JP5854872B2 - Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board - Google Patents

Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board Download PDF

Info

Publication number
JP5854872B2
JP5854872B2 JP2012030936A JP2012030936A JP5854872B2 JP 5854872 B2 JP5854872 B2 JP 5854872B2 JP 2012030936 A JP2012030936 A JP 2012030936A JP 2012030936 A JP2012030936 A JP 2012030936A JP 5854872 B2 JP5854872 B2 JP 5854872B2
Authority
JP
Japan
Prior art keywords
layer
copper
carrier
copper foil
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012030936A
Other languages
Japanese (ja)
Other versions
JP2013166995A (en
Inventor
美里 中願寺
美里 中願寺
友太 永浦
友太 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012030936A priority Critical patent/JP5854872B2/en
Publication of JP2013166995A publication Critical patent/JP2013166995A/en
Application granted granted Critical
Publication of JP5854872B2 publication Critical patent/JP5854872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、キャリア付銅箔及びその製造方法に関する。より詳細には、本発明はファインパターン用途のプリント配線板の材料として使用されるキャリア付銅箔及びその製造方法に関する。   The present invention relates to a copper foil with a carrier and a method for producing the same. More specifically, the present invention relates to a carrier-attached copper foil used as a material for printed wiring boards for fine patterns and a method for producing the same.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められており、特にプリント配線板上にICチップを載せる場合、L/S=20/20以下のファインピッチ化が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and printed circuit boards. There is a demand for high frequency response, and in particular, when an IC chip is mounted on a printed wiring board, a fine pitch of L / S = 20/20 or less is required.

プリント配線板は、まず、銅箔とガラスエポキシ基板、BT樹脂、ポリイミドフィルムなどを主とする絶縁基板を貼り合わせた銅張積層体として製造される。貼り合わせは、絶縁基板と銅箔を重ね合わせて加熱加圧させて形成する方法(ラミネート法)、または、絶縁基板材料の前駆体であるワニスを銅箔の被覆層を有する面に塗布し、加熱・硬化する方法(キャスティング法)が用いられる。   A printed wiring board is first manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film, or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (laminating method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.

ファインピッチ化に伴って銅張積層体に使用される銅箔の厚みも9μm、さらには5μm以下になるなど、箔厚が薄くなりつつある。ところが、箔厚が9μm以下になると前述のラミネート法やキャスティング法で銅張積層体を形成するときのハンドリング性が極めて悪化する。そこで、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を形成したキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着した後に、キャリアを剥離層を介して剥離するというのがキャリア付銅箔の一般的な使用方法である。   Along with the fine pitch, the thickness of the copper foil used for the copper clad laminate is also 9 μm, and further, 5 μm or less. However, when the foil thickness is 9 μm or less, the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer. A general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.

キャリア付銅箔に関する技術として、例えば特許文献1には、キャリアの表面に、拡散防止層、剥離層、電気銅めっきをこの順番に形成し、剥離層としてCrまたはCr水和酸化物層を、拡散防止層としてNi、Co、Fe、Cr、Mo、Ta、Cu、Al、Pの単体または合金を用いることで加熱プレス後の良好な剥離性を保持する方法が開示されている。   As a technique related to a copper foil with a carrier, for example, in Patent Document 1, a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer. A method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.

また、剥離層としてCr、Ni、Co、Fe、Mo、Ti、W、Pまたはこれらの合金またはこれらの水和物で形成することが知られている。さらに、加熱プレス等の高温使用環境における剥離性の安定化を図る上で、剥離層の下地にNi、Feまたはこられの合金層をもうけると効果的であることが特許文献2および3に記載されている。   Further, it is known that the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof, or hydrates thereof. Furthermore, Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe or an alloy layer thereof as a base of the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. Has been.

特開2006−022406号公報JP 2006-022406 A 特開2010−006071号公報JP 2010-006071 A 特開2007−007937号公報JP 2007-007937 A

キャリア付銅箔においては、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離することは避けなければならず、一方、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離できる必要がある。また、キャリア付銅箔においては、極薄銅層側の表面にピンホールが存在するのはプリント配線板の性能不良に繋がり好ましくない。   In copper foil with a carrier, it is necessary to avoid the peeling of the ultrathin copper layer from the carrier before the lamination process on the insulating substrate, while the ultrathin copper layer from the carrier is removed after the lamination process to the insulating substrate. Must be peelable. In addition, in the copper foil with a carrier, the presence of pinholes on the surface of the ultrathin copper layer is not preferable because it leads to poor performance of the printed wiring board.

これらの点に関して、従来技術では十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明は、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離し難い一方で、絶縁基板への積層工程後には剥離可能なキャリア付銅箔を提供することを課題とする。本発明は更に、極薄銅層側表面におけるピンホールの発生が抑制されたキャリア付銅箔を提供することも課題とする。   With respect to these points, the prior art has not been sufficiently studied, and there is still room for improvement. Accordingly, an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate while an ultrathin copper layer is hardly peeled off from a carrier before the lamination process on an insulating substrate. To do. Another object of the present invention is to provide a copper foil with a carrier in which the generation of pinholes on the surface of the ultrathin copper layer is suppressed.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、キャリアとして銅箔を使用し、中間層を極薄銅層とキャリアとの間に形成し、この中間層を銅箔キャリア上から順にニッケル、ニッケル−リン合金又はニッケル−コバルト合金と、クロムとで構成すること、ニッケル、ニッケル−リン合金、ニッケル−コバルト合金及びクロムの付着量を制御すること、及び、中間層表面部分のクロム及びニッケル原子濃度を制御することが極めて効果的であることを見出した。   In order to achieve the above object, the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier. In order from nickel, nickel-phosphorus alloy or nickel-cobalt alloy and chromium, controlling the adhesion amount of nickel, nickel-phosphorus alloy, nickel-cobalt alloy and chromium, and intermediate layer surface portion It has been found that controlling the chromium and nickel atom concentrations is extremely effective.

本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記中間層は、前記銅箔キャリア上に、ニッケル又はニッケル−リン合金又はニッケル−コバルト合金と、クロムとがこの順で積層されて構成されており、
前記中間層のニッケルの付着量が1000〜40000μg/dm2、ニッケル−リン合金の付着量が1000〜40000μg/dm2、ニッケル−コバルト合金の付着量が1000〜40000μg/dm2、クロムの付着量が10〜1000μg/dm2であり、
前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、リンの合計原子濃度(%)をi(x)とし、コバルトの原子濃度(%)をj(x)とし、酸素の原子濃度(%)をk(x)とし、炭素の原子濃度(%)をl(x)とし、その他の原子濃度(%)をm(x)とすると、
前記中間層表面からの深さ方向分析の区間[0、2.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が10〜40%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜50%であり、[2.0、6.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が40%以上を満たすキャリア付銅箔である。
The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. A copper foil with a carrier,
The intermediate layer is configured by laminating nickel or nickel-phosphorus alloy or nickel-cobalt alloy and chromium in this order on the copper foil carrier,
The intermediate layer has an adhesion amount of nickel of 1000 to 40000 μg / dm 2 , an adhesion amount of nickel-phosphorus alloy of 1000 to 40000 μg / dm 2 , an adhesion amount of nickel-cobalt alloy of 1000 to 40000 μg / dm 2 , and an adhesion amount of chromium. Is 10 to 1000 μg / dm 2 ,
When peeling between the intermediate layer and ultrathin copper layer, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x). The atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of phosphorus is i (x), and the atomic concentration of cobalt (% ) Is j (x), oxygen atomic concentration (%) is k (x), carbon atomic concentration (%) is l (x), and other atomic concentration (%) is m (x) ,
In the section [0, 2.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 10 to 40%, ∫g (x) dx / (∫f (x ) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) 1 to 50%, and in [2.0, 6.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i ( x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is a copper foil with a carrier satisfying 40% or more.

本発明に係るキャリア付銅箔の一実施形態においては、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[2.0、6.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜20%である。   In one embodiment of the carrier-attached copper foil according to the present invention, when peeling between the intermediate layer / ultra-thin copper layer, a section [2.0, 6. 0], ∫h (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x dx + xl (x) dx + ∫m (x) dx) is 1 to 20%.

本発明に係るキャリア付銅箔の別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、195℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、リンの合計原子濃度(%)をi(x)とし、コバルトの原子濃度(%)をj(x)とし、酸素の原子濃度(%)をk(x)とし、炭素の原子濃度(%)をl(x)とし、その他の原子濃度(%)をm(x)とすると、
前記中間層表面からの深さ方向分析の区間[0、2.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が10〜40%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜50%であり、[2.0、6.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が40%以上となる。
In another embodiment of the copper foil with a carrier according to the present invention, the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 195 ° C. × 2 hours in the atmosphere, When peeled between the intermediate layer / ultra thin copper layer, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x), The atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of phosphorus is i (x), and the atomic concentration of cobalt (%) Is j (x), atomic concentration (%) of oxygen is k (x), atomic concentration (%) of carbon is l (x), and other atomic concentration (%) is m (x).
In the section [0, 2.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 10 to 40%, ∫g (x) dx / (∫f (x ) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) 1 to 50%, and in [2.0, 6.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i ( x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 40% or more.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、195℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、前記中間層表面からの深さ方向分析の区間[2.0、6.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜30%となる。 In yet another embodiment of the carrier-attached copper foil according to the present invention, the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 195 ° C. × 2 hours in the atmosphere, When peeling between the intermediate layer / ultra thin copper layer, in the section [2.0, 6.0] of the depth direction analysis from the intermediate layer surface, ∫h (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 1 -30%.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記中間層のニッケル−リン合金のリンの濃度が0〜20質量%である。   In still another embodiment of the copper foil with a carrier according to the present invention, the concentration of phosphorus in the nickel-phosphorus alloy of the intermediate layer is 0 to 20% by mass.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記中間層のニッケル−コバルト合金のコバルトの濃度が0〜65質量%である。   In still another embodiment of the carrier-attached copper foil according to the present invention, the concentration of cobalt in the nickel-cobalt alloy of the intermediate layer is 0 to 65% by mass.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記中間層のクロム層上に銅−リン合金めっき層を有し、前記銅−リン合金めっき層上に前記極薄銅層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, a copper-phosphorus alloy plating layer is provided on the chromium layer of the intermediate layer, and the ultrathin copper layer is provided on the copper-phosphorus alloy plating layer. Have

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記銅−リン合金めっき層がストライクめっきにより設けられている。   In still another embodiment of the copper foil with a carrier according to the present invention, the copper-phosphorus alloy plating layer is provided by strike plating.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている。   In still another embodiment of the copper foil with a carrier according to the present invention, the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層表面に粗化処理層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a roughening treatment layer.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。   In still another embodiment of the copper foil with a carrier according to the present invention, the roughening treatment layer is any one selected from the group consisting of copper, nickel, cobalt and zinc, or any one or more. It is a layer made of an alloy containing.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, one or more types selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the roughening treatment layer. It has a layer of.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, one or more selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has a layer of.

本発明は別の一側面において、銅箔キャリア上に、物理蒸着法又は電気めっきにより、ニッケル層又はニッケル−リン層又はニッケル−コバルト層を形成し、前記ニッケル層又はニッケル−リン層又はニッケル−コバルト層の上にクロム層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程とを含む本発明のキャリア付銅箔の製造方法である。 In another aspect of the present invention, a nickel layer, a nickel-phosphorus layer, or a nickel-cobalt layer is formed on a copper foil carrier by physical vapor deposition or electroplating, and the nickel layer, nickel-phosphorus layer, or nickel- In the manufacturing method of the copper foil with a carrier of this invention including the process of forming an intermediate | middle layer by forming a chromium layer on a cobalt layer, and the process of forming an ultra-thin copper layer by electrolytic plating on the said intermediate | middle layer. is there.

本発明に係るキャリア付銅箔の製造方法は一実施形態において、前記中間層のクロム層の上に銅−リン合金でストライクめっきを施し、前記ストライクめっきの上に極薄銅層を形成する。   In one embodiment of the method for producing a copper foil with a carrier according to the present invention, strike plating is performed with a copper-phosphorus alloy on the chromium layer of the intermediate layer, and an ultrathin copper layer is formed on the strike plating.

本発明に係るキャリア付銅箔の製造方法は別の一実施形態において、前記極薄銅層上に粗化処理層を形成する工程をさらに含む。   In another embodiment, the method for producing a copper foil with a carrier according to the present invention further includes a step of forming a roughened layer on the ultrathin copper layer.

本発明に係るキャリア付銅箔は、絶縁基板への積層工程前にはキャリアと極薄銅層との密着力が高い一方で、絶縁基板への積層工程後にはキャリアと極薄銅層との密着性が低下し、中間層を介してキャリア/極薄銅層間で容易に剥離でき、且つ、極薄銅層側表面におけるピンホールの発生を良好に抑制することができる。   The copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness decreases, it can be easily peeled between the carrier and the ultrathin copper layer via the intermediate layer, and the occurrence of pinholes on the ultrathin copper layer side surface can be satisfactorily suppressed.

実施例5の基板貼り合わせ前の中間層表面の深さ方向のXPSデプスプロファイルである。It is a XPS depth profile of the depth direction of the intermediate | middle layer surface before board | substrate bonding of Example 5. FIG. 比較例3の基板貼り合わせ前の中間層表面の深さ方向のXPSデプスプロファイルである。It is an XPS depth profile of the depth direction of the intermediate | middle layer surface before the board | substrate bonding of the comparative example 3. FIG. 実施例5の基板貼り合わせ前の極薄銅層表面の深さ方向のXPSデプスプロファイルである。It is the XPS depth profile of the depth direction of the ultra-thin copper layer surface before board | substrate bonding of Example 5. FIG.

<1.キャリア>
本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。   The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.

<2.中間層>
銅箔キャリア上には中間層を設ける。中間層は、銅箔キャリア上に、ニッケル、ニッケル−リン合金又はニッケル−コバルト合金と、クロムとがこの順で積層されて構成されている。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロムとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。
キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点からシャイニー面に中間層を設けることが好ましい。なお、中間層はめっき、スパッタリング、CVD、物理蒸着等の方法を用いて設けることができる。
<2. Intermediate layer>
An intermediate layer is provided on the copper foil carrier. The intermediate layer is configured by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a copper foil carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
When using electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes. In addition, an intermediate | middle layer can be provided using methods, such as plating, sputtering, CVD, and physical vapor deposition.

中間層のうちクロム層は極薄銅層の界面に薄く存在することが、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離し難い一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能であるという特性を得る上で好ましい。ニッケル、ニッケル−リン合金又はニッケル−コバルト合金層を設けずにクロム層をキャリアと極薄銅層の境界に存在させた場合は、剥離性はほとんど向上しないし、クロム層が無く、ニッケル、ニッケル−リン合金又はニッケル−コバルト合金層と極薄銅層とを直接積層した場合は、ニッケル、ニッケル−リン合金又はニッケル−コバルト合金層におけるニッケル量に応じて剥離強度が強すぎたり弱すぎたりして適切な剥離強度は得られない。   Among the intermediate layers, the chromium layer is thin at the interface of the ultra-thin copper layer, but it is difficult for the ultra-thin copper layer to peel off from the carrier before the lamination process on the insulating substrate. It is preferable for obtaining the property that the ultrathin copper layer can be peeled from the carrier. When the chromium layer is present at the boundary between the carrier and the ultrathin copper layer without providing the nickel, nickel-phosphorus alloy or nickel-cobalt alloy layer, the peelability is hardly improved and there is no chromium layer. -When a phosphorus alloy or nickel-cobalt alloy layer and an ultrathin copper layer are directly laminated, the peel strength may be too strong or too weak depending on the amount of nickel in the nickel, nickel-phosphorus alloy or nickel-cobalt alloy layer. Therefore, an appropriate peel strength cannot be obtained.

また、クロム層がキャリアとニッケル、ニッケル−リン合金又はニッケル−コバルト合金層との境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層との間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にクロム層を設けた場合のみならず、極薄銅層との界面にクロム層を設けたとしてもクロム量が多すぎると生じ得る。これは、銅とニッケルは固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、クロムと銅は固溶しにくく、相互拡散が生じにくいので、クロムと銅の界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層の間には微量のクロムしか存在しないので両者が密着して剥がれにくくなる。   In addition, if the chromium layer is present at the boundary between the carrier and the nickel, nickel-phosphorus alloy or nickel-cobalt alloy layer, the intermediate layer is also peeled off at the time of peeling of the ultrathin copper layer, that is, the carrier and the intermediate layer are separated. Peeling occurs between the two, which is not preferable. Such a situation can occur not only when the chromium layer is provided at the interface with the carrier, but also when the chromium amount is too large even if the chromium layer is provided at the interface with the ultrathin copper layer. This is because copper and nickel are likely to be in solid solution, so if they are in contact with each other, the adhesive force increases due to mutual diffusion and is difficult to peel off, while chromium and copper are less likely to dissolve and cause mutual diffusion. It is considered that the adhesion between the chromium and copper interface is weak and easy to peel off. Further, when the nickel amount in the intermediate layer is insufficient, there is only a very small amount of chromium between the carrier and the ultrathin copper layer, so that they are in close contact with each other and are difficult to peel off.

中間層において、ニッケルの付着量が1000〜40000μg/dm2、ニッケル−リン合金の付着量が1000〜40000μg/dm2、ニッケル−コバルト合金の付着量が1000〜40000μg/dm2、クロムの付着量が10〜1000μg/dm2である。ニッケルの付着量、ニッケル−リン合金の付着量、又は、ニッケル−コバルト合金の付着量が増えるにつれてピンホールの量が多くなる傾向にあるが、この範囲であればピンホールの数も抑制される。極薄銅層をムラなく均一に剥離する観点、及び、ピンホールを抑制する観点からは、ニッケルの付着量を1000〜10000μg/dm2、ニッケル−リン合金の付着量を1000〜10000μg/dm2、ニッケル−コバルト合金の付着量を1000〜10000μg/dm2、クロムの付着量を20〜500μg/dm2とすることが好ましく、ニッケルの付着量を2000〜9000μg/dm2、ニッケル−リン合金の付着量を2000〜9000μg/dm2、ニッケル−コバルト合金の付着量を2000〜9000μg/dm2、クロムの付着量を25〜200μg/dm2とすることがより好ましい。 In the intermediate layer, the adhesion amount of nickel is 1000 to 40000 μg / dm 2 , the adhesion amount of nickel-phosphorous alloy is 1000 to 40000 μg / dm 2 , the adhesion amount of nickel-cobalt alloy is 1000 to 40000 μg / dm 2 , and the adhesion amount of chromium Is 10 to 1000 μg / dm 2 . The amount of pinholes tends to increase as the amount of nickel deposited, the amount of nickel-phosphorus alloy deposited, or the amount of nickel-cobalt alloy deposited increases. . From the viewpoint of uniformly peeling the ultrathin copper layer uniformly and from the viewpoint of suppressing pinholes, the adhesion amount of nickel is 1000 to 10000 μg / dm 2 , and the adhesion amount of nickel-phosphorous alloy is 1000 to 10000 μg / dm 2. nickel - 1000~10000μg / dm 2 the adhesion amount of the cobalt alloy, it is preferable that a 20-500 micrograms / dm 2 adhesion amount of chromium, 2000~9000μg / dm 2 adhesion amount of nickel, nickel - phosphorus alloy More preferably, the adhesion amount is 2000 to 9000 μg / dm 2 , the nickel-cobalt alloy adhesion amount is 2000 to 9000 μg / dm 2 , and the chromium adhesion amount is 25 to 200 μg / dm 2 .

中間層のニッケル−リン合金のリンの濃度は0〜20質量%であるのが好ましく、0〜15質量%であるのがより好ましい。また、中間層のニッケル−コバルト合金のコバルトの濃度は0〜65質量%であるのが好ましく、0〜50質量%であるのがより好ましい。このような構成によれば、ニッケル−リン合金、ニッケル−コバルト合金の表面に安定な酸化物層が形成され、その表面にクロム層を形成することでより中間層と極薄銅層間での剥離が容易になる。   The concentration of phosphorus in the nickel-phosphorus alloy in the intermediate layer is preferably 0 to 20% by mass, and more preferably 0 to 15% by mass. Moreover, it is preferable that the density | concentration of cobalt of the nickel-cobalt alloy of an intermediate | middle layer is 0-65 mass%, and it is more preferable that it is 0-50 mass%. According to such a configuration, a stable oxide layer is formed on the surface of the nickel-phosphorous alloy or nickel-cobalt alloy, and a chromium layer is formed on the surface, thereby further peeling between the intermediate layer and the ultrathin copper layer. Becomes easier.

<3.ストライクめっき>
中間層の上には極薄銅層を設ける。その前に極薄銅層のピンホールを低減させるために中間層のクロム層上に銅−リン合金によるストライクめっきを行ってもよい。ストライクめっきの処理液にはピロリン酸銅めっき液などを用いることができる。このように、銅−リン合金によるストライクめっきを行ったキャリア付銅箔は、中間層表面と極薄銅層表面の両方にリンが存在することとなる。このため、中間層/極薄銅層間で剥離させたとき、中間層及び極薄銅層の表面からリンが検出される。また、ストライクめっきで形成されためっき層は薄くなるため、FIBやTEM等で断面観察をし、中間層の上の銅リンめっき層の厚みが0.1μm以下である場合にはストライクめっきであると判定することができる。
<3. Strike plating>
An ultrathin copper layer is provided on the intermediate layer. Before that, strike plating with a copper-phosphorus alloy may be performed on the chromium layer of the intermediate layer in order to reduce pinholes in the ultrathin copper layer. A copper pyrophosphate plating solution or the like can be used as the strike plating treatment solution. Thus, the carrier-attached copper foil subjected to the strike plating with the copper-phosphorus alloy has phosphorus on both the intermediate layer surface and the ultrathin copper layer surface. For this reason, when it peels between an intermediate | middle layer / ultra-thin copper layer, phosphorus is detected from the surface of an intermediate | middle layer and an ultra-thin copper layer. Moreover, since the plating layer formed by strike plating becomes thin, cross-sectional observation is performed with FIB, TEM, etc., and when the thickness of the copper phosphorous plating layer on the intermediate layer is 0.1 μm or less, it is strike plating. Can be determined.

<4.極薄銅層>
中間層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には2〜5μmである。
<4. Ultra-thin copper layer>
An ultrathin copper layer is provided on the intermediate layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5-12 μm, more typically 2-5 μm.

<5.粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層であってもよい。また、粗化処理をした後、または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金で二次粒子や三次粒子及び/又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。
<5. Roughening>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer may be a single layer selected from the group consisting of copper, nickel, cobalt and zinc, or a layer made of an alloy containing one or more of them. In addition, after roughening treatment or without roughening treatment, secondary particles, tertiary particles and / or rust preventive layers are formed of nickel, cobalt, copper, zinc alone or an alloy, and further on the surface. Treatments such as chromate treatment and silane coupling treatment may be applied. That is, on the surface of the roughening treatment layer, one or more layers selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer may be formed, and on the surface of the ultrathin copper layer, You may form 1 or more types of layers selected from the group which consists of a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer.

<6.キャリア付銅箔>
このようにして、銅箔キャリアと、銅箔キャリア上に形成された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。本発明に係るキャリア付銅箔の場合、剥離箇所は主として中間層と極薄銅層の界面である。
<6. Copper foil with carrier>
Thus, the copper foil with a carrier provided with the copper foil carrier, the intermediate | middle layer formed on the copper foil carrier, and the ultra-thin copper layer laminated | stacked on the intermediate | middle layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board. In the case of the carrier-attached copper foil according to the present invention, the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer.

本発明のキャリア付銅箔は、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、リンの合計原子濃度(%)をi(x)とし、コバルトの原子濃度(%)をj(x)とし、酸素の原子濃度(%)をk(x)とし、炭素の原子濃度(%)をl(x)とし、その他の原子濃度(%)をm(x)とすると、
前記中間層/極薄銅層間で剥離させたとき、前記中間層表面からの深さ方向分析の区間[0、2.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が10〜40%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜50%であり、[2.0、6.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が40%以上を満たす。
また、本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、195℃×2時間の条件化で熱圧着させ、中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、リンの合計原子濃度(%)をi(x)とし、コバルトの原子濃度(%)をj(x)とし、酸素の原子濃度(%)をk(x)とし、炭素の原子濃度(%)をl(x)とし、その他の原子濃度(%)をm(x)とすると、中間層表面からの深さ方向分析の区間[0、2.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が10〜40%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜50%であり、[2.0、6.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が40%以上となるのが好ましい。
このように、本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたときの中間層の最表面にクロムが一定量以上で存在し、且つ、ニッケルが最表面よりも内部で濃度が高くなっている。このため、極薄銅層側表面におけるピンホールの発生が良好に抑制される。また、熱圧着後のキャリア付銅箔においても、銅箔キャリアを極薄銅層から剥離させたときの極薄銅層最表面にクロムが一定量以上で存在し、且つ、ニッケルが最表面よりも内部で濃度が高くなっている。このため、極薄銅層側表面におけるピンホールの発生が良好に抑制される。
In the copper foil with a carrier of the present invention, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is f (x), and the atomic concentration of nickel (%) Is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of phosphorus is i (x), and the atomic concentration (%) of cobalt is j (x ), The atomic concentration (%) of oxygen is k (x), the atomic concentration (%) of carbon is l (x), and the other atomic concentration (%) is m (x).
When delamination is performed between the intermediate layer and the ultrathin copper layer, 区間 f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 10 to 40 %, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 1 to 50%. In [2.0, 6.0], ∫g (x) dx / (∫f (x) dx + ∫g ( x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) satisfies 40% or more.
Moreover, the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 195 ° C. × 2 hours in the air between the intermediate layer and the ultrathin copper layer. When exfoliated, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from XPS depth direction analysis is defined as f (x), and the atomic concentration (%) of nickel is g (x), copper atomic concentration (%) as h (x), phosphorus total atomic concentration (%) as i (x), cobalt atomic concentration (%) as j (x), oxygen Depth direction from the surface of the intermediate layer, where k (x) is the atomic concentration (%), l (x) is the atomic concentration (%) of carbon, and m (x) is the other atomic concentration (%) In the analysis interval [0, 2.0], ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 10 to 40%, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x ) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 1 to 50%, [2.0, 6. 0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x dx + xl (x) dx + ∫m (x) dx) is preferably 40% or more.
Thus, in the copper foil with a carrier of the present invention, chromium is present in a certain amount or more on the outermost surface of the intermediate layer when peeled between the intermediate layer / ultra-thin copper layer, and nickel is present inside the outermost surface. The concentration is high. For this reason, generation | occurrence | production of the pinhole in an ultra-thin copper layer side surface is suppressed favorably. In addition, in the copper foil with a carrier after thermocompression bonding, chromium is present in a certain amount or more on the outermost surface of the ultrathin copper layer when the copper foil carrier is peeled from the ultrathin copper layer, and nickel is present from the outermost surface. The concentration is also high inside. For this reason, generation | occurrence | production of the pinhole in an ultra-thin copper layer side surface is suppressed favorably.

本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたとき、中間層表面からの深さ方向分析の区間[2.0、6.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜20%であることが好ましい。
また、本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、195℃×2時間の条件化で熱圧着させ、中間層/極薄銅層間で剥離させたとき、中間層表面からの深さ方向分析の区間[2.0、6.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜30%となるのが好ましい。
このように、本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたときの中間層の内部に銅が一定量以上で存在している。このため、中間層中の銅濃度が高くなると、中間層/極薄銅層間の密着力が高くなる。そのため、ニッケル中の銅濃度を制御することにより剥離強度を制御できる。また、熱圧着後のキャリア付銅箔においても、銅箔キャリアを極薄銅層から剥離させたときの中間層の内部に銅が一定量以上で存在している。このため、熱圧着後の極端な剥離強度の低下を防止できる。
ニッケルをキャリアに電着させる際の電流密度を高く設定して単位時間あたりの電着速度を高めるほど、またキャリア銅箔の搬送速度を速くするほど、ニッケル層の密度が低下する。ニッケル層の密度が低下すると、キャリア銅箔の銅がニッケル層に拡散しやすくなり、ニッケル中の銅の濃度を制御することができる。またクロム層は、クロムをキャリアに電着させる際の電流密度を高くし、キャリア銅箔の搬送速度を遅くするとクロムの濃度が高くなり、クロムの濃度を制御することができる。
When the copper foil with a carrier of the present invention is peeled between the intermediate layer / ultra-thin copper layer, in the section [2.0, 6.0] in the depth direction analysis from the surface of the intermediate layer, ∫h (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is preferably 1 to 20%.
Moreover, the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 195 ° C. × 2 hours in the air between the intermediate layer and the ultrathin copper layer. When peeled, in the section [2.0, 6.0] of the depth direction analysis from the intermediate layer surface, ∫h (x) dx / (∫f (x) dx + + g (x) dx + + h (x) dx +) i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is preferably 1 to 30%.
Thus, in the copper foil with a carrier of the present invention, copper is present in a certain amount or more inside the intermediate layer when peeled between the intermediate layer / ultra thin copper layer. For this reason, when the copper concentration in the intermediate layer increases, the adhesion between the intermediate layer and the ultrathin copper layer increases. Therefore, the peel strength can be controlled by controlling the copper concentration in nickel. Moreover, also in the copper foil with a carrier after thermocompression bonding, copper exists in a certain amount or more inside the intermediate layer when the copper foil carrier is peeled from the ultrathin copper layer. For this reason, the fall of the extreme peeling strength after thermocompression bonding can be prevented.
The higher the current density at which nickel is electrodeposited onto the carrier to increase the electrodeposition rate per unit time, and the higher the carrier copper foil transport rate, the lower the density of the nickel layer. When the density of the nickel layer is reduced, the copper of the carrier copper foil is easily diffused into the nickel layer, and the concentration of copper in the nickel can be controlled. Further, the chromium layer increases the current density when electrodepositing chromium onto the carrier, and the chromium concentration increases when the conveying speed of the carrier copper foil is decreased, so that the chromium concentration can be controlled.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

1.キャリア付銅箔の製造
銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び厚さ33μmの圧延銅箔(JX日鉱日石金属社製C1100)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続ラインでキャリア表面及び極薄銅層側について順に以下の条件で表1〜4に記載の中間層形成処理を行った。キャリア表面側と極薄銅層側との処理工程の間には、水洗及び酸洗を行った。
1. Production of Copper Foil with Carrier As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC made by JX Nippon Mining & Metals) and a rolled copper foil having a thickness of 33 μm (C1100 made by JX Nippon Mining & Metals) Prepared. With respect to the shiny surface of this copper foil, the intermediate layer forming process described in Tables 1 to 4 is performed in the following conditions in order on the carrier surface and the ultrathin copper layer side in a roll-to-roll type continuous line under the following conditions. went. Washing and pickling were performed between the processing steps on the carrier surface side and the ultrathin copper layer side.

・Niめっき
硫酸ニッケル:250〜300g/L
塩化ニッケル:35〜45g/L
酢酸ニッケル:10〜20g/L
クエン酸三ナトリウム:15〜30g/L
光沢剤:サッカリン、ブチンジオール等
ドデシル硫酸ナトリウム:30〜100ppm
pH:4〜6
浴温:50〜70℃
電流密度:3〜15A/dm2
・ Ni plating Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30-100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3-15 A / dm 2

・Crめっき
液組成:無水クロム酸200〜400g/L、硫酸1.5〜4g/L
pH:1〜4
液温:45〜60℃
電流密度:10〜40A/dm2
-Cr plating solution composition: chromic anhydride 200-400 g / L, sulfuric acid 1.5-4 g / L
pH: 1-4
Liquid temperature: 45-60 degreeC
Current density: 10 to 40 A / dm 2

・Ni−Pめっき
硫酸ニッケル:200〜300g/L
塩化ニッケル:35〜50g/L
ほう酸:30〜50g/L
亜リン酸:1〜30g/L
pH:1〜3
浴温:40〜70℃
電流密度:3〜15A/dm2
・ Ni-P plating Nickel sulfate: 200-300 g / L
Nickel chloride: 35-50 g / L
Boric acid: 30-50 g / L
Phosphorous acid: 1-30 g / L
pH: 1-3
Bath temperature: 40-70 ° C
Current density: 3-15 A / dm 2

・Ni−Coめっき
硫酸コバルト:50〜200g/L
硫酸ニッケル:50〜200g/L
クエン酸三ナトリウム:15〜30g/L
浴温:25〜60℃
電流密度:1〜15A/dm2
時間:1〜10秒
・ Ni-Co plating Cobalt sulfate: 50-200 g / L
Nickel sulfate: 50-200 g / L
Trisodium citrate: 15-30 g / L
Bath temperature: 25-60 ° C
Current density: 1-15 A / dm 2
Time: 1-10 seconds

・スパッタリング(Ni、Cr)
装置:ロール・トウ・ロール式スパッタリング装置(神港精機社)
到達真空度:1.0×10-5Pa
スパッタリング圧:0.25Pa
搬送速度:15m/min
イオンガン電力:225W
スパッタリング電力:200〜3000W
ターゲット:Ni、Ni−10wt%P、Ni−10wt%Co、Cr(3N)
・ Sputtering (Ni, Cr)
Equipment: Roll-to-roll type sputtering equipment (Shinko Seiki Co., Ltd.)
Ultimate vacuum: 1.0 × 10 −5 Pa
Sputtering pressure: 0.25 Pa
Conveying speed: 15m / min
Ion gun power: 225W
Sputtering power: 200-3000W
Target: Ni, Ni-10 wt% P, Ni-10 wt% Co, Cr (3N)

引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に厚さ35μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を作製した。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
Subsequently, an ultrathin copper layer having a thickness of 35 μm was formed on the intermediate layer on the roll-to-roll-type continuous plating line by electroplating under the following conditions to produce a copper foil with a carrier.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

なお、実施例1、3、7、8、11については極薄銅層の表面に以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。また、実施例2については極薄銅層の表面に粗化処理を行わず、以下の防錆処理、クロメート処理、及びシランカップリング処理をこの順に行った。
・粗化処理
Cu:10〜20g/L
Co:1〜10g/L
Ni:1〜10g/L
pH:1〜4
温度:40〜50℃
電流密度Dk:20〜30A/dm2
時間:1〜5秒
Cu付着量:15〜40mg/dm2
Co付着量:100〜3000μg/dm2
Ni付着量:100〜1000μg/dm2
・防錆処理
Zn:0〜20g/L
Ni:0〜5g/L
pH:3.5
温度:40℃
電流密度Dk:0〜1.7A/dm2
時間:1秒
Zn付着量:5〜250μg/dm2
Ni付着量:5〜300μg/dm2
・クロメート処理
2Cr27
(Na2Cr27或いはCrO3):2〜10g/L
NaOH或いはKOH:10〜50g/L
ZnO或いはZnSO47H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度:0.05〜5A/dm2
時間:5〜30秒
Cr付着量:10〜150μg/dm2
・シランカップリング処理
ビニルトリエトキシシラン水溶液
(ビニルトリエトキシシラン濃度:0.1〜1.4wt%)
pH:4〜5
時間:5〜30秒
In Examples 1, 3, 7, 8, and 11, the surface of the ultrathin copper layer was subjected to the following roughening treatment, rust prevention treatment, chromate treatment, and silane coupling treatment in this order. Moreover, about Example 2, the roughening process was not performed to the surface of an ultra-thin copper layer, but the following rust prevention processes, the chromate process, and the silane coupling process were performed in this order.
・ Roughening treatment Cu: 10 to 20 g / L
Co: 1-10 g / L
Ni: 1-10g / L
pH: 1-4
Temperature: 40-50 ° C
Current density Dk: 20 to 30 A / dm 2
Time: 1 to 5 seconds Cu adhesion amount: 15 to 40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Rust prevention treatment Zn: 0-20g / L
Ni: 0 to 5 g / L
pH: 3.5
Temperature: 40 ° C
Current density Dk: 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5-250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnO or ZnSO 4 7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density: 0.05 to 5 A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Time: 5-30 seconds

また、実施例16については中間層の上に以下の条件で銅−リンストライクめっきを行った後に極薄銅層の形成を行った。それ以外の条件は実施例13と同様である。
・銅−リンストライクめっき
Cu227・3H2O:20〜40g/L
427:250〜350g/L
pH:8
電流密度:1.5〜2.5A/dm2
時間:20〜40秒
Moreover, about Example 16, after performing copper-phosphorus strike plating on the following conditions on the intermediate | middle layer, formation of the ultra-thin copper layer was performed. Other conditions are the same as in Example 13.
・ Copper-phosphorus strike plating Cu 2 P 2 O 7 .3H 2 O: 20 to 40 g / L
K 4 P 2 O 7 : 250 to 350 g / L
pH: 8
Current density: 1.5 to 2.5 A / dm 2
Time: 20-40 seconds

2.キャリア付銅箔の各種評価
上記のようにして得られたキャリア付銅箔について、以下の方法で各種の評価を実施した。結果を表1〜4に示す。
2. Various evaluations of copper foil with carrier Various evaluations were carried out by the following methods for the copper foil with carrier obtained as described above. The results are shown in Tables 1-4.

<付着量の測定>
ニッケル付着量、コバルト付着量、及び、リン付着量は、サンプルを濃度20質量%の硝酸で溶解してICP発光分析によって測定し、クロム付着量はサンプルを濃度7質量%の塩酸にて溶解して、原子吸光法により定量分析を行うことで測定した。
<Measurement of adhesion amount>
Nickel adhesion amount, cobalt adhesion amount, and phosphorus adhesion amount were measured by ICP emission analysis after dissolving the sample with nitric acid with a concentration of 20% by mass, and chromium adhesion amount was dissolved with hydrochloric acid with a concentration of 7% by mass. The measurement was performed by quantitative analysis by atomic absorption method.

<XPS分析>
キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、20kgf/cm2、195℃×2時間の条件下で圧着を行った後、銅箔キャリアを極薄銅層から引き剥がした。続いて、露出した中間層表面をXPS測定し、デプスプロファイルを作成した。XPSの稼働条件を以下に示す。
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
また、上記熱圧着前のキャリア付銅箔についても、銅箔キャリアを極薄銅層から引き剥がし、露出した中間層表面をXPS測定し、デプスプロファイルを作成した。
なお、中間層と極薄銅層との間で剥離したかどうかは、中間層側同様に極薄銅層側のデプスプロファイルを作成することによって確認することができる。図3のように極薄銅層側には、中間層側の構成元素であるニッケルとクロムはほとんど検出されない。極薄銅層側表面のニッケルおよびクロムの原子濃度が各々5at%以下の場合、中間層と極薄銅層との間で剥離していると判定した。
<XPS analysis>
After bonding the ultra-thin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 195 ° C. × 2 hours, the copper foil carrier is peeled off from the ultra-thin copper layer. It was. Subsequently, the exposed intermediate layer surface was subjected to XPS measurement to create a depth profile. XPS operating conditions are shown below.
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieving vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
Moreover, also about the copper foil with a carrier before the said thermocompression bonding, the copper foil carrier was peeled off from the ultra-thin copper layer, the XPS measurement was performed for the exposed intermediate | middle layer surface, and the depth profile was created.
In addition, whether it peeled between the intermediate | middle layer and the ultra-thin copper layer can be confirmed by producing the depth profile of the ultra-thin copper layer side like the intermediate | middle layer side. As shown in FIG. 3, nickel and chromium, which are constituent elements on the intermediate layer side, are hardly detected on the ultrathin copper layer side. When the atomic concentrations of nickel and chromium on the ultrathin copper layer side surface were each 5 at% or less, it was determined that the intermediate layer and the ultrathin copper layer were separated.

<ピンホール>
民生用の写真用バックライトを光源にして、目視でピンホールの数を測定した。
<Pinhole>
The number of pinholes was visually measured using a consumer photographic backlight as a light source.

<剥離強度>
キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、195℃×2時間の条件下で圧着を行った後、剥離強度は、ロードセルにて銅箔キャリア側を引っ張り、180°剥離法(JIS C 6471 8.1)に準拠して測定した。また、絶縁基板上に貼り合わせる前のキャリア付銅箔も同様に剥離強度を測定しておいた。
<Peel strength>
After bonding the ultra-thin copper layer side of the copper foil with a carrier onto an insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 195 ° C. × 2 hours in the atmosphere, the peel strength is measured using a load cell. The foil carrier side was pulled and measured according to the 180 ° peeling method (JIS C 6471 8.1). Further, the peel strength of the carrier-attached copper foil before being bonded onto the insulating substrate was also measured.

(評価結果)
実施例1〜16は、いずれもピンホールが良好に抑制されており、さらに良好な剥離強度を示した。
比較例1、2は、中間層を形成しておらず、ニッケルとクロムの付着量が少なかったため、熱圧着前でも極薄銅層からキャリアを剥離することができなかった。
比較例4は、ニッケルの付着量が少なかったため、熱圧着前でも極薄銅層からキャリアを剥離することができなかった。
比較例3、5は、クロムの付着量が少なかったため、基板との貼り合わせ後にキャリアを剥離することができなくなった。
比較例6、10はニッケルとニッケル−コバルト合金の付着量が多すぎたため、極薄銅層のピンホールが増え、剥離強度が低くなり過ぎた。
比較例7〜9、11、12は表面から0〜2nmでのクロムの濃度が高くなりすぎたため、極薄銅層のピンホールが多くなった。比較例8はNi−P合金の付着量が少ないため、相対的にクロムの濃度が高くなっている。
比較例13は、表面のニッケル濃度が高すぎたため、ピンホールが多くなり、剥離強度が低くなりすぎた。
図1及び図2に、それぞれ、実施例5及び比較例3の基板貼り合わせ前の中間層表面の深さ方向のXPSデプスプロファイルを示す。図3に実施例5の基板貼り合わせ前の極薄銅層表面の深さ方向のXPSデプスプロファイルを示す。
なお、極薄銅層をキャリアから剥離することができた実施例、比較例については、いずれも中間層と極薄銅層との間で剥離していた。
(Evaluation results)
In each of Examples 1 to 16, pinholes were well suppressed, and even better peel strength was exhibited.
In Comparative Examples 1 and 2, the intermediate layer was not formed, and the adhesion amount of nickel and chromium was small, so that the carrier could not be peeled from the ultrathin copper layer even before thermocompression bonding.
In Comparative Example 4, since the adhesion amount of nickel was small, the carrier could not be peeled from the ultrathin copper layer even before thermocompression bonding.
In Comparative Examples 3 and 5, since the amount of chromium deposited was small, the carrier could not be peeled after bonding to the substrate.
In Comparative Examples 6 and 10, since the adhesion amount of nickel and nickel-cobalt alloy was too large, pinholes in the ultrathin copper layer increased and the peel strength was too low.
In Comparative Examples 7 to 9, 11, and 12, since the chromium concentration at 0 to 2 nm was too high from the surface, pinholes in the ultrathin copper layer increased. Comparative Example 8 has a relatively high chromium concentration because of the small amount of Ni-P alloy deposited.
In Comparative Example 13, since the nickel concentration on the surface was too high, there were many pinholes and the peel strength was too low.
FIG. 1 and FIG. 2 show XPS depth profiles in the depth direction of the surface of the intermediate layer before bonding the substrates of Example 5 and Comparative Example 3, respectively. FIG. 3 shows an XPS depth profile in the depth direction of the surface of the ultrathin copper layer before bonding the substrates in Example 5.
In addition, about the Example and comparative example which were able to peel an ultra-thin copper layer from a carrier, all peeled between the intermediate | middle layer and the ultra-thin copper layer.

Claims (18)

銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記中間層は、前記銅箔キャリア上に、ニッケル又はニッケル−リン合金又はニッケル−コバルト合金と、クロムとがこの順で積層されて構成されており、
前記中間層のニッケルの付着量が1000〜40000μg/dm2、ニッケル−リン合金の付着量が1000〜40000μg/dm2、ニッケル−コバルト合金の付着量が1000〜40000μg/dm2、クロムの付着量が10〜1000μg/dm2であり、
前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、リンの合計原子濃度(%)をi(x)とし、コバルトの原子濃度(%)をj(x)とし、酸素の原子濃度(%)をk(x)とし、炭素の原子濃度(%)をl(x)とし、その他の原子濃度(%)をm(x)とすると、
前記中間層表面からの深さ方向分析の区間[0、2.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が10〜40%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜50%であり、[2.0、6.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が40%以上を満たすキャリア付銅箔。
A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer,
The intermediate layer is configured by laminating nickel or nickel-phosphorus alloy or nickel-cobalt alloy and chromium in this order on the copper foil carrier,
The intermediate layer has an adhesion amount of nickel of 1000 to 40000 μg / dm 2 , an adhesion amount of nickel-phosphorus alloy of 1000 to 40000 μg / dm 2 , an adhesion amount of nickel-cobalt alloy of 1000 to 40000 μg / dm 2 , and an adhesion amount of chromium. Is 10 to 1000 μg / dm 2 ,
When peeling between the intermediate layer and ultrathin copper layer, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x). The atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of phosphorus is i (x), and the atomic concentration of cobalt (% ) Is j (x), oxygen atomic concentration (%) is k (x), carbon atomic concentration (%) is l (x), and other atomic concentration (%) is m (x) ,
In the section [0, 2.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 10 to 40%, ∫g (x) dx / (∫f (x ) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) 1 to 50%, and in [2.0, 6.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i ( x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is a copper foil with a carrier satisfying 40% or more.
前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[2.0、6.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜20%である請求項1に記載のキャリア付銅箔。   When peeling between the intermediate layer / ultra thin copper layer, in the section [2.0, 6.0] of the depth direction analysis from the intermediate layer surface by XPS, ∫h (x) dx / (/ f ( x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) The copper foil with a carrier according to claim 1, wherein is 1 to 20%. 前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、195℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、リンの合計原子濃度(%)をi(x)とし、コバルトの原子濃度(%)をj(x)とし、酸素の原子濃度(%)をk(x)とし、炭素の原子濃度(%)をl(x)とし、その他の原子濃度(%)をm(x)とすると、
前記中間層表面からの深さ方向分析の区間[0、2.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が10〜40%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜50%であり、[2.0、6.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が40%以上となる請求項1又は2に記載のキャリア付銅箔。
When the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 195 ° C. × 2 hours, and peeled between the intermediate layer / ultrathin copper layer, the surface by XPS The atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the analysis of the depth direction of copper is f (x), the atomic concentration (%) of nickel is g (x), and copper atoms The concentration (%) is h (x), the total atomic concentration (%) of phosphorus is i (x), the atomic concentration (%) of cobalt is j (x), and the atomic concentration (%) of oxygen is k ( x), the atomic concentration (%) of carbon is l (x), and the other atomic concentration (%) is m (x).
In the section [0, 2.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 10 to 40%, ∫g (x) dx / (∫f (x ) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) 1 to 50%, and in [2.0, 6.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i ( The copper foil with a carrier according to claim 1 or 2, wherein x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 40% or more.
前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、195℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、前記中間層表面からの深さ方向分析の区間[2.0、6.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx+ ∫l(x)dx+ ∫m(x)dx)が1〜30%となる請求項1〜3のいずれかに記載のキャリア付銅箔。 When the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 195 ° C. × 2 hours in the atmosphere, and peeled between the intermediate layer / ultrathin copper layer, the surface of the intermediate layer区間 h (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i) in the interval [2.0, 6.0] of the depth direction analysis from (x) dx + ∫j (x) dx + ∫k (x) dx + ∫l (x) dx + ∫m (x) dx) is 1 to 30%. Copper foil. 前記中間層のニッケル−リン合金のリンの濃度が0〜20質量%である請求項1〜4のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 1 to 4, wherein a concentration of phosphorus in the nickel-phosphorus alloy in the intermediate layer is 0 to 20% by mass. 前記中間層のニッケル−コバルト合金のコバルトの濃度が0〜65質量%である請求項1〜4のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 1 to 4, wherein the nickel-cobalt alloy in the intermediate layer has a cobalt concentration of 0 to 65 mass%. 前記中間層のクロム層上に銅−リン合金めっき層を有し、前記銅−リン合金めっき層上に前記極薄銅層を有する請求項1〜6のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 1 to 6, further comprising a copper-phosphorus alloy plating layer on the chromium layer of the intermediate layer, and the ultrathin copper layer on the copper-phosphorus alloy plating layer. 前記銅−リン合金めっき層の厚みが0.1μm以下である請求項7に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 7, wherein the copper-phosphorus alloy plating layer has a thickness of 0.1 μm or less . 前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている請求項1〜8のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 1 to 8, wherein the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil. 前記極薄銅層表面に粗化処理層を有する請求項1〜9のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier in any one of Claims 1-9 which have a roughening process layer in the said ultra-thin copper layer surface. 前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項10に記載のキャリア付銅箔。   11. The copper foil with a carrier according to claim 10, wherein the roughening treatment layer is a single layer selected from the group consisting of copper, nickel, cobalt, and zinc, or a layer made of an alloy containing at least one of them. 前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項10又は11に記載のキャリア付銅箔。   The copper foil with a carrier of Claim 10 or 11 which has 1 or more types of layers selected from the group which consists of a rust preventive layer, a chromate process layer, and a silane coupling process layer on the surface of the said roughening process layer. 前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜9のいずれかに記載のキャリア付銅箔。   The copper with a carrier according to any one of claims 1 to 9, wherein the surface of the ultrathin copper layer has at least one layer selected from the group consisting of a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. Foil. 銅箔キャリア上に、物理蒸着法又は電気めっきにより、ニッケル層又はニッケル−リン層又はニッケル−コバルト層を形成し、前記ニッケル層又はニッケル−リン層又はニッケル−コバルト層の上にクロム層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程とを含む請求項1〜13のいずれかに記載のキャリア付銅箔の製造方法。   A nickel layer, nickel-phosphorus layer, or nickel-cobalt layer is formed on the copper foil carrier by physical vapor deposition or electroplating, and a chromium layer is formed on the nickel layer, nickel-phosphorus layer, or nickel-cobalt layer. The manufacturing method of the copper foil with a carrier in any one of Claims 1-13 including the process of forming an intermediate | middle layer by doing, and the process of forming an ultra-thin copper layer on the said intermediate | middle layer by electrolytic plating. 前記中間層のクロム層の上に銅−リン合金でストライクめっきを施し、前記ストライクめっきの上に極薄銅層を形成する請求項14に記載のキャリア付銅箔の製造方法。   The manufacturing method of the copper foil with a carrier of Claim 14 which strike-plats with a copper-phosphorus alloy on the chromium layer of the said intermediate | middle layer, and forms an ultra-thin copper layer on the said strike plating. 前記極薄銅層上に粗化処理層を形成する工程をさらに含む請求項14又は15に記載のキャリア付銅箔の製造方法。   The manufacturing method of the copper foil with a carrier of Claim 14 or 15 which further includes the process of forming a roughening process layer on the said ultra-thin copper layer. 請求項1〜13のいずれかに記載のキャリア付銅箔と絶縁基板とを有する積層体。   The laminated body which has the copper foil with a carrier in any one of Claims 1-13, and an insulated substrate. 請求項1〜13のいずれかに記載のキャリア付銅箔を用いてプリント配線板を製造するプリント配線板の製造方法。   The manufacturing method of the printed wiring board which manufactures a printed wiring board using the copper foil with a carrier in any one of Claims 1-13.
JP2012030936A 2012-02-15 2012-02-15 Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board Active JP5854872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030936A JP5854872B2 (en) 2012-02-15 2012-02-15 Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030936A JP5854872B2 (en) 2012-02-15 2012-02-15 Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board

Publications (2)

Publication Number Publication Date
JP2013166995A JP2013166995A (en) 2013-08-29
JP5854872B2 true JP5854872B2 (en) 2016-02-09

Family

ID=49177607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030936A Active JP5854872B2 (en) 2012-02-15 2012-02-15 Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board

Country Status (1)

Country Link
JP (1) JP5854872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115794A (en) * 2018-09-06 2019-01-01 赵玮 A kind of detection device of electrolytic copper foil break and pin hole

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640567B2 (en) 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP3977790B2 (en) * 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP4217786B2 (en) * 2004-03-12 2009-02-04 古河電気工業株式会社 Ultra-thin copper foil with carrier and wiring board using ultra-thin copper foil with carrier
JP4927503B2 (en) * 2005-12-15 2012-05-09 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
JP2007314855A (en) * 2006-05-29 2007-12-06 Furukawa Circuit Foil Kk Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2007186797A (en) * 2007-02-15 2007-07-26 Furukawa Circuit Foil Kk Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP4682271B2 (en) * 2009-06-30 2011-05-11 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
WO2013118416A1 (en) * 2012-02-06 2013-08-15 Jx日鉱日石金属株式会社 Copper foil with carrier, manufacturing method for copper foil with carrier, printed wiring board, printed circuit board and copper clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115794A (en) * 2018-09-06 2019-01-01 赵玮 A kind of detection device of electrolytic copper foil break and pin hole

Also Published As

Publication number Publication date
JP2013166995A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5228130B1 (en) Copper foil with carrier
JP5373995B2 (en) Copper foil with carrier
JP5922227B2 (en) Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board
JP5156873B1 (en) Copper foil with carrier
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5364838B1 (en) Copper foil with carrier
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5247929B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5449596B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6140481B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5814168B2 (en) Copper foil with carrier
JP2011014651A (en) Copper foil for printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6271134B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014201061A (en) Carrier with copper foil, printed wiring board, printed circuit board, copper clad laminate sheet, and production method of printed wiring board
JP2014024315A (en) Copper foil with carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5854872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250