WO2013118416A1 - Copper foil with carrier, manufacturing method for copper foil with carrier, printed wiring board, printed circuit board and copper clad laminate - Google Patents

Copper foil with carrier, manufacturing method for copper foil with carrier, printed wiring board, printed circuit board and copper clad laminate Download PDF

Info

Publication number
WO2013118416A1
WO2013118416A1 PCT/JP2012/083722 JP2012083722W WO2013118416A1 WO 2013118416 A1 WO2013118416 A1 WO 2013118416A1 JP 2012083722 W JP2012083722 W JP 2012083722W WO 2013118416 A1 WO2013118416 A1 WO 2013118416A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
copper
copper foil
intermediate layer
Prior art date
Application number
PCT/JP2012/083722
Other languages
French (fr)
Japanese (ja)
Inventor
美里 中願寺
友太 永浦
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2013557388A priority Critical patent/JP5903446B2/en
Publication of WO2013118416A1 publication Critical patent/WO2013118416A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer

Definitions

  • the present invention relates to a copper foil with a carrier, a method for producing a copper foil with a carrier, a printed wiring board, a printed circuit board, and a copper clad laminate. More specifically, the present invention relates to a copper foil with a carrier used as a material for a printed wiring board for fine patterns, a method for producing the copper foil with a carrier, a printed wiring board, a printed circuit board, and a copper clad laminate.
  • a printed wiring board is manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (laminating method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.
  • the thickness of the copper foil used for the copper clad laminate is 9 ⁇ m, and further the thickness is becoming 5 ⁇ m or less.
  • the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer.
  • a general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.
  • a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer.
  • a method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.
  • the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof or hydrates thereof. Furthermore, Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe or an alloy layer thereof as a base of the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. Has been.
  • an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate, while the ultrathin copper layer does not peel off from the carrier before the lamination process on the insulating substrate.
  • Another object of the present invention is to provide a carrier-attached copper foil in which the generation of pinholes on the ultrathin copper layer side surface is suppressed.
  • the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier.
  • Consist of nickel and chromate in order, control the amount of nickel and chromium deposited, and control the chromium and nickel atom concentration on the intermediate layer surface when peeled between the intermediate layer and ultrathin copper layer has been found to be extremely effective. It is also extremely effective to control the chromium and nickel atom concentration on the surface of the intermediate layer when the insulating substrate is thermocompression bonded to the ultrathin copper layer and the carrier is peeled off from the ultrathin copper layer. I found.
  • the present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer.
  • a copper foil with a carrier, The intermediate layer is configured by laminating nickel and chromate in this order on the copper foil carrier, Adhesion amount 100 ⁇ 40000 ⁇ g / dm 2 of nickel, the adhesion amount of chromium is 5 ⁇ 100 ⁇ g / dm 2,
  • the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x).
  • ⁇ f (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 1-30%
  • ⁇ g (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 1 to 50%, and [1.0, 4.0], ⁇
  • the section [1.0, 4.0], ⁇ h (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) satisfies 1 to 30.
  • the binding energy of the 2P3 / 2 orbit of chromium detected by XPS of the intermediate layer is in the range of 576 to 580 eV.
  • the ultrathin copper layer is thermocompression-bonded under the conditions of an insulating substrate in the atmosphere, pressure: 20 kgf / cm 2 , 220 ° C. ⁇ 2 hours,
  • the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x).
  • ⁇ f (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 0.5-30%
  • ⁇ g (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 1 to 50% and [1.0, 4.0], ⁇
  • the ultrathin copper layer is thermocompression-bonded under the conditions of an insulating substrate in the atmosphere, pressure: 20 kgf / cm 2 , 220 ° C. ⁇ 2 hours,
  • ⁇ f (x) dx / ( ⁇ f (x) in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface by XPS dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) satisfies 1 to 25%.
  • the ultrathin copper layer is thermocompression-bonded under the conditions of an insulating substrate in the atmosphere, pressure: 20 kgf / cm 2 , 220 ° C. ⁇ 2 hours,
  • ⁇ h (x) dx / ( ⁇ f ( x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) satisfies 2 to 40%.
  • the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
  • the surface of the ultrathin copper layer has a roughening treatment layer.
  • the roughening treatment layer is any one selected from the group consisting of copper, nickel, cobalt and zinc, or any one or more. It is a layer made of an alloy containing.
  • one or more types selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the roughening treatment layer has a layer of.
  • a nickel plating is formed on a copper foil carrier, and then an intermediate layer is formed by forming a chromate layer by electrolytic chromate, and an extremely thin layer is formed by electrolytic plating on the intermediate layer. And a step of forming a copper layer.
  • a nickel plating is formed on a copper foil carrier and then an intermediate layer is formed by forming a chromate layer by electrolytic chromate, and an electrode is formed on the intermediate layer by electrolytic plating. It is a manufacturing method of copper foil with a carrier including the process of forming a thin copper layer, and the process of forming a roughening process layer on the said ultra-thin copper layer.
  • the present invention is a printed wiring board manufactured using the carrier-attached copper foil of the present invention.
  • the present invention is a printed circuit board manufactured using the carrier-attached copper foil of the present invention.
  • the present invention is a copper clad laminate manufactured using the carrier-attached copper foil of the present invention.
  • the copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness is lowered, it can be easily peeled off at the carrier / ultra-thin copper layer interface, and the occurrence of pinholes on the surface of the ultra-thin copper layer can be well suppressed.
  • FIG. 2 It is a XPS depth profile of the depth direction of the intermediate
  • FIG. 2 It is an XPS depth profile of the depth direction of the intermediate
  • FIG. It is the XPS depth profile of the depth direction of the ultra-thin copper layer surface before board
  • a copper foil is used as a carrier that can be used in the present invention.
  • the carrier is typically provided in the form of rolled copper foil or electrolytic copper foil.
  • the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni and Si Copper alloys such as copper alloys can also be used.
  • a copper alloy foil is also included.
  • the thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 ⁇ m or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 ⁇ m or less. Accordingly, the thickness of the carrier is typically 12-70 ⁇ m, more typically 18-35 ⁇ m.
  • Intermediate layer An intermediate layer is provided on the copper foil carrier.
  • the intermediate layer is formed by laminating nickel and chromate in this order on a copper foil carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromate. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer. Also, chromate is formed on the intermediate layer instead of chrome plating.
  • chromium plating forms a dense chromium oxide layer on the surface, when an ultrathin copper foil is formed by electroplating, the electrical resistance increases and pinholes are likely to occur. Since the chromium oxide layer that is not as dense as chromium plating is formed on the surface on which the chromate is formed, it is difficult to become resistance when forming an ultrathin copper foil by electroplating, and pinholes can be reduced. When using electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes.
  • the chromate layer is thin at the interface of the ultrathin copper layer, while the ultrathin copper layer does not peel from the carrier before the lamination process to the insulating substrate, while the carrier after the lamination process to the insulating substrate From the viewpoint of obtaining the property that the ultrathin copper layer can be peeled off.
  • the chromate layer is present at the boundary between the carrier and the ultrathin copper layer without providing the nickel layer, the peelability is hardly improved, and when there is no chromate layer and the nickel layer and the ultrathin copper layer are laminated directly, nickel Depending on the amount of nickel in the layer, the peel strength is too strong or too weak to obtain an appropriate peel strength.
  • the intermediate layer is also peeled along with the peeling of the ultrathin copper layer, that is, peeling occurs between the carrier and the intermediate layer.
  • peeling occurs between the carrier and the intermediate layer.
  • the adhesion between the chromium and copper interface is weak and easy to peel off. Further, when the nickel amount in the intermediate layer is insufficient, there is only a very small amount of chromium between the carrier and the ultrathin copper layer, so that they are in close contact with each other and are difficult to peel off.
  • the nickel of the intermediate layer can be formed by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Electroplating is preferable from the viewpoint of cost. Also, chromate can be formed with, for example, electrolytic chromate, immersion chromate, etc., but the chromium concentration can be increased, and the peel strength of the ultrathin copper layer from the copper foil carrier is improved. Preferably formed.
  • the adhesion amount of nickel is 100 to 40000 ⁇ g / dm 2
  • the adhesion amount of chromium is 5 to 100 ⁇ g / dm 2
  • the nickel adhesion amount is preferably 300 to 10,000 ⁇ g / dm 2, and preferably 500 to 3000 ⁇ g / dm 2.
  • the chromium adhesion amount is preferably 10 to 50 ⁇ g / dm 2 , more preferably 12 to 30 ⁇ g / dm 2 .
  • Strike plating An ultrathin copper layer is provided on the intermediate layer. Before that, strike plating with a copper-phosphorus alloy may be performed to reduce pinholes in the ultrathin copper layer. Examples of the strike plating include a copper pyrophosphate plating solution.
  • Ultra-thin copper layer An ultrathin copper layer is provided on the intermediate layer.
  • the ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable.
  • the thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 ⁇ m or less. Typically 0.5 to 12 ⁇ m, more typically 2 to 5 ⁇ m.
  • a roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate.
  • the roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy.
  • the roughening process may be fine.
  • the roughening treatment layer may be a single layer selected from the group consisting of copper, nickel, cobalt and zinc, or a layer made of an alloy containing one or more of them.
  • secondary particles, tertiary particles and / or rust preventive layers are formed of nickel, cobalt, copper, zinc alone or an alloy, and further on the surface.
  • Treatments such as chromate treatment and silane coupling treatment may be applied. That is, on the surface of the roughening treatment layer, one or more layers selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer may be formed, and on the surface of the ultrathin copper layer, You may form 1 or more types of layers selected from the group which consists of a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer.
  • middle layer is manufactured.
  • the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite.
  • a copper-clad laminate can be obtained by bonding to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc., and peeling the carrier after thermocompression bonding.
  • an ultrathin copper layer bonded to the insulating substrate of the copper-clad laminate can be etched into a target conductor pattern, and finally a printed wiring board or a printed circuit board can be manufactured.
  • the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer.
  • the atomic concentration of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS ( %) Is f (x), nickel atomic concentration (%) is g (x), copper atomic concentration (%) is h (x), and oxygen total atomic concentration (%) is i (x).
  • ⁇ f (x ) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 2-25% It is preferable to satisfy.
  • the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C. ⁇ 2 hours between the intermediate layer and the ultrathin copper layer.
  • the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from XPS depth direction analysis is defined as f (x)
  • the atomic concentration (%) of nickel is g (x), copper atomic concentration (%) as h (x), oxygen total atomic concentration (%) as i (x), carbon atomic concentration (%) as j (x), etc.
  • ⁇ f (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 0.5-30%
  • ⁇ g (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 1 to 50%, and [1.
  • the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. ⁇ 2 hours between the intermediate layer and the ultrathin copper layer.
  • ⁇ f (x) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface by XPS h (x) dx +) i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) preferably satisfies 1 to 25%.
  • chromium is present in a certain amount or more on the outermost surface of the intermediate layer when peeled between the intermediate layer / ultra-thin copper layer, and nickel is present inside the outermost surface. The concentration is high.
  • the copper foil with carrier of the present invention is peeled between the intermediate layer / ultra-thin copper layer, in the section [1.0, 4.0] of the depth direction analysis from the intermediate layer surface by XPS, ⁇ h (x ) dx / ( ⁇ f (x) dx + ⁇ g (x) dx + ⁇ h (x) dx + ⁇ i (x) dx + ⁇ j (x) dx + ⁇ k (x) dx) is 1-30% It is preferable to satisfy.
  • the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C.
  • copper is present in a certain amount or more inside the intermediate layer when peeled between the intermediate layer / ultra thin copper layer.
  • the peel strength can be controlled by controlling the copper concentration in nickel.
  • copper exists in a certain amount or more inside the intermediate layer when the copper foil carrier is peeled from the ultrathin copper layer. For this reason, there exists an effect that the fall of the extreme peeling strength after thermocompression-bonding can be prevented.
  • the higher the nickel current density is set to increase the electrodeposition rate per unit time, and the higher the transport speed of the carrier copper foil, the lower the density of the nickel layer.
  • the concentration of copper in the nickel can be controlled. Further, when the current density in the chromate treatment is increased and the conveying speed of the carrier copper foil is decreased, the chromium concentration increases and the chromium concentration can be controlled.
  • the binding energy of the 2P3 / 2 orbit of chromium detected by XPS in the intermediate layer is in the range of 576 to 580 eV. According to such a configuration, chromium present in the intermediate layer becomes not chromium metal but chromium oxide, and the generation of pinholes on the surface of the ultrathin copper layer can be suppressed more favorably.
  • Nickel sulfate 250-300 g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Trisodium citrate: 15-30 g / L Brightener: Saccharin, butynediol, etc.
  • Sodium dodecyl sulfate 30 to 100 ppm pH: 4-6 Bath temperature: 50-70 ° C Current density: 3 to 15 A / dm 2
  • -Cr plating solution composition chromic anhydride 200-400 g / L, sulfuric acid 1.5-4 g / L pH: 1 to 4 Liquid temperature: 45-60 ° C Current density: 10 to 40 A / dm 2
  • Electrolytic chromate treatment Liquid composition (1) Potassium dichromate 1-10 g / L, Zinc 0-5 g / L
  • a / dm 2 Coulomb amount: 0.5-30 As / dm 2
  • an ultrathin copper layer having a thickness of 35 ⁇ m was formed on the intermediate layer on the roll-to-roll-type continuous plating line by electroplating under the following conditions to produce a copper foil with a carrier.
  • a copper foil with a carrier For Examples 1 to 3, 5, 7, 11, and 13 to 15, copper foils with a carrier having ultrathin copper layers with thicknesses of 1, 2, 3, 5, and 12 ⁇ m were also produced.
  • Current density 10 to 100 A / dm 2
  • the amount of nickel deposited is measured by ICP emission analysis after dissolving the sample in nitric acid with a concentration of 20% by mass.
  • the amount of chromium deposited is quantitatively analyzed by atomic absorption spectrometry after dissolving the sample in 7% by mass of hydrochloric acid. Measured with
  • XPS measuring device (ULVAC-PHI, Model 5600MC) ⁇ Achieved vacuum: 3.8 ⁇ 10 ⁇ 7 Pa
  • X-ray Monochromatic AlK ⁇ or non-monochromatic MgK ⁇ , X-ray output 300 W, detection area 800 ⁇ m ⁇ , angle between sample and detector 45 °
  • Ion beam ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm ⁇ 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
  • the copper foil carrier was peeled off from the ultra-thin copper layer, the XPS measurement was performed for the exposed copper foil carrier surface, and the depth profile was created.
  • FIG. 1 and FIG. 2 show XPS depth profiles in the depth direction of the surface of the intermediate layer before bonding the substrates of Example 2 and Comparative Example 3, respectively.
  • FIG. 3 shows an XPS depth profile in the depth direction of the surface of the ultrathin copper layer before bonding the substrates in Example 2.

Abstract

A copper foil with a carrier provided with a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. The intermediate layer is configured by laminating nickel and chromate in said order on the copper foil carrier. The amount of adhering nickel is 100-40000 µg/dm2 and the amount of adhering chromium is 5-100 µg/dm2. If, when peeling between the intermediate layer and the ultrathin copper layer, the chromium atom concentration in the depth direction (x: in nm units) obtained from analysis in the depth direction from the surface using XPS is f(x), the nickel atom concentration is g(x) and the concentration of other atoms is l(x), the copper foil with a carrier satisfies ∫f(x)dx/(∫f(x)dx+∫g(x)dx+∫l(x)dx) being 1-30% and ∫g(x)dx/(∫f(x)dx+∫g(x)dx+∫l(x)dx) being 1-50% in the interval [0, 1.0] of the analysis in the depth direction from the surface of the intermediate layer and ∫g(x)dx/(∫f(x)dx+∫g(x)dx+∫l(x)dx) being 40% or more in the interval [1.0, 4.0].

Description

キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板及び銅張積層板Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, and copper-clad laminate
 本発明は、キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板及び銅張積層板に関する。より詳細には、本発明はファインパターン用途のプリント配線板の材料として使用されるキャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板及び銅張積層板に関する。 The present invention relates to a copper foil with a carrier, a method for producing a copper foil with a carrier, a printed wiring board, a printed circuit board, and a copper clad laminate. More specifically, the present invention relates to a copper foil with a carrier used as a material for a printed wiring board for fine patterns, a method for producing the copper foil with a carrier, a printed wiring board, a printed circuit board, and a copper clad laminate.
 プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められており、特にプリント配線板上にICチップを載せる場合、L/S=20/20以下のファインピッチ化が求められている。 Printed wiring boards have made great progress over the last half century, and today they are used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and printed circuit boards. There is a demand for high frequency response, and in particular, when an IC chip is mounted on a printed wiring board, a fine pitch of L / S = 20/20 or less is required.
 プリント配線板は、まず、銅箔とガラスエポキシ基板、BT樹脂、ポリイミドフィルムなどを主とする絶縁基板を貼り合わせた銅張積層板として製造される。貼り合わせは、絶縁基板と銅箔を重ね合わせて加熱加圧させて形成する方法(ラミネート法)、または、絶縁基板材料の前駆体であるワニスを銅箔の被覆層を有する面に塗布し、加熱・硬化する方法(キャスティング法)が用いられる。 First, a printed wiring board is manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (laminating method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.
 ファインピッチ化に伴って銅張積層板に使用される銅箔の厚みも9μm、さらには5μm以下になるなど、箔厚が薄くなりつつある。ところが、箔厚が9μm以下になると前述のラミネート法やキャスティング法で銅張積層板を形成するときのハンドリング性が極めて悪化する。そこで、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を形成したキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着した後に、キャリアを剥離層を介して剥離するというのがキャリア付銅箔の一般的な使用方法である。 With the fine pitch, the thickness of the copper foil used for the copper clad laminate is 9 μm, and further the thickness is becoming 5 μm or less. However, when the foil thickness is 9 μm or less, the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer. A general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.
 キャリア付銅箔に関する技術として、例えば特許文献1には、キャリアの表面に、拡散防止層、剥離層、電気銅めっきをこの順番に形成し、剥離層としてCrまたはCr水和酸化物層を、拡散防止層としてNi、Co、Fe、Cr、Mo、Ta、Cu、Al、Pの単体または合金を用いることで加熱プレス後の良好な剥離性を保持する方法が開示されている。 As a technique related to a copper foil with a carrier, for example, in Patent Document 1, a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer. A method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.
 また、剥離層としてCr、Ni、Co、Fe、Mo、Ti、W、Pまたはこれらの合金またはこれらの水和物で形成することが知られている。さらに、加熱プレス等の高温使用環境における剥離性の安定化を図る上で、剥離層の下地にNi、Feまたはこられの合金層をもうけると効果的であることが特許文献2および3に記載されている。 It is also known that the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof or hydrates thereof. Furthermore, Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe or an alloy layer thereof as a base of the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. Has been.
特開2006-022406号公報JP 2006-022406 A 特開2010-006071号公報JP 2010-006071 A 特開2007-007937号公報JP 2007-007937 A
 キャリア付銅箔においては、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離することは避けなければならず、一方、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離できる必要がある。また、キャリア付銅箔においては、極薄銅層側の表面にピンホールが存在するのはプリント配線板の性能不良に繋がり好ましくない。 In copper foil with a carrier, it is necessary to avoid the peeling of the ultrathin copper layer from the carrier before the lamination process on the insulating substrate, while the ultrathin copper layer from the carrier is removed after the lamination process to the insulating substrate. Must be peelable. In addition, in the copper foil with a carrier, the presence of pinholes on the surface of the ultrathin copper layer is not preferable because it leads to poor performance of the printed wiring board.
 これらの点に関して、従来技術では十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明は、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後には剥離可能なキャリア付銅箔を提供することを課題とする。本発明は更に、極薄銅層側表面におけるピンホールの発生が抑制されたャリア付銅箔を提供することも課題とする。 These points have not been sufficiently studied in the prior art, and there is still room for improvement. Therefore, an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate, while the ultrathin copper layer does not peel off from the carrier before the lamination process on the insulating substrate. . Another object of the present invention is to provide a carrier-attached copper foil in which the generation of pinholes on the ultrathin copper layer side surface is suppressed.
 上記目的を達成するため、本発明者は鋭意研究を重ねたところ、キャリアとして銅箔を使用し、中間層を極薄銅層とキャリアとの間に形成し、この中間層を銅箔キャリア上から順にニッケル及びクロメートで構成すること、ニッケル及びクロムの付着量を制御すること、及び、中間層/極薄銅層間で剥離させたときの中間層表面部分のクロム及びニッケル原子濃度を制御することが極めて効果的であることを見出した。また、極薄銅層に絶縁基板を熱圧着させ、キャリアを極薄銅層から剥離させたときの、中間層表面部分のクロム及びニッケル原子濃度を制御することも同様に極めて効果的であることを見出した。 In order to achieve the above object, the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier. Consist of nickel and chromate in order, control the amount of nickel and chromium deposited, and control the chromium and nickel atom concentration on the intermediate layer surface when peeled between the intermediate layer and ultrathin copper layer Has been found to be extremely effective. It is also extremely effective to control the chromium and nickel atom concentration on the surface of the intermediate layer when the insulating substrate is thermocompression bonded to the ultrathin copper layer and the carrier is peeled off from the ultrathin copper layer. I found.
 本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
 前記中間層は、前記銅箔キャリア上にニッケル及びクロメートがこの順で積層されて構成されており、
 ニッケルの付着量が100~40000μg/dm2、クロムの付着量が5~100μg/dm2であり、
 前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、
 前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~30%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~50%、かつ[1.0、4.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が40%以上を満たすキャリア付銅箔である。
The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. A copper foil with a carrier,
The intermediate layer is configured by laminating nickel and chromate in this order on the copper foil carrier,
Adhesion amount 100 ~ 40000μg / dm 2 of nickel, the adhesion amount of chromium is 5 ~ 100μg / dm 2,
When peeling between the intermediate layer and ultrathin copper layer, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x). The atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of oxygen is i (x), and the atomic concentration of carbon (% ) Is j (x) and other atomic concentration (%) is k (x),
In the section [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1-30%, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1 to 50%, and [1.0, 4.0], ∫g (x) dx / With carrier satisfying (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) Copper foil.
 本発明に係るキャリア付銅箔の一実施形態においては、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が2~25%を満たす。 In one embodiment of the carrier-attached copper foil according to the present invention, when peeling between the intermediate layer / ultra-thin copper layer, a section [0, 1.0] of depth direction analysis from the intermediate layer surface by XPS ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx ) Satisfies 2 to 25%.
 本発明に係るキャリア付銅箔の別の一実施形態においては、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[1.0、4.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~30を満たす。 In another embodiment of the copper foil with a carrier according to the present invention, when peeling between the intermediate layer / ultra-thin copper layer, the section [1.0, 4.0], ∫h (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 1 to 30.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記中間層のXPSにより検出されたクロムの2P3/2軌道の束縛エネルギーが576~580eVの範囲内である。 In yet another embodiment of the copper foil with a carrier according to the present invention, the binding energy of the 2P3 / 2 orbit of chromium detected by XPS of the intermediate layer is in the range of 576 to 580 eV.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、
 前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が0.5~30%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~50%、かつ[1.0、4.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が40%以上を満たす。
In yet another embodiment of the copper foil with a carrier according to the present invention, the ultrathin copper layer is thermocompression-bonded under the conditions of an insulating substrate in the atmosphere, pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours, When peeling between the intermediate layer and ultrathin copper layer, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x). The atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of oxygen is i (x), and the atomic concentration of carbon (% ) Is j (x) and other atomic concentration (%) is k (x),
In the section [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 0.5-30%, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1 to 50% and [1.0, 4.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 40% or more .
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が1~25%を満たす。 In yet another embodiment of the copper foil with a carrier according to the present invention, the ultrathin copper layer is thermocompression-bonded under the conditions of an insulating substrate in the atmosphere, pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours, When delamination is performed between the intermediate layer and the ultrathin copper layer, ∫f (x) dx / (∫f (x) in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface by XPS dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 1 to 25%.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[1.0、4.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が2~40%を満たす。 In yet another embodiment of the copper foil with a carrier according to the present invention, the ultrathin copper layer is thermocompression-bonded under the conditions of an insulating substrate in the atmosphere, pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours, When peeling between the intermediate layer / ultra-thin copper layer, in the section [1.0, 4.0] of the depth direction analysis from the intermediate layer surface by XPS, ∫h (x) dx / (∫f ( x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 2 to 40%.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記銅箔キャリアが電解銅箔または圧延銅箔で形成されている。 In yet another embodiment of the copper foil with a carrier according to the present invention, the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層表面に粗化処理層を有する。 In yet another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a roughening treatment layer.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。 In still another embodiment of the copper foil with a carrier according to the present invention, the roughening treatment layer is any one selected from the group consisting of copper, nickel, cobalt and zinc, or any one or more. It is a layer made of an alloy containing.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In still another embodiment of the copper foil with a carrier according to the present invention, one or more types selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the roughening treatment layer. It has a layer of.
 本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In still another embodiment of the copper foil with a carrier according to the present invention, one or more selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has a layer of.
 本発明は別の一側面において、銅箔キャリア上に、ニッケルめっきを形成した後、電解クロメートによりクロメート層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程とを含むキャリア付銅箔の製造方法である。 In another aspect of the present invention, a nickel plating is formed on a copper foil carrier, and then an intermediate layer is formed by forming a chromate layer by electrolytic chromate, and an extremely thin layer is formed by electrolytic plating on the intermediate layer. And a step of forming a copper layer.
 本発明は更に別の一側面において、銅箔キャリア上に、ニッケルめっきを形成した後、電解クロメートによりクロメート層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程と、前記極薄銅層上に粗化処理層を形成する工程とを含むキャリア付銅箔の製造方法である。 In another aspect of the present invention, a nickel plating is formed on a copper foil carrier and then an intermediate layer is formed by forming a chromate layer by electrolytic chromate, and an electrode is formed on the intermediate layer by electrolytic plating. It is a manufacturing method of copper foil with a carrier including the process of forming a thin copper layer, and the process of forming a roughening process layer on the said ultra-thin copper layer.
 本発明は更に更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。 In yet another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil of the present invention.
 本発明は更に更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント回路板である。 In still another aspect, the present invention is a printed circuit board manufactured using the carrier-attached copper foil of the present invention.
 本発明は更に更に別の一側面において、本発明のキャリア付銅箔を用いて製造した銅張積層板である。 In yet another aspect, the present invention is a copper clad laminate manufactured using the carrier-attached copper foil of the present invention.
 本発明に係るキャリア付銅箔は、絶縁基板への積層工程前にはキャリアと極薄銅層との密着力が高い一方で、絶縁基板への積層工程後にはキャリアと極薄銅層との密着性が低下し、キャリア/極薄銅層界面で容易に剥離でき、且つ、極薄銅層側表面におけるピンホールの発生を良好に抑制することができる。 The copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness is lowered, it can be easily peeled off at the carrier / ultra-thin copper layer interface, and the occurrence of pinholes on the surface of the ultra-thin copper layer can be well suppressed.
実施例2の基板貼り合わせ前の中間層表面の深さ方向のXPSデプスプロファイルである。It is a XPS depth profile of the depth direction of the intermediate | middle layer surface before board | substrate bonding of Example 2. FIG. 比較例3の基板貼り合わせ前の中間層表面の深さ方向のXPSデプスプロファイルである。It is an XPS depth profile of the depth direction of the intermediate | middle layer surface before the board | substrate bonding of the comparative example 3. FIG. 実施例2の基板貼り合わせ前の極薄銅層表面の深さ方向のXPSデプスプロファイルである。It is the XPS depth profile of the depth direction of the ultra-thin copper layer surface before board | substrate bonding of Example 2. FIG.
<1.キャリア>
 本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni and Si Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
 本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12~70μmであり、より典型的には18~35μmである。 The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.
<2.中間層>
 銅箔キャリア上には中間層を設ける。中間層は、銅箔キャリア上にニッケル及びクロメートがこの順で積層されて構成されている。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロメートとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。
 また、中間層にクロムめっきではなくクロメートを形成している。クロムめっきは表面に緻密なクロム酸化物層を形成するため、電気めっきで極薄銅箔を形成する際に電気抵抗が上昇し、ピンホールが発生しやすくなる。クロメートを形成した表面は、クロムめっきとくらべ緻密ではないクロム酸化物層が形成されるため、極薄銅箔を電気めっきで形成する際の抵抗になりにくく、ピンホールを減少させることができる。
 キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点からシャイニー面に中間層を設けることが好ましい。
<2. Intermediate layer>
An intermediate layer is provided on the copper foil carrier. The intermediate layer is formed by laminating nickel and chromate in this order on a copper foil carrier. Since the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromate. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
Also, chromate is formed on the intermediate layer instead of chrome plating. Since chromium plating forms a dense chromium oxide layer on the surface, when an ultrathin copper foil is formed by electroplating, the electrical resistance increases and pinholes are likely to occur. Since the chromium oxide layer that is not as dense as chromium plating is formed on the surface on which the chromate is formed, it is difficult to become resistance when forming an ultrathin copper foil by electroplating, and pinholes can be reduced.
When using electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes.
 中間層のうちクロメート層は極薄銅層の界面に薄く存在することが、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能であるという特性を得る上で好ましい。ニッケル層を設けずにクロメート層をキャリアと極薄銅層の境界に存在させた場合は、剥離性はほとんど向上しないし、クロメート層がなくニッケル層と極薄銅層を直接積層した場合はニッケル層におけるニッケル量に応じて剥離強度が強すぎたり弱すぎたりして適切な剥離強度は得られない。 Among the intermediate layers, the chromate layer is thin at the interface of the ultrathin copper layer, while the ultrathin copper layer does not peel from the carrier before the lamination process to the insulating substrate, while the carrier after the lamination process to the insulating substrate From the viewpoint of obtaining the property that the ultrathin copper layer can be peeled off. When the chromate layer is present at the boundary between the carrier and the ultrathin copper layer without providing the nickel layer, the peelability is hardly improved, and when there is no chromate layer and the nickel layer and the ultrathin copper layer are laminated directly, nickel Depending on the amount of nickel in the layer, the peel strength is too strong or too weak to obtain an appropriate peel strength.
 また、クロメート層がキャリアとニッケル層の境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層の間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にクロメート層を設けた場合のみならず、極薄銅層との界面にクロメート層を設けたとしてもクロム量が多すぎると生じ得る。これは、銅とニッケルは固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、クロムと銅は固溶しにくく、相互拡散が生じにくいので、クロムと銅の界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層の間には微量のクロムしか存在しないので両者が密着して剥がれにくくなる。 Also, if the chromate layer is present at the boundary between the carrier and the nickel layer, the intermediate layer is also peeled along with the peeling of the ultrathin copper layer, that is, peeling occurs between the carrier and the intermediate layer. Such a situation can occur not only when the chromate layer is provided at the interface with the carrier, but also when the amount of chromium is excessive even if the chromate layer is provided at the interface with the ultrathin copper layer. This is because copper and nickel are likely to be in solid solution, so if they are in contact with each other, the adhesive force increases due to mutual diffusion and is difficult to peel off, while chromium and copper are less likely to dissolve and cause mutual diffusion. It is considered that the adhesion between the chromium and copper interface is weak and easy to peel off. Further, when the nickel amount in the intermediate layer is insufficient, there is only a very small amount of chromium between the carrier and the ultrathin copper layer, so that they are in close contact with each other and are difficult to peel off.
 中間層のニッケルは、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより形成することができる。コストの観点から電気めっきが好ましい。
 また、クロメートは、例えば電解クロメートや浸漬クロメート等で形成することができるが、クロム濃度を高くすることができ、銅箔キャリアからの極薄銅層の剥離強度が良好となるため、電解クロメートで形成するのが好ましい。
The nickel of the intermediate layer can be formed by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Electroplating is preferable from the viewpoint of cost.
Also, chromate can be formed with, for example, electrolytic chromate, immersion chromate, etc., but the chromium concentration can be increased, and the peel strength of the ultrathin copper layer from the copper foil carrier is improved. Preferably formed.
 中間層において、ニッケルの付着量は100~40000μg/dm2であり、クロムの付着量は5~100μg/dm2である。ニッケル量が増えるにつれてピンホールの量が多くなる傾向にあるが、この範囲であればピンホールの数も抑制される。極薄銅層をムラなく均一に剥離する観点、及び、ピンホールを抑制する観点からは、ニッケル付着量は300~10000μg/dm2とすることが好ましく、500~3000μg/dm2とすることがより好ましく、クロム付着量は10~50μg/dm2とすることが好ましく、12~30μg/dm2とすることがより好ましい。 In the intermediate layer, the adhesion amount of nickel is 100 to 40000 μg / dm 2 , and the adhesion amount of chromium is 5 to 100 μg / dm 2 . Although the amount of pinholes tends to increase as the amount of nickel increases, the number of pinholes is also suppressed within this range. From the viewpoint of evenly peeling the ultrathin copper layer uniformly and from the viewpoint of suppressing pinholes, the nickel adhesion amount is preferably 300 to 10,000 μg / dm 2, and preferably 500 to 3000 μg / dm 2. More preferably, the chromium adhesion amount is preferably 10 to 50 μg / dm 2 , more preferably 12 to 30 μg / dm 2 .
<3.ストライクめっき>
 中間層の上には極薄銅層を設ける。その前に極薄銅層のピンホールを低減させるために銅-リン合金によるストライクめっきを行ってもよい。ストライクめっきにはピロリン酸銅めっき液などが挙げられる。
<3. Strike plating>
An ultrathin copper layer is provided on the intermediate layer. Before that, strike plating with a copper-phosphorus alloy may be performed to reduce pinholes in the ultrathin copper layer. Examples of the strike plating include a copper pyrophosphate plating solution.
<4.極薄銅層>
 中間層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5~12μmであり、より典型的には2~5μmである。
<4. Ultra-thin copper layer>
An ultrathin copper layer is provided on the intermediate layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. Typically 0.5 to 12 μm, more typically 2 to 5 μm.
<5.粗化処理>
 極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層であってもよい。また、粗化処理をした後、または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金で二次粒子や三次粒子及び/又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。
<5. Roughening>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer may be a single layer selected from the group consisting of copper, nickel, cobalt and zinc, or a layer made of an alloy containing one or more of them. In addition, after roughening treatment or without roughening treatment, secondary particles, tertiary particles and / or rust preventive layers are formed of nickel, cobalt, copper, zinc alone or an alloy, and further on the surface. Treatments such as chromate treatment and silane coupling treatment may be applied. That is, on the surface of the roughening treatment layer, one or more layers selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer may be formed, and on the surface of the ultrathin copper layer, You may form 1 or more types of layers selected from the group which consists of a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer.
<6.キャリア付銅箔>
 このようにして、銅箔キャリアと、銅箔キャリア上に形成された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がすことで、銅張積層板を製造することができ、さらに当該銅張積層板の絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板又はプリント回路板を製造することができる。本発明に係るキャリア付銅箔の場合、剥離箇所は主として中間層と極薄銅層の界面である。
<6. Copper foil with carrier>
Thus, the copper foil with a carrier provided with the copper foil carrier, the intermediate | middle layer formed on the copper foil carrier, and the ultra-thin copper layer laminated | stacked on the intermediate | middle layer is manufactured. How to use the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. A copper-clad laminate can be obtained by bonding to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc., and peeling the carrier after thermocompression bonding. Further, an ultrathin copper layer bonded to the insulating substrate of the copper-clad laminate can be etched into a target conductor pattern, and finally a printed wiring board or a printed circuit board can be manufactured. In the case of the copper foil with a carrier according to the present invention, the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer.
 本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~30%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~50%、かつ[1.0、4.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が40%以上を満たす。
 また、本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたとき、XPSによる中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が2~25%を満たすのが好ましい。
 また、本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が0.5~30%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~50%、かつ[1.0、4.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が40%以上を満たすのが好ましい。
 また、本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、中間層/極薄銅層間で剥離させたとき、XPSによる中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が1~25%を満たすのが好ましい。
 このように、本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたときの中間層の最表面にクロムが一定量以上で存在し、且つ、ニッケルが最表面よりも内部で濃度が高くなっている。このため、極薄銅層側表面におけるピンホールの発生が良好に抑制される。また、熱圧着後のキャリア付銅箔においても、銅箔キャリアを極薄銅層から剥離させたときの中間層の最表面にクロムが一定量以上で存在し、且つ、ニッケルが最表面よりも内部で濃度が高くなっている。このため、極薄銅層側表面におけるピンホールの発生が良好に抑制される。
When the copper foil with a carrier of the present invention is peeled between the intermediate layer / ultra thin copper layer, the atomic concentration of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS ( %) Is f (x), nickel atomic concentration (%) is g (x), copper atomic concentration (%) is h (x), and oxygen total atomic concentration (%) is i (x). And the atomic concentration (%) of carbon is j (x) and the other atomic concentration (%) is k (x), in the interval [0, 1.0] of the depth direction analysis from the intermediate layer surface , ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) Is 1-30%, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k When (x) dx) is 1 to 50% and [1.0, 4.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 40% or more.
Further, when the copper foil with a carrier of the present invention is peeled between the intermediate layer / ultra-thin copper layer, in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface by XPS, ∫f (x ) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 2-25% It is preferable to satisfy.
Moreover, the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours between the intermediate layer and the ultrathin copper layer. When exfoliated, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from XPS depth direction analysis is defined as f (x), and the atomic concentration (%) of nickel is g (x), copper atomic concentration (%) as h (x), oxygen total atomic concentration (%) as i (x), carbon atomic concentration (%) as j (x), etc. In the interval [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫ g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 0.5-30%, ∫g (x) dx / (∫ f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1 to 50%, and [1. 0, 4.0], ∫g (x) dx / ( ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx +) k (x) dx) preferably satisfies 40% or more. .
Moreover, the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours between the intermediate layer and the ultrathin copper layer. When exfoliated, 区間 f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫ in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface by XPS h (x) dx +) i (x) dx + ∫j (x) dx + ∫k (x) dx) preferably satisfies 1 to 25%.
Thus, in the copper foil with a carrier of the present invention, chromium is present in a certain amount or more on the outermost surface of the intermediate layer when peeled between the intermediate layer / ultra-thin copper layer, and nickel is present inside the outermost surface. The concentration is high. For this reason, generation | occurrence | production of the pinhole in an ultra-thin copper layer side surface is suppressed favorably. Also, in the copper foil with carrier after thermocompression bonding, chromium is present in a certain amount or more on the outermost surface of the intermediate layer when the copper foil carrier is peeled from the ultrathin copper layer, and nickel is more than the outermost surface. The concentration is high inside. For this reason, generation | occurrence | production of the pinhole in an ultra-thin copper layer side surface is suppressed favorably.
 本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたとき、XPSによる中間層表面からの深さ方向分析の区間[1.0、4.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が1~30%を満たすことが好ましい。
 また、本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、中間層/極薄銅層間で剥離させたとき、XPSによる中間層表面からの深さ方向分析の区間[1.0、4.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が2~40%を満たすのが好ましい。
 このように、本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたときの中間層の内部に銅が一定量以上で存在している。中間層中の銅濃度が高くなると、中間層/極薄銅層間の密着力が高くなる。そのため、ニッケル中の銅濃度を制御することにより剥離強度を制御できる。また、熱圧着後のキャリア付銅箔においても、銅箔キャリアを極薄銅層から剥離させたときの中間層の内部に銅が一定量以上で存在している。このため、熱圧着後の極端な剥離強度の低下を防止できるという効果がある。
 ニッケルの電流密度を高く設定して単位時間あたりの電着速度を高めるほど、またキャリア銅箔の搬送速度を速くするほど、ニッケル層の密度が低下する。ニッケル層の密度が低下すると、キャリア銅箔の銅がニッケル層に拡散しやすくなり、ニッケル中の銅の濃度を制御することができる。また、クロメート処理での電流密度を高くし、キャリア銅箔の搬送速度を遅くするとクロムの濃度が高くなり、クロムの濃度を制御することができる。
When the copper foil with carrier of the present invention is peeled between the intermediate layer / ultra-thin copper layer, in the section [1.0, 4.0] of the depth direction analysis from the intermediate layer surface by XPS, ∫h (x ) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1-30% It is preferable to satisfy.
Moreover, the copper foil with a carrier of the present invention is obtained by thermocompression bonding an insulating substrate to an ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours between the intermediate layer and the ultrathin copper layer. When exfoliated, 区間 h (x) dx / (∫f (x) dx + ∫g (x) dx in the section [1.0, 4.0] of depth direction analysis from the intermediate layer surface by XPS + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) preferably satisfies 2 to 40%.
Thus, in the copper foil with a carrier of the present invention, copper is present in a certain amount or more inside the intermediate layer when peeled between the intermediate layer / ultra thin copper layer. As the copper concentration in the intermediate layer increases, the adhesion between the intermediate layer and the ultrathin copper layer increases. Therefore, the peel strength can be controlled by controlling the copper concentration in nickel. Moreover, also in the copper foil with a carrier after thermocompression bonding, copper exists in a certain amount or more inside the intermediate layer when the copper foil carrier is peeled from the ultrathin copper layer. For this reason, there exists an effect that the fall of the extreme peeling strength after thermocompression-bonding can be prevented.
The higher the nickel current density is set to increase the electrodeposition rate per unit time, and the higher the transport speed of the carrier copper foil, the lower the density of the nickel layer. When the density of the nickel layer is reduced, the copper of the carrier copper foil is easily diffused into the nickel layer, and the concentration of copper in the nickel can be controlled. Further, when the current density in the chromate treatment is increased and the conveying speed of the carrier copper foil is decreased, the chromium concentration increases and the chromium concentration can be controlled.
 また、本発明のキャリア付銅箔は、中間層のXPSにより検出されたクロムの2P3/2軌道の束縛エネルギーが576~580eVの範囲内であるのが好ましい。このような構成によれば、中間層に存在するクロムが金属クロムでなくクロム酸化物となり、極薄銅層側表面におけるピンホールの発生をより良好に抑制することができる。 Further, in the copper foil with a carrier of the present invention, it is preferable that the binding energy of the 2P3 / 2 orbit of chromium detected by XPS in the intermediate layer is in the range of 576 to 580 eV. According to such a configuration, chromium present in the intermediate layer becomes not chromium metal but chromium oxide, and the generation of pinholes on the surface of the ultrathin copper layer can be suppressed more favorably.
 以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited to these examples.
1.キャリア付銅箔の製造
 銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び厚さ33μmの圧延銅箔(JX日鉱日石金属社製C1100)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続ラインでキャリア表面及び極薄銅層側について順に以下の条件で表1及び2に記載の中間層形成処理を行った。キャリア表面側と極薄銅層側との処理工程の間には、水洗及び酸洗を行った。
1. Production of Copper Foil with Carrier As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC made by JX Nippon Mining & Metals) and a rolled copper foil having a thickness of 33 μm (C1100 made by JX Nippon Mining & Metals) Prepared. With respect to the shiny surface of this copper foil, the intermediate layer forming process described in Tables 1 and 2 is performed in the following conditions in order on the carrier surface and the ultrathin copper layer side in a roll-to-roll type continuous line under the following conditions. went. Washing and pickling were performed between the processing steps on the carrier surface side and the ultrathin copper layer side.
・Niめっき
 硫酸ニッケル:250~300g/L
 塩化ニッケル:35~45g/L
 酢酸ニッケル:10~20g/L
 クエン酸三ナトリウム:15~30g/L
 光沢剤:サッカリン、ブチンジオール等
 ドデシル硫酸ナトリウム:30~100ppm
 pH:4~6
 浴温:50~70℃
 電流密度:3~15A/dm2
・ Ni plating Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30 to 100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3 to 15 A / dm 2
・Crめっき
 液組成:無水クロム酸200~400g/L、硫酸1.5~4g/L
 pH:1~4
 液温:45~60℃
 電流密度:10~40A/dm2
-Cr plating solution composition: chromic anhydride 200-400 g / L, sulfuric acid 1.5-4 g / L
pH: 1 to 4
Liquid temperature: 45-60 ° C
Current density: 10 to 40 A / dm 2
・浸漬クロメート処理
 液組成(1):重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 液組成(2):無水クロム酸1~10g/L
 pH:3~4
 液温:50~60℃
 浸漬時間:1~20秒
・ Immersion chromate treatment Liquid composition (1): Potassium dichromate 1-10 g / L, Zinc 0-5 g / L
Liquid composition (2): chromic anhydride 1-10 g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Immersion time: 1 to 20 seconds
・電解クロメート処理
 液組成(1):重クロム酸カリウム1~10g/L、亜鉛0~5g/L
 液組成(2):無水クロム酸1~10g/L
 pH:3~4
 液温:50~60℃
 電流密度:0.1~2.6A/dm2
 クーロン量:0.5~30As/dm2
Electrolytic chromate treatment Liquid composition (1): Potassium dichromate 1-10 g / L, Zinc 0-5 g / L
Liquid composition (2): chromic anhydride 1-10 g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0.1 to 2.6 A / dm 2
Coulomb amount: 0.5-30 As / dm 2
 引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に厚さ35μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を作製した。なお、実施例1~3、5、7、11、13~15については、極薄銅層の厚みが1、2、3、5、12μmであるキャリア付銅箔もそれぞれ作製した。
・極薄銅層
 銅濃度:30~120g/L
 H2SO4濃度:20~120g/L
 電解液温度:20~80℃
 電流密度:10~100A/dm2
Subsequently, an ultrathin copper layer having a thickness of 35 μm was formed on the intermediate layer on the roll-to-roll-type continuous plating line by electroplating under the following conditions to produce a copper foil with a carrier. For Examples 1 to 3, 5, 7, 11, and 13 to 15, copper foils with a carrier having ultrathin copper layers with thicknesses of 1, 2, 3, 5, and 12 μm were also produced.
・ Ultra-thin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
 なお、実施例2、3、7、11については極薄銅層の表面に以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理
 Cu: 10~20g/L
 Co: 1~10g/L
 Ni: 1~10g/L
 pH: 1~4
 温度: 40~50℃
 電流密度Dk : 20~30A/dm2
 時間: 1~5秒
 Cu付着量:15~40mg/dm2
 Co付着量:100~3000μg/dm2
 Ni付着量:100~1000μg/dm2
・防錆処理
 Zn:0~20g/L
 Ni:0~5g/L
 pH:3.5
 温度:40℃
 電流密度Dk :0~1.7A/dm2
 時間:1秒
 Zn付着量:5~250μg/dm2
 Ni付着量:5~300μg/dm2
・クロメート処理
 K2Cr27
 (Na2Cr27或いはCrO3):2~10g/L
 NaOH或いはKOH:10~50g/L
 ZnO或いはZnSO47H2O:0.05~10g/L
 pH:7~13
 浴温:20~80℃
 電流密度 0.05~5A/dm2
 時間:5~30秒
 Cr付着量:10~150μg/dm2
・シランカップリング処理
 ビニルトリエトキシシラン水溶液
 (ビニルトリエトキシシラン濃度:0.1~1.4wt%)
 pH:4~5
 時間:5~30秒
In Examples 2, 3, 7, and 11, the surface of the ultrathin copper layer was subjected to the following roughening treatment, rust prevention treatment, chromate treatment, and silane coupling treatment in this order.
・ Roughening treatment Cu: 10 to 20 g / L
Co: 1 to 10 g / L
Ni: 1 to 10 g / L
pH: 1-4
Temperature: 40-50 ° C
Current density Dk: 20 to 30 A / dm 2
Time: 1-5 seconds Cu adhesion amount: 15-40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Rust prevention treatment Zn: 0-20g / L
Ni: 0-5g / L
pH: 3.5
Temperature: 40 ° C
Current density Dk: 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5 to 250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50g / L
ZnO or ZnSO 4 7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Time: 5-30 seconds
2.キャリア付銅箔の各種評価
 上記のようにして得られたキャリア付銅箔について、以下の方法で各種の評価を実施した。結果を表1及び2に示す。
2. Various evaluations of copper foil with carrier Various evaluations were carried out by the following methods for the copper foil with carrier obtained as described above. The results are shown in Tables 1 and 2.
<付着量の測定>
 ニッケル付着量はサンプルを濃度20質量%の硝酸で溶解してICP発光分析によって測定し、クロム付着量はサンプルを濃度7質量%の塩酸にて溶解して、原子吸光法により定量分析を行うことで測定した。
<Measurement of adhesion amount>
The amount of nickel deposited is measured by ICP emission analysis after dissolving the sample in nitric acid with a concentration of 20% by mass. The amount of chromium deposited is quantitatively analyzed by atomic absorption spectrometry after dissolving the sample in 7% by mass of hydrochloric acid. Measured with
<XPS分析>
 キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、銅箔キャリアを極薄銅層から引き剥がした。続いて、露出した中間層表面をXPS測定し、デプスプロファイルを作成した。XPSの稼働条件を以下に示す。
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
 また、上記熱圧着前のキャリア付銅箔についても、銅箔キャリアを極薄銅層から引き剥がし、露出した銅箔キャリア表面をXPS測定し、デプスプロファイルを作成した。
 なお、中間層と極薄銅層との間で剥離したかどうかは、中間層側同様に極薄銅層側のデプスプロファイルを作成することによって確認することができる。図3のように極薄銅箔側には、中間層側の構成元素であるニッケルとクロムはほとんど検出されない。極薄銅層側表面のニッケルおよびクロムの原子濃度が各々5at%以下の場合、中間層と極薄銅層との間で剥離していると判定した。
 また、XPSによって中間層のクロムの2P3/2軌道の束縛エネルギーを検出した。
<XPS analysis>
After bonding the ultrathin copper layer side of the copper foil with a carrier on an insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours, the copper foil carrier is peeled off from the ultrathin copper layer. It was. Subsequently, the exposed intermediate layer surface was subjected to XPS measurement to create a depth profile. XPS operating conditions are shown below.
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieved vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
Moreover, also about the copper foil with a carrier before the said thermocompression bonding, the copper foil carrier was peeled off from the ultra-thin copper layer, the XPS measurement was performed for the exposed copper foil carrier surface, and the depth profile was created.
In addition, whether it peeled between the intermediate | middle layer and the ultra-thin copper layer can be confirmed by producing the depth profile of the ultra-thin copper layer side like the intermediate | middle layer side. As shown in FIG. 3, nickel and chromium, which are constituent elements on the intermediate layer side, are hardly detected on the ultrathin copper foil side. When the atomic concentrations of nickel and chromium on the ultrathin copper layer side surface were each 5 at% or less, it was determined that the intermediate layer and the ultrathin copper layer were separated.
Further, the binding energy of the 2P3 / 2 orbit of chromium in the intermediate layer was detected by XPS.
<ピンホール>
 民生用の写真用バックライトを光源にして、目視でピンホールの数を測定した。
<Pinhole>
The number of pinholes was visually measured using a consumer photographic backlight as a light source.
<剥離強度>
 キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、剥離強度は、ロードセルにて銅箔キャリア側を引っ張り、180°剥離法(JIS C 6471 8.1)に準拠して測定した。また、絶縁基板上に貼り合わせる前のキャリア付銅箔も同様に剥離強度を測定しておいた。
<Peel strength>
After bonding the ultra-thin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere, the peel strength is measured with a load cell. The foil carrier side was pulled and measured according to the 180 ° peeling method (JIS C 6471 8.1). Further, the peel strength of the carrier-attached copper foil before being bonded onto the insulating substrate was also measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価結果)
 実施例1~15は、いずれもピンホールが良好に抑制されており、さらに良好な剥離強度を示した。なお、実施例1~3、5、7、11、13~15のそれぞれについて作製した極薄銅層の厚みが1、2、3、5、12μmであるキャリア付銅箔も、極薄銅層の厚みが35μmの場合と同じ結果となり、いずれもピンホールが良好に抑制されており、さらに良好な剥離強度を示した。
 比較例1及び2は、中間層を形成しておらず、ニッケルとクロムの付着量が少なかったため、熱圧着前でも極薄銅層からキャリアを剥離することができなかった。
 比較例4、5、6、9は、ニッケルの付着量が少なかったため、熱圧着前でも極薄銅層からキャリアを剥離することができなかった。
 比較例3、8、10は、クロムの付着量が少なかったため、基板との貼り合わせ後にキャリアを剥離することができなくなった。
 比較例7は、ニッケルの付着量が多すぎたため、極薄銅層のピンホールが増え、剥離強度が低くなり過ぎた。
 比較例11~13は、クロメートの代わりにクロムめっきを用いたため、ピンホールが多く発生した。
 比較例14は、キャリアに形成された中間層表面のニッケルの濃度が高かったため、ピンホールが多くなり、剥離強度が低くなりすぎた。
 比較例15は、クロムの付着量が多かったため、極薄銅層のピンホールが多発し、剥離強度が低くなりすぎた。
 図1及び図2に、それぞれ、実施例2及び比較例3の基板貼り合わせ前の中間層表面の深さ方向のXPSデプスプロファイルを示す。図3に実施例2の基板貼り合わせ前の極薄銅層表面の深さ方向のXPSデプスプロファイルを示す。
 なお、極薄銅層をキャリアから剥離することができた実施例、比較例については、いずれも中間層と極薄銅層との間で剥離していた。
(Evaluation results)
In all of Examples 1 to 15, pinholes were well suppressed, and even better peel strength was exhibited. In addition, the copper foil with a carrier whose thickness of the ultra-thin copper layer produced for each of Examples 1 to 3, 5, 7, 11, and 13 to 15 is 1, 2, 3, 5, and 12 μm is also an ultra-thin copper layer. The results were the same as when the thickness of the film was 35 μm, and in all cases, pinholes were well suppressed, and even better peel strength was exhibited.
In Comparative Examples 1 and 2, the intermediate layer was not formed, and the adhesion amount of nickel and chromium was small, so that the carrier could not be peeled from the ultrathin copper layer even before thermocompression bonding.
In Comparative Examples 4, 5, 6, and 9, since the adhesion amount of nickel was small, the carrier could not be peeled from the ultrathin copper layer even before thermocompression bonding.
In Comparative Examples 3, 8, and 10, since the amount of chromium attached was small, the carrier could not be peeled after bonding to the substrate.
In Comparative Example 7, since the amount of nickel deposited was too large, pinholes in the ultrathin copper layer increased and the peel strength was too low.
Since Comparative Examples 11 to 13 used chrome plating instead of chromate, many pinholes were generated.
In Comparative Example 14, since the concentration of nickel on the surface of the intermediate layer formed on the carrier was high, the number of pinholes was increased and the peel strength was too low.
In Comparative Example 15, since the amount of chromium deposited was large, pinholes in the ultrathin copper layer occurred frequently, and the peel strength was too low.
FIG. 1 and FIG. 2 show XPS depth profiles in the depth direction of the surface of the intermediate layer before bonding the substrates of Example 2 and Comparative Example 3, respectively. FIG. 3 shows an XPS depth profile in the depth direction of the surface of the ultrathin copper layer before bonding the substrates in Example 2.
In addition, about the Example and comparative example which were able to peel an ultra-thin copper layer from a carrier, all peeled between the intermediate | middle layer and the ultra-thin copper layer.

Claims (17)

  1.  銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
     前記中間層は、前記銅箔キャリア上にニッケル及びクロメートがこの順で積層されて構成されており、
     ニッケルの付着量が100~40000μg/dm2、クロムの付着量が5~100μg/dm2であり、
     前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、
     前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~30%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~50%、かつ[1.0、4.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が40%以上を満たすキャリア付銅箔。
    A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer,
    The intermediate layer is configured by laminating nickel and chromate in this order on the copper foil carrier,
    Adhesion amount 100 ~ 40000μg / dm 2 of nickel, the adhesion amount of chromium is 5 ~ 100μg / dm 2,
    When peeling between the intermediate layer and ultrathin copper layer, the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS is defined as f (x). The atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), the total atomic concentration (%) of oxygen is i (x), and the atomic concentration of carbon (% ) Is j (x) and other atomic concentration (%) is k (x),
    In the section [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1-30%, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1 to 50%, and [1.0, 4.0], ∫g (x) dx / With carrier satisfying (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) Copper foil.
  2.  前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が2~25%を満たす請求項1に記載のキャリア付銅箔。 When delamination is performed between the intermediate layer and the ultrathin copper layer, ∫f (x) dx / (∫f (x) in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface by XPS The carrier according to claim 1, wherein dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 2 to 25%. Copper foil.
  3.  前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[1.0、4.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~30%を満たす請求項1又は2に記載のキャリア付銅箔。 When peeling between the intermediate layer / ultra-thin copper layer, in the section [1.0, 4.0] of the depth direction analysis from the intermediate layer surface by XPS, ∫h (x) dx / (∫f ( x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfy 1-30% The copper foil with a carrier as described in 2.
  4.  前記中間層のXPSにより検出されたクロムの2P3/2軌道の束縛エネルギーが576~580eVの範囲内である請求項1~3のいずれかに記載のキャリア付銅箔。 The copper foil with a carrier according to any one of claims 1 to 3, wherein the binding energy of the 2P3 / 2 orbit of chromium detected by XPS of the intermediate layer is within a range of 576 to 580 eV.
  5.  前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、
     前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が0.5~30%、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が1~50%、かつ[1.0、4.0]において、∫g(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx )が40%以上を満たす請求項1~4のいずれかに記載のキャリア付銅箔。
    When the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours in the atmosphere, and peeled between the intermediate layer / ultrathin copper layer, the surface by XPS The atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the analysis of the depth direction of copper is f (x), the atomic concentration (%) of nickel is g (x), and copper atoms The concentration (%) is h (x), the total atomic concentration (%) of oxygen is i (x), the atomic concentration (%) of carbon is j (x), and the other atomic concentration (%) is k ( x)
    In the section [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 0.5-30%, ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is 1 to 50% and [1.0, 4.0], ∫g (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 40% or more The copper foil with a carrier according to any one of claims 1 to 4.
  6.  前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫f(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が1~25%を満たす請求項1~5のいずれかに記載のキャリア付銅箔。 When the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours in the atmosphere and peeled between the intermediate layer / ultrathin copper layer, the intermediate by XPS In the interval [0, 1.0] of the depth direction analysis from the layer surface, ∫f (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i 6. The copper foil with a carrier according to claim 1, wherein (x) dx +) j (x) dx + ∫k (x) dx) satisfies 1 to 25%.
  7.  前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件化で熱圧着させ、前記中間層/極薄銅層間で剥離させたとき、XPSによる前記中間層表面からの深さ方向分析の区間[1.0、4.0]において、∫h(x)dx/(∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が2~40%を満たす請求項1~6のいずれかに記載のキャリア付銅箔。 When the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 , 220 ° C. × 2 hours in the atmosphere and peeled between the intermediate layer / ultrathin copper layer, the intermediate by XPS In the section [1.0, 4.0] of the depth direction analysis from the layer surface, ∫h (x) dx / (∫f (x) dx + ∫g (x) dx + ∫h (x) dx + The copper foil with a carrier according to any one of claims 1 to 6, wherein (i (x) dx + (j (x) dx + (k) (x) dx)) satisfies 2 to 40%.
  8.  前記銅箔キャリアが電解銅箔または圧延銅箔で形成されている請求項1~7のいずれかに記載のキャリア付銅箔。 The carrier-attached copper foil according to any one of claims 1 to 7, wherein the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
  9.  前記極薄銅層表面に粗化処理層を有する請求項1~8のいずれかに記載のキャリア付銅箔。 The carrier-attached copper foil according to any one of claims 1 to 8, further comprising a roughened layer on the surface of the ultrathin copper layer.
  10.  前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項9に記載のキャリア付銅箔。 10. The copper foil with a carrier according to claim 9, wherein the roughening layer is a layer made of any single element selected from the group consisting of copper, nickel, cobalt, and zinc, or an alloy containing any one or more of them.
  11.  前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項9又は10に記載のキャリア付銅箔。 The copper foil with a carrier according to claim 9 or 10, wherein the surface of the roughening treatment layer has one or more layers selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer.
  12.  前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1~8のいずれかに記載のキャリア付銅箔。 The copper with carrier according to any one of claims 1 to 8, wherein the ultrathin copper layer has one or more layers selected from the group consisting of a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the ultrathin copper layer. Foil.
  13.  銅箔キャリア上に、ニッケルめっきを形成した後、電解クロメートによりクロメート層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程とを含むキャリア付銅箔の製造方法。 After forming nickel plating on the copper foil carrier, including a step of forming an intermediate layer by forming a chromate layer by electrolytic chromate, and a step of forming an ultrathin copper layer by electrolytic plating on the intermediate layer The manufacturing method of copper foil with a carrier.
  14.  銅箔キャリア上に、ニッケルめっきを形成した後、電解クロメートによりクロメート層を形成することで中間層を形成する工程と、前記中間層上に電解めっきにより極薄銅層を形成する工程と、前記極薄銅層上に粗化処理層を形成する工程とを含むキャリア付銅箔の製造方法。 Forming a nickel plating on the copper foil carrier, and then forming an intermediate layer by forming a chromate layer by electrolytic chromate; forming an ultrathin copper layer by electrolytic plating on the intermediate layer; and The manufacturing method of copper foil with a carrier including the process of forming a roughening process layer on an ultra-thin copper layer.
  15.  請求項1~12のいずれかに記載のキャリア付銅箔を用いて製造したプリント配線板。 A printed wiring board manufactured using the carrier-attached copper foil according to any one of claims 1 to 12.
  16.  請求項1~12のいずれかに記載のキャリア付銅箔を用いて製造したプリント回路板。 A printed circuit board manufactured using the carrier-attached copper foil according to any one of claims 1 to 12.
  17.  請求項1~12のいずれかに記載のキャリア付銅箔を用いて製造した銅張積層板。 A copper-clad laminate produced using the carrier-attached copper foil according to any one of claims 1 to 12.
PCT/JP2012/083722 2012-02-06 2012-12-26 Copper foil with carrier, manufacturing method for copper foil with carrier, printed wiring board, printed circuit board and copper clad laminate WO2013118416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013557388A JP5903446B2 (en) 2012-02-06 2012-12-26 Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012023121 2012-02-06
JP2012-023121 2012-02-06

Publications (1)

Publication Number Publication Date
WO2013118416A1 true WO2013118416A1 (en) 2013-08-15

Family

ID=48947200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083722 WO2013118416A1 (en) 2012-02-06 2012-12-26 Copper foil with carrier, manufacturing method for copper foil with carrier, printed wiring board, printed circuit board and copper clad laminate

Country Status (3)

Country Link
JP (1) JP5903446B2 (en)
TW (1) TWI465613B (en)
WO (1) WO2013118416A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166995A (en) * 2012-02-15 2013-08-29 Jx Nippon Mining & Metals Corp Copper foil with carrier and method for producing the same
JP5521099B1 (en) * 2013-09-02 2014-06-11 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP2016050364A (en) * 2014-08-29 2016-04-11 Jx金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and laminate, and methods for manufacturing copper foil with carrier, copper-clad laminate, and printed wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US454381A (en) * 1891-06-16 Alexander gael seinfeld
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
JP2002292788A (en) * 2001-03-30 2002-10-09 Nippon Denkai Kk Composite copper foil and method for manufacturing the same
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP2005076091A (en) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
WO2013031913A1 (en) * 2011-08-31 2013-03-07 Jx日鉱日石金属株式会社 Copper foil with carrier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
TW200420208A (en) * 2002-10-31 2004-10-01 Furukawa Circuit Foil Ultra-thin copper foil with carrier, method of production of the same, and printed circuit board using ultra-thin copper foil with carrier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US454381A (en) * 1891-06-16 Alexander gael seinfeld
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
JP2002292788A (en) * 2001-03-30 2002-10-09 Nippon Denkai Kk Composite copper foil and method for manufacturing the same
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP2005076091A (en) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
WO2013031913A1 (en) * 2011-08-31 2013-03-07 Jx日鉱日石金属株式会社 Copper foil with carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166995A (en) * 2012-02-15 2013-08-29 Jx Nippon Mining & Metals Corp Copper foil with carrier and method for producing the same
JP5521099B1 (en) * 2013-09-02 2014-06-11 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP2015047795A (en) * 2013-09-02 2015-03-16 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method of manufacturing printed wiring board
JP2016050364A (en) * 2014-08-29 2016-04-11 Jx金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electronic device, and laminate, and methods for manufacturing copper foil with carrier, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JPWO2013118416A1 (en) 2015-05-11
TW201341600A (en) 2013-10-16
JP5903446B2 (en) 2016-04-13
TWI465613B (en) 2014-12-21

Similar Documents

Publication Publication Date Title
JP5228130B1 (en) Copper foil with carrier
KR101614624B1 (en) Copper foil with carrier
JP4682271B2 (en) Copper foil for printed wiring boards
JP5367613B2 (en) Copper foil for printed wiring boards
JP5922227B2 (en) Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board
JP5156873B1 (en) Copper foil with carrier
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5364838B1 (en) Copper foil with carrier
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP5247929B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5449596B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP5814168B2 (en) Copper foil with carrier
TWI455659B (en) Printed wiring board with copper foil and the use of its layered body
US9066432B2 (en) Copper foil for printed wiring board
JP2011014651A (en) Copper foil for printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014024315A (en) Copper foil with carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868217

Country of ref document: EP

Kind code of ref document: A1