JP6392674B2 - Surface-treated copper foil and laminate - Google Patents

Surface-treated copper foil and laminate Download PDF

Info

Publication number
JP6392674B2
JP6392674B2 JP2015011596A JP2015011596A JP6392674B2 JP 6392674 B2 JP6392674 B2 JP 6392674B2 JP 2015011596 A JP2015011596 A JP 2015011596A JP 2015011596 A JP2015011596 A JP 2015011596A JP 6392674 B2 JP6392674 B2 JP 6392674B2
Authority
JP
Japan
Prior art keywords
copper foil
base material
plating
plating layer
treated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015011596A
Other languages
Japanese (ja)
Other versions
JP2016135903A (en
Inventor
小平 宗男
宗男 小平
千鶴 後藤
千鶴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015011596A priority Critical patent/JP6392674B2/en
Publication of JP2016135903A publication Critical patent/JP2016135903A/en
Application granted granted Critical
Publication of JP6392674B2 publication Critical patent/JP6392674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、表面処理銅箔及び積層板に関する。   The present invention relates to a surface-treated copper foil and a laminate.

従来、デジタルカメラや携帯電話等の電子機器の配線板として、フレキシブル配線基板(FPC)等が用いられている。FPCは、例えば、銅箔と、樹脂基材と、を備える積層板で形成されている。積層板には、所定箇所の銅箔がエッチング等により樹脂基材上から除去されることで、銅配線(回路パターン)が形成されている。積層板には、銅箔と樹脂基材との密着性(以下、単に「密着性」とも言う。)が高く、銅配線が樹脂基材から剥がれにくいことが要求されている。そこで、銅箔として、例えば銅箔基材のいずれかの主面上にめっき粒子を有する粗化銅めっき層を設けることで、アンカー効果を得て密着性を向上させた表面処理銅箔を用いることが提案されている(例えば特許文献1〜3参照)。   Conventionally, a flexible wiring board (FPC) or the like has been used as a wiring board for electronic devices such as digital cameras and mobile phones. FPC is formed with the laminated board provided with copper foil and a resin base material, for example. A copper wiring (circuit pattern) is formed on the laminate by removing the copper foil at a predetermined location from the resin base material by etching or the like. The laminated board is required to have high adhesion between the copper foil and the resin substrate (hereinafter also simply referred to as “adhesion”), and the copper wiring is difficult to peel off from the resin substrate. Therefore, as the copper foil, for example, a surface-treated copper foil having an anchor effect and improved adhesion by providing a roughened copper plating layer having plating particles on any main surface of the copper foil base material is used. Has been proposed (see, for example, Patent Documents 1 to 3).

特開2004−238647号公報JP 2004-238647 A 特開2006−155899号公報JP 2006-155899 A 特開2010−218905号公報JP 2010-218905 A

しかしながら、上述の密着性を高めるために、めっき粒子の粒子径を大きくし、表面処理銅箔の表面を粗くすると、銅箔が除去された箇所の樹脂基材の透明性が低下してしまうことがある。従って、積層板に電子部品等を実装する際、銅箔が除去された箇所の樹脂基材越しにアライメントマーク等を認識しにくくなり、電子部品等の実装位置の位置決めを行いにくくなることがある。   However, if the particle diameter of the plating particles is increased and the surface of the surface-treated copper foil is roughened in order to increase the above-mentioned adhesion, the transparency of the resin base material at the location where the copper foil has been removed is reduced. There is. Therefore, when mounting an electronic component or the like on the laminate, it may be difficult to recognize the alignment mark or the like over the resin base material where the copper foil has been removed, and it may be difficult to position the mounting position of the electronic component or the like. .

本発明は、上記課題を解決し、積層板を形成した際の表面処理銅箔と樹脂基材との密着性が維持されるとともに、積層板から表面処理銅箔が除去された後の樹脂基材の透明性が確保される技術を提供することを目的とする。   The present invention solves the above problems and maintains the adhesion between the surface-treated copper foil and the resin base material when the laminated board is formed, and the resin base after the surface-treated copper foil is removed from the laminated board. The object is to provide a technology that ensures the transparency of the material.

本発明の一態様によれば、
銅箔基材と、
前記銅箔基材の少なくともいずれかの主面上に設けられた粗化銅めっき層と、を備える表面処理銅箔であって、
前記粗化銅めっき層に含まれるめっき粒子の最大径の大きい方から20個の平均値をMとし、
前記粗化銅めっき層が樹脂基材に対向するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去したとき、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の大きい方から20個の平均値をBとした場合、
B/Mが0.9以下である表面処理銅箔が提供される。
According to one aspect of the invention,
A copper foil base material;
A surface-treated copper foil comprising a roughened copper plating layer provided on at least one main surface of the copper foil base material,
The average value of 20 from the larger maximum diameter of the plating particles contained in the roughened copper plating layer is M,
After the surface-treated copper foil is bonded to the resin substrate so that the roughened copper plating layer faces the resin substrate, the plated particles are removed when the surface-treated copper foil is removed from the resin substrate. When the average value of 20 from the larger diameter on the same surface as the surface of the resin substrate of the recess formed by being pressed against the resin substrate is B,
A surface-treated copper foil having a B / M of 0.9 or less is provided.

本発明の他の態様によれば、
銅箔基材、及び前記銅箔基材の少なくともいずれかの主面上に設けられた粗化銅めっき層、を備える表面処理銅箔と、
前記粗化銅めっき層に対向するように前記表面処理銅箔と貼り合わせられた樹脂基材と、を備え、
前記粗化銅めっき層に含まれるめっき粒子の最大径の大きい方から20個の平均値をMとし、
前記粗化銅めっき層が前記樹脂基材に対向するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去したとき、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の大きい方から20個の平均値をBとした場合、
B/Mが0.9以下である積層板が提供される。
According to another aspect of the invention,
A surface-treated copper foil comprising a copper foil base material, and a roughened copper plating layer provided on at least one main surface of the copper foil base material;
A resin base material bonded to the surface-treated copper foil so as to face the roughened copper plating layer,
The average value of 20 from the larger maximum diameter of the plating particles contained in the roughened copper plating layer is M,
After the surface-treated copper foil is bonded to the resin substrate so that the roughened copper plating layer faces the resin substrate, the plated particles are removed when the surface-treated copper foil is removed from the resin substrate. When the average value of 20 from the larger diameter on the same surface as the surface of the resin substrate of the recess formed by being pressed against the resin substrate is B,
A laminate having a B / M of 0.9 or less is provided.

本発明によれば、積層板を形成した際の表面処理銅箔と樹脂基材との密着性を維持できるとともに、積層板から表面処理銅箔が除去された後の樹脂基材の透明性を確保できる。   According to the present invention, the adhesiveness between the surface-treated copper foil and the resin base material when the laminated plate is formed can be maintained, and the transparency of the resin base material after the surface-treated copper foil is removed from the laminated plate can be maintained. It can be secured.

本発明の一実施形態にかかる表面処理銅箔を備える積層板の概略断面図である。It is a schematic sectional drawing of a laminated board provided with the surface treatment copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる表面処理銅箔の縦断面概略図である。It is a longitudinal section schematic diagram of the surface treatment copper foil concerning one embodiment of the present invention. 本発明の一実施形態にかかる表面処理銅箔を貼り合わせた後に表面処理銅箔を除去した樹脂基材の縦断面概略図である。It is the longitudinal cross-sectional schematic of the resin base material which removed the surface treatment copper foil, after bonding the surface treatment copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる表面処理銅箔の粗化面のSEM像の一例である。It is an example of the SEM image of the roughening surface of the surface treatment copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる表面処理銅箔を貼り合わせた後、表面処理銅箔を除去した樹脂基材の銅箔除去箇所のSEM像の一例である。It is an example of the SEM image of the copper foil removal location of the resin base material which removed the surface treatment copper foil, after bonding the surface treatment copper foil concerning one Embodiment of this invention. (a)〜(c)はそれぞれ、本発明の一実施例にかかる表面処理銅箔を用いて形成したFPCについて、樹脂基材越しに銅配線を撮影した撮影画像である。(A)-(c) is each the picked-up image which image | photographed copper wiring through the resin base material about FPC formed using the surface treatment copper foil concerning one Example of this invention. (a)(b)はそれぞれ、本発明の一実施例にかかる表面処理銅箔の粗化面のSEM像である。(A) and (b) are SEM images of the roughened surface of the surface-treated copper foil according to one example of the present invention. (a)(b)はそれぞれ、本発明の一実施例にかかる表面処理銅箔を貼り合わせて除去した後の銅箔除去箇所の樹脂基材のSEM像である。(A) and (b) are the SEM images of the resin base material of the copper foil removal location after bonding and removing the surface-treated copper foil concerning one Example of this invention, respectively.

<本発明の一実施形態>
(1)表面処理銅箔及び積層板の構成
本発明の一実施形態にかかる積層板及び表面処理銅箔の構成について、主に図1〜図3を参照しながら説明する。
<One Embodiment of the Present Invention>
(1) Structure of surface-treated copper foil and laminated board The structure of the laminated board and surface-treated copper foil concerning one Embodiment of this invention is mainly demonstrated, referring FIGS. 1-3.

(積層板)
図1に示すように、本実施形態にかかる積層板(CCL:Copper Clad Laminate)10は、少なくともいずれかの主面上に粗化銅めっき層3が形成された表面処理銅箔1と、粗化銅めっき層3に対向するように設けられた樹脂基材11と、を備えている。例えば、積層板10は、粗化銅めっき層3が対向するように表面処理銅箔1を樹脂基材11のいずれかの主面上に貼り合わせることで形成されている。樹脂基材11として、例えばポリイミド(PI)樹脂フィルムや、ポリエチレンテレフタラート(PET)等のポリエステルフィルムや、液晶ポリマ(LCP)等が用いられる。
(Laminated board)
As shown in FIG. 1, a laminate (CCL: Copper Clad Laminate) 10 according to this embodiment includes a surface-treated copper foil 1 having a roughened copper plating layer 3 formed on at least one main surface, and a roughened copper foil 1. And a resin base material 11 provided so as to face the copper chloride plating layer 3. For example, the laminated board 10 is formed by bonding the surface-treated copper foil 1 on any main surface of the resin base material 11 so that the roughened copper plating layer 3 faces. As the resin base material 11, for example, a polyimide (PI) resin film, a polyester film such as polyethylene terephthalate (PET), a liquid crystal polymer (LCP), or the like is used.

(表面処理銅箔)
上述の積層板10に用いられる表面処理銅箔1は、銅箔基材2を備えている。銅箔基材2としては、例えば圧延銅箔や電解銅箔を用いることができる。銅箔基材2として、電解銅箔よりも耐屈曲性に優れ、繰り返して折り曲げても破断しにくい圧延銅箔が用いられることがより好ましい。
(Surface treated copper foil)
The surface-treated copper foil 1 used for the above-described laminated plate 10 includes a copper foil base material 2. As the copper foil base material 2, for example, a rolled copper foil or an electrolytic copper foil can be used. As the copper foil base material 2, it is more preferable to use a rolled copper foil that is superior in bending resistance than the electrolytic copper foil and is not easily broken even when it is repeatedly bent.

銅箔基材2は、例えば無酸素銅(OFC:Oxygen−Free Copper)やタフピッチ銅(TPC:Tough−Pitch Copper)の純銅から形成されている。無酸素銅とは、JIS C1020やJIS H3100等に規定する純度が99.96%以上の銅材である。無酸素銅には、例えば数ppm程度の酸素が含有されていてもよい。タフピッチ銅とは、例えばJIS C1100やJIS H3100等に規定する純度が99.9%以上の銅材である。タフピッチ銅には、例えば100ppm〜600ppm程度の酸素が含有されていてもよい。銅箔基材2は、無酸素銅やタフピッチ銅に、微量のスズ(Sn)や銀(Ag)等の所定の添加材が添加された希薄銅合金から形成されていてもよい。これにより、銅箔基材2の耐熱性等を向上させることができる。   The copper foil base material 2 is made of pure copper such as oxygen-free copper (OFC: Oxygen-Free Copper) or tough pitch copper (TPC: Tow-Pitch Copper). Oxygen-free copper is a copper material having a purity specified in JIS C1020, JIS H3100, etc. of 99.96% or higher. The oxygen-free copper may contain, for example, about several ppm of oxygen. Tough pitch copper is, for example, a copper material having a purity of 99.9% or more as defined in JIS C1100, JIS H3100, or the like. The tough pitch copper may contain, for example, about 100 ppm to 600 ppm of oxygen. The copper foil base material 2 may be formed of a dilute copper alloy in which a predetermined additive such as a small amount of tin (Sn) or silver (Ag) is added to oxygen-free copper or tough pitch copper. Thereby, the heat resistance etc. of the copper foil base material 2 can be improved.

銅箔基材2のいずれかの主面上には、粗化銅めっき層3が設けられている。粗化銅めっき層3は、粗化抜けが発生していない状態にあることが好ましい。例えば、粗化銅めっき層3を上面から見た際、銅箔基材2が露出しないように、粗化銅めっき層3が形成されていることが好ましい。   A roughened copper plating layer 3 is provided on any main surface of the copper foil base 2. The roughened copper plating layer 3 is preferably in a state in which no roughening omission occurs. For example, it is preferable that the roughened copper plating layer 3 is formed so that the copper foil base material 2 is not exposed when the roughened copper plating layer 3 is viewed from above.

図2に示すように、粗化銅めっき層3には、複数のめっき粒子(粗化粒)3aが含まれている。めっき粒子3aは、例えば銅(Cu)(つまりCu単体)で形成されている。つまり、めっき粒子3aは例えばCuからなるめっき液を用いて形成されている。なお、めっき粒子3aは、例えば、Cuと、ニッケル(Ni)、コバルト(Co)等の金属元素と、を含むめっき液を用いて形成されていてもよい。   As shown in FIG. 2, the roughened copper plating layer 3 includes a plurality of plated particles (roughened particles) 3 a. The plated particles 3a are made of, for example, copper (Cu) (that is, Cu alone). That is, the plating particles 3a are formed using a plating solution made of Cu, for example. The plating particles 3a may be formed using a plating solution containing Cu and a metal element such as nickel (Ni) or cobalt (Co), for example.

めっき粒子3aの平均最大粒子径Mは、例えば0.2μmより大きく、0.5μm以下であることが好ましい。例えば図2では、最大径M,M,Mであるめっき粒子3aが形成された様子を示している。この場合、めっき粒子3aの平均最大粒子径Mは、それぞれのめっき粒子3aの最大径M,M,Mの平均値となる。 The average maximum particle diameter M of the plating particles 3a is preferably, for example, larger than 0.2 μm and not larger than 0.5 μm. For example, FIG. 2 shows a state in which the plating particles 3a having the maximum diameters M 1 , M 2 , and M 3 are formed. In this case, the average maximum particle diameter M of the plating particles 3a is an average value of the maximum diameters M 1 , M 2 , and M 3 of the respective plating particles 3a.

平均最大粒子径Mが0.2μm以下であると、めっき粒子3aの粒子径が小さくなるため、積層板10において樹脂基材11に接触する表面処理銅箔1の表面積(以下、「接触表面積」とも言う。)が小さくなるため、所望の密着性を維持することができないことがある。なお、密着性とは、積層板10における表面処理銅箔1と樹脂基材11との密着性である。例えば、表面処理銅箔1を樹脂基材11に貼り合わせた後に表面処理銅箔1を樹脂基材11から引き剥がす際のピール強度(以下、「ピール強度」とも言う。)を1.0N/mm以上にできないことがある。また、後述のB/Mが0.9以下にならないことがある。   When the average maximum particle diameter M is 0.2 μm or less, the particle diameter of the plating particles 3a is small, and therefore the surface area of the surface-treated copper foil 1 that contacts the resin base material 11 in the laminated plate 10 (hereinafter, “contact surface area”). May also be unable to maintain the desired adhesion. In addition, adhesiveness is the adhesiveness of the surface-treated copper foil 1 and the resin base material 11 in the laminated board 10. FIG. For example, the peel strength (hereinafter also referred to as “peel strength”) when the surface-treated copper foil 1 is peeled off from the resin base material 11 after the surface-treated copper foil 1 is bonded to the resin base material 11 is 1.0 N /. It may not be able to exceed mm. Also, B / M described later may not be 0.9 or less.

また、平均最大粒子径Mが0.2μm以下になるようなめっき粒子3a(つまり粒子径の小さなめっき粒子3a)を成長させるには、例えば電気めっき処理のめっき時間を短くする必要がある。しかしながら、銅箔基材2として例えば圧延銅箔が用いられる場合、圧延銅箔の主面(表面)には、圧延ロールの跡やオイルピット等による微細な凹凸が形成されていることがある。つまり、圧延銅箔の表面が平坦でないことがある。圧延銅箔の表面に形成された凸箇所は、凹箇所に比べて、例えば電気めっき処理を行っている際に電流が集中しやすい。このため、圧延銅箔の主面に、めっきが成長しやすい箇所(凸箇所)と、めっきが成長しにくい箇所(凹箇所)と、が生じることがある。これにより、圧延銅箔の主面上で、めっきが付着しない箇所や、めっき粒子3aが成長しない箇所が生じ、粗化抜けが発生することがある。その結果、積層板10において、樹脂基材11と表面処理銅箔1との間に隙間が生じてしまい、積層板10において樹脂基材11に接触する表面処理銅箔1の表面積が小さくなるため、密着性が低下することがある。例えば、ピール強度を1.0N/mm以上に維持できないことがある。また、銅箔除去後の樹脂基材11の濃淡(濁り度)が面内でより不均一になることがある。   Further, in order to grow plating particles 3a having an average maximum particle size M of 0.2 μm or less (that is, plating particles 3a having a small particle size), for example, it is necessary to shorten the plating time of the electroplating process. However, when, for example, a rolled copper foil is used as the copper foil base material 2, fine irregularities due to a rolling roll trace, oil pits, or the like may be formed on the main surface (surface) of the rolled copper foil. That is, the surface of the rolled copper foil may not be flat. The convex portion formed on the surface of the rolled copper foil is more likely to concentrate current when performing electroplating, for example, than the concave portion. For this reason, the location (protruding location) where plating is easy to grow and the location (concave location) where plating is difficult to grow may occur on the main surface of the rolled copper foil. Thereby, on the main surface of rolled copper foil, the location where plating does not adhere and the location where the plating particle 3a does not grow arise, and roughening omission may occur. As a result, a gap is generated between the resin base material 11 and the surface-treated copper foil 1 in the laminated board 10, and the surface area of the surface-treated copper foil 1 that contacts the resin base material 11 in the laminated board 10 is reduced. , Adhesion may be reduced. For example, the peel strength may not be maintained at 1.0 N / mm or more. Moreover, the shading (turbidity) of the resin base material 11 after removing the copper foil may become more uneven in the plane.

平均最大粒子径Mを0.2μmより大きくすることで、積層板10において樹脂基材11に接触する表面処理銅箔1の表面積を充分に大きくできる。つまり、積層板10において、所望の接触表面積を確保できる。また、粗化抜けの発生を抑制することができる。   By making the average maximum particle diameter M larger than 0.2 μm, the surface area of the surface-treated copper foil 1 that contacts the resin base material 11 in the laminated plate 10 can be sufficiently increased. That is, a desired contact surface area can be secured in the laminated plate 10. Moreover, occurrence of roughening loss can be suppressed.

平均最大粒子径Mが0.5μmを超えると、めっき粒子3aの大きさが大きくなる。従って、積層板10において樹脂基材11に接触する表面処理銅箔1の表面積をより大きくできるため、所望の密着性を維持することはできる。しかしながら、後述の凹部11aの大きさが大きくなるため、透明性が低下してしまうことがある。つまり、所望の透明性を確保することができないことがある。なお、透明性とは、粗化銅めっき層3が樹脂基材11に対向するように表面処理銅箔1を樹脂基材11に貼り合わせた後に表面処理銅箔1を除去した樹脂基材11(以下、「銅箔除去後の樹脂基材11」とも言う。)の透明性である。平均最大粒子径Mの値を0.5μm以下にすることで、所望の密着性を維持しつつ、所望の透明性をより確実に確保できる。例えば、後述のB/Mを0.9以下にすることで、ピール強度を1.0N/mm以上に維持しつつ、銅箔除去後の樹脂基材11のHAZE値(以下、単に「HAZE値」とも言う。)を70%以下により確実にすることができる。なお、HAZE値とは、濁度とも呼ばれ、HAZE値の値が大きくなるほど、透明性が低くなることになる。   When the average maximum particle diameter M exceeds 0.5 μm, the size of the plating particle 3a increases. Therefore, since the surface area of the surface-treated copper foil 1 which contacts the resin base material 11 in the laminated board 10 can be enlarged more, desired adhesiveness can be maintained. However, since the size of the later-described recess 11a is increased, the transparency may be lowered. That is, the desired transparency may not be ensured. In addition, transparency is the resin base material 11 which removed the surface treatment copper foil 1 after bonding the surface treatment copper foil 1 to the resin base material 11 so that the roughening copper plating layer 3 may oppose the resin base material 11. (Hereinafter, also referred to as “resin substrate 11 after removal of copper foil”). By setting the value of the average maximum particle diameter M to 0.5 μm or less, it is possible to ensure the desired transparency while maintaining the desired adhesion. For example, by setting B / M, which will be described later, to 0.9 or less, the peel strength is maintained at 1.0 N / mm or more, and the HAZE value of the resin base material 11 after removing the copper foil (hereinafter simply referred to as “HAZE value”). Can also be ensured by 70% or less. The HAZE value is also called turbidity, and the greater the HAZE value, the lower the transparency.

図3に示すように、粗化銅めっき層3が樹脂基材11に対向するように表面処理銅箔1を樹脂基材11に貼り合わせた後、樹脂基材11から表面処理銅箔1を除去したとき、めっき粒子3aが樹脂基材11に押し当てられることで、樹脂基材11には複数の凹部11aが形成される。つまり、めっき粒子3aの形状が樹脂基材11に転写されることで、複数の凹部11aが樹脂基材11に形成される。   As shown in FIG. 3, after the surface-treated copper foil 1 is bonded to the resin substrate 11 so that the roughened copper plating layer 3 faces the resin substrate 11, the surface-treated copper foil 1 is removed from the resin substrate 11. When removed, the plating particles 3 a are pressed against the resin substrate 11, thereby forming a plurality of recesses 11 a in the resin substrate 11. That is, the shape of the plating particle 3 a is transferred to the resin base material 11, whereby a plurality of recesses 11 a are formed in the resin base material 11.

例えば図3では、底面径がB,B,Bである凹部11aが形成された様子を示している。なお、底面径とは、凹部11aの樹脂基材11の表面と同一面における径を言う。凹部11aの底面径B,B,Bは、例えばめっき粒子3aの底面径に相当する。この場合、凹部11aの平均底面径Bは、それぞれの凹部11aの底面径B,B,Bの平均値となる。 In Figure 3 for example shows how the recess 11a bottom diameter of B 1, B 2, B 3 is formed. In addition, a bottom face diameter means the diameter in the same surface as the surface of the resin base material 11 of the recessed part 11a. The bottom surface diameters B 1 , B 2 , and B 3 of the recess 11a correspond to, for example, the bottom surface diameter of the plating particle 3a. In this case, the average bottom surface diameter B of the recess 11a is an average value of the bottom surface diameters B 1 , B 2 and B 3 of the respective recesses 11a.

表面処理銅箔1は、平均最大粒子径M及び平均底面径Bを用いて算出したB/Mが例えば0.9以下になるように形成されていることが好ましい。例えば、粗化銅めっき層3を設けることで表面粗さが粗くなった表面処理銅箔1の面(粗化面)におけるB/Mが0.9以下であることが好ましい。   The surface-treated copper foil 1 is preferably formed such that B / M calculated using the average maximum particle diameter M and the average bottom surface diameter B is, for example, 0.9 or less. For example, it is preferable that B / M on the surface (roughened surface) of the surface-treated copper foil 1 whose surface roughness is increased by providing the roughened copper plating layer 3 is 0.9 or less.

B/Mの値が小さくなるほど、めっき粒子3aの最大径が底面径に対して大きくなる。従って、例えば粒子径が同一であるめっき粒子3aでは、B/Mの値が小さくなるほど(つまり凹部11aの底面径が小さくなるほど)、積層板10において樹脂基材11に接触する表面処理銅箔1の表面積が大きくなる傾向にある。また、例えば接触表面積が同一であるめっき粒子3aでは、B/Mの値が小さくなるほど、めっき粒子3aの粒子径が小さくなる傾向にある。なお、B/Mの最大値は1.0である。   The smaller the value of B / M, the larger the maximum diameter of the plating particle 3a with respect to the bottom surface diameter. Accordingly, for example, in the case of the plated particles 3a having the same particle diameter, the surface-treated copper foil 1 that contacts the resin substrate 11 in the laminate 10 as the value of B / M decreases (that is, the bottom diameter of the recess 11a decreases). The surface area tends to increase. For example, in the case of the plated particles 3a having the same contact surface area, the particle diameter of the plated particles 3a tends to decrease as the B / M value decreases. The maximum value of B / M is 1.0.

B/Mが0.9を超えると、めっき粒子3aの最大径と底面径とがほぼ同程度になる。その結果、めっき粒子3aの粒子径(例えば平均最大粒子径M)を小さくすると、積層板10において所定の接触表面積を確保することができないことがある。従って、所望の透明性を確保することはできるが、所望の密着性を維持できないことがある。例えば、銅箔除去後の樹脂基材11のHAZE値は70%以下にできるが、ピール強度が1.0N/mm未満になることがある。   When B / M exceeds 0.9, the maximum diameter and the bottom surface diameter of the plated particles 3a are approximately the same. As a result, when the particle diameter (for example, the average maximum particle diameter M) of the plating particles 3a is reduced, a predetermined contact surface area may not be ensured in the laminated plate 10. Therefore, although desired transparency can be ensured, desired adhesion may not be maintained. For example, the HAZE value of the resin base material 11 after removing the copper foil can be 70% or less, but the peel strength may be less than 1.0 N / mm.

B/Mを0.9以下にすることで、めっき粒子3aの粒子径を小さくしても、積層板10において所定の接触表面積を確保できる。その結果、所望の密着性を維持しつつ、所望の透明性を確保することができる。例えば、ピール強度を1.0N/mm以上に維持しつつ、HAZE値を70%以下にすることができる。   By setting B / M to 0.9 or less, a predetermined contact surface area can be secured in the laminated plate 10 even if the particle diameter of the plating particles 3a is reduced. As a result, desired transparency can be ensured while maintaining desired adhesion. For example, the HAZE value can be made 70% or less while maintaining the peel strength at 1.0 N / mm or more.

また、表面処理銅箔1のB/Mが0.7より大きいとより好ましい。B/Mが0.7以下であると、めっき粒子3aが銅箔基材2上から脱落しやすくなる。めっき粒子3aが銅箔基材2から脱落すると、表面処理銅箔1と樹脂基材11とを貼り合わせる際に、脱落しためっき粒子3aが搬送ロール等に付着することがある。めっき粒子3aが付着した搬送ロール間を表面処理銅箔1が通過すると、表面処理銅箔1に凹み(デンツ(dent))が形成されてしまうことがある。デンツは、回路をパターニングする際に、断線などの原因になることがある。その結果、積層板10を用いて形成されるFPC等の製品の信頼性を大きく低下させてしまう。B/Mを0.7より大きくすることで、めっき粒子3aが銅箔基材2上から脱落し、粗化抜けが発生することを抑制できる。   Moreover, it is more preferable when B / M of the surface treatment copper foil 1 is larger than 0.7. When the B / M is 0.7 or less, the plated particles 3a are likely to fall off from the copper foil base material 2. When the plating particles 3a drop off from the copper foil base material 2, the dropped plating particles 3a may adhere to a transport roll or the like when the surface-treated copper foil 1 and the resin base material 11 are bonded together. When the surface-treated copper foil 1 passes between the transport rolls to which the plating particles 3a are adhered, a dent (dent) may be formed in the surface-treated copper foil 1. Dents may cause disconnection or the like when patterning a circuit. As a result, the reliability of products such as FPC formed using the laminate 10 is greatly reduced. By making B / M larger than 0.7, it is possible to suppress the plating particles 3a from dropping from the copper foil base material 2 and the occurrence of roughening loss.

ここで、平均最大粒子径Mの算出方法について説明する。例えば、SEM法により、200個以上500個未満のめっき粒子3aが観察できる倍率で、粗化銅めっき層3の主面に対して法線方向における上方から粗化銅めっき層3の上面(主面)を観察(撮影)する。これにより、例えば図4に示すような表面処理銅箔1の粗化面(粗化銅めっき層3の上面)のSEM像を得る。なお、200個未満のめっき粒子3aが観察できる倍率で観察すると、粗化銅めっき層3の観察位置によって平均最大粒子径Mの値が大きく異なってしまうことがある。また、500個以上のめっき粒子3aが観察できる倍率で観察すると、観察するめっき粒子3aのそれぞれの大きさが小さいため、計測誤差の原因になることがある。   Here, a method for calculating the average maximum particle size M will be described. For example, the upper surface of the roughened copper plating layer 3 (mainly from the upper side in the normal direction with respect to the main surface of the roughened copper plating layer 3 at a magnification at which 200 or more and less than 500 plated particles 3a can be observed by the SEM method. Observe (photograph) the surface. Thereby, for example, an SEM image of the roughened surface (upper surface of the roughened copper plating layer 3) of the surface-treated copper foil 1 as shown in FIG. 4 is obtained. When observed at a magnification at which less than 200 plated particles 3a can be observed, the average maximum particle size M may vary greatly depending on the observation position of the roughened copper plating layer 3. Further, when observing at a magnification at which 500 or more plated particles 3a can be observed, the size of each of the observed plated particles 3a is small, which may cause a measurement error.

そして、得られたSEM像中で観察されるめっき粒子3aのうち、密着性及び透明性により大きな影響を及ぼす最大径の大きなめっき粒子3aを抽出する。例えば、最大径の大きい方から順に20個のめっき粒子3aを抽出する。なお、粗化銅めっき層3の上方から撮影したSEM像では、通常、SEM像に写る各めっき粒子3aのそれぞれの長径が最大径に一致する。そして、抽出しためっき粒子3aの最大径の平均値を算出し、この平均値をMとする。   And from the plating particles 3a observed in the obtained SEM image, the plating particles 3a having a large maximum diameter that greatly affects the adhesion and transparency are extracted. For example, 20 plating particles 3a are extracted in order from the largest maximum diameter. In the SEM image taken from above the roughened copper plating layer 3, the major axis of each plating particle 3 a that appears in the SEM image usually matches the maximum diameter. Then, an average value of the maximum diameters of the extracted plated particles 3a is calculated, and this average value is set as M.

次に、平均底面径Bの算出方法について説明する。例えば、SEM法により、200個以上500個未満の凹部11aが観察できる倍率で、銅箔除去後の樹脂基材11の主面に対して法線方向における上方から、銅箔除去後の樹脂基材11における銅箔除去箇所を観察する。この際、例えば上述の平均最大粒子径Mを算出する際に粗化銅めっき層3を観察したときと同じ倍率で観察することがより好ましい。これにより、例えば図5に示すような銅箔除去箇所の樹脂基材11のSEM像を得る。   Next, a method for calculating the average bottom surface diameter B will be described. For example, the resin base after removing the copper foil from above in the normal direction with respect to the main surface of the resin base material 11 after removing the copper foil at a magnification at which 200 or more and less than 500 concave portions 11a can be observed by SEM The copper foil removal location in the material 11 is observed. At this time, for example, when calculating the above-mentioned average maximum particle diameter M, it is more preferable to observe at the same magnification as when the roughened copper plating layer 3 was observed. Thereby, for example, an SEM image of the resin base material 11 at the copper foil removed portion as shown in FIG. 5 is obtained.

そして、得られたSEM像中で観察される凹部11aのうち、密着性及び透明性により大きな影響を及ぼす底面径の大きな凹部11aを抽出する。例えば、底面径の大きい方から順に20個の凹部11aを抽出する。そして、抽出した凹部11aの底面径の平均値を算出し、この平均値を平均底面径Bとする。   Then, out of the recesses 11a observed in the obtained SEM image, the recesses 11a having a large bottom diameter that greatly affects the adhesion and the transparency are extracted. For example, 20 concave portions 11a are extracted in order from the larger bottom surface diameter. And the average value of the bottom face diameter of the extracted recessed part 11a is calculated, and let this average value be the average bottom face diameter B.

また、表面処理銅箔1の粗化面の十点平均粗さ(Rz)が例えば0.8μm以下であることが好ましい。粗化面のRzが0.8μmを超えると、積層板10において樹脂基材11に接触する表面処理銅箔1の表面積が大きくなるため、所望の密着性を維持できるが、所望の透明性を確保できないことがある。粗化面のRzを0.8μm以下にすることで、所望の密着性を維持しつつ、所望の透明性をより確実に確保することができる。例えば、ピール強度を1.0N/mm以上に維持しつつ、HAZE値を70%以下により確実にすることができる。   Moreover, it is preferable that the ten-point average roughness (Rz) of the roughened surface of the surface-treated copper foil 1 is 0.8 μm or less, for example. When Rz of the roughened surface exceeds 0.8 μm, the surface area of the surface-treated copper foil 1 that comes into contact with the resin base material 11 in the laminated plate 10 increases, so that the desired adhesion can be maintained, but the desired transparency can be maintained. It may not be secured. By setting Rz of the roughened surface to 0.8 μm or less, desired transparency can be more reliably ensured while maintaining desired adhesion. For example, the HAZE value can be ensured by 70% or less while maintaining the peel strength at 1.0 N / mm or more.

また、めっき粒子3aが銅箔基材2から脱落することを抑制するため、粗化銅めっき層3の少なくとも上面を覆うめっき粒子脱落抑制層4が設けられていることが好ましい。めっき粒子脱落抑制層4は、例えば銅めっき層で形成されていることが好ましい。なお、めっき粒子脱落抑制層4の厚さは薄いため、上述の平均最大粒子径Mや平均底面径Bの算出において、めっき粒子脱落抑制層4の厚さは無視できる。   Moreover, in order to suppress that the plating particle 3a falls off from the copper foil base material 2, it is preferable that the plating particle fall-off suppression layer 4 that covers at least the upper surface of the roughened copper plating layer 3 is provided. The plated particle drop-off suppressing layer 4 is preferably formed of, for example, a copper plating layer. In addition, since the thickness of the plating particle drop-off suppressing layer 4 is thin, the thickness of the plating particle drop-off suppressing layer 4 can be ignored in the calculation of the average maximum particle diameter M and the average bottom diameter B described above.

例えば、めっき粒子脱落抑制層4の厚さは0.01μm以上0.3μm以下であることが好ましい。なお、めっき粒子脱落抑制層4の厚さは、めっき粒子3aの表面に均一にめっき粒子脱落抑制層4が形成されると仮定して、めっき粒子脱落抑制層4を形成する際のめっき処理の電気量から計算した厚さである。   For example, it is preferable that the thickness of the plating particle drop-off suppressing layer 4 is 0.01 μm or more and 0.3 μm or less. In addition, the thickness of the plating particle drop-off suppressing layer 4 is assumed to be equal to that of the plating process when forming the plating particle drop-off suppressing layer 4 on the assumption that the plating particle drop-off suppressing layer 4 is uniformly formed on the surface of the plating particle 3a. It is the thickness calculated from the quantity of electricity.

めっき粒子脱落抑制層4の厚さが0.01μm未満であると、めっき粒子脱落抑制層4の厚さが薄いため、めっき粒子3aの脱落を抑制できないことがある。めっき粒子脱落抑制層4の厚さを0.01μm以上にすることで、めっき粒子3aの脱落を抑制することができる。   When the thickness of the plating particle drop-off suppressing layer 4 is less than 0.01 μm, the plating particle drop-off suppressing layer 4 is thin, and thus the drop-off of the plating particles 3a may not be suppressed. By making the thickness of the plated particle drop-off suppressing layer 4 0.01 μm or more, the drop of the plated particles 3 a can be suppressed.

しかしながら、めっき粒子脱落抑制層4の厚さが0.3μmを超えると、めっき粒子3aによって表面処理銅箔1の表面(粗化面)に形成される凹凸の大きさが大きくなりすぎてしまうことがある。従って、銅箔除去後の樹脂基材11の透明性が低くなってしまうことがある。めっき粒子脱落抑制層4の厚さを0.3μm以下にすることで、めっき粒子3aによって表面処理銅箔1の表面に形成される凹凸の大きさが大きくなりすぎることを抑制できる。従って、所望の密着性を維持しつつ、所望の透明性を確保できる。例えばピール強度を1.0N/mm以上に維持しつつ、HAZE値を70%以下にすることができる。   However, when the thickness of the plating particle drop-off suppressing layer 4 exceeds 0.3 μm, the size of the unevenness formed on the surface (roughened surface) of the surface-treated copper foil 1 by the plating particles 3a becomes too large. There is. Therefore, the transparency of the resin base material 11 after removing the copper foil may be lowered. By setting the thickness of the plated particle drop-off suppressing layer 4 to 0.3 μm or less, it is possible to prevent the unevenness formed on the surface of the surface-treated copper foil 1 from being excessively large by the plated particles 3a. Therefore, desired transparency can be secured while maintaining desired adhesion. For example, the HAZE value can be made 70% or less while maintaining the peel strength at 1.0 N / mm or more.

(2)表面処理銅箔及び積層板の製造方法
次に、本実施形態にかかる表面処理銅箔1及び積層板10の製造方法について説明する。
(2) Manufacturing method of surface-treated copper foil and laminated board Next, the manufacturing method of the surface-treated copper foil 1 and laminated board 10 concerning this embodiment is demonstrated.

[表面処理銅箔形成工程]
まず、本実施形態にかかる表面処理銅箔1を形成する。
[Surface treatment copper foil formation process]
First, the surface-treated copper foil 1 according to the present embodiment is formed.

(銅箔基材形成工程)
銅箔基材2として、例えば圧延銅箔や電解銅箔を形成する。例えば、銅箔基材2としての圧延銅箔を形成する場合、まず、無酸素銅やタフピッチ銅からなる純銅の鋳塊や、無酸素銅やタフピッチ銅を母相とし、母相中に所定量のSnやAg等の添加剤を添加した希薄銅合金の鋳塊を鋳造する。そして、鋳造した鋳塊に対し、所定の熱間圧延処理、所定の冷間圧延処理、所定の焼鈍処理等を行い、所定厚さ(例えば5μm以上35μm以下)の圧延銅箔を形成する。
(Copper foil base material formation process)
As the copper foil base material 2, for example, a rolled copper foil or an electrolytic copper foil is formed. For example, when forming a rolled copper foil as the copper foil base material 2, first, a pure copper ingot made of oxygen-free copper or tough pitch copper, oxygen-free copper or tough pitch copper as a parent phase, and a predetermined amount in the mother phase An ingot of a dilute copper alloy to which additives such as Sn and Ag are added is cast. And a predetermined hot rolling process, a predetermined cold rolling process, a predetermined annealing process, etc. are performed with respect to the cast ingot, and the rolled copper foil of predetermined thickness (for example, 5 micrometers or more and 35 micrometers or less) is formed.

(粗化銅めっき層形成工程)
銅箔基材形成工程が終了したら、例えばロール・ツー・ロール(roll to roll)形式の連続電気めっき処理により、銅箔基材2の少なくともいずれかの主面上に所定厚さ(例えば0.2μm以上1.1μm以下)の粗化銅めっき層3を形成する。具体的には、粗化銅めっき層3を形成するめっき液(粗化銅めっき液)中で電気めっき処理(粗化処理)を行うことで、粗化銅めっき層3を形成する。粗化銅めっき液として、例えば硫酸銅および硫酸を主成分とする酸性銅めっき浴を用いることができる。また、粗化銅めっき液中に、所定量(例えば50g/L)の硫酸鉄七水和物を添加してもよい。
(Roughening copper plating layer forming process)
When the copper foil base material forming step is completed, a predetermined thickness (for example, 0. 0 mm) is formed on at least one main surface of the copper foil base material 2 by, for example, a roll-to-roll type continuous electroplating process. 2 to 1.1 μm) of the roughened copper plating layer 3 is formed. Specifically, the roughened copper plating layer 3 is formed by performing electroplating treatment (roughening treatment) in a plating solution (roughening copper plating solution) for forming the roughened copper plating layer 3. As the roughened copper plating solution, for example, an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid can be used. Further, a predetermined amount (for example, 50 g / L) of iron sulfate heptahydrate may be added to the roughened copper plating solution.

粗化銅めっき層形成工程では、めっき条件における限界電流密度以上の電流密度(いわゆる「やけめっき」になるような電流密度)であって、平均底面径B/平均最大粒子径Mを0.9以下にできるようなめっき粒子3aを形成できる電流密度に、電流密度を調整することが好ましい。例えば、電流密度を40A/dm以上に調整することが好ましく、42A/dm以上65A/dm以下に調整することがより好ましい。 In the roughened copper plating layer forming step, the current density is equal to or higher than the limit current density in the plating conditions (current density that results in so-called “burn plating”), and the average bottom diameter B / average maximum particle diameter M is 0.9. It is preferable to adjust the current density to a current density capable of forming the plated particles 3a as described below. For example, the current density is preferably adjusted to 40 A / dm 2 or more, and more preferably adjusted to 42 A / dm 2 or more and 65 A / dm 2 or less.

また、粗化銅めっき層形成工程では、陽極としてCu板を用い、粗化処理を施す対象である銅箔基材2自体を陰極とすることが好ましい。   Further, in the roughened copper plating layer forming step, it is preferable to use a Cu plate as the anode and use the copper foil base material 2 itself to be subjected to the roughening treatment as the cathode.

(めっき粒子脱落抑制層形成工程)
粗化銅めっき層形成工程が終了した後、所定厚さ(例えば0.01μm以上0.3μm以下)のめっき粒子脱落抑制層4を粗化銅めっき層3上に形成する。例えば、Cuを主成分とするめっき浴中で電気めっき処理を行うことで、粗化銅めっき層3の少なくとも上面を覆うめっき粒子脱落抑制層4としての銅めっき層を形成する。
(Plating particle dropout suppression layer formation process)
After the roughening copper plating layer forming step is finished, a plating particle drop-off suppressing layer 4 having a predetermined thickness (for example, 0.01 μm or more and 0.3 μm or less) is formed on the roughing copper plating layer 3. For example, by performing an electroplating process in a plating bath containing Cu as a main component, a copper plating layer as the plating particle drop-off suppressing layer 4 covering at least the upper surface of the roughened copper plating layer 3 is formed.

(検査工程)
めっき粒子脱落抑制層形成工程が終了し、銅箔基材2と、粗化銅めっき層3と、めっき粒子脱落抑制層4と、を備える表面処理銅箔1を形成したら、例えばSEM法により粗化銅めっき層3に含まれるめっき粒子3aの平均最大粒子径Mを算出する。また、表面処理銅箔1の粗化銅めっき層3が設けられた側の面が樹脂基材11に対向するように、表面処理銅箔1と樹脂基材11とを貼り合わせた後、樹脂基材11から表面処理銅箔1を除去し、凹部11aの平均底面径Bを算出する。そして、表面処理銅箔1のB/Mを算出し、B/Mが例えば0.9以下であるか否かを検査する。
(Inspection process)
When the plating particle drop-off suppression layer forming step is completed and the surface-treated copper foil 1 including the copper foil base material 2, the roughened copper plating layer 3, and the plating particle drop-off suppression layer 4 is formed, roughening is performed by, for example, SEM. The average maximum particle diameter M of the plating particles 3a included in the copper chloride plating layer 3 is calculated. Moreover, after bonding the surface-treated copper foil 1 and the resin base material 11 so that the surface of the surface-treated copper foil 1 on which the roughened copper plating layer 3 is provided faces the resin base material 11, The surface-treated copper foil 1 is removed from the base material 11, and the average bottom surface diameter B of the recess 11a is calculated. And B / M of the surface treatment copper foil 1 is calculated, and it is test | inspected whether B / M is 0.9 or less, for example.

[積層板形成工程]
上述の検査工程で算出した表面処理銅箔1のB/Mが例えば0.9以下であった場合、表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成する。具体的には、粗化銅めっき層3が樹脂基材11に対向するように表面処理銅箔1を樹脂基材11上に配置し、表面処理銅箔1と樹脂基材11とを貼り合わせる。表面処理銅箔1と樹脂基材11との貼り合わせは、例えば、真空プレス機を用い、表面処理銅箔1と樹脂基材11とを所定温度(例えば150℃以上350℃以下)に加熱しつつ、表面処理銅箔1と樹脂基材11とに所定圧力(例えば20MPa以下)を所定時間(例えば1分以上120分以下)加えて行うことができる。
[Laminated plate forming process]
When the B / M of the surface-treated copper foil 1 calculated in the above-described inspection process is, for example, 0.9 or less, the surface-treated copper foil 1 and the resin base material 11 are bonded together to form the laminated plate 10. Specifically, the surface-treated copper foil 1 is disposed on the resin substrate 11 so that the roughened copper plating layer 3 faces the resin substrate 11, and the surface-treated copper foil 1 and the resin substrate 11 are bonded together. . Bonding of the surface-treated copper foil 1 and the resin base material 11 is performed by heating the surface-treated copper foil 1 and the resin base material 11 to a predetermined temperature (for example, 150 ° C. or higher and 350 ° C. or lower) using, for example, a vacuum press. On the other hand, a predetermined pressure (for example, 20 MPa or less) can be applied to the surface-treated copper foil 1 and the resin base material 11 for a predetermined time (for example, 1 minute to 120 minutes).

(3)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effects According to the Present Embodiment According to the present embodiment, one or a plurality of effects described below are exhibited.

(a)平均底面径B/平均最大粒子径Mで算出される値を所定値以下にすることで、めっき粒子3aの粒子径を小さくしても(つまり、めっき粒子3aの粒子径を大きくすることなく)、積層板10において表面処理銅箔1が樹脂基材11と接触する表面積を所定値以上にできる。これにより、所望の密着性を維持することができる。また、めっき粒子3aの粒子径を小さくすることで、所望の透明性を確保することができる。つまり、所望の密着性を維持しつつ、所望の電気特性を確保することができる。 (A) Even if the particle diameter of the plating particle 3a is reduced (that is, the particle diameter of the plating particle 3a is increased) by making the value calculated by the average bottom diameter B / average maximum particle diameter M equal to or less than a predetermined value. In the laminated board 10, the surface area where the surface-treated copper foil 1 is in contact with the resin base material 11 can be made a predetermined value or more. Thereby, desired adhesiveness can be maintained. Moreover, desired transparency can be ensured by reducing the particle diameter of the plating particles 3a. That is, desired electrical characteristics can be ensured while maintaining desired adhesion.

(b)具体的には、B/Mを0.9以下にすることで、例えば、ピール強度を1.0N/mm以上に維持しつつ、HAZE値を70%以下にできる。 (B) Specifically, by setting B / M to 0.9 or less, for example, the HAZE value can be made 70% or less while maintaining the peel strength at 1.0 N / mm or more.

ピール強度を1.0N/mm以上にすることで、例えば表面処理銅箔1を用いた積層板10で形成したFPCにおいて、表面処理銅箔1の所定箇所をエッチング等により除去することで形成した銅配線が、樹脂基材11から剥がれることを抑制できる。従って、FPCの信頼性の低下を抑制できる。   By making the peel strength 1.0 N / mm or more, for example, in the FPC formed with the laminated plate 10 using the surface-treated copper foil 1, it was formed by removing a predetermined portion of the surface-treated copper foil 1 by etching or the like. It can suppress that copper wiring peels from the resin base material 11. FIG. Accordingly, it is possible to suppress a decrease in the reliability of the FPC.

また、HAZE値を70%以下にすることで、例えば表面処理銅箔1を用いた積層板10で形成したFPCに電子部品等を実装する際、目視やCCDカメラ等により、表面処理銅箔1が除去された箇所の樹脂基材11越しに銅配線や位置決めマーク等を容易に認識することができる。その結果、例えばFPCに電子部品等を実装する際の実装作業性を向上させることができる。   Further, by setting the HAZE value to 70% or less, for example, when electronic parts are mounted on the FPC formed by the laminate 10 using the surface-treated copper foil 1, the surface-treated copper foil 1 is visually or CCD camera or the like. A copper wiring, a positioning mark, etc. can be easily recognized through the resin base material 11 of the location from which the is removed. As a result, it is possible to improve the mounting workability when mounting electronic components or the like on the FPC, for example.

(c)平均最大粒子径Mを0.2μmより大きく、0.5μm以下にすることで、より確実にB/Mを0.9以下にすることができるとともに、所望の密着性を維持しつつ、所望の透明性をより確実に得ることができる。従って、上記(a)(b)の効果をより得ることができる。 (C) By making the average maximum particle size M larger than 0.2 μm and 0.5 μm or less, B / M can be more reliably reduced to 0.9 or less, and the desired adhesion is maintained. The desired transparency can be obtained more reliably. Therefore, the effects (a) and (b) can be further obtained.

例えば図6(a)に示すように、平均最大粒子径Mが0.2μmより大きく0.5μm以下である表面処理銅箔1を用いた積層板10で形成したFPCでは、銅箔除去後の樹脂基材11が所望の透明性を有していることが分かる。つまり、銅箔を除去した箇所の樹脂基材11越しに銅配線を容易に認識することができる。例えば、樹脂基材11と銅配線との境界を容易に認識することができる。   For example, as shown to Fig.6 (a), in FPC formed with the laminated board 10 using the surface treatment copper foil 1 whose average largest particle diameter M is larger than 0.2 micrometer and is 0.5 micrometer or less, after copper foil removal It turns out that the resin base material 11 has desired transparency. That is, the copper wiring can be easily recognized through the resin base material 11 at the location where the copper foil is removed. For example, the boundary between the resin base material 11 and the copper wiring can be easily recognized.

これに対し、例えば図6(b)に示すように、平均最大粒子径Mが0.2μm以下である表面処理銅箔を用いた積層板で形成したFPCでは、銅箔除去後の樹脂基材11の透明性を高くすることができる。しかしながら、例えばCCDカメラを用いてFPCに電子部品を実装する場合、CCDカメラが備える光照射部から出射されて樹脂基材11を透過した光が銅配線である表面処理銅箔上で反射することがある。このため、例えば、銅箔を除去した箇所の樹脂基材11越しに銅配線を認識し難くなることがある。また、例えば図6(c)に示すように、平均最大粒子径Mが0.5μmを超える表面処理銅箔を用いた積層板で形成したFPCでは、銅箔除去後の樹脂基材11の透明性が低いことが分かる。従って、銅箔を除去した箇所の樹脂基材11越しに銅配線を認識することが難しいことがある。例えば、樹脂基材11と銅配線との境界を認識することができないことがある。   On the other hand, for example, as shown in FIG. 6B, in an FPC formed of a laminate using a surface-treated copper foil having an average maximum particle size M of 0.2 μm or less, the resin base material after removing the copper foil The transparency of 11 can be increased. However, for example, when an electronic component is mounted on an FPC using a CCD camera, the light emitted from the light irradiation unit provided in the CCD camera and transmitted through the resin base material 11 is reflected on the surface-treated copper foil that is a copper wiring. There is. For this reason, it may become difficult to recognize a copper wiring through the resin base material 11 of the location which removed the copper foil, for example. For example, as shown in FIG.6 (c), in FPC formed with the laminated board using the surface treatment copper foil whose average largest particle diameter M exceeds 0.5 micrometer, the transparent of the resin base material 11 after copper foil removal is carried out. It turns out that the nature is low. Therefore, it may be difficult to recognize the copper wiring through the resin base material 11 at the place where the copper foil is removed. For example, the boundary between the resin base material 11 and the copper wiring may not be recognized.

(d)粗化銅めっき層3上にめっき粒子脱落抑制層4を設けることで、粗化銅めっき層3に含まれるめっき粒子3aが銅箔基材2から脱落することを抑制できる。特に、めっき粒子3aの粒子径が大きい場合(例えば平均最大粒子径Mが0.4μm以上である場合)に有効である。 (D) By providing the plating particle drop prevention layer 4 on the roughened copper plating layer 3, it is possible to suppress the plating particles 3 a included in the roughened copper plating layer 3 from dropping from the copper foil substrate 2. This is particularly effective when the particle diameter of the plating particles 3a is large (for example, when the average maximum particle diameter M is 0.4 μm or more).

(e)本実施形態にかかる表面処理銅箔1を用いて形成した積層板10は、FPCに用いられる場合に特に有効である。本実施形態にかかる表面処理銅箔1を用いて形成したFPCは、表面処理銅箔1が除去された箇所の樹脂基材11を介した識別容易性が高く、表面処理銅箔1が除去された箇所の樹脂基材11越しに銅配線を容易に認識することができ、実装作業性を向上させることができる。 (E) The laminated board 10 formed using the surface-treated copper foil 1 according to the present embodiment is particularly effective when used for FPC. The FPC formed using the surface-treated copper foil 1 according to the present embodiment has high identification ease through the resin base material 11 at the location where the surface-treated copper foil 1 is removed, and the surface-treated copper foil 1 is removed. Thus, the copper wiring can be easily recognized through the resin base material 11 at the spot, and the mounting workability can be improved.

(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other embodiments of the present invention)
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.

上述の実施形態では、表面処理銅箔1が、銅箔基材2と、粗化銅めっき層3と、を備える場合について説明したが、これに限定されない。例えば、表面処理銅箔1の耐薬品性や耐熱性等を向上させるため、粗化銅めっき層3(めっき粒子脱落抑制層4が設けられている場合は、めっき粒子脱落抑制層4)の上面には、防錆層が設けられていてもよい。また、防錆層は、粗化銅めっき層3が設けられた側とは反対側の銅箔基材2の主面上にも設けられているとより好ましい。防錆層の厚さは例えば1nm以上70nm以下であることが好ましい。   In the above-mentioned embodiment, although the surface-treated copper foil 1 demonstrated the case where the copper foil base material 2 and the roughening copper plating layer 3 were provided, it is not limited to this. For example, in order to improve the chemical resistance, heat resistance, etc. of the surface-treated copper foil 1, the upper surface of the roughened copper plating layer 3 (in the case where the plating particle drop-off suppressing layer 4 is provided) May be provided with a rust prevention layer. Moreover, it is more preferable that the antirust layer is provided also on the main surface of the copper foil base 2 on the side opposite to the side on which the roughened copper plating layer 3 is provided. The thickness of the rust preventive layer is preferably, for example, from 1 nm to 70 nm.

防錆層として、例えば、銅箔基材2の側から順に、厚さが10nm以上50nm以下であるニッケル(Ni)めっき層と、厚さが1nm以上10nm以下である亜鉛(Zn)めっき層と、厚さが1nm以上10nm以下であるクロメート処理層(3価のクロム化成処理層)と、厚さが非常に薄い(極薄の)シランカップリング層と、が設けられていることが好ましい。   As a rust prevention layer, for example, a nickel (Ni) plating layer having a thickness of 10 nm to 50 nm and a zinc (Zn) plating layer having a thickness of 1 nm to 10 nm in this order from the copper foil substrate 2 side It is preferable that a chromate treatment layer (trivalent chromium chemical conversion treatment layer) having a thickness of 1 nm or more and 10 nm or less and a very thin (ultra-thin) silane coupling layer are provided.

防錆層の厚さは非常に薄いため、平均最大粒子径Mやや平均底面径Bを算出する際に、防錆層の厚さは無視できる。つまり、防錆層の上からSEM法により粗化銅めっき層3を観察し、平均最大粒子径Mを算出することができる。また、凹部の平均底面径Bを算出する際、粗化銅めっき層3上に設けられた防錆層が樹脂基材11に対向するように表面処理銅箔1を樹脂基材11に貼り合わせた後、樹脂基材11から表面処理銅箔1を除去した樹脂基材11を用いて、平均底面径Bを算出することができる。   Since the thickness of the rust preventive layer is very thin, the thickness of the rust preventive layer can be ignored when calculating the average maximum particle diameter M and the average bottom face diameter B. That is, it is possible to calculate the average maximum particle size M by observing the roughened copper plating layer 3 from above the anticorrosive layer by the SEM method. Further, when calculating the average bottom surface diameter B of the recesses, the surface-treated copper foil 1 is bonded to the resin base material 11 so that the rust preventive layer provided on the roughened copper plating layer 3 faces the resin base material 11. Thereafter, the average bottom surface diameter B can be calculated using the resin base material 11 obtained by removing the surface-treated copper foil 1 from the resin base material 11.

上述の実施形態では、めっき粒子脱落抑制層4が設けられている場合について説明したが、これに限定されない。つまり、めっき粒子脱落抑制層4は設けられていなくてもよい。   In the above-described embodiment, the case where the plating particle drop-off suppressing layer 4 is provided has been described, but the present invention is not limited to this. That is, the plating particle drop-off suppressing layer 4 may not be provided.

また、例えば、銅箔基材2と粗化銅めっき層3との間には、粗化銅めっき層3の下地層として機能する下地めっき層が設けられていてもよい。下地めっき層は、例えば銅めっき層で形成されていることが好ましい。これにより、銅箔基材2として例えば圧延銅箔が用いられる場合、圧延銅箔の表面に形成された圧延ロールの跡やオイルピット等の凹凸を埋めることができ、より平坦な面上に粗化銅めっき層3を形成することができる。その結果、めっき粒子3aの粗化抜けの発生をより抑制できる。   Further, for example, a base plating layer that functions as a base layer of the roughened copper plating layer 3 may be provided between the copper foil base material 2 and the roughened copper plating layer 3. The base plating layer is preferably formed of, for example, a copper plating layer. Thereby, when, for example, a rolled copper foil is used as the copper foil base material 2, it is possible to fill the unevenness such as the trace of the rolling roll formed on the surface of the rolled copper foil and the oil pits, and to roughen the surface on a flatter surface. The copper chloride plating layer 3 can be formed. As a result, the occurrence of roughening omission of the plating particles 3a can be further suppressed.

上述の実施形態では、銅箔基材2として圧延銅箔を用いる場合を例に説明したが、これに限定されない。銅箔基材2として例えば電解銅箔を用いてもよい。この場合であっても、粗化銅めっき層3を形成するめっき処理の時間を圧延銅箔を用いた場合の例えば20倍程度にすることで、銅箔基材2(電解銅箔)上に粗化銅めっき層3を形成できる。   In the above-described embodiment, the case where a rolled copper foil is used as the copper foil base material 2 has been described as an example, but the present invention is not limited to this. For example, electrolytic copper foil may be used as the copper foil base 2. Even in this case, on the copper foil base material 2 (electrolytic copper foil), the time of the plating treatment for forming the roughened copper plating layer 3 is, for example, about 20 times that when the rolled copper foil is used. The roughened copper plating layer 3 can be formed.

上述の実施形態では、樹脂基材11のいずれかの主面上に表面処理銅箔1が設けられている場合について説明したが、これに限定されない。つまり、樹脂基材11の両主面上にそれぞれ表面処理銅箔1が設けられていてもよい。この場合、樹脂基材11を挟んで表面処理銅箔1がそれぞれ対向するように、表面処理銅箔1が設けられていることが好ましい。   In the above-described embodiment, the case where the surface-treated copper foil 1 is provided on any main surface of the resin base material 11 has been described, but the present invention is not limited to this. That is, the surface-treated copper foil 1 may be provided on both main surfaces of the resin base material 11. In this case, it is preferable that the surface-treated copper foil 1 is provided so that the surface-treated copper foils 1 face each other across the resin base material 11.

上述の実施形態では、表面処理銅箔1と樹脂基材11との貼り合わせを、真空プレス機を用いて行ったが、これに限定されない。例えば、接着剤を用いて表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成してもよい。   In the above-described embodiment, the surface-treated copper foil 1 and the resin base material 11 are bonded using a vacuum press machine, but the present invention is not limited to this. For example, the laminate 10 may be formed by bonding the surface-treated copper foil 1 and the resin base material 11 using an adhesive.

また、例えば、粗化銅めっき層形成工程やめっき粒子脱落抑制層形成工程の前に、必要に応じて銅箔基材2や粗化銅めっき層3の表面を清浄する清浄処理を行ってもよい。清浄処理として、例えば電解脱脂処理と酸洗処理とを行うとよい。   For example, even if it performs the cleaning process which cleans the surface of the copper foil base material 2 or the roughening copper plating layer 3 as needed before the roughening copper plating layer formation process or the plating particle fall-off suppression layer formation process. Good. As the cleaning treatment, for example, electrolytic degreasing treatment and pickling treatment may be performed.

上述の実施形態では、表面処理銅箔1を用いて構成された積層板10からFPCが形成される場合について説明したが、これに限定されない。表面処理銅箔1を用いて構成された積層板10からTAB(Tape Automated Bonding)テープ、BGA(Ball Grid Array)テープ、COF(Chip On Film)テープ等を形成してもよい。この場合も、上述の効果を得ることができる。   In the above-mentioned embodiment, although the case where FPC was formed from the laminated board 10 comprised using the surface treatment copper foil 1 was demonstrated, it is not limited to this. A TAB (Tape Automated Bonding) tape, a BGA (Ball Grid Array) tape, a COF (Chip On Film) tape, or the like may be formed from the laminated plate 10 configured using the surface-treated copper foil 1. Also in this case, the above-described effect can be obtained.

例えば、フリップチップ接合により、表面処理銅箔1を用いた積層板10で形成したCOFテープ上にICチップを搭載する際、CCDカメラ等を用いて、ICチップ上に設けられた金(Au)バンプと、COFテープ上のリード(表面処理銅箔1で形成した銅配線)と、の位置合わせを容易に行うことができる。つまり、COFテープ上にICチップを搭載する際の実装作業性を向上させることができる。具体的には、B/Mが0.9以下の表面処理銅箔1を用いることで、めっき粒子3aの粒子径を小さくしても、積層板10において所定の接触表面積を維持できるため、めっき粒子3aの形状が転写されることで樹脂基材11に形成される凹凸が小さくなる。その結果、CCDカメラが備える光照射部から照射されてCOFテープが備える透明の樹脂基材11(絶縁性フィルム基材)を透過する光が、樹脂基材11に形成された凹凸部分で乱反射することを低減できるため、実装作業性を向上させることができる。   For example, when an IC chip is mounted on a COF tape formed of a laminate 10 using the surface-treated copper foil 1 by flip chip bonding, gold (Au) provided on the IC chip using a CCD camera or the like. The bumps and the leads on the COF tape (copper wiring formed with the surface-treated copper foil 1) can be easily aligned. That is, it is possible to improve the mounting workability when mounting the IC chip on the COF tape. Specifically, by using the surface-treated copper foil 1 having a B / M of 0.9 or less, a predetermined contact surface area can be maintained in the laminated plate 10 even when the particle diameter of the plating particles 3a is reduced. As the shape of the particles 3a is transferred, the unevenness formed on the resin substrate 11 is reduced. As a result, the light irradiated from the light irradiation unit provided in the CCD camera and transmitted through the transparent resin base material 11 (insulating film base material) provided in the COF tape is irregularly reflected by the uneven portions formed on the resin base material 11. Therefore, mounting workability can be improved.

また、本実施形態にかかる表面処理銅箔1は、プラズマディスプレイ用電磁波シールド、ICカードのアンテナ等にも用いることができる。   The surface-treated copper foil 1 according to the present embodiment can also be used for an electromagnetic wave shield for plasma display, an IC card antenna, and the like.

次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

<試料の作製>
(試料1)
まず、銅箔基材として、無酸素銅(OFC)で形成され、厚さが12μmであり、表面粗さ(Rz)が0.5μmである圧延銅箔(無酸素銅箔)を準備した。
<Preparation of sample>
(Sample 1)
First, a rolled copper foil (oxygen-free copper foil) formed of oxygen-free copper (OFC), having a thickness of 12 μm, and a surface roughness (Rz) of 0.5 μm was prepared as a copper foil base material.

この銅箔基材に電解脱脂処理と酸洗処理とを行い、銅箔基材の表面を清浄した。具体的には、まず、水酸化ナトリウムを30g/Lと、炭酸ナトリウムを40g/Lと、を含む水溶液を用いて電解脱脂処理を行った。このとき、液温を40℃にし、電流密度を15A/dmにし、めっき時間(処理時間)を15秒間にした。電解脱脂処理が終了した後、銅箔基材を水洗した。その後、硫酸を150g/L含み、液温が25℃である水溶液中に、銅箔基材を10秒間浸漬して酸洗処理を行った。酸洗処理が終了した後、銅箔基材を水洗した。 The copper foil base material was subjected to electrolytic degreasing treatment and pickling treatment to clean the surface of the copper foil base material. Specifically, first, electrolytic degreasing treatment was performed using an aqueous solution containing 30 g / L of sodium hydroxide and 40 g / L of sodium carbonate. At this time, the liquid temperature was 40 ° C., the current density was 15 A / dm 2 , and the plating time (treatment time) was 15 seconds. After the electrolytic degreasing treatment was completed, the copper foil base material was washed with water. Thereafter, the copper foil base material was immersed in an aqueous solution containing 150 g / L sulfuric acid and having a liquid temperature of 25 ° C. for 10 seconds to perform pickling. After the pickling treatment was completed, the copper foil base material was washed with water.

次に、銅箔基材のいずれかの主面上に、粗化銅めっき層の下地層として機能し、厚さが0.6μmである銅めっき層(下地めっき層)を形成した。具体的には、まず、銅めっき液として、硫酸銅五水和物を100g/Lと、硫酸を60g/Lと、を含む水溶液を作製した。また、この銅めっき液中に、添加剤として、有機硫黄化合物(SPS)(粉末試薬)、ポリプロピレングリコール(液体試薬)、ジアリルジアルキルアンモニウムアルキルサルフェイト、塩酸を、それぞれ、40mg/L、4ml/L、0.3g/L、0.15ml/Lになるように配合し、下地めっき層を形成するめっき液(下地銅めっき液)を作製した。そして、下地銅めっき液の液温を35℃にし、電流密度を8A/dmにし、めっき時間を20秒間にして、銅箔基材のいずれかの主面に対して電気めっき処理を行い、所定厚さの下地めっき層を形成した。 Next, a copper plating layer (base plating layer) having a thickness of 0.6 μm was formed on any main surface of the copper foil base material and functioned as the base layer of the roughened copper plating layer. Specifically, first, an aqueous solution containing 100 g / L of copper sulfate pentahydrate and 60 g / L of sulfuric acid was prepared as a copper plating solution. Further, in this copper plating solution, as an additive, an organic sulfur compound (SPS) (powder reagent), polypropylene glycol (liquid reagent), diallyldialkylammonium alkyl sulfate, and hydrochloric acid were respectively 40 mg / L, 4 ml / L. , 0.3 g / L, 0.15 ml / L, and a plating solution (underlying copper plating solution) for forming an undercoat layer was prepared. And, the liquid temperature of the base copper plating solution is set to 35 ° C., the current density is set to 8 A / dm 2 , the plating time is set to 20 seconds, and any main surface of the copper foil base material is electroplated, A base plating layer having a predetermined thickness was formed.

下地めっき層を形成した後に銅箔基材を水洗した。その後、下地めっき層上に、厚さが0.18μmである粗化銅めっき層を形成した。具体的には、硫酸銅五水和物を50g/Lと、硫酸を80g/Lと、硫酸鉄七水和物を50g/Lと、を含む水溶液である粗化銅めっき液を用い、電気めっき処理により行った。このとき、粗化銅めっき液の液温を30℃にし、電流密度を50A/dmにし、めっき時間を1.0秒間にした。 After forming the base plating layer, the copper foil substrate was washed with water. Thereafter, a roughened copper plating layer having a thickness of 0.18 μm was formed on the base plating layer. Specifically, using a roughened copper plating solution which is an aqueous solution containing 50 g / L of copper sulfate pentahydrate, 80 g / L of sulfuric acid, and 50 g / L of iron sulfate heptahydrate, Performed by plating. At this time, the temperature of the roughened copper plating solution was set to 30 ° C., the current density was set to 50 A / dm 2 , and the plating time was set to 1.0 second.

そして、粗化銅めっき層上に防錆層を形成した。具体的には、防錆層として、銅箔基材の側から順に、厚さが0.04μm(40nm)であるNiめっき層と、厚さが7nmであるZnめっき層と、厚さが4nmであるクロメート皮膜と、極薄い厚さのシランカップリング処理層と、を形成した。   And the antirust layer was formed on the roughening copper plating layer. Specifically, as a rust preventive layer, in order from the copper foil base material side, a Ni plating layer having a thickness of 0.04 μm (40 nm), a Zn plating layer having a thickness of 7 nm, and a thickness of 4 nm. And a silane coupling treatment layer having an extremely thin thickness.

具体的には、まず、粗化銅めっき層を形成した後、銅めっき層及び粗化銅めっき層を形成した銅箔基材を水洗した。そして、硫酸ニッケル六水和物を300g/Lと、塩化ニッケルを45g/Lと、硼酸を40g/Lと、を含む水溶液(Niめっき液)を用い、電気めっき処理によりNiめっき層を形成した。このとき、Niめっき液の液温を50℃にし、電流密度を3.6A/dmにし、めっき時間を2.9秒間にした。Niめっき層を形成した後、銅箔基材を水洗した。その後、硫酸亜鉛七水和物を90g/Lと、硫酸ナトリウムを70g/Lと、を含む水溶液(Znめっき液)を用い、Znめっき層を形成した。このとき、Znめっき液の液温を30℃にし、電流密度を1.8A/dmにし、めっき時間を4秒間にした。Znめっき層を形成した後、銅箔基材を水洗した。続いて、3価クロム化成処理を行い、クロメート皮膜を形成した。クロメート皮膜を形成した後、銅箔基材を水洗した。そして、3−アミノプロピルトリメトキシシランの濃度が5%であり、液温が25℃であるシランカップリング液中に、クロメート皮膜を形成した銅箔基材を5秒間浸漬した後、直ちに200℃の温度で乾燥することで、シランカップリング処理層を形成した。 Specifically, first, after the roughened copper plating layer was formed, the copper foil base material on which the copper plating layer and the roughened copper plating layer were formed was washed with water. Then, an Ni plating layer was formed by electroplating using an aqueous solution (Ni plating solution) containing 300 g / L of nickel sulfate hexahydrate, 45 g / L of nickel chloride, and 40 g / L of boric acid. . At this time, the temperature of the Ni plating solution was 50 ° C., the current density was 3.6 A / dm 2 , and the plating time was 2.9 seconds. After forming the Ni plating layer, the copper foil substrate was washed with water. Thereafter, a Zn plating layer was formed using an aqueous solution (Zn plating solution) containing 90 g / L of zinc sulfate heptahydrate and 70 g / L of sodium sulfate. At this time, the temperature of the Zn plating solution was 30 ° C., the current density was 1.8 A / dm 2 , and the plating time was 4 seconds. After forming the Zn plating layer, the copper foil substrate was washed with water. Subsequently, a trivalent chromium chemical conversion treatment was performed to form a chromate film. After forming the chromate film, the copper foil substrate was washed with water. And after immersing the copper foil base material in which the chromate film | membrane was formed in the silane coupling liquid whose concentration of 3-aminopropyl trimethoxysilane is 5% and whose liquid temperature is 25 degreeC for 5 second, it is 200 degreeC immediately. A silane coupling treatment layer was formed by drying at a temperature of.

粗化銅めっき層上の防錆層の形成と併行して(粗化銅めっき層上の防錆層の形成と同時に)、銅箔基材の粗化銅めっき層が設けられた側とは反対側の主面に、防錆層(裏面防錆層)として、銅箔基材の側から順に、Niめっき層と、Znめっき層と、クロメート処理層と、を形成した。なお、Niめっき層、Znめっき層、クロメート処理層の形成方法は、粗化銅めっき層上に設けた防錆層としてのNiめっき層、Znめっき層、クロメート処理層と同様である。これにより、表面処理銅箔を作製し、これを試料1とした。   In parallel with the formation of the rust prevention layer on the roughened copper plating layer (simultaneously with the formation of the rust prevention layer on the roughened copper plating layer), what is the side of the copper foil base on which the roughened copper plating layer is provided? On the opposite main surface, a Ni plating layer, a Zn plating layer, and a chromate treatment layer were formed in this order from the copper foil substrate side as a rust prevention layer (back surface rust prevention layer). In addition, the formation method of Ni plating layer, Zn plating layer, and chromate treatment layer is the same as that of the Ni plating layer, Zn plating layer, and chromate treatment layer as a rust prevention layer provided on the roughened copper plating layer. In this way, a surface-treated copper foil was produced and used as Sample 1.

(試料2〜3、6)
試料2〜3及び試料6ではそれぞれ、粗化銅めっき層を形成する際の電流密度を下記の表1に示す通りに変更した。この他は、試料1と同様にして表面処理銅箔を作製した。これらをそれぞれ、試料2〜3及び試料6とする。
(Samples 2-3, 6)
In Samples 2 to 3 and Sample 6, the current density when forming the roughened copper plating layer was changed as shown in Table 1 below. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 1. These are designated as Samples 2-3 and Sample 6, respectively.

(試料4〜5)
試料4〜5ではそれぞれ、粗化銅めっき層を形成する際の電流密度を下記の表1に示す通りに変更した。また、粗化銅めっき層上に、粗化銅めっき層を形成した後、防錆層(Niめっき層)を形成する前に、粗化銅めっき層に含まれるめっき粒子の脱落を抑制する銅めっき層(めっき粒子脱落抑制層)を粗化銅めっき層上に形成した。なお、めっき粒子脱落抑制層の形成は、硫酸銅五水和物を100g/Lと、硫酸を60g/Lと、を含む銅めっき液を用い、電気めっき処理により行った。このとき、銅めっき液の液温を40℃にし、電流密度を19A/dmにし、めっき時間を2.9秒間にした。
(Samples 4-5)
In each of Samples 4 to 5, the current density when forming the roughened copper plating layer was changed as shown in Table 1 below. Moreover, after forming a roughened copper plating layer on a roughened copper plating layer, before forming a rust prevention layer (Ni plating layer), the copper which suppresses the drop-off of the plating particle contained in a roughened copper plating layer A plating layer (plating particle drop-off suppression layer) was formed on the roughened copper plating layer. In addition, formation of the plating particle fall-off suppression layer was performed by electroplating using a copper plating solution containing 100 g / L of copper sulfate pentahydrate and 60 g / L of sulfuric acid. At this time, the temperature of the copper plating solution was 40 ° C., the current density was 19 A / dm 2 , and the plating time was 2.9 seconds.

<積層板の作製>
試料1〜6の各表面処理銅箔と樹脂基材とを貼り合わせて、積層板として両面FCCL(Flexible Copper Clad Laminate)をそれぞれ作製した。
<Production of laminated plate>
The surface-treated copper foils of Samples 1 to 6 and the resin base material were bonded to each other to prepare double-sided FCCL (Flexible Copper Clad Laminate) as a laminate.

具体的には、試料1〜6の各表面処理銅箔をそれぞれ所定の大きさ(縦100mm×横60mm)に裁断して切り出した。そして、裁断した各試料の表面処理銅箔(つまり、樹脂基材に貼り合わせる前の各試料)についてそれぞれ、めっき粒子の平均最大粒子径Mの測定を行った。具体的には、SEM法により、観察倍率を1万倍にし、粗化銅めっき層の主面に対して法線方向における上方から粗化銅めっき層の上面を観察してSEM像を得た。例えば、図7(a)に試料1の表面処理銅箔の粗化銅めっき層を観察したSEM像の一例を示し、図7(b)に試料3の表面処理銅箔の粗化銅めっき層を観察したSEM像の一例を示す。そして、SEM像中で観察されるめっき粒子のうち、最大径の大きい方から順に20個のめっき粒子を抽出した。そして、抽出しためっき粒子の最大径の平均値を算出し、この平均値を平均最大粒子径Mとした。算出結果を下記の表2に示す。   Specifically, each surface-treated copper foil of Samples 1 to 6 was cut into a predetermined size (length 100 mm × width 60 mm) and cut out. And about the surface-treated copper foil (namely, each sample before bonding to a resin base material) of each cut sample, the average largest particle diameter M of the plating particle was measured, respectively. Specifically, the observation magnification was set to 10,000 times by the SEM method, and the upper surface of the roughened copper plating layer was observed from above in the normal direction with respect to the main surface of the roughened copper plating layer to obtain an SEM image. . For example, FIG. 7A shows an example of an SEM image obtained by observing the roughened copper plating layer of the surface-treated copper foil of Sample 1, and FIG. 7B shows the roughened copper plating layer of the surface-treated copper foil of Sample 3. An example of the SEM image which observed this is shown. And 20 plating particles were extracted in order from the one with the largest largest diameter among the plating particles observed in the SEM image. And the average value of the maximum diameter of the extracted plating particle was computed, and this average value was made into the average maximum particle diameter M. The calculation results are shown in Table 2 below.

また、裁断した各試料の表面処理銅箔についてそれぞれ、粗化面の十点平均粗さ(Rz)を測定した。なお、粗化面のRzの測定は、JIS B0601に基づき、接触粗さ計を用いて行った。試料1〜6のRzの測定結果はそれぞれ、0.6〜2.3μmであった。   Further, the 10-point average roughness (Rz) of the roughened surface was measured for each of the surface-treated copper foils of each cut sample. The Rz of the roughened surface was measured using a contact roughness meter based on JIS B0601. The Rz measurement results of Samples 1 to 6 were 0.6 to 2.3 μm, respectively.

続いて、試料1〜6の各試料から切り出した表面処理銅箔を用いて、積層板としての両面FCCLをそれぞれ作製した。具体的には、同一の試料から切り出した2つの表面処理銅箔を樹脂基材を挟んでそれぞれ対向させるとともに、2つの表面処理銅箔の粗化銅めっき層がそれぞれ樹脂基材に対向するように、樹脂基材の両面上に表面処理銅箔を配置し、表面処理銅箔と樹脂基材との積層体を形成した。そして、真空プレス機を用い、260℃の条件下で15分間、積層体を加熱した後、300℃の条件下で、プレス圧を4MPaにして10分間、積層体に圧力をかけて、表面処理銅箔と樹脂基材とを貼り合わせて、両面CCLを作製した。なお、樹脂基材として、厚さが50μmであるポリイミドフィルム(株式会社カネカ製のピクシオ(登録商標))を用いた。   Then, double-sided FCCL as a laminated board was each produced using the surface treatment copper foil cut out from each sample of samples 1-6. Specifically, two surface-treated copper foils cut out from the same sample are opposed to each other with the resin base material sandwiched therebetween, and the roughened copper plating layers of the two surface-treated copper foils are respectively opposed to the resin base material. The surface treatment copper foil was arrange | positioned on both surfaces of the resin base material, and the laminated body of the surface treatment copper foil and the resin base material was formed. And after heating a laminated body for 15 minutes on 260 degreeC conditions using a vacuum press machine, pressurizes a laminated body for 10 minutes by making a press pressure into 4 Mpa on 300 degreeC conditions, and surface-treats. A copper foil and a resin base material were bonded together to produce a double-sided CCL. In addition, as a resin base material, a polyimide film (Pixio (registered trademark) manufactured by Kaneka Corporation) having a thickness of 50 μm was used.

<平均底面径B/平均最大粒子径Mの算出>
まず、試料1〜6の各試料からそれぞれ切り出した表面処理銅箔を用いて形成した積層板に対して、50℃の条件下で塩化第二鉄を用いたスプレーエッチングを行い、積層板から表面処理銅箔を全て除去した。つまり、樹脂基材の両面(両主面)の全面を露出させた状態にした。そして、SEM法により、観察倍率を1万倍にし、樹脂基材の主面に対して法線方向における上方から樹脂基材の上面を観察してSEM像を得た。例えば、図8(a)に試料1の表面処理銅箔を貼り合わせて除去した後の樹脂基材の銅箔除去箇所のSEM像の一例を示し、図8(b)に試料3の表面処理銅箔を貼り合わせて除去した後の樹脂基材の銅箔除去箇所のSEM像の一例を示す。そして、得られたSEM像中で観察される凹部(粗化銅めっき層に含まれるめっき粒子の形状が転写されることで形成される凹部)のうち、樹脂基材の主面(測定面)と同一面における径(凹部の底面径)の大きい方から順に20個の凹部を抽出した。そして、抽出した凹部の底面径の平均値を算出し、この平均値を平均底面径Bとした。算出結果を、下記の表2に示す。
<Calculation of average bottom diameter B / average maximum particle diameter M>
First, spray etching using ferric chloride was performed under conditions of 50 ° C. on the laminates formed using the surface-treated copper foils cut out from the samples 1 to 6, respectively. All the treated copper foil was removed. That is, the entire surface of both surfaces (both main surfaces) of the resin base material was exposed. Then, the observation magnification was set to 10,000 times by the SEM method, and the upper surface of the resin base material was observed from above in the normal direction with respect to the main surface of the resin base material to obtain an SEM image. For example, FIG. 8A shows an example of an SEM image of the copper foil removed portion of the resin base material after the surface-treated copper foil of sample 1 is bonded and removed, and FIG. An example of the SEM image of the copper foil removal location of the resin base material after bonding and removing copper foil is shown. Of the recesses (recesses formed by transferring the shape of the plated particles contained in the roughened copper plating layer) observed in the obtained SEM image, the main surface (measurement surface) of the resin base material 20 recesses were extracted in order from the larger diameter in the same plane (bottom diameter of the recess). And the average value of the bottom face diameter of the extracted recessed part was computed, and this average value was made into the average bottom face diameter B. The calculation results are shown in Table 2 below.

そして、算出した平均最大粒子径Mと、平均底面径Bと、を用い、各試料についてそれぞれB/Mを算出した。算出結果をそれぞれ、下記の表2に示す。   Then, B / M was calculated for each sample using the calculated average maximum particle size M and average bottom surface size B. The calculation results are shown in Table 2 below.

<透明性の評価>
試料1〜6の各表面処理銅箔を用いて形成した積層板についてそれぞれ、樹脂基材の透明性の評価として、積層板から各試料である表面処理銅箔を除去した後の樹脂基材のHAZE値の測定を行った。
<Evaluation of transparency>
About the laminated board formed using each surface-treated copper foil of samples 1-6, as the evaluation of the transparency of the resin base material, the resin base material after removing the surface-treated copper foil as each sample from the laminated board The HAZE value was measured.

具体的には、各試料を用いて作製した積層板に対し、塩化第二鉄を用いてスプレーエッチングを行い、積層板から表面処理銅箔を全て除去した。つまり、樹脂基材の両面(両主面)の全面を露出させた。そして、表面処理銅箔が除去された樹脂基材のそれぞれについて、BYK製のhaze−gard plusを用いてHAZE値の測定を行った。HAZE値の測定結果をそれぞれ、下記の表2に示す。   Specifically, spray etching was performed using ferric chloride on the laminates produced using each sample, and all the surface-treated copper foil was removed from the laminates. That is, the entire surface of both surfaces (both main surfaces) of the resin base material was exposed. And about each of the resin base material from which the surface treatment copper foil was removed, the HAZE value was measured using the haze-gard plus made from BYK. The measurement results of the HAZE value are shown in Table 2 below.

<密着性の評価>
試料1〜6の各表面処理銅箔を用いて作製した積層板についてそれぞれ、表面処理銅箔と樹脂基材との密着性の評価として、表面処理銅箔を樹脂基材から剥離する際のピール強度の測定を行った。
<Evaluation of adhesion>
About the laminated board produced using each surface-treated copper foil of Samples 1-6, as an evaluation of the adhesion between the surface-treated copper foil and the resin base material, the peel when peeling the surface-treated copper foil from the resin base material Intensity measurements were taken.

ピール強度の測定は、以下のように行った。まず、試料1〜6の各表面処理銅箔を用いて作製した積層板のそれぞれの一方の主面(表面処理銅箔の樹脂基材と接する側とは反対側の面)上に、幅が1mmのマスキングテープを貼った。また、各積層板の他方の主面の全面にマスキングテープを貼った。そして、マスキングテープを貼った各積層板に対し、塩化第二鉄を用いてスプレーエッチングを行い、積層板から表面処理銅箔の所定箇所(マスキングテープが貼られていない箇所)を除去した。その後、マスキングテープを除去した。続いて、表面処理銅箔を樹脂基材から引き剥がした際の強度を測定した。具体的には、エッチングされて1mm幅となった表面処理銅箔を、樹脂基材から90°の角度で(引き剥がされた表面処理銅箔と樹脂基材との為す角が90°となるように)、表面処理銅箔を樹脂基材から引っ張ったときの剥離荷重を測定し、これをピール強度とした。このように測定したピール強度の値が大きいほど、密着性が高いといえる。ピール強度の測定結果をそれぞれ、下記の表2に示す。   The peel strength was measured as follows. First, on one main surface (surface opposite to the side in contact with the resin base material of the surface-treated copper foil) of each of the laminates prepared using the surface-treated copper foils of Samples 1 to 6, the width is A 1 mm masking tape was applied. Moreover, the masking tape was stuck on the whole surface of the other main surface of each laminated board. And it spray-etched using ferric chloride with respect to each laminated board which affixed the masking tape, and the predetermined location (location where the masking tape was not affixed) of the surface treatment copper foil was removed from the laminated plate. Thereafter, the masking tape was removed. Subsequently, the strength when the surface-treated copper foil was peeled from the resin base material was measured. Specifically, the surface-treated copper foil having a width of 1 mm is etched by an angle of 90 ° from the resin base material (the angle between the peeled surface-treated copper foil and the resin base material is 90 °. Thus, the peel load when the surface-treated copper foil was pulled from the resin base material was measured, and this was defined as the peel strength. The larger the peel strength value measured in this way, the higher the adhesion. The results of measurement of peel strength are shown in Table 2 below.

<総合評価>
総合評価として、所望の密着性を維持しつつ、所望の透明性を確保できているか否かの評価を行った。具体的には、ピール強度が1.0N/mm以上であり、HAZE値が70%以下である試料の総合評価を「○」とした。また、ピール強度が1.0N/mm未満であったり、HAZE値が70%を超える試料の総合評価を「×」とした。総合評価の評価結果をそれぞれ、下記の表2に示す。
<Comprehensive evaluation>
As a comprehensive evaluation, an evaluation was made as to whether or not desired transparency could be secured while maintaining desired adhesion. Specifically, the overall evaluation of a sample having a peel strength of 1.0 N / mm or more and a HAZE value of 70% or less was evaluated as “◯”. Moreover, the comprehensive evaluation of the sample whose peel strength is less than 1.0 N / mm or whose HAZE value exceeds 70% is “x”. The evaluation results of the comprehensive evaluation are shown in Table 2 below.

<評価結果>
試料1〜2から、B/Mが0.9以下であると、所望の密着性を維持しつつ、所望の透明性を確保できることを確認した。具体的には、ピール強度を1.0N/mmに維持しつつ、HAZE値を70%以下にできることを確認した。その結果、表面処理銅箔を用いて形成したFPCに電子部品等を実装する際、目視やCCDカメラ等により、銅箔が除去された箇所の樹脂基材越しに銅配線を認識でき、電子部品の実装位置の位置決めを容易に行うことができることを確認した。また、銅配線が樹脂基材から剥離しにくく、FPCの信頼性を高めることができることを確認した。
<Evaluation results>
From Samples 1 and 2, it was confirmed that the desired transparency could be secured while maintaining the desired adhesion when B / M was 0.9 or less. Specifically, it was confirmed that the HAZE value can be reduced to 70% or less while maintaining the peel strength at 1.0 N / mm. As a result, when electronic parts are mounted on FPCs formed using surface-treated copper foil, the copper wiring can be recognized through the resin substrate where the copper foil has been removed by visual inspection or a CCD camera, etc. It was confirmed that the mounting position can be easily positioned. Moreover, it was confirmed that the copper wiring is difficult to peel from the resin base material, and the reliability of the FPC can be improved.

試料1〜2と、試料3と、の比較から、B/Mが0.9を超えると、所望の密着性を維持しつつ、所望の透明性を確保することができない場合があることを確認した。つまり、試料3から、B/Mが0.9を超えると、表面処理銅箔と樹脂基材との接触面積が小さくなることがあり、その結果、ピール強度が1.0N/mm未満になることがあることを確認した。   Comparison between Samples 1-2 and 3 confirms that when B / M exceeds 0.9, the desired transparency may not be ensured while maintaining the desired adhesion. did. That is, from Sample 3, when B / M exceeds 0.9, the contact area between the surface-treated copper foil and the resin substrate may be reduced, and as a result, the peel strength is less than 1.0 N / mm. I confirmed that there was something.

試料4から、粗化銅めっき層に含まれるめっき粒子の粒子径を大きくしても、めっき粒子の脱落を抑制する銅めっき層を設けることで、めっき粒子の脱落を抑制できることを確認した。つまり、粗化抜けの発生を抑制できることを確認した。その結果、B/Mを所望の範囲にすることで、所望の密着性を維持しつつ、所望の透明性を確保できることを確認した。例えば、ピール強度を1.0N/mm以上にしつつ、HAZE値を70%以下にできることを確認した。   From Sample 4, it was confirmed that even if the particle diameter of the plating particles contained in the roughened copper plating layer was increased, it was possible to suppress the dropping of the plating particles by providing a copper plating layer that suppresses the dropping of the plating particles. That is, it was confirmed that occurrence of roughening loss can be suppressed. As a result, it was confirmed that by setting B / M in a desired range, desired transparency can be secured while maintaining desired adhesion. For example, it was confirmed that the HAZE value can be made 70% or less while the peel strength is made 1.0 N / mm or more.

試料4と試料5との比較から、平均最大粒子径Mを0.5μm以下にすることで、所望の密着性を維持しつつ、所望の透明性をより確実に確保することができることを確認した。つまり、試料5から、平均最大粒子径Mが0.5μmを超えると、ピール強度は1.0N/mm以上にできるが、B/Mを0.9以下にしても、HAZE値が70%を超えることがあることを確認した。   From comparison between Sample 4 and Sample 5, it was confirmed that the desired transparency can be more reliably ensured while maintaining the desired adhesion by setting the average maximum particle size M to 0.5 μm or less. . That is, from sample 5, when the average maximum particle size M exceeds 0.5 μm, the peel strength can be 1.0 N / mm or more, but even if B / M is 0.9 or less, the HAZE value is 70%. It was confirmed that it might exceed.

試料1〜2と試料6との比較から、平均最大粒子径Mを0.2μmより大きくすることで、B/Mを0.9以下にでき、所望の密着性を維持しつつ、所望の透明性をより確実に確保することができることを確認した。つまり、試料6から、平均最大粒子径Mが0.2μm以下になると、B/Mが0.9を超えることがあることを確認した。また、ピール強度が1.0N/mm未満になることがあることを確認した。   From comparison between Samples 1-2 and Sample 6, B / M can be reduced to 0.9 or less by increasing the average maximum particle size M from 0.2 μm, and the desired transparency can be maintained while maintaining the desired adhesion. It was confirmed that the property can be secured more reliably. That is, it was confirmed from Sample 6 that B / M sometimes exceeded 0.9 when the average maximum particle size M was 0.2 μm or less. It was also confirmed that the peel strength might be less than 1.0 N / mm.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
銅箔基材と、
前記銅箔基材の少なくともいずれかの主面上に設けられた粗化銅めっき層と、を備える表面処理銅箔であって、
前記粗化銅めっき層に含まれるめっき粒子の最大径の平均値をMとし、
前記粗化銅めっき層が樹脂基材に対向するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去したとき、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の平均値をBとした場合、
B/Mが0.9以下である表面処理銅箔が提供される。
[Appendix 1]
According to one aspect of the invention,
A copper foil base material;
A surface-treated copper foil comprising a roughened copper plating layer provided on at least one main surface of the copper foil base material,
The average value of the maximum diameter of the plating particles contained in the roughened copper plating layer is M,
After the surface-treated copper foil is bonded to the resin substrate so that the roughened copper plating layer faces the resin substrate, the plated particles are removed when the surface-treated copper foil is removed from the resin substrate. When the average value of the diameter in the same surface as the surface of the resin substrate of the recess formed by being pressed against the resin substrate is B,
A surface-treated copper foil having a B / M of 0.9 or less is provided.

[付記2]
付記1の表面処理銅箔であって、好ましくは、
前記表面処理銅箔を前記樹脂基材に貼り合わせた後に前記表面処理銅箔を前記樹脂基材から引き剥がした際のピール強度が1.0N/mm以上であり、
前記表面処理銅箔を除去した後の前記樹脂基材のHAZE値が70%以下である。
[Appendix 2]
The surface-treated copper foil of Appendix 1, preferably,
The peel strength when the surface-treated copper foil is peeled off from the resin substrate after bonding the surface-treated copper foil to the resin substrate is 1.0 N / mm or more,
The HAZE value of the resin base material after removing the surface-treated copper foil is 70% or less.

[付記3]
付記1又は2の表面処理銅箔であって、好ましくは、
前記Mの値が0.2μmより大きく、0.5μm以下である。
[Appendix 3]
The surface-treated copper foil according to appendix 1 or 2,
The value of M is greater than 0.2 μm and equal to or less than 0.5 μm.

[付記4]
付記1ないし3のいずれかの表面処理銅箔であって、好ましくは、
前記粗化銅めっき層上には、前記銅箔基材上からの前記めっき粒子の脱落を抑制するめっき粒子脱落抑制層が設けられている。
[Appendix 4]
The surface-treated copper foil according to any one of appendices 1 to 3, preferably
On the roughened copper plating layer, a plating particle drop-off suppressing layer that suppresses the drop of the plating particles from the copper foil base material is provided.

[付記5]
本発明の他の態様によれば、
銅箔基材、及び前記銅箔基材の少なくともいずれかの主面上に設けられた粗化銅めっき層、を備える表面処理銅箔と、
前記粗化銅めっき層に対向するように前記表面処理銅箔と貼り合わせられた樹脂基材と、を備え、
前記粗化銅めっき層に含まれるめっき粒子の最大径の平均値をMとし、
前記粗化銅めっき層が前記樹脂基材に対向するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去したとき、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の平均値をBとした場合、
B/Mが0.9以下である積層板が提供される。
[Appendix 5]
According to another aspect of the invention,
A surface-treated copper foil comprising a copper foil base material, and a roughened copper plating layer provided on at least one main surface of the copper foil base material;
A resin base material bonded to the surface-treated copper foil so as to face the roughened copper plating layer,
The average value of the maximum diameter of the plating particles contained in the roughened copper plating layer is M,
After the surface-treated copper foil is bonded to the resin substrate so that the roughened copper plating layer faces the resin substrate, the plated particles are removed when the surface-treated copper foil is removed from the resin substrate. When the average value of the diameter in the same plane as the surface of the resin substrate of the recess formed by being pressed against the resin substrate is B,
A laminate having a B / M of 0.9 or less is provided.

[付記6]
本発明のさらに他の態様によれば、
銅箔基材のいずれかの主面上に粗化銅めっき層を形成して表面処理銅箔を形成する工程と、
前記粗化銅めっき層に含まれるめっき粒子の最大径の平均値Mを測定する工程と、
前記粗化銅めっき層が樹脂基材に接するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去し、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の平均値Bを測定する工程と、
B/Mが0.9以下であるか否かを検査する工程と、を有する表面処理銅箔の製造方法が提供される。
[Appendix 6]
According to yet another aspect of the invention,
Forming a roughened copper plating layer on any main surface of the copper foil base material to form a surface-treated copper foil;
Measuring the average value M of the maximum diameter of the plating particles contained in the roughened copper plating layer;
After bonding the surface-treated copper foil to the resin substrate so that the roughened copper plating layer is in contact with the resin substrate, the surface-treated copper foil is removed from the resin substrate, and the plating particles are the resin A step of measuring an average value B of the diameter in the same plane as the surface of the resin substrate of the recess formed by being pressed against the substrate;
And a step of inspecting whether or not B / M is 0.9 or less.

[付記7]
本発明のさらに他の態様によれば、
銅箔基材のいずれかの主面上に粗化銅めっき層を形成して表面処理銅箔を形成する工程と、
前記粗化銅めっき層が樹脂基材に接するように前記表面処理銅箔を前記樹脂基材に貼り合わせる工程と、
前記粗化銅めっき層に含まれるめっき粒子の最大径の平均値Mを測定する工程と、
前記樹脂基材から前記表面処理銅箔を除去し、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の平均値Bを測定する工程と、
B/Mが0.9以下であるか否かを検査する工程と、を有する積層板の製造方法が提供される。
[Appendix 7]
According to yet another aspect of the invention,
Forming a roughened copper plating layer on any main surface of the copper foil base material to form a surface-treated copper foil;
Bonding the surface-treated copper foil to the resin substrate such that the roughened copper plating layer is in contact with the resin substrate;
Measuring the average value M of the maximum diameter of the plating particles contained in the roughened copper plating layer;
The surface-treated copper foil is removed from the resin base material, and an average value B of the diameters of the concave portions formed by pressing the plating particles against the resin base material on the same surface as the surface of the resin base material is measured. Process,
And a step of inspecting whether or not B / M is 0.9 or less.

1 表面処理銅箔
2 銅箔基材
3 粗化銅めっき層
3a めっき粒子
10 積層板
11 樹脂基材
11a 凹部
DESCRIPTION OF SYMBOLS 1 Surface treatment copper foil 2 Copper foil base material 3 Roughening copper plating layer 3a Plating particle 10 Laminated board 11 Resin base material 11a Recessed part

Claims (5)

銅箔基材と、
前記銅箔基材の少なくともいずれかの主面上に設けられた粗化銅めっき層と、を備える表面処理銅箔であって、
前記粗化銅めっき層に含まれるめっき粒子の最大径の大きい方から20個の平均値をMとし、
前記粗化銅めっき層が樹脂基材に対向するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去したとき、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の大きい方から20個の平均値をBとした場合、
B/Mが0.9以下である
表面処理銅箔。
A copper foil base material;
A surface-treated copper foil comprising a roughened copper plating layer provided on at least one main surface of the copper foil base material,
The average value of 20 from the larger maximum diameter of the plating particles contained in the roughened copper plating layer is M,
After the surface-treated copper foil is bonded to the resin substrate so that the roughened copper plating layer faces the resin substrate, the plated particles are removed when the surface-treated copper foil is removed from the resin substrate. When the average value of 20 from the larger diameter on the same surface as the surface of the resin substrate of the recess formed by being pressed against the resin substrate is B,
The surface-treated copper foil whose B / M is 0.9 or less.
前記表面処理銅箔を前記樹脂基材に貼り合わせた後に前記表面処理銅箔を前記樹脂基材から引き剥がした際のピール強度が1.0N/mm以上であり、
前記表面処理銅箔を除去した後の前記樹脂基材のHAZE値が70%以下である
請求項1に記載の表面処理銅箔。
The peel strength when the surface-treated copper foil is peeled off from the resin substrate after bonding the surface-treated copper foil to the resin substrate is 1.0 N / mm or more,
The surface-treated copper foil according to claim 1, wherein a HAZE value of the resin base material after removing the surface-treated copper foil is 70% or less.
前記Mの値が0.2μmより大きく、0.5μm以下である
請求項1又は2に記載の表面処理銅箔。
The surface-treated copper foil according to claim 1 or 2, wherein the value of M is greater than 0.2 µm and 0.5 µm or less.
前記粗化銅めっき層上には、前記銅箔基材上からの前記めっき粒子の脱落を抑制するめっき粒子脱落抑制層が設けられている
請求項1ないし3のいずれかに記載の表面処理銅箔。
The surface-treated copper according to any one of claims 1 to 3, wherein a plated particle drop-off suppressing layer that suppresses the drop of the plated particles from the copper foil base material is provided on the roughened copper plated layer. Foil.
銅箔基材、及び前記銅箔基材の少なくともいずれかの主面上に設けられた粗化銅めっき層、を備える表面処理銅箔と、
前記粗化銅めっき層に対向するように前記表面処理銅箔と貼り合わせられた樹脂基材と、を備え、
前記粗化銅めっき層に含まれるめっき粒子の最大径の大きい方から20個の平均値をMとし、
前記粗化銅めっき層が前記樹脂基材に対向するように前記表面処理銅箔を前記樹脂基材に貼り合わせた後、前記樹脂基材から前記表面処理銅箔を除去したとき、前記めっき粒子が前記樹脂基材に押し当てられて形成された凹部の前記樹脂基材の表面と同一面における径の大きい方から20個の平均値をBとした場合、
B/Mが0.9以下である
積層板。
A surface-treated copper foil comprising a copper foil base material, and a roughened copper plating layer provided on at least one main surface of the copper foil base material;
A resin base material bonded to the surface-treated copper foil so as to face the roughened copper plating layer,
The average value of 20 from the larger maximum diameter of the plating particles contained in the roughened copper plating layer is M,
After the surface-treated copper foil is bonded to the resin substrate so that the roughened copper plating layer faces the resin substrate, the plated particles are removed when the surface-treated copper foil is removed from the resin substrate. When the average value of 20 from the larger diameter on the same surface as the surface of the resin substrate of the recess formed by being pressed against the resin substrate is B,
A laminate having B / M of 0.9 or less.
JP2015011596A 2015-01-23 2015-01-23 Surface-treated copper foil and laminate Active JP6392674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015011596A JP6392674B2 (en) 2015-01-23 2015-01-23 Surface-treated copper foil and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011596A JP6392674B2 (en) 2015-01-23 2015-01-23 Surface-treated copper foil and laminate

Publications (2)

Publication Number Publication Date
JP2016135903A JP2016135903A (en) 2016-07-28
JP6392674B2 true JP6392674B2 (en) 2018-09-19

Family

ID=56513005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011596A Active JP6392674B2 (en) 2015-01-23 2015-01-23 Surface-treated copper foil and laminate

Country Status (1)

Country Link
JP (1) JP6392674B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP2014152352A (en) * 2013-02-06 2014-08-25 Sh Copper Products Corp Composite copper foil and production method thereof
JP2015124426A (en) * 2013-12-27 2015-07-06 株式会社Shカッパープロダクツ Surface-treated copper foil and laminate

Also Published As

Publication number Publication date
JP2016135903A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI460068B (en) Surface-treated copper foil for copper-clad laminates and copper-clad laminate using the same
TWI566647B (en) Surface treatment of copper foil and the use of its laminate, printed wiring board, electronic equipment, and printing wiring board manufacturing methods
JP5282675B2 (en) Copper foil for printed wiring board and method for producing the same
JP6367687B2 (en) Surface-treated copper foil and laminate
JP6373166B2 (en) Surface-treated copper foil and laminate
US20150068912A1 (en) Copper foil structure having blackened ultra-thin foil and manufacturing method thereof
JP2015124426A (en) Surface-treated copper foil and laminate
JP5855244B2 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
JP2014141736A (en) Surface-treated copper foil and laminate sheet using the same
JP2014065965A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP6379055B2 (en) Surface-treated copper foil and laminate
JP5756547B1 (en) Surface-treated copper foil and laminate
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP6392674B2 (en) Surface-treated copper foil and laminate
WO2014073696A1 (en) Surface-treated copper foil and laminate using same
JP2014152344A (en) Composite copper foil and production method thereof
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP2014122414A (en) Copper foil with carrier
JP6364162B2 (en) Method for manufacturing printed wiring board
JP5919656B2 (en) Conductive substrate for wiring pattern formation of current collector sheet for solar cell
TWI411707B (en) Ultra - low copper foil as the carrier of ultra - thin copper foil and its use
JP5922169B2 (en) Manufacturing method of electronic equipment
JP2014148747A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250