
Cu: 10〜20g/L
Co: 1〜10g/L
Ni: 1〜10g/L
pH: 1〜4
温度: 40〜50℃
電流密度Dk : 20〜30A/dm2
時間: 1〜5秒
Cu付着量:15〜40mg/dm2
Co付着量:100〜3000μg/dm2
Ni付着量:100〜1000μg/dm2
・防錆処理
Zn:0〜20g/L
Ni:0〜5g/L
pH:3.5
温度:40℃
電流密度Dk :0〜1.7A/dm2
時間:1秒
Zn付着量:5〜250μg/dm2
Ni付着量:5〜300μg/dm2
・クロメート処理
2Cr27
(Na2Cr27或いはCrO3):2〜10g/L
NaOH或いはKOH:10〜50g/L
ZnO或いはZnSO47H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度 0.05〜5A/dm2
時間:5〜30秒
Cr付着量:10〜150μg/dm2
・シランカップリング処理
ビニルトリエトキシシラン水溶液
(ビニルトリエトキシシラン濃度:0.1〜1.4wt%)
pH:4〜5
時間:5〜30秒
In Examples 2 and 5, the surface of the ultrathin copper layer was subjected to the following roughening treatment, rust prevention treatment, chromate treatment, and silane coupling treatment in this order.
・ Roughening Cu: 10 to 20 g / L
Co: 1-10 g / L
Ni: 1 to 10 g / L
pH: 1-4
Temperature: 40-50 ° C
Current density Dk: 20 to 30 A / dm 2
Time: 1-5 seconds Cu adhesion amount: 15-40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Rust prevention treatment Zn: 0-20g / L
Ni: 0 to 5 g / L
pH: 3.5
Temperature: 40 ° C
Current density Dk: 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5-250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnO or ZnSO 4 7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Time: 5-30 seconds

2.キャリア付銅箔の各種評価
上記のようにして得られたキャリア付銅箔について、以下の方法で各種の評価を実施した。結果を表1及び2に示す。
2. Various evaluations of copper foil with carrier Various evaluations were carried out by the following methods for the copper foil with carrier obtained as described above. The results are shown in Tables 1 and 2.

<付着量の測定>
ニッケル付着量、及び、クロム付着量は、サンプルを濃度20質量%の硝酸で溶解してICP発光分析によって測定し、クロム付着量はサンプルを濃度7質量%の塩酸にて溶解して、原子吸光法により定量分析を行うことで測定した。
<Measurement of adhesion amount>
The nickel adhesion amount and the chromium adhesion amount were measured by ICP emission analysis after dissolving the sample with nitric acid having a concentration of 20% by mass. The chromium adhesion amount was obtained by dissolving the sample with hydrochloric acid having a concentration of 7% by mass, and atomic absorption. Measured by quantitative analysis by the method.

<STEMによる評価>
キャリア付銅箔の断面の元素分布をSTEMによって観察したときの測定条件を以下に示す。
・装置:STEM(日立製作所社、型式HD−2000STEM)
・加速電圧:200kV
・倍率:100000〜1000000倍
・観察視野:1500nm×1500nm〜160nm×160nm
試料支持にはMo製メッシュを用い、元素濃度の線分析は、キャリア/中間層/極薄銅層を介して50〜1000nm長行った。検出元素からカーボンを除外し、各元素の濃度(質量%)を分析した。試料支持のためのメッシュについては、その金属種により試料の元素分析値が大きく変わるが、上記Mo製メッシュを用いるとそのような分析値の変化が良好に抑制される。
キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後のものについても同様にSTEM評価を行った。
<Evaluation by STEM>
The measurement conditions when the element distribution in the cross section of the copper foil with a carrier is observed by STEM are shown below.
・ Device: STEM (Hitachi, Ltd., model HD-2000 STEM)
・ Acceleration voltage: 200kV
・ Magnification: 100,000 to 1,000,000 times ・ Viewing field: 1500 nm × 1500 nm to 160 nm × 160 nm
A Mo mesh was used for supporting the sample, and the elemental concentration line analysis was performed for 50 to 1000 nm long through the carrier / intermediate layer / ultra thin copper layer. Carbon was excluded from the detected elements, and the concentration (% by mass) of each element was analyzed. As for the mesh for supporting the sample, the elemental analysis value of the sample varies greatly depending on the metal type. However, when the Mo mesh is used, such a change in the analysis value is favorably suppressed.
STEM evaluation is also applied to the case after bonding the ultrathin copper layer side of the copper foil with a carrier on the insulating substrate and performing pressure bonding in the atmosphere at 20 kgf / cm 2 and 220 ° C. × 2 hours. went.

<ピンホール>
民生用の写真用バックライトを光源にして、目視でピンホールの数を測定した。
<Pinhole>
The number of pinholes was visually measured using a consumer photographic backlight as a light source.

<剥離強度>
キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、剥離強度は、ロードセルにて銅箔キャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して測定した。また、絶縁基板上に貼り合わせる前のキャリア付銅箔も同様に剥離強度を測定しておいた。
<Peel strength>
After bonding the ultra-thin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere, the peel strength is measured with a load cell. The foil carrier side was pulled and measured according to the 90 ° peeling method (JIS C 6471 8.1). Further, the peel strength of the carrier-attached copper foil before being bonded onto the insulating substrate was also measured.

Figure 0005922227
Figure 0005922227

Figure 0005922227
Figure 0005922227

(評価結果)
実施例1〜11は、いずれもピンホールが良好に抑制されており、さらに良好な剥離強度を示した。
比較例1及び2は、ニッケル及びクロムが剥離層に存在していないため、プレス前でも極薄銅層からキャリアを剥離することができなかった。
比較例3及び9は、クロムの付着量が少なかった(クロム濃度が低い)ため、基板貼り合わせ後にキャリアを剥離することができなくなった。
比較例4、5、6及び8は、ニッケルの付着量が少なかった(ニッケルの濃度が低い)ためプレス前でも極薄銅箔からキャリアを剥離することができなかった。
比較例7は、ニッケルの付着量が多すぎる(ニッケルの濃度が高すぎる)ため、極薄銅箔のピンホールが増え、剥離強度が低くなりすぎた。
比較例10は、クロメートのクロムの付着量が多すぎるため、極薄銅箔のピンホールが増え、剥離強度が低くなりすぎた。
比較例11は、クロメートの代わりにクロムめっきを用い、さらにニッケルの濃度が低かったため、基板貼り合わせ後にキャリアを剥離することができなくなった。
比較例12は、クロメートの代わりにクロムめっきを用い、クロムの濃度が高くなったため、ピンホールが多く発生した。
図1に実施例9に係る基板圧着前の断面の濃度プロファイルを示す。図2に実施例9に係る基板圧着後の断面の濃度プロファイルを示す。図3に実施例5に係る基板圧着後の断面の濃度プロファイルを示す。図4に比較例3に係る基板圧着後の断面の濃度プロファイルを示す。
(Evaluation results)
In each of Examples 1 to 11, pinholes were well suppressed, and even better peel strength was exhibited.
In Comparative Examples 1 and 2, since nickel and chromium were not present in the release layer, the carrier could not be released from the ultrathin copper layer even before pressing.
In Comparative Examples 3 and 9, since the amount of chromium deposited was small (the chromium concentration was low), the carrier could not be peeled after the substrates were bonded together.
In Comparative Examples 4, 5, 6 and 8, since the amount of nickel deposited was small (nickel concentration was low), the carrier could not be peeled from the ultrathin copper foil even before pressing.
In Comparative Example 7, since the amount of nickel deposited was too large (the nickel concentration was too high), pinholes in the ultrathin copper foil increased and the peel strength was too low.
In Comparative Example 10, since the amount of chromium attached to the chromate was too large, pinholes in the ultrathin copper foil increased, and the peel strength was too low.
In Comparative Example 11, chromium plating was used instead of chromate, and the nickel concentration was low, so that the carrier could not be peeled after the substrates were bonded together.
In Comparative Example 12, chrome plating was used instead of chromate, and the chromium concentration was high, so that many pinholes were generated.
FIG. 1 shows a concentration profile of a cross section before pressure bonding to a substrate according to Example 9. FIG. 2 shows a cross-sectional concentration profile after pressure bonding of the substrate according to the ninth embodiment. FIG. 3 shows a concentration profile of a cross section after the substrate is crimped according to the fifth embodiment. FIG. 4 shows a concentration profile of a cross section after the substrate is crimped according to Comparative Example 3.

Claims (13)

銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記中間層は、前記銅箔キャリア上に、ニッケル層及びクロメート層がこの順で積層されて構成されており、
前記中間層のニッケルの付着量が100〜40000μg/dm2、クロムの付着量が5〜100μg/dm2であり、
前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Ni濃度の最大値が40〜95質量%であり、且つ、NiとCuとが共存する箇所のCu濃度の最小値が1〜50質量%であるキャリア付銅箔。
A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer,
The intermediate layer is configured by laminating a nickel layer and a chromate layer in this order on the copper foil carrier,
The amount of adhered 100~40000μg / dm 2 of the intermediate layer of nickel, the adhesion amount of chromium is 5~100μg / dm 2,
From the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these, the maximum value of Ni concentration is 40 to 95% by mass, and The copper foil with a carrier whose minimum value of Cu density | concentration of the location where Ni and Cu coexist is 1-50 mass%.
前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Cr濃度の最大値が1〜10質量%で、CrのピークがNiのピークと共存又は接触している請求項1に記載のキャリア付銅箔。   From the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them, the maximum value of Cr concentration is 1 to 10% by mass, and the peak of Cr The copper foil with a carrier according to claim 1, wherein coexists with or is in contact with a peak of Ni. 前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させたときに、
前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、Ni濃度の最大値が30〜95質量%であり、且つ、NiとCuとが共存する箇所のCu濃度最小値が5〜65質量%となる請求項1又は2に記載のキャリア付銅箔。
When the insulating substrate is thermocompression bonded to the ultra-thin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere,
From the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these, the maximum value of Ni concentration is 30 to 95% by mass, and The copper foil with a carrier according to claim 1 or 2, wherein a Cu concentration minimum value at a location where Ni and Cu coexist is 5 to 65 mass%.
前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている請求項1〜3のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 1 to 3, wherein the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil. 前記極薄銅層表面に粗化処理層を有する請求項1〜4のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier in any one of Claims 1-4 which have a roughening process layer in the said ultra-thin copper layer surface. 前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項5に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 5, wherein the roughening layer is a layer made of any single substance selected from the group consisting of copper, nickel, cobalt, and zinc, or an alloy containing any one or more kinds. 前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項5又は6に記載のキャリア付銅箔。   The copper foil with a carrier of Claim 5 or 6 which has 1 or more types of layers selected from the group which consists of a rust preventive layer, a chromate process layer, and a silane coupling process layer on the surface of the said roughening process layer. 前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜7のいずれかに記載のキャリア付銅箔。   The copper with a carrier according to any one of claims 1 to 7, which has one or more layers selected from the group consisting of a rust preventive layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the ultrathin copper layer. Foil. 前記中間層と前記極薄銅層との間に銅−リン合金を有する請求項1〜8のいずれか一項に記載のキャリア付銅箔。The copper foil with a carrier as described in any one of Claims 1-8 which has a copper- phosphorus alloy between the said intermediate | middle layer and the said ultra-thin copper layer. 銅箔キャリア上に、ニッケルめっきを形成した後、電解クロメートによりクロメート層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程とを含む請求項1〜9のいずれか一項に記載のキャリア付銅箔の製造方法。 After forming nickel plating on the copper foil carrier, including a step of forming an intermediate layer by forming a chromate layer by electrolytic chromate, and a step of forming an ultrathin copper layer by electrolytic plating on the intermediate layer The manufacturing method of the copper foil with a carrier as described in any one of Claims 1-9 . 前記中間層のクロメート層の上に銅−リン合金でストライクめっきを施し、その上に極薄銅層を形成する請求項10に記載のキャリア付銅箔の製造方法。 The manufacturing method of the copper foil with a carrier of Claim 10 which strike-plats with a copper-phosphorus alloy on the chromate layer of the said intermediate | middle layer, and forms an ultra-thin copper layer on it. 前記極薄銅層上にさらに粗化処理層を形成する工程を含む請求項10又は11に記載のキャリア付銅箔の製造方法。 The manufacturing method of the copper foil with a carrier of Claim 10 or 11 including the process of forming a roughening process layer further on the said ultra-thin copper layer. 請求項1〜9のいずれか一項に記載のキャリア付銅箔、又は、請求項10〜12のいずれか一項に記載のキャリア付銅箔の製造方法で製造されたキャリア付銅箔を用いてプリント配線板を製造するプリント配線板の製造方法The copper foil with a carrier manufactured by the manufacturing method of the copper foil with a carrier according to any one of claims 1 to 9 , or the copper foil with a carrier according to any one of claims 10 to 12. method for manufacturing a printed wiring board for producing a print wiring board Te.
JP2014512379A 2012-04-24 2013-01-23 Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board Active JP5922227B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012098989 2012-04-24
JP2012098989 2012-04-24
PCT/JP2013/051353 WO2013161334A1 (en) 2012-04-24 2013-01-23 Carrier-supported copper foil, process for producing carrier-supported copper foil, and printed wiring board

Publications (2)

Publication Number Publication Date
JPWO2013161334A1 JPWO2013161334A1 (en) 2015-12-24
JP5922227B2 true JP5922227B2 (en) 2016-05-24

Family

ID=49482676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512379A Active JP5922227B2 (en) 2012-04-24 2013-01-23 Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board

Country Status (3)

Country Link
JP (1) JP5922227B2 (en)
TW (1) TWI500363B (en)
WO (1) WO2013161334A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810197B2 (en) * 2013-09-11 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, flexible wiring board and battery
WO2015122258A1 (en) * 2014-02-14 2015-08-20 古河電気工業株式会社 Carrier-equipped ultrathin copper foil, and copper-clad laminate, printed circuit substrate and coreless substrate that are manufactured using same
JP6149016B2 (en) 2014-05-09 2017-06-14 Jx金属株式会社 Copper foil with carrier, method for producing copper-clad laminate, method for producing electronic device, method for producing copper foil with carrier, and method for producing printed wiring board
JP2016194112A (en) * 2015-03-31 2016-11-17 Jx金属株式会社 Metal foil with carrier, laminate, printed wiring board, electronic device, manufacturing method of metal foil with carrier and manufacturing method of printed wiring board
US20170313029A1 (en) * 2016-04-27 2017-11-02 Matrix Electronics Limited Poly-supported copper foil
US9955588B1 (en) * 2016-11-28 2018-04-24 Chang Chun Petrochemical Co., Ltd. Multilayer carrier foil
US11453204B2 (en) 2019-09-10 2022-09-27 Advanced Copper Foil Inc. Poly-supported copper foil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US454381A (en) * 1891-06-16 Alexander gael seinfeld
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP2002292788A (en) * 2001-03-30 2002-10-09 Nippon Denkai Kk Composite copper foil and method for manufacturing the same
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP3977790B2 (en) * 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP4429979B2 (en) * 2005-06-29 2010-03-10 古河電気工業株式会社 Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier
CN102224281B (en) * 2008-11-25 2014-03-26 吉坤日矿日石金属株式会社 Copper foil for printed circuit
US8980414B2 (en) * 2011-08-31 2015-03-17 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil

Also Published As

Publication number Publication date
JPWO2013161334A1 (en) 2015-12-24
TWI500363B (en) 2015-09-11
WO2013161334A1 (en) 2013-10-31
TW201345333A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP5373995B2 (en) Copper foil with carrier
JP5228130B1 (en) Copper foil with carrier
JP5922227B2 (en) Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board
JP5156873B1 (en) Copper foil with carrier
JP5358740B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5352748B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5364838B1 (en) Copper foil with carrier
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5393903B1 (en) Copper foil with carrier, and printed wiring board, printed circuit board and copper-clad laminate using the same
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5247929B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP5449596B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5814168B2 (en) Copper foil with carrier
JP2014193591A (en) Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014172183A (en) Carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP6274736B2 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014172180A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP2014024315A (en) Copper foil with carrier

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5922227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250