WO2018193935A1 - Conductive substrate and method for producing conductive substrate - Google Patents

Conductive substrate and method for producing conductive substrate Download PDF

Info

Publication number
WO2018193935A1
WO2018193935A1 PCT/JP2018/015248 JP2018015248W WO2018193935A1 WO 2018193935 A1 WO2018193935 A1 WO 2018193935A1 JP 2018015248 W JP2018015248 W JP 2018015248W WO 2018193935 A1 WO2018193935 A1 WO 2018193935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
conductive substrate
plating
plating layer
Prior art date
Application number
PCT/JP2018/015248
Other languages
French (fr)
Japanese (ja)
Inventor
下地 匠
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2019513577A priority Critical patent/JP6954345B2/en
Priority to CN201880025236.7A priority patent/CN110537393B/en
Publication of WO2018193935A1 publication Critical patent/WO2018193935A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern

Definitions

  • the present invention relates to a conductive substrate and a method of manufacturing a conductive substrate.
  • the conductive substrate having a wiring pattern is formed by forming a metal layer on an insulating base material and patterning the metal layer in accordance with a desired wiring pattern.
  • a conductive substrate having a wiring pattern is formed by arranging a resist having a shape corresponding to the wiring pattern to be formed on a metal layer and performing etching.
  • the etching proceeds not only in the thickness direction of the metal layer but also in the surface direction which is a direction perpendicular to the thickness direction.
  • the progress of etching in the surface direction causes so-called side etching in which the lower part of the resist is also etched.
  • an adhesive layer is formed on the surface of a copper foil, a photosensitive resist is formed on the adhesive layer, the photosensitive resist is exposed in a desired pattern, and the photosensitive resist is developed.
  • a method of forming a copper foil wiring is disclosed, which includes the steps of removing the exposed adhesion layer from the photosensitive resist and etching the copper foil to form a wiring.
  • an object of the present invention is to provide a conductive substrate in which the occurrence of side etching is suppressed.
  • An insulating base material A metal layer formed on at least one surface of the insulating substrate; And a roughening plated layer formed on the metal layer;
  • the roughened plating layer provides a conductive substrate including granular crystals having an average crystal grain size of 50 nm or more and 150 nm or less.
  • FIG. 4 is a configuration example of one of the cross-sectional views along the line AA 'in FIG. 3;
  • FIG. 4 is another configuration example of the cross-sectional view along the line AA 'in FIG. 3; Explanatory drawing of the side etching amount.
  • the conductive substrate of the present embodiment can have an insulating base, a metal layer formed on at least one surface of the insulating base, and a roughened plating layer formed on the metal layer. .
  • a roughening plating layer can contain the granular crystal whose average grain size is 50 nm or more and 150 nm or less.
  • the roughened plating layer includes needle crystals having an average length of 100 nm to 300 nm, an average width of 30 nm to 80 nm, and an average aspect ratio of 2.0 to 4.5. It can also be done.
  • the conductive substrate in the present embodiment means a substrate having a metal layer and a roughened plating layer on the surface of the insulating base before patterning the metal layer and the like, and a substrate having the metal layer and the like patterned thereon. That is, the wiring board is included.
  • the material of the insulating substrate is not particularly limited, but is selected from, for example, polyamide resin, polyethylene terephthalate resin, polyethylene naphthalate resin, cycloolefin resin, polyimide resin, polycarbonate resin, etc.
  • One or more resins can be preferably used.
  • one or more resins selected from polyamide, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), COP (cycloolefin polymer), polyimide, polycarbonate and the like are more preferably used be able to.
  • the thickness of the insulating substrate is not particularly limited, and can be arbitrarily selected according to the strength required when using the conductive substrate, the specifications based on the application of the conductive substrate, the capacitance, and the like. .
  • the thickness of the insulating substrate is, for example, preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 12 ⁇ m or more and 120 ⁇ m or less, and still more preferably 12 ⁇ m or more and 100 ⁇ m or less.
  • the material forming the metal layer is not particularly limited, and a material having electrical conductivity suitable for the application can be selected, but copper is used as the material forming the metal layer because of excellent electrical characteristics and easiness of etching treatment. Is preferred. That is, the metal layer preferably contains copper.
  • the material constituting the metal layer is, for example, at least one selected from the group of metals Cu, Ni, Mo, Ta, Ti, V, Cr, Fe, Mn, Co, W It is preferable that it is a material containing a copper alloy with the metal of the above, or copper and one or more metals selected from the above metal group.
  • the metal layer can also be a copper layer composed of copper.
  • the metal layer may be copper, a metal containing copper, or one or more layers selected from copper alloys.
  • the metal layer is preferably a layer of copper or a copper alloy. This is because the layer of copper or copper alloy has particularly high electric conductivity (conductivity), and wiring can be easily formed by etching. Further, the layer of copper or a copper alloy is particularly susceptible to side etching to be described later, and in the conductive substrate of the present embodiment, side etching can be suppressed.
  • the method of forming a metal layer is not specifically limited, For example, it is preferable to form so that an adhesive agent may not be arrange
  • a metal layer can be formed and arrange
  • the metal layer preferably has a metal thin film layer deposited using a dry plating method.
  • the dry plating method is not particularly limited.
  • a vapor deposition method, a sputtering method, an ion plating method or the like can be used.
  • the metal thin film layer can be formed by dry plating and then the metal plating layer can be stacked using a wet plating method.
  • a metal thin film layer is formed by dry plating on an insulating base material or an adhesive layer, and the metal thin film is used as a feeding layer, and a metal plating layer is formed by electrolytic plating which is a type of wet plating. Can be formed.
  • the metal layer can be formed of a metal thin film layer.
  • a metal layer can be comprised by a metal thin film layer and a metal plating layer.
  • the metal layer is formed directly on the insulating substrate or the adhesive layer by forming the metal layer by combining only the dry plating method or the dry plating method and the wet plating method, without using an adhesive and arranging the metal layer can do.
  • the thickness of the metal layer is not particularly limited, and when the metal layer is used as a wire, it can be arbitrarily selected according to the magnitude of the current supplied to the wire, the wire width, and the like.
  • the thickness of the metal layer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the thickness of the metal layer is preferably 50 nm or more, more preferably 60 nm or more, and 150 nm It is more preferable that it is more than.
  • a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
  • the thickness of the metal thin film layer is not particularly limited in either case where the metal layer is constituted of a metal thin film layer or in the case of being constituted of a metal thin film layer and a metal plating layer, for example 50 nm
  • the thickness is preferably 700 nm or less.
  • the inventor of the present invention has intensively studied the reason why the side etching can not be sufficiently suppressed when the resist is disposed on the metal layer and the etching is performed. As a result, the adhesion between the metal layer and the resist is not sufficient, and the etching solution may intrude between the metal layer and the resist and spread, which may be a cause that the side etching can not be sufficiently suppressed. It became clear.
  • a resist is disposed on the surface of the conductive substrate, specifically on the surface of the roughened plating layer. It has been found that the adhesion between the roughened plating layer and the resist can be enhanced. For this reason, it was found that side etching can be suppressed by using the conductive substrate having the roughened plating layer, and the present invention was completed.
  • the roughened plating layer of the conductive substrate of the present embodiment is patterned on its surface, specifically, the surface opposite to the surface of the roughened plating layer facing the insulating substrate, that is, as described later.
  • the surface on which the resist is placed is a roughened surface.
  • the roughening plated layer preferably contains one or more types of crystals selected from granular crystals and needle crystals.
  • the roughening plating layer preferably contains granular crystals having an average crystal grain size of 50 nm or more and 150 nm or less.
  • the roughening plating layer contains granular crystals, and the average crystal grain size thereof is 50 nm or more and 150 nm or less, with the surface of the roughening plating layer as the roughening surface and the adhesion between the roughening plating layer and the resist. This is because it is possible to particularly suppress the occurrence of side etching.
  • the average crystal grain size is more preferably 70 nm or more and 150 nm or less.
  • the standard deviation ⁇ of the crystal grain size of the granular crystals is preferably 10 nm or more, and more preferably 15 nm or more. This means that by setting the standard deviation ⁇ to 10 nm or more, the granular crystals contained in the roughened plating layer have a certain degree of dispersion or more, and particularly improve the adhesion between the roughened plating layer and the resist. It is because The upper limit of the standard deviation ⁇ of the crystal grain size of the granular crystal is not particularly limited, but can be, for example, 100 nm or less.
  • the grain size of the granular crystal is the minimum size that allows complete inclusion of the granular crystal to be measured when the roughened surface of the roughened plating layer is observed with a scanning electron microscope etc. as described later. Means the diameter of a circle.
  • the roughening plating layer contains needle crystals
  • the roughening plating layer has an average length of 100 nm to 300 nm, an average width of 30 nm to 80 nm, and an average aspect ratio of 2.0 to 4.5. It is preferable to include needle crystals of
  • the roughening plating layer contains needle crystals, and the roughening is achieved by setting the average length to 100 nm to 300 nm, the average width to 30 nm to 80 nm, and the aspect ratio to 2.0 to 4.5. This is because the adhesion between the roughened plating layer and the resist can be enhanced by using the surface of the plating layer as a roughened surface, and the occurrence of side etching can be particularly suppressed.
  • the average length is preferably 120 nm or more and 260 nm or less
  • the average width is 40 nm or more and 70 nm or less
  • the average aspect ratio is more preferably 2.5 or more and 4.5 or less.
  • the standard deviation ⁇ of the length, width, and aspect ratio of the needle crystals is preferably 40 nm or more, 5 nm or more, and 0.5 or more. This means that the needle crystals contained in the roughened plating layer have a certain degree of variation or more by setting the standard deviation ⁇ of the length, width and aspect ratio of the needle crystals to the above-mentioned range, This is because the adhesion between the roughened plating layer and the resist can be particularly enhanced.
  • the upper limit value of the standard deviation ⁇ of the length, width and aspect ratio of the needle crystals is not particularly limited, but can be, for example, 75 nm or less, 50 nm or less, and 5 or less.
  • the length and width of the needle crystals are the length of the long sides of the needle crystals when the roughened surface of the roughened plating layer is observed with a scanning electron microscope or the like as described later. It means the short side length.
  • the aspect ratio is the length divided by the width.
  • the average grain size, average length, average width, average aspect ratio, and standard deviation ⁇ of the crystals contained in the roughening plating layer are, for example, those of the roughening plating layer by a scanning electron microscope (SEM: Scanning Electron Microscope). It can be measured and calculated from the observation image when observing the roughened surface.
  • SEM Scanning Electron Microscope
  • the specific conditions at the time of observing the roughening surface of a roughening plating layer are not specifically limited, For example, it is preferable to expand 50000 times in arbitrary positions.
  • the crystal grain size is measured for 20 arbitrarily selected granular crystals in one field of view, and the average value of the crystal grain sizes of the 20 granular crystals is averaged.
  • the grain size can be made.
  • the standard deviation of the grain size can be calculated from the measured values of the grain size of the 20 granular crystals and the calculated average grain size.
  • the length and width of 20 arbitrarily selected needle crystals can be similarly measured in one field of view, and the aspect ratio can be calculated. And the average value of length, width, and aspect ratio about 20 needle crystals can be made into average length, average width, average aspect ratio. The standard deviation of each of the 20 needle crystals can be calculated from the measured length, the measured width, the calculated aspect ratio, and the calculated average length, average width, and average aspect ratio.
  • an observation visual field it is preferable to select the position of an observation visual field so that 20 or more may be included in 1 visual field about a granular crystal or needle-like crystal
  • the visual field which becomes 20 or more can not be selected less than 20 Granular crystals or needle crystals may be used to calculate an average crystal grain size, an average length, an average width, and an average aspect ratio.
  • the size of crystals such as granular crystals can be calculated with a scanning electron microscope etc. on the roughened surface of the roughened plating layer, the above-mentioned granular crystals and needle crystals are roughened on the roughened plating layer. It can be said that it is a crystal contained in the surface.
  • the material of the roughening plating layer of the conductive substrate of the present embodiment is not particularly limited, for example, a single substance of nickel, a nickel oxide, a nickel hydroxide, and copper can be included.
  • the state of copper contained in the roughened plating layer is not particularly limited, but copper can be contained, for example, as one or more selected from a single substance of copper and a compound of copper.
  • a compound of copper copper oxide, copper hydroxide, etc. can be mentioned, for example.
  • the roughened plating layer contains, for example, a simple substance of nickel, a nickel oxide, and a nickel hydroxide, and is further selected from a simple substance of copper, ie, metallic copper, a copper oxide, and a copper hydroxide. It can contain one or more kinds.
  • An etching solution for a roughening plating layer wherein the roughening plating layer contains at least one selected from a simple substance of nickel, nickel oxide, nickel hydroxide, and copper, for example, a simple substance of copper and a compound of copper.
  • the reactivity to H can be made equal to that of the metal layer. For this reason, when the metal layer and the roughening plating layer are simultaneously etched, both layers can be etched uniformly in a plane so as to have a desired shape, and the occurrence of dimensional variation and side etching can be particularly suppressed. .
  • the method for forming the roughened plating layer is not particularly limited, and can be formed, for example, by a wet method.
  • composition of the plating solution used to form the roughened plating layer by electrolytic plating is not particularly limited.
  • a plating solution containing nickel ions and copper ions can be preferably used.
  • the nickel ion concentration in the plating solution is preferably 2.0 g / L or more, and more preferably 3.0 g / L or more.
  • the upper limit value of the nickel ion concentration in the plating solution is not particularly limited either, but is preferably 20.0 g / L or less, and more preferably 15.0 g / L or less.
  • the copper ion concentration in the plating solution is preferably 0.005 g / L or more, more preferably 0.008 g / L or more.
  • the upper limit of the copper ion concentration in the plating solution is not particularly limited, but is preferably 4.0 g / L or less, and more preferably 1.02 g / L or less.
  • the supply method of nickel ion and copper ion is not specifically limited, For example, it can supply in the state of a salt.
  • a salt For example, sulfamate and sulfate can be suitably used.
  • the type of salt may be the same type of salt for each metal element, or different types of salts may be used simultaneously.
  • the plating solution can also be prepared using the same type of salt as, for example, nickel sulfate and copper sulfate.
  • a plating solution can also be prepared by simultaneously using different types of salts such as, for example, nickel sulfate and copper sulfamate.
  • an alkali metal hydroxide can be preferably used as a pH adjuster.
  • alkali metal hydroxide which is a pH adjuster for example, one or more selected from sodium hydroxide, potassium hydroxide and lithium hydroxide can be used.
  • the alkali metal hydroxide which is a pH adjuster one or more selected from sodium hydroxide and potassium hydroxide is more preferable. This is because sodium hydroxide and potassium hydroxide are particularly easy to obtain and cost-effective.
  • the pH of the plating solution of the present embodiment is not particularly limited, but is preferably 3.0 or more and 5.2 or less, and more preferably 3.5 or more and 5.0 or less.
  • the plating solution can further contain a complexing agent.
  • a complexing agent for example, amidosulfuric acid can be preferably used as the complexing agent.
  • the content of the complexing agent in the plating solution is not particularly limited, and can be arbitrarily selected.
  • the concentration of amidosulfuric acid in the plating solution is not particularly limited, but is preferably 1 g / L to 50 g / L, for example 5 g / L to 20 g / L. Is preferred.
  • crystallization which a roughening plating layer contains can be selected by adjusting pH of the plating solution at the time of forming a roughening plating layer into a film, and an electric current density. For example, by increasing the pH of the plating solution or increasing the current density at the time of film formation, needle crystals are easily generated, and the pH of the plating solution is lowered, or the current density at the time of film formation is decreased. Crystals tend to form.
  • a preliminary test can be performed to select the conditions such that a roughened plated layer containing crystals of a desired shape and size is obtained.
  • the thickness of the roughening plating layer is not particularly limited, and the thickness can be selected so that the adhesion to the resist layer can be sufficiently enhanced.
  • the thickness of the roughened plating layer is, for example, preferably 50 nm or more, and more preferably 70 nm or more. By setting the thickness of the roughened plating layer to 50 nm or more, it is possible to form asperities on the surface sufficiently and to improve the adhesion to the resist layer.
  • the upper limit of the thickness of the roughening plating layer is not particularly limited, but if it is thicker than necessary, the time required for etching when forming the wiring becomes longer, which leads to an increase in cost. . Therefore, the thickness of the roughening plating layer is preferably 350 nm or less, more preferably 150 nm or less, and still more preferably 145 nm or less.
  • the conductive substrate can also provide arbitrary layers other than the above-mentioned insulating base material, a metal layer, and a roughening plating layer.
  • an adhesive layer can be provided.
  • the metal layer can be formed on the insulating substrate, but when the metal layer is directly formed on the insulating substrate, the adhesion between the insulating substrate and the metal layer is not sufficient. There is a case. For this reason, when a metal layer is directly formed on the upper surface of the insulating substrate, the metal layer may be separated from the insulating substrate during the manufacturing process or during use.
  • an adhesion layer can be disposed on the insulating base in order to enhance the adhesion between the insulating base and the metal layer. That is, a conductive substrate having an adhesive layer between the insulating base and the metal layer can also be obtained.
  • the adhesion layer between the insulating base and the metal layer By arranging the adhesion layer between the insulating base and the metal layer, the adhesion between the insulating base and the metal layer can be enhanced, and peeling of the metal layer from the insulating base can be more reliably suppressed. .
  • the material constituting the adhesion layer is not particularly limited, and the adhesion between the insulating substrate and the metal layer, the required degree of suppression of light reflection on the surface of the metal layer, and the conductive substrate It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity, temperature) to be used.
  • the adhesion layer preferably contains, for example, at least one metal selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • the adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen and nitrogen.
  • the adhesion layer can also include a metal alloy containing at least two or more metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • a metal alloy containing at least two or more kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn and Mn a Cu-Ti-Fe alloy
  • Cu-Ni-Fe alloy, Ni-Cu alloy, Ni-Zn alloy, Ni-Ti alloy, Ni-W alloy, Ni-Cr alloy, Ni-Cu-Cr alloy can be preferably used.
  • the film-forming method of the adhesion layer is not particularly limited, it is preferable to form a film by dry plating.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy.
  • one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
  • the atmosphere for forming the adhesion layer includes one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • a gas containing For example, one or more selected from carbon monoxide gas and carbon dioxide gas when adding carbon to the adhesion layer, oxygen gas when adding oxygen, hydrogen gas when adding hydrogen, and
  • nitrogen one or more selected from water can be added with nitrogen gas in the atmosphere for dry plating.
  • a gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas at the time of dry plating.
  • the inert gas is not particularly limited but, for example, argon can be preferably used.
  • the adhesion layer By forming the adhesion layer by dry plating as described above, the adhesion between the insulating substrate and the adhesion layer can be enhanced. And since the adhesion layer can contain, for example, a metal as a main component, the adhesion to the metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange
  • the thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
  • the conductive substrate of the present embodiment can have the insulating base, the metal layer, and the roughening plated layer. Moreover, layers, such as an adhesion layer, can also be provided arbitrarily.
  • FIGS. 1A and 1B show examples of cross-sectional views in a plane parallel to the stacking direction of the insulating base material, the metal layer, and the roughening plating layer of the conductive substrate of the present embodiment.
  • the conductive substrate of the present embodiment can have, for example, a structure in which a metal layer and a roughening plated layer are laminated in that order from the insulating substrate side on at least one surface of the insulating substrate.
  • the metal layer 12 and the roughening plating layer 13 are sequentially laminated one by one on one surface 11a side of the insulating substrate 11 be able to.
  • the roughening plating layer 13 can make surface A which is a surface on the opposite side to the surface facing the insulating base material 11 of the roughening plating layer 13 a roughening surface.
  • metal layers 12A and 12B are provided on one surface 11a side of the insulating base material 11 and the other surface (the other surface) 11b side,
  • the roughened plating layers 13A and 13B can be stacked one by one in this order.
  • the roughened plating layers 13A and 13B can have the surfaces A and B, which are surfaces opposite to the surface facing the insulating substrate 11, as roughened surfaces.
  • an adhesion layer may be provided as an arbitrary layer.
  • the adhesive layer, the metal layer, and the roughening plating layer can be formed in this order from the insulating substrate side on at least one surface of the insulating substrate.
  • the adhesion layer 14, the metal layer 12, and the roughened plating layer 13 are in this order on one surface 11a side of the insulating substrate 11. It can be stacked.
  • the adhesion layer, the metal layer, and the roughening plating layer may be laminated on both surfaces of the insulating substrate 11.
  • the adhesion layers 14A and 14B and the metal layer 12A respectively on the side of the surface 11a of the insulating substrate 11 and the side of the other surface 11b. 12B and roughening plating layers 13A and 13B can be laminated in that order.
  • the insulating substrate 11 is laminated on the upper and lower sides of the insulating substrate 11 as a symmetry plane.
  • the present invention is not limited to such a form.
  • the configuration on one surface 11a side of the insulating base material 11 has the metal layer 12A and the roughened plating layer 13A laminated in that order without providing the adhesion layer 14A.
  • the layers stacked on the upper and lower sides of the insulating substrate 11 may be asymmetric.
  • the conductive substrate of the present embodiment can be preferably used as a conductive substrate on which various electronic components are mounted.
  • the shape of the wiring of the conductive substrate is not particularly limited, and may have any shape and pattern.
  • a conductive substrate provided with mesh-like wiring will be described as an example.
  • the conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer of the conductive substrate of the present embodiment described so far and the roughened plating layer, and in some cases, the adhesion layer.
  • FIG. 3 is a view of the conductive substrate 30 provided with the mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like, and the insulating substrate and the metal layer are made Layers other than the wirings 31A and 31B formed by patterning are omitted. Moreover, the wiring 31B which sees through the insulating base material 11 is also shown.
  • the conductive substrate 30 shown in FIG. 3 has the insulating base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and a wiring 31B parallel to the X-axis direction.
  • the wirings 31A and 31B are formed by etching a metal layer, and a roughened plating layer (not shown) is formed on the upper surface or the lower surface of the wirings 31A and 31B. Further, the roughening plated layer is etched in the same shape as the wirings 31A and 31B.
  • the arrangement of the insulating base 11 and the wires 31A and 31B is not particularly limited.
  • positioning with the insulating base material 11 and wiring is shown to FIG. 4A and FIG. 4B.
  • 4A and 4B correspond to cross-sectional views taken along the line AA 'of FIG.
  • the wirings 31A and 31B may be disposed on the upper and lower surfaces of the insulating base material 11, respectively.
  • roughened plated layers 32A and 32B etched in the same shape as the wiring are disposed on the upper surface of the wiring 31A and the lower surface of the wiring 31B.
  • wiring 31A, 31B is arrange
  • roughened plated layers 32A and 32B etched in the same shape as the wirings are disposed on the top surfaces of the wirings 31A and 31B.
  • an adhesion layer may be provided as described above.
  • an adhesive layer may be provided between the insulating base 11 and either one or both of the wiring 31A and the wiring 31B.
  • the adhesion layer is also preferably etched to the same shape as the wirings 31A and 31B.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is provided with metal layers 12A and 12B and roughened plating layers 13A and 13B on both sides of the insulating substrate 11. It can be formed from a conductive substrate.
  • the metal layer 12A and the roughening plated layer 13A on one surface 11a side of the insulating substrate 11 are arranged in the Y-axis direction in FIG.
  • Etching is performed such that a plurality of parallel linear patterns are disposed at predetermined intervals along the X-axis direction.
  • the X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer.
  • the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
  • a plurality of linear patterns parallel to the X-axis direction in FIG. 1B are separated from the metal layer 12B on the other surface 11b side of the insulating substrate 11 in the Y-axis direction at predetermined intervals in FIG. 1B. Do the etching to be placed along.
  • the conductive substrate having the mesh-like wiring shown in FIG. 3 and FIG. 4A can be formed.
  • the etching of both surfaces of the insulating base material 11 can also be performed simultaneously. That is, the etching of the metal layers 12A and 12B and the roughening plated layers 13A and 13B may be performed simultaneously.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wires 31A and 31B between the wires 31A and 31B and the insulating base 11 is further conductive as shown in FIG. 2B. It can manufacture by etching similarly using a board
  • the conductive substrate having the mesh-like wiring shown in FIG. 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A.
  • the case where two conductive substrates shown in FIG. 1A are formed will be described by way of example.
  • the metal layer 12 and the roughening plated layer 13 are parallel to the X-axis direction.
  • Etching is performed such that a plurality of linear patterns are arranged along the Y-axis direction at predetermined intervals. Then, by aligning two conductive substrates in a direction such that the linear patterns formed on the conductive substrates by the above etching process intersect with each other, a conductive substrate provided with a mesh-like wiring is obtained. be able to.
  • the surface to be bonded when bonding the two conductive substrates is not particularly limited.
  • the surface A in FIG. 1A in which the metal layer 12 and the like are laminated and the other surface 11b in FIG. 1A in which the metal layer 12 and the like are not laminated are bonded to obtain the structure shown in FIG. It can also be done.
  • the other surfaces 11b in FIG. 1A where the metal layer 12 and the like of the insulating base material 11 are not laminated may be bonded to each other to have a cross section shown in FIG. 4A.
  • FIGS. 4A and 4B a conductive substrate having an adhesive layer patterned in the same shape as the wires 31A and 31B between the wires 31A and 31B and the insulating base 11 is shown in FIG. 1A.
  • the conductive substrate shown in FIG. 2A can be used.
  • the width of the wires and the distance between the wires in the conductive substrate having the mesh-like wires shown in FIGS. 3, 4A and 4B are not particularly limited, and, for example, according to the amount of current flowing in the wires It can be selected.
  • the roughened plating layer is provided, and even when the roughened plating layer and the metal layer are etched and patterned, the occurrence of side etching is suppressed, and roughening is performed.
  • the plated layer and the metal layer can be patterned into a desired shape. Specifically, for example, a wire having a wire width of 10 ⁇ m or less can be formed.
  • the conductive substrate of the present embodiment preferably includes a wire having a wire width of 10 ⁇ m or less.
  • the lower limit of the wiring width is not particularly limited, but can be, for example, 3 ⁇ m or more.
  • FIG. 3, FIG. 4A, and FIG. 4B show an example in which mesh-like wiring (wiring pattern) is formed by combining linear-shaped wiring
  • the present invention is not limited to such a form, and the shape of wiring pattern
  • the wiring that forms the wiring pattern can have an arbitrary shape.
  • the roughening plating layer is a layer provided in order to improve adhesiveness with a resist. Therefore, the wiring pattern can be removed after formation. In the case of removal, the roughened plating layer can be removed by, for example, a general sulfuric acid / hydrogen peroxide water microetching solution.
  • the roughened plating layer is stacked on the metal layer formed on at least one surface of the insulating substrate. Therefore, the adhesion to the resist is high, and the occurrence of side etching can be suppressed.
  • Method of manufacturing conductive substrate Next, one configuration example of the method of manufacturing the conductive substrate of the present embodiment will be described.
  • the method for producing a conductive substrate of the present embodiment can have the following steps.
  • a roughening plating layer can be formed into a film by an electrolysis method using a plating solution containing nickel ion and copper ion.
  • the electroconductive substrate as stated above can be suitably manufactured with the manufacturing method of the electroconductive substrate of this embodiment. For this reason, since it can be set as the same structure as the case of the above-mentioned conductive substrate except the point explained below, explanation is omitted in part.
  • the insulating substrate to be subjected to the metal layer forming step can be prepared in advance.
  • the insulating substrate may be cut into any size in advance, if necessary.
  • the metal layer preferably has a metal thin film layer as described above.
  • the metal layer can also have a metal thin film layer and a metal plating layer.
  • a metal layer formation process can have the process of forming a metal thin film layer, for example by the dry plating method.
  • a dry plating method used at the process of forming a metal thin film layer For example, a vapor deposition method, sputtering method, or ion plating method etc. can be used.
  • a vacuum evaporation method can be preferably used as an evaporation method.
  • the dry plating method used in the step of forming the metal thin film layer it is more preferable to use the sputtering method because the control of the film thickness is particularly easy.
  • a metal plating layer is demonstrated.
  • the conditions in the step of forming the metal plating layer by the wet plating method that is, the conditions of the electroplating treatment are not particularly limited, and various conditions in the usual way may be adopted.
  • a metal plating layer can be formed by supplying a base having a metal thin film layer formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base.
  • a roughening plating layer containing, for example, a single substance of nickel, a nickel oxide, a nickel hydroxide, and copper can be formed.
  • the roughened plating layer can be formed by a wet method.
  • a roughened plating layer can be formed on a metal layer by an electrolytic method, for example, an electrolytic plating method, in a plating tank containing the plating solution described above, using the metal layer as a feed layer.
  • the roughened plating layer is formed by electrolytic plating using the metal layer as the feeding layer, thereby forming the roughened plating layer on the entire surface of the metal layer opposite to the surface facing the insulating substrate. it can.
  • the shape and size of the crystal contained in the roughening plating layer can be selected by adjusting the pH of the plating solution and the current density. For example, by increasing the pH of the plating solution or increasing the current density at the time of film formation, needle crystals are easily generated, and the pH of the plating solution is lowered, or the current density at the time of film formation is decreased. Crystals tend to form.
  • a preliminary test can be performed to select the conditions such that a roughened plated layer containing crystals of a desired shape and size is obtained.
  • the plating solution has already been described, and thus the description thereof is omitted.
  • an arbitrary step can be further performed in addition to the above-described steps.
  • an adhesion layer formation process which forms an adhesion layer on the field which forms a metal layer of an insulating base can be implemented.
  • the metal layer formation step can be carried out after the adhesion layer formation step, and in the metal layer formation step, on the substrate on which the adhesion layer is formed on the insulating substrate in this step.
  • a metal thin film layer can be formed.
  • the film formation method of the adhesion layer is not particularly limited, but it is preferable to form a film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy.
  • one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
  • the conductive substrate obtained by the method for producing a conductive substrate of the present embodiment can be used, for example, in various applications such as a conductive substrate on which various electronic components are mounted and used. And when using for various uses, it is preferable that the metal layer and roughening plating layer which are contained in the conductive substrate of this embodiment are patterned. When the adhesion layer is provided, it is preferable that the adhesion layer is also patterned. The metal layer and the roughening plating layer, and in some cases the adhesion layer can be patterned, for example, according to the desired wiring pattern, and the metal layer and the roughening plating layer, in some cases the adhesion layer may also have the same shape It is preferable to be patterned.
  • the manufacturing method of the conductive substrate of this embodiment can have the patterning process of patterning a metal layer and a roughening plating layer.
  • the patterning step can be a step of patterning the adhesion layer, the metal layer, and the roughened plating layer.
  • the specific procedure of the patterning step is not particularly limited, and can be performed by any procedure.
  • a resist having a desired pattern on the surface A on the roughening plating layer 13 A resist placement step can be performed to place the Then, an etching step can be performed in which the etching solution is supplied to the surface A on the roughened plating layer 13, ie, the side on which the resist is disposed.
  • the etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the composition of the metal layer, the roughened plating layer, and the like.
  • an etching solution generally used for etching the metal layer can be preferably used.
  • a mixed aqueous solution containing one or more selected from sulfuric acid, hydrogen peroxide (hydrogen peroxide water), hydrochloric acid, cupric chloride and ferric chloride can be preferably used as the etching solution.
  • the content of each component in the etching solution is not particularly limited.
  • the etching solution can be used at room temperature, but can also be used by heating to enhance the reactivity, for example, it can be used by heating to 40 ° C. or more and 50 ° C. or less.
  • a patterning process is also performed on the conductive substrate 10B in which the metal layers 12A and 12B and the roughening plated layers 13A and 13B are laminated on one surface 11a and the other surface 11b of the insulating base material 11.
  • a resist disposing step of disposing a resist having a desired pattern on the surface A and the surface B on the roughened plating layers 13A and 13B can be performed.
  • an etching step can be performed in which the etching solution is supplied to the surface A and the surface B on the roughened plating layers 13A and 13B, that is, the surface on which the resist is disposed.
  • the pattern to be formed in the etching step is not particularly limited, and may have an arbitrary shape.
  • the metal layer 12 and the roughening plating layer 13 are patterned to include a plurality of straight lines and lines (zigzag straight lines) bent into jagged lines. It can also be done.
  • the metal layer 12A and the metal layer 12B may form a pattern so as to form a mesh-like wiring.
  • the roughening plating layer 13A is preferably patterned to have the same shape as the metal layer 12A, and the roughening plating layer 13B is formed to have the same shape as the metal layer 12B.
  • stacks two or more patterned conductive substrates can also be implemented.
  • laminating for example, by laminating so that the patterns of the metal layers of the respective conductive substrates intersect, it is also possible to obtain a laminated conductive substrate provided with a mesh-like wiring.
  • the method of fixing the laminated two or more conductive substrates is not particularly limited, for example, it can be fixed by an adhesive or the like.
  • the conductive substrate obtained by the method for producing a conductive substrate of the present embodiment described above has a structure in which a roughened plating layer is laminated on a metal layer formed on at least one surface of an insulating substrate. ing. And the roughening plating layer is a roughening plating layer whose surface opposite to the surface facing the insulating base is a roughening surface. Therefore, the adhesion to the resist is high, and the occurrence of side etching can be suppressed.
  • a conductive substrate having the structure of FIG. 1A was produced. Therefore, the surface A exposed to the outside of the roughened plating layer 13 in FIG. 1A was subjected to Ar ion etching, and a Ni 2 P spectrum and a Cu LMM spectrum inside 10 nm from the outermost surface were measured.
  • each of Examples 1 to 10 and Comparative Examples 1 to 4 contained a single substance of nickel, a nickel oxide, a nickel hydroxide, and copper.
  • (2) Shape and size of the crystal contained in the roughening plating layer The surface opposite to the surface facing the insulating substrate, which is the roughening surface of the roughening plating layer, specifically, the surface A of FIG. 1A The surface of the roughened plating layer was observed with a scanning electron microscope to evaluate the shape and size of the crystal contained in the roughened plating layer.
  • the area was enlarged 50000 times at an arbitrary position on the roughened surface of the roughened plating layer. Then, the shape of the crystal present in the observation area was observed. When granular crystals are observed, granular or needle-like crystals are indicated as needle-like in the crystal shape column of Table 1 when observed.
  • the grain size of the granular crystals means the diameter of a circle of the smallest size which completely incorporates the granular crystals for which the measurement of the granular crystals is to be carried out. Further, when needle crystals were observed, 20 needle crystals to be evaluated were selected, and the average length, average width, average aspect ratio, and standard deviation ⁇ were measured and calculated.
  • the sample was then immersed in an etchant at 30 ° C. consisting of 10 wt% sulfuric acid and 3 wt% hydrogen peroxide.
  • the conductive substrate is taken out of the etching solution 60 seconds, 120 seconds, and 180 seconds after the start of immersion in the etching solution, and after cleaning, the side etching amount is evaluated as described above.
  • the (Sample preparation conditions) A conductive substrate was produced under the conditions described below, and evaluated by the above-mentioned evaluation method.
  • Example 1 A conductive substrate having the structure shown in FIG. 1A was produced.
  • (Metal layer formation process) A copper layer was formed as a metal layer on one surface of an insulating base made of a long polyethylene terephthalate resin (PET) having a length of 300 m, a width of 250 mm, and a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate resin
  • a metal thin film layer forming step and a metal plating layer forming step were performed.
  • a copper thin film layer was formed as a metal thin film layer on one surface of the insulating base using the above-mentioned insulating base as a base.
  • the metal thin film layer forming step first, the above-mentioned insulating substrate from which water was removed by heating in advance to 60 ° C. was placed in the chamber of the sputtering apparatus.
  • Electric power was supplied to a copper target set in advance at the cathode of the sputtering apparatus, and a copper thin film layer was formed to a thickness of 0.7 ⁇ m on one surface of the insulating substrate.
  • a copper plating layer was formed as the metal plating layer.
  • the copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.3 ⁇ m.
  • a copper layer having a thickness of 1.0 ⁇ m was formed as a metal layer.
  • a plating solution containing nickel ions, copper ions, amidosulfuric acid, and sodium hydroxide was prepared as a plating solution.
  • Nickel ions and copper ions were supplied to the plating solution by adding nickel sulfate hexahydrate and copper sulfate pentahydrate.
  • each component was added and prepared so that the concentration of nickel ion in the plating solution was 6.5 g / L, the concentration of copper ion was 0.2 g / L, and the concentration of amidosulfuric acid was 11 g / L.
  • an aqueous solution of sodium hydroxide was added to the plating solution to adjust the pH of the plating solution to 3.6.
  • electrolytic plating was performed under the conditions of a plating solution temperature of 40 ° C., a current density of 0.08 A / dm 2 , and a plating time of 180 seconds to form a roughening plating layer.
  • the film thickness of the roughening plating layer formed became 111 nm.
  • the conductive substrate obtained by the above steps was subjected to component analysis of the roughened plating layer described above, evaluation of the shape and size of crystals contained in the roughened plating layer, and evaluation of the side etching amount. The results are shown in Tables 1 and 2.
  • Examples 2 to 10 As shown in Table 1, the nickel ion concentration, the copper ion concentration, the pH, the current density at the time of film formation of the roughening plating layer, and the plating time in the plating solution when forming the roughening plating layer in each example.
  • a conductive substrate was produced and evaluated in the same manner as in Example 1 except that it was changed to The results are shown in Tables 1 and 2.
  • the roughened plating layer contains granular or needle-like crystals.
  • the average crystal grain size is 50 nm to 150 nm
  • the average length is 100 nm to 300 nm
  • the average width is 30 nm to 80 nm
  • the average aspect ratio is 2.0. It could be confirmed that the above was 4.5 or less.

Abstract

Provided is a conductive substrate which comprises an insulating base material, a metal layer that is formed on at least one surface of the insulating base material, and a roughening plating layer that is formed on the metal layer, and wherein the roughening plating layer contains granular crystals that have an average crystal grain size of from 50 nm to 150 nm (inclusive).

Description

導電性基板、導電性基板の製造方法Conductive substrate, method of manufacturing conductive substrate
 本発明は、導電性基板、導電性基板の製造方法に関する。 The present invention relates to a conductive substrate and a method of manufacturing a conductive substrate.
 液晶ディスプレイ、携帯電話、デジタルカメラ等の様々な電子機器においては、各種電子部品を実装した、配線パターンを有する導電性基板が用いられている。 DESCRIPTION OF RELATED ART In various electronic devices, such as a liquid crystal display, a mobile telephone, a digital camera, the electroconductive board which has a wiring pattern which mounted various electronic components is used.
 配線パターンを有する導電性基板は、絶縁性の基材上に金属層を形成し、該金属層を所望の配線パターンに応じてパターン化することで形成されている。配線パターンを有する導電性基板は、金属層上に、形成する配線パターンに対応した形状を有するレジストを配置し、エッチングを行うことで形成するのが一般的である。 The conductive substrate having a wiring pattern is formed by forming a metal layer on an insulating base material and patterning the metal layer in accordance with a desired wiring pattern. In general, a conductive substrate having a wiring pattern is formed by arranging a resist having a shape corresponding to the wiring pattern to be formed on a metal layer and performing etching.
 ところで、エッチングにより配線パターンを形成する場合、エッチングは金属層の厚み方向のみではなく、厚み方向と垂直な方向である面方向へも進行する。面方向へのエッチングの進行により、レジストの下部もエッチングされる、いわゆるサイドエッチングが発生する。 When the wiring pattern is formed by etching, the etching proceeds not only in the thickness direction of the metal layer but also in the surface direction which is a direction perpendicular to the thickness direction. The progress of etching in the surface direction causes so-called side etching in which the lower part of the resist is also etched.
 そこで、金属層上にレジストパターンを形成する際、サイドエッチング量を考慮し、予めレジストパターンを太くする補正を行うこともなされている。しかし、係る補正は配線パターンを有する導電性基板の配線の微細化の障害となっていた。 Therefore, when forming a resist pattern on a metal layer, correction is also performed in advance to make the resist pattern thicker in consideration of the side etching amount. However, such correction has been an obstacle to the miniaturization of the wiring of the conductive substrate having the wiring pattern.
 また、例えば特許文献1には、銅箔表面に密着層を形成し、前記密着層の上に感光性レジストを形成し、前記感光性レジストを所望のパターンで露光し、前記感光性レジストを現像し、前記感光性レジストより露出した前記密着層を除去し、前記銅箔をエッチングして配線を形成する工程を含む銅箔の配線形成方法が開示されている。 Further, for example, in Patent Document 1, an adhesive layer is formed on the surface of a copper foil, a photosensitive resist is formed on the adhesive layer, the photosensitive resist is exposed in a desired pattern, and the photosensitive resist is developed. A method of forming a copper foil wiring is disclosed, which includes the steps of removing the exposed adhesion layer from the photosensitive resist and etching the copper foil to form a wiring.
日本国特開2005-039097号公報Japanese Patent Application Laid-Open No. 2005-039097
 しかしながら、特許文献1に開示された銅箔の配線形成方法でも、サイドエッチングの発生を十分に抑制できていなかった。 However, even with the method for forming copper foil wiring disclosed in Patent Document 1, the occurrence of side etching has not been sufficiently suppressed.
 上記従来技術の問題に鑑み、本発明の一側面では、サイドエッチングの発生を抑制した導電性基板を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the problems of the prior art described above, an object of the present invention is to provide a conductive substrate in which the occurrence of side etching is suppressed.
 上記課題を解決するため本発明の一側面では、
 絶縁性基材と、
 前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
 前記金属層上に形成された粗化めっき層とを有し、
 前記粗化めっき層は、平均結晶粒サイズが50nm以上150nm以下の粒状結晶を含む導電性基板を提供する。
In one aspect of the present invention to solve the above problems,
An insulating base material,
A metal layer formed on at least one surface of the insulating substrate;
And a roughening plated layer formed on the metal layer;
The roughened plating layer provides a conductive substrate including granular crystals having an average crystal grain size of 50 nm or more and 150 nm or less.
 本発明の一側面によれば、サイドエッチングの発生を抑制した導電性基板を提供することができる。 According to one aspect of the present invention, it is possible to provide a conductive substrate in which the occurrence of side etching is suppressed.
本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。The top view of the conductive substrate provided with the mesh-like wiring concerning the embodiment of the present invention. 図3のA-A´線における断面図の一の構成例。FIG. 4 is a configuration example of one of the cross-sectional views along the line AA 'in FIG. 3; 図3のA-A´線における断面図の他の構成例。FIG. 4 is another configuration example of the cross-sectional view along the line AA 'in FIG. 3; サイドエッチング量の説明図。Explanatory drawing of the side etching amount.
 以下、本発明の導電性基板、および導電性基板の製造方法の一実施形態について説明する。
(導電性基板)
 本実施形態の導電性基板は、絶縁性基材と、絶縁性基材の少なくとも一方の面上に形成された金属層と、金属層上に形成された粗化めっき層とを有することができる。
Hereinafter, an embodiment of a conductive substrate and a method of manufacturing the conductive substrate of the present invention will be described.
(Conductive substrate)
The conductive substrate of the present embodiment can have an insulating base, a metal layer formed on at least one surface of the insulating base, and a roughened plating layer formed on the metal layer. .
 そして、粗化めっき層は、平均結晶粒サイズが50nm以上150nm以下の粒状結晶を含むことができる。 And a roughening plating layer can contain the granular crystal whose average grain size is 50 nm or more and 150 nm or less.
 また、他の形態においては、粗化めっき層は平均長さが100nm以上300nm以下であり、平均幅が30nm以上80nm以下、平均アスペクト比が2.0以上4.5以下の針状結晶を含むこともできる。 In another embodiment, the roughened plating layer includes needle crystals having an average length of 100 nm to 300 nm, an average width of 30 nm to 80 nm, and an average aspect ratio of 2.0 to 4.5. It can also be done.
 なお、本実施形態における導電性基板とは、金属層等をパターン化する前の、絶縁性基材の表面に金属層、及び粗化めっき層を有する基板と、金属層等をパターニングした基板、すなわち配線基板と、を含む。 Note that the conductive substrate in the present embodiment means a substrate having a metal layer and a roughened plating layer on the surface of the insulating base before patterning the metal layer and the like, and a substrate having the metal layer and the like patterned thereon. That is, the wiring board is included.
 ここでまず、本実施形態の導電性基板に含まれる各部材について以下に説明する。 Here, first, each member included in the conductive substrate of the present embodiment will be described below.
 絶縁性基材の材料としては特に限定されるものではないが、例えばポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂等から選択された1種以上の樹脂を好ましく用いることができる。特に、絶縁性基材の材料としては、ポリアミド、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、COP(シクロオレフィンポリマー)、ポリイミド、ポリカーボネート等から選択された1種以上の樹脂をより好ましく用いることができる。 The material of the insulating substrate is not particularly limited, but is selected from, for example, polyamide resin, polyethylene terephthalate resin, polyethylene naphthalate resin, cycloolefin resin, polyimide resin, polycarbonate resin, etc. One or more resins can be preferably used. In particular, as a material of the insulating substrate, one or more resins selected from polyamide, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), COP (cycloolefin polymer), polyimide, polycarbonate and the like are more preferably used be able to.
 絶縁性基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や、導電性基板の用途に基づく仕様、静電容量等に応じて任意に選択することができる。絶縁性基材の厚さとしては例えば10μm以上200μm以下とすることが好ましく、12μm以上120μm以下とすることがより好ましく、12μm以上100μm以下とすることがさらに好ましい。 The thickness of the insulating substrate is not particularly limited, and can be arbitrarily selected according to the strength required when using the conductive substrate, the specifications based on the application of the conductive substrate, the capacitance, and the like. . The thickness of the insulating substrate is, for example, preferably 10 μm or more and 200 μm or less, more preferably 12 μm or more and 120 μm or less, and still more preferably 12 μm or more and 100 μm or less.
 次に金属層について説明する。 Next, the metal layer will be described.
 金属層を構成する材料は特に限定されず用途にあった電気伝導率を有する材料を選択できるが、電気特性に優れ、且つエッチング処理のし易さから、金属層を構成する材料として銅を用いることが好ましい。すなわち、金属層は銅を含有することが好ましい。 The material forming the metal layer is not particularly limited, and a material having electrical conductivity suitable for the application can be selected, but copper is used as the material forming the metal layer because of excellent electrical characteristics and easiness of etching treatment. Is preferred. That is, the metal layer preferably contains copper.
 金属層が銅を含有する場合、金属層を構成する材料は、例えばCuと、Ni,Mo,Ta,Ti,V,Cr,Fe,Mn,Co,Wの金属群から選ばれる少なくとも1種類以上の金属との銅合金、または銅と上記金属群から選ばれる1種類以上の金属とを含む材料であることが好ましい。また、金属層は銅から構成される銅層とすることもできる。 When the metal layer contains copper, the material constituting the metal layer is, for example, at least one selected from the group of metals Cu, Ni, Mo, Ta, Ti, V, Cr, Fe, Mn, Co, W It is preferable that it is a material containing a copper alloy with the metal of the above, or copper and one or more metals selected from the above metal group. The metal layer can also be a copper layer composed of copper.
 すなわち、金属層が銅を含有する場合、金属層は銅、銅を含有する金属、銅合金から選択された1種類以上の層とすることができる。金属層が銅を含有する場合、金属層は銅、または銅合金の層であることが好ましい。これは、銅または銅合金の層は、特に電気伝導率(導電性)が高く、エッチング加工により配線形成を容易に行うことができるためである。また、銅または銅合金の層は、特に後述するサイドエッチングが生じやすいところ、本実施形態の導電性基板においてはサイドエッチングを抑制できるためである。 That is, when the metal layer contains copper, the metal layer may be copper, a metal containing copper, or one or more layers selected from copper alloys. When the metal layer contains copper, the metal layer is preferably a layer of copper or a copper alloy. This is because the layer of copper or copper alloy has particularly high electric conductivity (conductivity), and wiring can be easily formed by etching. Further, the layer of copper or a copper alloy is particularly susceptible to side etching to be described later, and in the conductive substrate of the present embodiment, side etching can be suppressed.
 金属層を形成する方法は特に限定されないが、例えば他の部材と金属層との間に接着剤を配置しないようにして形成することが好ましい。すなわち、金属層は、他の部材の上面に直接配置されていることが好ましい。なお、金属層は例えば後述する密着層や、絶縁性基材の上面に形成、配置することができる。このため、金属層は、密着層、または絶縁性基材の上面に直接形成、配置されていることが好ましい。 Although the method of forming a metal layer is not specifically limited, For example, it is preferable to form so that an adhesive agent may not be arrange | positioned between other members and a metal layer. That is, the metal layer is preferably disposed directly on the top surface of the other member. In addition, a metal layer can be formed and arrange | positioned, for example on the contact layer mentioned later and the upper surface of an insulating base material. For this reason, it is preferable that the metal layer be formed and disposed directly on the upper surface of the adhesive layer or the insulating substrate.
 他の部材の上面に金属層を直接形成するため、金属層は乾式めっき法を用いて成膜された金属薄膜層を有することが好ましい。乾式めっき法としては特に限定されるものではないが、例えば蒸着法や、スパッタリング法、イオンプレーティング法等を用いることができる。特に膜厚の制御が容易であることからスパッタリング法を用いることが好ましい。 In order to form a metal layer directly on the upper surface of another member, the metal layer preferably has a metal thin film layer deposited using a dry plating method. The dry plating method is not particularly limited. For example, a vapor deposition method, a sputtering method, an ion plating method or the like can be used. In particular, it is preferable to use a sputtering method because control of the film thickness is easy.
 また金属層をより厚くする場合には、乾式めっきにより金属薄膜層を形成した後に湿式めっき法を用いて金属めっき層を積層をすることができる。具体的には例えば、絶縁性基材または密着層上に、金属薄膜層を乾式めっき法により形成し、該金属薄膜層を給電層として用い、湿式めっき法の一種である電解めっきにより金属めっき層を形成することができる。 When the metal layer is made thicker, the metal thin film layer can be formed by dry plating and then the metal plating layer can be stacked using a wet plating method. Specifically, for example, a metal thin film layer is formed by dry plating on an insulating base material or an adhesive layer, and the metal thin film is used as a feeding layer, and a metal plating layer is formed by electrolytic plating which is a type of wet plating. Can be formed.
 なお、上述の様に乾式めっき法のみで金属層を成膜した場合、金属層は金属薄膜層により構成できる。また、乾式めっき法と湿式めっき法とを組み合わせて金属層を形成した場合、金属層は金属薄膜層と金属めっき層とにより構成できる。 When the metal layer is formed only by the dry plating method as described above, the metal layer can be formed of a metal thin film layer. Moreover, when a metal layer is formed combining the dry plating method and the wet plating method, a metal layer can be comprised by a metal thin film layer and a metal plating layer.
 上述のように乾式めっき法のみ、又は乾式めっき法と湿式めっき法とを組み合わせて金属層を形成することにより絶縁性基材または密着層上に接着剤を介さずに直接金属層を形成、配置することができる。 As described above, the metal layer is formed directly on the insulating substrate or the adhesive layer by forming the metal layer by combining only the dry plating method or the dry plating method and the wet plating method, without using an adhesive and arranging the metal layer can do.
 金属層の厚さは特に限定されるものではなく、金属層を配線として用いた場合に、該配線に供給する電流の大きさや配線幅等に応じて任意に選択することができる。 The thickness of the metal layer is not particularly limited, and when the metal layer is used as a wire, it can be arbitrarily selected according to the magnitude of the current supplied to the wire, the wire width, and the like.
 ただし、金属層が厚くなると、配線パターンを形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチが生じ易くなり、細線が形成しにくくなる等の問題を生じる場合がある。このため、金属層の厚さは5μm以下であることが好ましく、3μm以下であることがより好ましい。 However, if the metal layer is thick, side etching tends to occur because etching takes time to perform the wiring pattern formation, which may cause problems such as difficulty in forming fine lines. Therefore, the thickness of the metal layer is preferably 5 μm or less, more preferably 3 μm or less.
 また、特に導電性基板の抵抗値を低くし、十分に電流を供給できるようにする観点から、例えば金属層は厚さが50nm以上であることが好ましく、60nm以上であることがより好ましく、150nm以上であることがさらに好ましい。 Further, in particular, from the viewpoint of lowering the resistance value of the conductive substrate and enabling sufficient current supply, for example, the thickness of the metal layer is preferably 50 nm or more, more preferably 60 nm or more, and 150 nm It is more preferable that it is more than.
 なお、金属層が上述のように金属薄膜層と、金属めっき層とを有する場合には、金属薄膜層の厚さと、金属めっき層の厚さとの合計が上記範囲であることが好ましい。 In addition, when a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
 金属層が金属薄膜層により構成される場合、または金属薄膜層と金属めっき層とにより構成される場合のいずれの場合でも、金属薄膜層の厚さは特に限定されるものではないが、例えば50nm以上700nm以下とすることが好ましい。 The thickness of the metal thin film layer is not particularly limited in either case where the metal layer is constituted of a metal thin film layer or in the case of being constituted of a metal thin film layer and a metal plating layer, for example 50 nm The thickness is preferably 700 nm or less.
 次に、粗化めっき層について説明する。 Next, the roughening plating layer will be described.
 本発明の発明者が、金属層上にレジストを配置し、エッチングを行った場合にサイドエッチングを十分に抑制できない原因について、鋭意検討を行った。その結果、金属層とレジストとの密着性が十分ではなく、金属層とレジストとの間にエッチング液が浸入し、拡がる場合があることがサイドエッチングを十分に抑制できていない原因であることが明らかとなった。 The inventor of the present invention has intensively studied the reason why the side etching can not be sufficiently suppressed when the resist is disposed on the metal layer and the etching is performed. As a result, the adhesion between the metal layer and the resist is not sufficient, and the etching solution may intrude between the metal layer and the resist and spread, which may be a cause that the side etching can not be sufficiently suppressed. It became clear.
 そこで、本発明の発明者はさらに検討を行い、金属層上に粗化めっき層を設けることで、導電性基板の表面、具体的には粗化めっき層の表面上にレジストを配置した場合に、粗化めっき層とレジストとの密着性を高められることを見出した。このため、係る粗化めっき層を有する導電性基板とすることで、サイドエッチングを抑制できることを見出し、本発明を完成させた。 Therefore, when the inventors of the present invention further study and provide a roughened plating layer on the metal layer, a resist is disposed on the surface of the conductive substrate, specifically on the surface of the roughened plating layer. It has been found that the adhesion between the roughened plating layer and the resist can be enhanced. For this reason, it was found that side etching can be suppressed by using the conductive substrate having the roughened plating layer, and the present invention was completed.
 本実施形態の導電性基板の粗化めっき層は、その表面、具体的には粗化めっき層の絶縁性基材と対向する面とは反対側の面、すなわち後述するようにパターン化を行う際にレジストを配置する面が粗化面であることが好ましい。 The roughened plating layer of the conductive substrate of the present embodiment is patterned on its surface, specifically, the surface opposite to the surface of the roughened plating layer facing the insulating substrate, that is, as described later. Preferably, the surface on which the resist is placed is a roughened surface.
 サイドエッチングの発生を特に抑制する観点から、粗化めっき層は、粒状結晶、および針状結晶から選択される1種類以上の結晶を含むことが好ましい。 From the viewpoint of particularly suppressing the occurrence of side etching, the roughening plated layer preferably contains one or more types of crystals selected from granular crystals and needle crystals.
 粗化めっき層が粒状結晶を含む場合、粗化めっき層は平均結晶粒サイズが50nm以上150nm以下の粒状結晶を含むことが好ましい。 When the roughening plating layer contains granular crystals, the roughening plating layer preferably contains granular crystals having an average crystal grain size of 50 nm or more and 150 nm or less.
 これは、粗化めっき層が粒状結晶を含み、その平均結晶粒サイズを50nm以上150nm以下とすることで、粗化めっき層の表面を粗化面として粗化めっき層とレジストとの密着性を高め、サイドエッチングの発生を特に抑制できるからである。 This is because the roughening plating layer contains granular crystals, and the average crystal grain size thereof is 50 nm or more and 150 nm or less, with the surface of the roughening plating layer as the roughening surface and the adhesion between the roughening plating layer and the resist. This is because it is possible to particularly suppress the occurrence of side etching.
 粗化めっき層が粒状結晶を含む場合、その平均結晶粒サイズは70nm以上150nm以下であることがより好ましい。 When the roughening plating layer contains granular crystals, the average crystal grain size is more preferably 70 nm or more and 150 nm or less.
 また、粗化めっき層が粒状結晶を含む場合、粒状結晶の結晶粒サイズの標準偏差σは、10nm以上であることが好ましく、15nm以上であることがより好ましい。これは標準偏差σを10nm以上とすることで、粗化めっき層が含有する粒状結晶について、一定程度以上のばらつきを有することを意味し、粗化めっき層とレジストとの密着性を特に高めることができるからである。粒状結晶の結晶粒サイズの標準偏差σの上限値は特に限定されるものではないが、例えば100nm以下とすることができる。 When the roughening plating layer contains granular crystals, the standard deviation σ of the crystal grain size of the granular crystals is preferably 10 nm or more, and more preferably 15 nm or more. This means that by setting the standard deviation σ to 10 nm or more, the granular crystals contained in the roughened plating layer have a certain degree of dispersion or more, and particularly improve the adhesion between the roughened plating layer and the resist. It is because The upper limit of the standard deviation σ of the crystal grain size of the granular crystal is not particularly limited, but can be, for example, 100 nm or less.
 なお、粒状結晶の結晶粒サイズとは、後述のように走査型電子顕微鏡等で粗化めっき層の粗化面の観察を行った場合に、測定を行う粒状結晶を完全に包摂する最小サイズの円の直径を意味する。 The grain size of the granular crystal is the minimum size that allows complete inclusion of the granular crystal to be measured when the roughened surface of the roughened plating layer is observed with a scanning electron microscope etc. as described later. Means the diameter of a circle.
 また、粗化めっき層が針状結晶を含む場合、粗化めっき層は平均長さが100nm以上300nm以下であり、平均幅が30nm以上80nm以下、平均アスペクト比が2.0以上4.5以下の針状結晶を含むことが好ましい。 When the roughening plating layer contains needle crystals, the roughening plating layer has an average length of 100 nm to 300 nm, an average width of 30 nm to 80 nm, and an average aspect ratio of 2.0 to 4.5. It is preferable to include needle crystals of
 これは、粗化めっき層が針状結晶を含み、その平均長さを100nm以上300nm以下、平均幅を30nm以上80nm以下、アスペクト比を2.0以上4.5以下とすることで、粗化めっき層の表面を粗化面として粗化めっき層とレジストとの密着性を高め、サイドエッチングの発生を特に抑制できるからである。 This is because the roughening plating layer contains needle crystals, and the roughening is achieved by setting the average length to 100 nm to 300 nm, the average width to 30 nm to 80 nm, and the aspect ratio to 2.0 to 4.5. This is because the adhesion between the roughened plating layer and the resist can be enhanced by using the surface of the plating layer as a roughened surface, and the occurrence of side etching can be particularly suppressed.
 粗化めっき層が針状結晶を含む場合、その平均長さは120nm以上260nm以下、平均幅は40nm以上70nm以下、平均アスペクト比は2.5以上4.5以下であることがより好ましい。 When the roughened plating layer contains needle crystals, the average length is preferably 120 nm or more and 260 nm or less, the average width is 40 nm or more and 70 nm or less, and the average aspect ratio is more preferably 2.5 or more and 4.5 or less.
 また、粗化めっき層が針状結晶を含む場合、針状結晶の長さ、幅、アスペクト比の標準偏差σは、それぞれ40nm以上、5nm以上、0.5以上であることが好ましい。これは針状結晶の長さ、幅、アスペクト比の標準偏差σを上述の範囲とすることで、粗化めっき層が含有する針状結晶について、一定程度以上のばらつきを有することを意味し、粗化めっき層とレジストとの密着性を特に高めることができるからである。針状結晶の長さ、幅、アスペクト比の標準偏差σの上限値は特に限定されるものではないが、例えばそれぞれ75nm以下、50nm以下、5以下とすることができる。 When the roughened plating layer contains needle crystals, the standard deviation σ of the length, width, and aspect ratio of the needle crystals is preferably 40 nm or more, 5 nm or more, and 0.5 or more. This means that the needle crystals contained in the roughened plating layer have a certain degree of variation or more by setting the standard deviation σ of the length, width and aspect ratio of the needle crystals to the above-mentioned range, This is because the adhesion between the roughened plating layer and the resist can be particularly enhanced. The upper limit value of the standard deviation σ of the length, width and aspect ratio of the needle crystals is not particularly limited, but can be, for example, 75 nm or less, 50 nm or less, and 5 or less.
 なお、針状結晶の長さ、幅とは、後述のように走査型電子顕微鏡等で粗化めっき層の粗化面の観察を行った場合の、それぞれ針状結晶の長辺の長さ、短辺の長さを意味する。そして、アスペクト比は、長さを幅で除した値となる。 The length and width of the needle crystals are the length of the long sides of the needle crystals when the roughened surface of the roughened plating layer is observed with a scanning electron microscope or the like as described later. It means the short side length. The aspect ratio is the length divided by the width.
 粗化めっき層が含有する結晶の平均結晶粒サイズや、平均長さ、平均幅、平均アスペクト比、また標準偏差σは、例えば走査型電子顕微鏡(SEM:Scanning Electron Microscope)により粗化めっき層の粗化面を観察した際の観察画像から測定、算出できる。 The average grain size, average length, average width, average aspect ratio, and standard deviation σ of the crystals contained in the roughening plating layer are, for example, those of the roughening plating layer by a scanning electron microscope (SEM: Scanning Electron Microscope). It can be measured and calculated from the observation image when observing the roughened surface.
 粗化めっき層の粗化面を観察する際の具体的な条件は特に限定されないが、例えば任意の位置で50000倍に拡大することが好ましい。そして粗化めっき層が粒状結晶を含有する場合、1視野内において任意に選択した20個の粒状結晶について結晶粒サイズを測定し、該20個の粒状結晶についての結晶粒サイズの平均値を平均結晶粒サイズとすることができる。また、20個の粒状結晶の結晶粒サイズの測定値、および算出した平均結晶粒サイズから、結晶粒サイズの標準偏差を算出できる。 Although the specific conditions at the time of observing the roughening surface of a roughening plating layer are not specifically limited, For example, it is preferable to expand 50000 times in arbitrary positions. When the roughened plating layer contains granular crystals, the crystal grain size is measured for 20 arbitrarily selected granular crystals in one field of view, and the average value of the crystal grain sizes of the 20 granular crystals is averaged. The grain size can be made. In addition, the standard deviation of the grain size can be calculated from the measured values of the grain size of the 20 granular crystals and the calculated average grain size.
 粗化めっき層が針状結晶を含有する場合、同様に1視野内において任意に選択した20個の針状結晶について長さおよび幅を測定し、アスペクト比を算出することができる。そして、20個の針状結晶についての長さ、幅、およびアスペクト比の平均値を平均長さ、平均幅、平均アスペクト比とすることができる。また、20個の針状結晶の長さ、幅の測定値、アスペクト比の計算値、および算出した平均長さ、平均幅、平均アスペクト比から、それぞれの標準偏差を算出できる。 When the roughened plating layer contains needle crystals, the length and width of 20 arbitrarily selected needle crystals can be similarly measured in one field of view, and the aspect ratio can be calculated. And the average value of length, width, and aspect ratio about 20 needle crystals can be made into average length, average width, average aspect ratio. The standard deviation of each of the 20 needle crystals can be calculated from the measured length, the measured width, the calculated aspect ratio, and the calculated average length, average width, and average aspect ratio.
 なお、粒状結晶、もしくは針状結晶について、1視野内に20個以上含むように観察視野の位置を選択することが好ましいが、20個以上となる視野を選択できない場合には、20個未満の粒状結晶、もしくは針状結晶を用いて、平均結晶粒サイズ、もしくは平均長さ、平均幅、平均アスペクト比を算出しても良い。 In addition, although it is preferable to select the position of an observation visual field so that 20 or more may be included in 1 visual field about a granular crystal or needle-like crystal, when the visual field which becomes 20 or more can not be selected, less than 20 Granular crystals or needle crystals may be used to calculate an average crystal grain size, an average length, an average width, and an average aspect ratio.
 上述のように、粗化めっき層の粗化面について走査型電子顕微鏡等により粒状結晶等の結晶のサイズを算出できるため、上述の粒状結晶や、針状結晶は、粗化めっき層の粗化面に含有される結晶ともいえる。 As described above, since the size of crystals such as granular crystals can be calculated with a scanning electron microscope etc. on the roughened surface of the roughened plating layer, the above-mentioned granular crystals and needle crystals are roughened on the roughened plating layer. It can be said that it is a crystal contained in the surface.
 本実施形態の導電性基板の粗化めっき層の材料は特に限定されないが、例えばニッケルの単体と、ニッケル酸化物と、ニッケル水酸化物と、銅とを含むことができる。 Although the material of the roughening plating layer of the conductive substrate of the present embodiment is not particularly limited, for example, a single substance of nickel, a nickel oxide, a nickel hydroxide, and copper can be included.
 ここで、粗化めっき層に含まれる銅の状態は特に限定されるものではないが、銅は、例えば銅の単体および銅の化合物から選択された1種以上として含むことができる。銅の化合物としては、例えば銅酸化物や、銅水酸化物等を挙げることができる。 Here, the state of copper contained in the roughened plating layer is not particularly limited, but copper can be contained, for example, as one or more selected from a single substance of copper and a compound of copper. As a compound of copper, copper oxide, copper hydroxide, etc. can be mentioned, for example.
 このため、粗化めっき層は例えば、ニッケルの単体、ニッケル酸化物、およびニッケル水酸化物を含有し、さらに、銅の単体すなわち金属銅と、銅酸化物と、銅水酸化物とから選択された1種類以上を含有することができる。 Therefore, the roughened plating layer contains, for example, a simple substance of nickel, a nickel oxide, and a nickel hydroxide, and is further selected from a simple substance of copper, ie, metallic copper, a copper oxide, and a copper hydroxide. It can contain one or more kinds.
 粗化めっき層が、ニッケルの単体、ニッケル酸化物、ニッケル水酸化物、および銅、例えば銅の単体および銅の化合物から選択された1種以上を含有することで、粗化めっき層のエッチング液に対する反応性を金属層と同等にすることができる。このため、金属層と、粗化めっき層とを同時にエッチングした場合に、両層を目的の形状となるように、かつ平面内で均一にエッチングでき、寸法ばらつきやサイドエッチングの発生を特に抑制できる。 An etching solution for a roughening plating layer, wherein the roughening plating layer contains at least one selected from a simple substance of nickel, nickel oxide, nickel hydroxide, and copper, for example, a simple substance of copper and a compound of copper. The reactivity to H can be made equal to that of the metal layer. For this reason, when the metal layer and the roughening plating layer are simultaneously etched, both layers can be etched uniformly in a plane so as to have a desired shape, and the occurrence of dimensional variation and side etching can be particularly suppressed. .
 粗化めっき層の形成方法は特に限定されるものではなく、例えば湿式法により形成することができる。 The method for forming the roughened plating layer is not particularly limited, and can be formed, for example, by a wet method.
 湿式法としては、特に電解めっき法を用いることが好ましい。 As a wet method, it is particularly preferable to use electrolytic plating.
 電解めっき法により粗化めっき層を成膜する際に用いるめっき液についてはその組成は特に限定されるものではない。例えば、ニッケルイオンと、銅イオンとを含むめっき液を好ましく用いることができる。 The composition of the plating solution used to form the roughened plating layer by electrolytic plating is not particularly limited. For example, a plating solution containing nickel ions and copper ions can be preferably used.
 例えば、めっき液中のニッケルイオン濃度は、2.0g/L以上であることが好ましく、3.0g/L以上であることがより好ましい。 For example, the nickel ion concentration in the plating solution is preferably 2.0 g / L or more, and more preferably 3.0 g / L or more.
 めっき液中のニッケルイオン濃度の上限値についても特に限定されるものではないが、例えば20.0g/L以下であることが好ましく、15.0g/L以下であることがより好ましい。 The upper limit value of the nickel ion concentration in the plating solution is not particularly limited either, but is preferably 20.0 g / L or less, and more preferably 15.0 g / L or less.
 また、めっき液中の銅イオン濃度は、0.005g/L以上であることが好ましく、0.008g/L以上であることがより好ましい。 The copper ion concentration in the plating solution is preferably 0.005 g / L or more, more preferably 0.008 g / L or more.
 めっき液中の銅イオン濃度の上限値は特に限定されるものではないが、例えば4.0g/L以下であることが好ましく、1.02g/L以下であることがより好ましい。 The upper limit of the copper ion concentration in the plating solution is not particularly limited, but is preferably 4.0 g / L or less, and more preferably 1.02 g / L or less.
 めっき液を調製する際、ニッケルイオンと、銅イオンとの供給方法は特に限定されるものではなく、例えば塩の状態で供給することができる。例えばスルファミン酸塩や、硫酸塩を好適に用いることができる。なお、塩の種類は各金属元素について全て同じ種類の塩でもよく、異なる種類の塩を同時に用いることもできる。具体的には例えば硫酸ニッケルと、硫酸銅とのように同じ種類の塩を用いてめっき液を調製することもできる。また、例えば硫酸ニッケルと、スルファミン酸銅と、のように異なる種類の塩を同時に用いてめっき液を調製することもできる。 When preparing a plating solution, the supply method of nickel ion and copper ion is not specifically limited, For example, it can supply in the state of a salt. For example, sulfamate and sulfate can be suitably used. The type of salt may be the same type of salt for each metal element, or different types of salts may be used simultaneously. Specifically, the plating solution can also be prepared using the same type of salt as, for example, nickel sulfate and copper sulfate. In addition, a plating solution can also be prepared by simultaneously using different types of salts such as, for example, nickel sulfate and copper sulfamate.
 そして、pH調整剤としてはアルカリ金属水酸化物を好ましく用いることができる。 And an alkali metal hydroxide can be preferably used as a pH adjuster.
 pH調整剤であるアルカリ金属水酸化物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムから選択された1種類以上を用いることができる。特に、pH調整剤であるアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウムから選択された1種類以上であることがより好ましい。これは、水酸化ナトリウム、水酸化カリウムは特に入手しやすく、コスト的にも優れるからである。 As an alkali metal hydroxide which is a pH adjuster, for example, one or more selected from sodium hydroxide, potassium hydroxide and lithium hydroxide can be used. In particular, as the alkali metal hydroxide which is a pH adjuster, one or more selected from sodium hydroxide and potassium hydroxide is more preferable. This is because sodium hydroxide and potassium hydroxide are particularly easy to obtain and cost-effective.
 本実施形態のめっき液のpHは特に限定されるものではないが、例えば3.0以上5.2以下であることが好ましく、3.5以上5.0以下であることがより好ましい。 The pH of the plating solution of the present embodiment is not particularly limited, but is preferably 3.0 or more and 5.2 or less, and more preferably 3.5 or more and 5.0 or less.
 また、めっき液は、錯化剤をさらに含有することもできる。錯化剤としては例えばアミド硫酸を好ましく用いることができる。 In addition, the plating solution can further contain a complexing agent. For example, amidosulfuric acid can be preferably used as the complexing agent.
 めっき液中の錯化剤の含有量については特に限定されるものではなく、任意に選択することができる。 The content of the complexing agent in the plating solution is not particularly limited, and can be arbitrarily selected.
 例えば、錯化剤としてアミド硫酸を用いる場合、めっき液中のアミド硫酸の濃度は特に限定されないが、例えば1g/L以上50g/L以下であることが好ましく、5g/L以上20g/L以下であることが好ましい。 For example, when using amidosulfuric acid as the complexing agent, the concentration of amidosulfuric acid in the plating solution is not particularly limited, but is preferably 1 g / L to 50 g / L, for example 5 g / L to 20 g / L. Is preferred.
 なお、粗化めっき層を成膜する際のめっき液のpHや、電流密度を調整することで、粗化めっき層が含有する結晶の形状や、サイズを選択することができる。例えばめっき液のpHを高くしたり、成膜時の電流密度を高くすることで針状結晶が生じやすくなり、めっき液のpHを低くしたり、成膜時の電流密度を低くすることで粒状結晶が生じやすくなる。 In addition, the shape and size of the crystal | crystallization which a roughening plating layer contains can be selected by adjusting pH of the plating solution at the time of forming a roughening plating layer into a film, and an electric current density. For example, by increasing the pH of the plating solution or increasing the current density at the time of film formation, needle crystals are easily generated, and the pH of the plating solution is lowered, or the current density at the time of film formation is decreased. Crystals tend to form.
 このため、例えば予備試験を行い、所望の形状、サイズの結晶を含む粗化めっき層となるように、条件を選択することができる。 For this reason, for example, a preliminary test can be performed to select the conditions such that a roughened plated layer containing crystals of a desired shape and size is obtained.
 粗化めっき層の厚さは特に限定されるものではなく、レジスト層との密着性を十分に高められるようにその厚さを選択できる。 The thickness of the roughening plating layer is not particularly limited, and the thickness can be selected so that the adhesion to the resist layer can be sufficiently enhanced.
 粗化めっき層の厚さは例えば50nm以上であることが好ましく、70nm以上であることがより好ましい。粗化めっき層の厚さを50nm以上とすることにより、表面に凹凸を十分に形成し、レジスト層との密着性を高めることができるためである。 The thickness of the roughened plating layer is, for example, preferably 50 nm or more, and more preferably 70 nm or more. By setting the thickness of the roughened plating layer to 50 nm or more, it is possible to form asperities on the surface sufficiently and to improve the adhesion to the resist layer.
 また、粗化めっき層の厚さの上限値は特に限定されるものではないが、必要以上に厚くすると、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、粗化めっき層の厚さは350nm以下とすることが好ましく、150nm以下とすることよりが好ましく、145nm以下とすることがさらに好ましい。 Further, the upper limit of the thickness of the roughening plating layer is not particularly limited, but if it is thicker than necessary, the time required for etching when forming the wiring becomes longer, which leads to an increase in cost. . Therefore, the thickness of the roughening plating layer is preferably 350 nm or less, more preferably 150 nm or less, and still more preferably 145 nm or less.
 また、導電性基板は上述の絶縁性基材、金属層、粗化めっき層以外に任意の層を設けることもできる。例えば密着層を設けることができる。 Moreover, the conductive substrate can also provide arbitrary layers other than the above-mentioned insulating base material, a metal layer, and a roughening plating layer. For example, an adhesive layer can be provided.
 密着層の構成例について説明する。 A configuration example of the adhesion layer will be described.
 上述のように金属層は絶縁性基材上に形成することができるが、絶縁性基材上に金属層を直接形成した場合に、絶縁性基材と金属層との密着性は十分ではない場合がある。このため、絶縁性基材の上面に直接金属層を形成した場合、製造過程、または、使用時に絶縁性基材から金属層が剥離する場合がある。 As described above, the metal layer can be formed on the insulating substrate, but when the metal layer is directly formed on the insulating substrate, the adhesion between the insulating substrate and the metal layer is not sufficient. There is a case. For this reason, when a metal layer is directly formed on the upper surface of the insulating substrate, the metal layer may be separated from the insulating substrate during the manufacturing process or during use.
 そこで、本実施形態の導電性基板においては、絶縁性基材と金属層との密着性を高めるため、絶縁性基材上に密着層を配置することができる。すなわち、絶縁性基材と金属層との間に密着層を有する導電性基板とすることもできる。 Therefore, in the conductive substrate of the present embodiment, an adhesion layer can be disposed on the insulating base in order to enhance the adhesion between the insulating base and the metal layer. That is, a conductive substrate having an adhesive layer between the insulating base and the metal layer can also be obtained.
 絶縁性基材と金属層との間に密着層を配置することにより、絶縁性基材と金属層との密着性を高め、絶縁性基材から金属層が剥離することをより確実に抑制できる。 By arranging the adhesion layer between the insulating base and the metal layer, the adhesion between the insulating base and the metal layer can be enhanced, and peeling of the metal layer from the insulating base can be more reliably suppressed. .
 密着層を構成する材料は特に限定されるものではなく、絶縁性基材及び金属層との密着力や、要求される金属層表面での光の反射の抑制の程度、また、導電性基板を使用する環境(例えば湿度や、温度)に対する安定性の程度等に応じて任意に選択することができる。 The material constituting the adhesion layer is not particularly limited, and the adhesion between the insulating substrate and the metal layer, the required degree of suppression of light reflection on the surface of the metal layer, and the conductive substrate It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity, temperature) to be used.
 密着層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種類以上の金属を含むことが好ましい。また、密着層は炭素、酸素、水素、窒素から選ばれる1種類以上の元素をさらに含むこともできる。 The adhesion layer preferably contains, for example, at least one metal selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. The adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen and nitrogen.
 なお、密着層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種類以上の金属を含む金属合金を含むこともできる。この場合についても、密着層は炭素、酸素、水素、窒素から選ばれる1種類以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種類以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。 The adhesion layer can also include a metal alloy containing at least two or more metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two or more kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn and Mn, a Cu-Ti-Fe alloy Alternatively, Cu-Ni-Fe alloy, Ni-Cu alloy, Ni-Zn alloy, Ni-Ti alloy, Ni-W alloy, Ni-Cr alloy, Ni-Cu-Cr alloy can be preferably used.
 密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には上述のように炭素、酸素、水素、窒素から選ばれる1種類以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 Although the film-forming method of the adhesion layer is not particularly limited, it is preferable to form a film by dry plating. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy. As described above, one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
 密着層が炭素、酸素、水素、窒素から選ばれる1種類以上の元素を含む場合には、密着層を成膜する際の雰囲気中に炭素、酸素、水素、窒素から選ばれる1種類以上の元素を含有するガスを添加しておくことにより、密着層中に添加することができる。例えば、密着層に炭素を添加する場合には一酸化炭素ガスおよび二酸化炭素ガスから選択された1種以上を、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび水から選択された1種以上を、窒素を添加する場合には窒素ガスを、乾式めっきを行う際の雰囲気中に添加しておくことができる。 When the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen, the atmosphere for forming the adhesion layer includes one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. Can be added to the adhesive layer by adding a gas containing. For example, one or more selected from carbon monoxide gas and carbon dioxide gas when adding carbon to the adhesion layer, oxygen gas when adding oxygen, hydrogen gas when adding hydrogen, and In the case of adding nitrogen, one or more selected from water can be added with nitrogen gas in the atmosphere for dry plating.
 炭素、酸素、水素、窒素から選ばれる1種類以上の元素を含有するガスは、不活性ガスに添加し、乾式めっきの際の雰囲気ガスとすることが好ましい。不活性ガスとしては特に限定されないが、例えばアルゴンを好ましく用いることができる。 A gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas at the time of dry plating. The inert gas is not particularly limited but, for example, argon can be preferably used.
 密着層を上述のように乾式めっき法により成膜することにより、絶縁性基材と密着層との密着性を高めることができる。そして、密着層は例えば金属を主成分として含むことができるため金属層との密着性も高い。このため、絶縁性基材と金属層との間に密着層を配置することにより、金属層の剥離を抑制することができる。 By forming the adhesion layer by dry plating as described above, the adhesion between the insulating substrate and the adhesion layer can be enhanced. And since the adhesion layer can contain, for example, a metal as a main component, the adhesion to the metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange | positioning an adhesion layer between an insulating base material and a metal layer.
 密着層の厚さは特に限定されるものではないが、例えば3nm以上50nm以下とすることが好ましく、3nm以上35nm以下とすることがより好ましく、3nm以上33nm以下とすることがさらに好ましい。 The thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
 次に、導電性基板の構成例について説明する。 Next, a configuration example of the conductive substrate will be described.
 上述のように、本実施形態の導電性基板は絶縁性基材と、金属層と、粗化めっき層と、を有することができる。また、任意に密着層等の層を設けることもできる。 As described above, the conductive substrate of the present embodiment can have the insulating base, the metal layer, and the roughening plated layer. Moreover, layers, such as an adhesion layer, can also be provided arbitrarily.
 具体的な構成例について、図1A、図1Bを用いて以下に説明する。図1A、図1Bは、本実施形態の導電性基板の、絶縁性基材、金属層、粗化めっき層の積層方向と平行な面における断面図の例を示している。 A specific configuration example will be described below with reference to FIGS. 1A and 1B. FIGS. 1A and 1B show examples of cross-sectional views in a plane parallel to the stacking direction of the insulating base material, the metal layer, and the roughening plating layer of the conductive substrate of the present embodiment.
 本実施形態の導電性基板は、例えば絶縁性基材の少なくとも一方の面上に、絶縁性基材側から金属層と、粗化めっき層とがその順に積層された構造を有することができる。 The conductive substrate of the present embodiment can have, for example, a structure in which a metal layer and a roughening plated layer are laminated in that order from the insulating substrate side on at least one surface of the insulating substrate.
 具体的には例えば、図1Aに示した導電性基板10Aのように、絶縁性基材11の一方の面11a側に金属層12と、粗化めっき層13と、を一層ずつその順に積層することができる。粗化めっき層13は、粗化めっき層13の絶縁性基材11と対向する面とは反対側の面である表面Aを粗化面とすることができる。また、図1Bに示した導電性基板10Bのように、絶縁性基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ金属層12A、12Bと、粗化めっき層13A、13Bと、を一層ずつその順に積層することができる。この場合も粗化めっき層13A、13Bは、絶縁性基材11と対向する面とは反対側の面である表面A、表面Bを粗化面とすることができる。 Specifically, for example, as in the case of the conductive substrate 10A shown in FIG. 1A, the metal layer 12 and the roughening plating layer 13 are sequentially laminated one by one on one surface 11a side of the insulating substrate 11 be able to. The roughening plating layer 13 can make surface A which is a surface on the opposite side to the surface facing the insulating base material 11 of the roughening plating layer 13 a roughening surface. Further, as in the case of the conductive substrate 10B shown in FIG. 1B, metal layers 12A and 12B are provided on one surface 11a side of the insulating base material 11 and the other surface (the other surface) 11b side, The roughened plating layers 13A and 13B can be stacked one by one in this order. Also in this case, the roughened plating layers 13A and 13B can have the surfaces A and B, which are surfaces opposite to the surface facing the insulating substrate 11, as roughened surfaces.
 また、さらに任意の層として、例えば密着層を設けた構成とすることもできる。この場合例えば、絶縁性基材の少なくとも一方の面上に、絶縁性基材側から密着層と、金属層と、粗化めっき層とがその順に形成された構造とすることができる。 Furthermore, for example, an adhesion layer may be provided as an arbitrary layer. In this case, for example, the adhesive layer, the metal layer, and the roughening plating layer can be formed in this order from the insulating substrate side on at least one surface of the insulating substrate.
 具体的には例えば図2Aに示した導電性基板20Aのように、絶縁性基材11の一方の面11a側に、密着層14と、金属層12と、粗化めっき層13とをその順に積層することができる。 Specifically, for example, as in the case of the conductive substrate 20A shown in FIG. 2A, the adhesion layer 14, the metal layer 12, and the roughened plating layer 13 are in this order on one surface 11a side of the insulating substrate 11. It can be stacked.
 この場合も絶縁性基材11の両面に密着層、金属層、粗化めっき層を積層した構成とすることもできる。具体的には図2Bに示した導電性基板20Bのように、絶縁性基材11の一方の面11a側と、他方の面11b側と、にそれぞれ密着層14A、14Bと、金属層12A、12Bと、粗化めっき層13A、13Bとをその順に積層できる。 Also in this case, the adhesion layer, the metal layer, and the roughening plating layer may be laminated on both surfaces of the insulating substrate 11. Specifically, as in the conductive substrate 20B shown in FIG. 2B, the adhesion layers 14A and 14B and the metal layer 12A, respectively on the side of the surface 11a of the insulating substrate 11 and the side of the other surface 11b. 12B and roughening plating layers 13A and 13B can be laminated in that order.
 なお、図1B、図2Bには、絶縁性基材の両面に金属層、粗化めっき層等を積層した場合において、絶縁性基材11を対称面として絶縁性基材11の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。例えば、図2Bにおいて、絶縁性基材11の一方の面11a側の構成を図1Bの構成と同様に、密着層14Aを設けずに金属層12Aと、粗化めっき層13Aとをその順に積層した形態とし、絶縁性基材11の上下に積層した層を非対称な構成としてもよい。 In FIG. 1B and FIG. 2B, when the metal layer, the roughening plating layer, etc. are laminated on both sides of the insulating substrate, the insulating substrate 11 is laminated on the upper and lower sides of the insulating substrate 11 as a symmetry plane. Although an example in which the layers are arranged to be symmetrical is shown, the present invention is not limited to such a form. For example, in FIG. 2B, as in the configuration of FIG. 1B, the configuration on one surface 11a side of the insulating base material 11 has the metal layer 12A and the roughened plating layer 13A laminated in that order without providing the adhesion layer 14A. The layers stacked on the upper and lower sides of the insulating substrate 11 may be asymmetric.
 本実施形態の導電性基板は各種電子部品を実装して用いる導電性基板として好ましく用いることができる。導電性基板の配線の形状は特に限定されるものではなく、任意の形状、パターンを有することができる。ここでは、メッシュ状の配線を備えた導電性基板を例に説明する。 The conductive substrate of the present embodiment can be preferably used as a conductive substrate on which various electronic components are mounted. The shape of the wiring of the conductive substrate is not particularly limited, and may have any shape and pattern. Here, a conductive substrate provided with mesh-like wiring will be described as an example.
 メッシュ状の配線を備えた導電性基板は、ここまで説明した本実施形態の導電性基板の金属層、及び粗化めっき層、場合によってはさらに密着層をエッチングすることにより得ることができる。 The conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer of the conductive substrate of the present embodiment described so far and the roughened plating layer, and in some cases, the adhesion layer.
 例えば、二層の配線によりメッシュ状の配線とすることができる。具体的な構成例を図3に示す。図3はメッシュ状の配線を備えた導電性基板30を金属層等の積層方向の上面側から見た図を示しており、配線パターンが分かり易いように、絶縁性基材、及び金属層をパターン化して形成した配線31A、31B以外の層は記載を省略している。また、絶縁性基材11を介してみえる配線31Bも示している。 For example, a two-layer wiring can be used to form a mesh-like wiring. A specific configuration example is shown in FIG. FIG. 3 is a view of the conductive substrate 30 provided with the mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like, and the insulating substrate and the metal layer are made Layers other than the wirings 31A and 31B formed by patterning are omitted. Moreover, the wiring 31B which sees through the insulating base material 11 is also shown.
 図3に示した導電性基板30は、絶縁性基材11と、図中Y軸方向に平行な複数の配線31Aと、X軸方向に平行な配線31Bとを有している。なお、配線31A、31Bは金属層をエッチングして形成されており、該配線31A、31Bの上面または下面には図示しない粗化めっき層が形成されている。また、粗化めっき層は配線31A、31Bと同じ形状にエッチングされている。 The conductive substrate 30 shown in FIG. 3 has the insulating base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and a wiring 31B parallel to the X-axis direction. The wirings 31A and 31B are formed by etching a metal layer, and a roughened plating layer (not shown) is formed on the upper surface or the lower surface of the wirings 31A and 31B. Further, the roughening plated layer is etched in the same shape as the wirings 31A and 31B.
 絶縁性基材11と配線31A、31Bとの配置は特に限定されない。絶縁性基材11と配線との配置の構成例を図4A、図4Bに示す。図4A、図4Bは図3のA-A´線での断面図に当たる。 The arrangement of the insulating base 11 and the wires 31A and 31B is not particularly limited. The structural example of arrangement | positioning with the insulating base material 11 and wiring is shown to FIG. 4A and FIG. 4B. 4A and 4B correspond to cross-sectional views taken along the line AA 'of FIG.
 まず、図4Aに示したように、絶縁性基材11の上下面にそれぞれ配線31A、31Bが配置されていてもよい。なお、図4Aでは配線31Aの上面、及び配線31Bの下面には、配線と同じ形状にエッチングされた粗化めっき層32A、32Bが配置されている。 First, as shown in FIG. 4A, the wirings 31A and 31B may be disposed on the upper and lower surfaces of the insulating base material 11, respectively. In FIG. 4A, roughened plated layers 32A and 32B etched in the same shape as the wiring are disposed on the upper surface of the wiring 31A and the lower surface of the wiring 31B.
 また、図4Bに示したように、1組の絶縁性基材11を用い、一方の絶縁性基材11を挟んで上下面に配線31A、31Bを配置し、かつ、一方の配線31Bは絶縁性基材11間に配置されてもよい。この場合も、配線31A、31Bの上面には配線と同じ形状にエッチングされた粗化めっき層32A、32Bが配置されている。なお、既述のように、金属層、粗化めっき層以外に密着層を設けることもできる。このため、図4A、図4Bいずれの場合でも、例えば配線31Aおよび配線31Bのいずれか一方、もしくは両方と絶縁性基材11との間に密着層を設けることもできる。密着層を設ける場合、密着層も配線31A、31Bと同じ形状にエッチングされていることが好ましい。 Moreover, as shown to FIG. 4B, using the one set of insulating base materials 11, wiring 31A, 31B is arrange | positioned on the upper and lower surfaces on both sides of one insulating base material 11, and one wiring 31B is an insulation It may be disposed between the base materials 11. Also in this case, roughened plated layers 32A and 32B etched in the same shape as the wirings are disposed on the top surfaces of the wirings 31A and 31B. In addition to the metal layer and the roughening plating layer, an adhesion layer may be provided as described above. For this reason, in any case of FIG. 4A and FIG. 4B, for example, an adhesive layer may be provided between the insulating base 11 and either one or both of the wiring 31A and the wiring 31B. When the adhesion layer is provided, the adhesion layer is also preferably etched to the same shape as the wirings 31A and 31B.
 図3及び図4Aに示したメッシュ状の配線を有する導電性基板は例えば、図1Bのように絶縁性基材11の両面に金属層12A、12Bと、粗化めっき層13A、13Bとを備えた導電性基板から形成することができる。 For example, as shown in FIG. 1B, the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is provided with metal layers 12A and 12B and roughened plating layers 13A and 13B on both sides of the insulating substrate 11. It can be formed from a conductive substrate.
 図1Bの導電性基板を用いて形成した場合を例に説明すると、まず、絶縁性基材11の一方の面11a側の金属層12A、粗化めっき層13Aを、図1B中Y軸方向に平行な複数の線状のパターンがX軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。なお、図1B中のX軸方向は、各層の幅方向と平行な方向を意味している。また、図1B中のY軸方向とは、図1B中の紙面と垂直な方向を意味している。 The case where the conductive substrate of FIG. 1B is formed will be described by way of example. First, the metal layer 12A and the roughening plated layer 13A on one surface 11a side of the insulating substrate 11 are arranged in the Y-axis direction in FIG. Etching is performed such that a plurality of parallel linear patterns are disposed at predetermined intervals along the X-axis direction. The X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer. Also, the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
 そして、絶縁性基材11の他方の面11b側の金属層12B、粗化めっき層13Bを図1B中X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。 Then, a plurality of linear patterns parallel to the X-axis direction in FIG. 1B are separated from the metal layer 12B on the other surface 11b side of the insulating substrate 11 in the Y-axis direction at predetermined intervals in FIG. 1B. Do the etching to be placed along.
 以上の操作により図3、図4Aに示したメッシュ状の配線を有する導電性基板を形成することができる。なお、絶縁性基材11の両面のエッチングは同時に行うこともできる。すなわち、金属層12A、12B、粗化めっき層13A、13Bのエッチングは同時に行ってもよい。また、図4Aにおいて、配線31A、31Bと、絶縁性基材11との間にさらに配線31A、31Bと同じ形状にパターン化された密着層を有する導電性基板は、図2Bに示した導電性基板を用いて同様にエッチングを行うことで作製できる。 By the above operation, the conductive substrate having the mesh-like wiring shown in FIG. 3 and FIG. 4A can be formed. In addition, the etching of both surfaces of the insulating base material 11 can also be performed simultaneously. That is, the etching of the metal layers 12A and 12B and the roughening plated layers 13A and 13B may be performed simultaneously. Further, in FIG. 4A, the conductive substrate having an adhesion layer patterned in the same shape as the wires 31A and 31B between the wires 31A and 31B and the insulating base 11 is further conductive as shown in FIG. 2B. It can manufacture by etching similarly using a board | substrate.
 図3に示したメッシュ状の配線を有する導電性基板は、図1Aまたは図2Aに示した導電性基板を2枚用いることにより形成することもできる。図1Aの導電性基板を2枚用いて形成した場合を例に説明すると、図1Aに示した導電性基板2枚についてそれぞれ、金属層12、粗化めっき層13を、X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではない。例えば、金属層12等が積層された図1Aにおける表面Aと、金属層12等が積層されていない図1Aにおける他方の面11bとを貼り合せて、図4Bに示した構造となるようにすることもできる。 The conductive substrate having the mesh-like wiring shown in FIG. 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A. The case where two conductive substrates shown in FIG. 1A are formed will be described by way of example. For the two conductive substrates shown in FIG. 1A, the metal layer 12 and the roughening plated layer 13 are parallel to the X-axis direction. Etching is performed such that a plurality of linear patterns are arranged along the Y-axis direction at predetermined intervals. Then, by aligning two conductive substrates in a direction such that the linear patterns formed on the conductive substrates by the above etching process intersect with each other, a conductive substrate provided with a mesh-like wiring is obtained. be able to. The surface to be bonded when bonding the two conductive substrates is not particularly limited. For example, the surface A in FIG. 1A in which the metal layer 12 and the like are laminated and the other surface 11b in FIG. 1A in which the metal layer 12 and the like are not laminated are bonded to obtain the structure shown in FIG. It can also be done.
 また、例えば絶縁性基材11の金属層12等が積層されていない図1Aにおける他方の面11b同士を貼り合せて断面が図4Aに示した構造となるようにすることもできる。 Further, for example, the other surfaces 11b in FIG. 1A where the metal layer 12 and the like of the insulating base material 11 are not laminated may be bonded to each other to have a cross section shown in FIG. 4A.
 なお、図4A、図4Bにおいて、配線31A、31Bと、絶縁性基材11との間にさらに配線31A、31Bと同じ形状にパターン化された密着層を有する導電性基板は、図1Aに示した導電性基板にかえて図2Aに示した導電性基板を用いることで作製できる。 In FIGS. 4A and 4B, a conductive substrate having an adhesive layer patterned in the same shape as the wires 31A and 31B between the wires 31A and 31B and the insulating base 11 is shown in FIG. 1A. Instead of the conductive substrate, the conductive substrate shown in FIG. 2A can be used.
 図3、図4A、図4Bに示したメッシュ状の配線を有する導電性基板における配線の幅や、配線間の距離は特に限定されるものではなく、例えば、配線に流す電流量等に応じて選択することができる。 The width of the wires and the distance between the wires in the conductive substrate having the mesh-like wires shown in FIGS. 3, 4A and 4B are not particularly limited, and, for example, according to the amount of current flowing in the wires It can be selected.
 ただし、本実施形態の導電性基板によれば、粗化めっき層を有しており、粗化めっき層と金属層とをエッチングし、パターン化した場合でも、サイドエッチングの発生を抑制し、粗化めっき層、及び金属層を所望の形状にパターン化できる。具体的には例えば配線幅が10μm以下の配線を形成することができる。このため、本実施形態の導電性基板は、配線幅が10μm以下の配線を含むことが好ましい。配線幅の下限値は特に限定されないが、例えば3μm以上とすることができる。 However, according to the conductive substrate of the present embodiment, the roughened plating layer is provided, and even when the roughened plating layer and the metal layer are etched and patterned, the occurrence of side etching is suppressed, and roughening is performed. The plated layer and the metal layer can be patterned into a desired shape. Specifically, for example, a wire having a wire width of 10 μm or less can be formed. For this reason, the conductive substrate of the present embodiment preferably includes a wire having a wire width of 10 μm or less. The lower limit of the wiring width is not particularly limited, but can be, for example, 3 μm or more.
 図3、図4A、図4Bにおいては、直線形状の配線を組み合わせてメッシュ状の配線(配線パターン)を形成した例を示しているが、係る形態に限定されるものではなく、配線パターンの形状や、配線パターンを構成する配線は任意の形状とすることができる。 Although FIG. 3, FIG. 4A, and FIG. 4B show an example in which mesh-like wiring (wiring pattern) is formed by combining linear-shaped wiring, the present invention is not limited to such a form, and the shape of wiring pattern Also, the wiring that forms the wiring pattern can have an arbitrary shape.
 また、図4A、図4Bにおいては粗化めっき層を残した、配線パターンを有する導電性基板の例を示したが、粗化めっき層はレジストとの密着性を高めるために設けられた層のため、配線パターンを形成後、除去することもできる。除去する場合、粗化めっき層は例えば、一般的な硫酸/過酸化水素水系のマイクロエッチング液により除去することができる。 Moreover, although the example of the conductive substrate which has a wiring pattern which left the roughening plating layer was shown in FIG. 4A and FIG. 4B, the roughening plating layer is a layer provided in order to improve adhesiveness with a resist. Therefore, the wiring pattern can be removed after formation. In the case of removal, the roughened plating layer can be removed by, for example, a general sulfuric acid / hydrogen peroxide water microetching solution.
 以上の本実施形態の導電性基板によれば、絶縁性基材の少なくとも一方の面上に形成された金属層上に、粗化めっき層を積層した構造を有している。このため、レジストとの密着性が高く、サイドエッチングの発生を抑制できる。
(導電性基板の製造方法)
 次に本実施形態の導電性基板の製造方法の一構成例について説明する。
According to the conductive substrate of the present embodiment described above, the roughened plating layer is stacked on the metal layer formed on at least one surface of the insulating substrate. Therefore, the adhesion to the resist is high, and the occurrence of side etching can be suppressed.
(Method of manufacturing conductive substrate)
Next, one configuration example of the method of manufacturing the conductive substrate of the present embodiment will be described.
 本実施形態の導電性基板の製造方法は、以下の工程を有することができる。 
 絶縁性基材の少なくとも一方の面上に金属層を形成する金属層形成工程。 
 金属層上に粗化めっき層を形成する粗化めっき層形成工程。
The method for producing a conductive substrate of the present embodiment can have the following steps.
The metal layer formation process of forming a metal layer on the at least one surface of an insulating base material.
Roughening plating layer formation process of forming a roughening plating layer on a metal layer.
 そして、粗化めっき層形成工程では、ニッケルイオン、および銅イオンを含有するめっき液を用いて電解法により粗化めっき層を成膜することができる。 And in a roughening plating layer formation process, a roughening plating layer can be formed into a film by an electrolysis method using a plating solution containing nickel ion and copper ion.
 以下に本実施形態の導電性基板の製造方法について具体的に説明する。 The method of manufacturing the conductive substrate of the present embodiment will be specifically described below.
 なお、本実施形態の導電性基板の製造方法により既述の導電性基板を好適に製造することができる。このため、以下に説明する点以外については上述の導電性基板の場合と同様の構成とすることができるため説明を一部省略する。 In addition, the electroconductive substrate as stated above can be suitably manufactured with the manufacturing method of the electroconductive substrate of this embodiment. For this reason, since it can be set as the same structure as the case of the above-mentioned conductive substrate except the point explained below, explanation is omitted in part.
 金属層形成工程に供する絶縁性基材は予め準備しておくことができる。絶縁性基材は必要に応じて予め任意のサイズに切断等行っておくこともできる。 The insulating substrate to be subjected to the metal layer forming step can be prepared in advance. The insulating substrate may be cut into any size in advance, if necessary.
 そして、金属層は既述のように、金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有することもできる。このため、金属層形成工程は、例えば乾式めっき法により金属薄膜層を形成する工程を有することができる。また、金属層形成工程は、乾式めっき法により金属薄膜層を形成する工程と、該金属薄膜層を給電層として、湿式めっき法の一種である電気めっき法により金属めっき層を形成する工程と、を有していてもよい。 The metal layer preferably has a metal thin film layer as described above. The metal layer can also have a metal thin film layer and a metal plating layer. For this reason, a metal layer formation process can have the process of forming a metal thin film layer, for example by the dry plating method. In the metal layer forming step, a step of forming a metal thin film layer by dry plating, a step of forming a metal plating layer by electroplating, which is a kind of wet plating, using the metal thin film as a power feeding layer, May be included.
 金属薄膜層を形成する工程で用いる乾式めっき法としては、特に限定されるものではなく、例えば、蒸着法、スパッタリング法、又はイオンプレーティング法等を用いることができる。なお、蒸着法としては真空蒸着法を好ましく用いることができる。金属薄膜層を形成する工程で用いる乾式めっき法としては、特に膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。 It does not specifically limit as a dry plating method used at the process of forming a metal thin film layer, For example, a vapor deposition method, sputtering method, or ion plating method etc. can be used. In addition, a vacuum evaporation method can be preferably used as an evaporation method. As the dry plating method used in the step of forming the metal thin film layer, it is more preferable to use the sputtering method because the control of the film thickness is particularly easy.
 次に金属めっき層を形成する工程について説明する。湿式めっき法により金属めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、金属めっき液を入れためっき槽に金属薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、金属めっき層を形成できる。 Next, the process of forming a metal plating layer is demonstrated. The conditions in the step of forming the metal plating layer by the wet plating method, that is, the conditions of the electroplating treatment are not particularly limited, and various conditions in the usual way may be adopted. For example, a metal plating layer can be formed by supplying a base having a metal thin film layer formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base.
 次に、粗化めっき層形成工程について説明する。 Next, the roughening plating layer forming step will be described.
 粗化めっき層形成工程においては、例えばニッケルの単体と、ニッケル酸化物と、ニッケル水酸化物と、銅とを含有する粗化めっき層を形成することができる。 In the roughening plating layer forming step, a roughening plating layer containing, for example, a single substance of nickel, a nickel oxide, a nickel hydroxide, and copper can be formed.
 粗化めっき層は湿式法により形成できる。具体的には例えば、金属層を給電層として用いて、既述のめっき液を含むめっき槽内で、金属層上に電解法、例えば電解めっき法により粗化めっき層を形成することができる。このように金属層を給電層として、電解めっき法により粗化めっき層を形成することで、金属層の絶縁性基材と対向する面とは反対側の面の全面に粗化めっき層を形成できる。 The roughened plating layer can be formed by a wet method. Specifically, for example, a roughened plating layer can be formed on a metal layer by an electrolytic method, for example, an electrolytic plating method, in a plating tank containing the plating solution described above, using the metal layer as a feed layer. As described above, the roughened plating layer is formed by electrolytic plating using the metal layer as the feeding layer, thereby forming the roughened plating layer on the entire surface of the metal layer opposite to the surface facing the insulating substrate. it can.
 粗化めっき層を成膜する際にめっき液のpHや、電流密度を調整することで、粗化めっき層が含有する結晶の形状や、サイズを選択することができる。例えばめっき液のpHを高くしたり、成膜時の電流密度を高くすることで針状結晶が生じやすくなり、めっき液のpHを低くしたり、成膜時の電流密度を低くすることで粒状結晶が生じやすくなる。 When forming a roughening plating layer, the shape and size of the crystal contained in the roughening plating layer can be selected by adjusting the pH of the plating solution and the current density. For example, by increasing the pH of the plating solution or increasing the current density at the time of film formation, needle crystals are easily generated, and the pH of the plating solution is lowered, or the current density at the time of film formation is decreased. Crystals tend to form.
 このため、例えば予備試験を行い、所望の形状、サイズの結晶を含む粗化めっき層となるように、条件を選択することができる。 For this reason, for example, a preliminary test can be performed to select the conditions such that a roughened plated layer containing crystals of a desired shape and size is obtained.
 めっき液については既述のため、説明を省略する。 The plating solution has already been described, and thus the description thereof is omitted.
 本実施形態の導電性基板の製造方法においては、上述の工程に加えてさらに任意の工程を実施することもできる。 In the method of manufacturing a conductive substrate of the present embodiment, an arbitrary step can be further performed in addition to the above-described steps.
 例えば絶縁性基材と金属層との間に密着層を形成する場合、絶縁性基材の金属層を形成する面上に密着層を形成する密着層形成工程を実施することができる。密着層形成工程を実施する場合、金属層形成工程は、密着層形成工程の後に実施することができ、金属層形成工程では、本工程で絶縁性基材上に密着層を形成した基材に金属薄膜層を形成できる。 For example, when forming an adhesion layer between an insulating base material and a metal layer, an adhesion layer formation process which forms an adhesion layer on the field which forms a metal layer of an insulating base can be implemented. When the adhesion layer formation step is carried out, the metal layer formation step can be carried out after the adhesion layer formation step, and in the metal layer formation step, on the substrate on which the adhesion layer is formed on the insulating substrate in this step. A metal thin film layer can be formed.
 密着層形成工程において、密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には既述のように炭素、酸素、水素、窒素から選ばれる1種類以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 In the adhesion layer forming step, the film formation method of the adhesion layer is not particularly limited, but it is preferable to form a film by a dry plating method. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy. As described above, one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
 本実施形態の導電性基板の製造方法で得られる導電性基板は例えば各種電子部品を実装して用いる導電性基板等の各種用途に用いることができる。そして、各種用途に用いる場合には、本実施形態の導電性基板に含まれる金属層、及び粗化めっき層がパターン化されていることが好ましい。なお、密着層を設ける場合は、密着層についてもパターン化されていることが好ましい。金属層、及び粗化めっき層、場合によってはさらに密着層は、例えば所望の配線パターンにあわせてパターン化することができ、金属層、及び粗化めっき層、場合によってはさらに密着層は同じ形状にパターン化されていることが好ましい。 The conductive substrate obtained by the method for producing a conductive substrate of the present embodiment can be used, for example, in various applications such as a conductive substrate on which various electronic components are mounted and used. And when using for various uses, it is preferable that the metal layer and roughening plating layer which are contained in the conductive substrate of this embodiment are patterned. When the adhesion layer is provided, it is preferable that the adhesion layer is also patterned. The metal layer and the roughening plating layer, and in some cases the adhesion layer can be patterned, for example, according to the desired wiring pattern, and the metal layer and the roughening plating layer, in some cases the adhesion layer may also have the same shape It is preferable to be patterned.
 このため、本実施形態の導電性基板の製造方法は、金属層、及び粗化めっき層をパターン化するパターニング工程を有することができる。なお、密着層を形成した場合には、パターニング工程は、密着層、金属層、及び粗化めっき層をパターン化する工程とすることができる。 For this reason, the manufacturing method of the conductive substrate of this embodiment can have the patterning process of patterning a metal layer and a roughening plating layer. When the adhesion layer is formed, the patterning step can be a step of patterning the adhesion layer, the metal layer, and the roughened plating layer.
 パターニング工程の具体的手順は特に限定されるものではなく、任意の手順により実施することができる。例えば図1Aのように絶縁性基材11上に金属層12、粗化めっき層13が積層された導電性基板10Aの場合、まず粗化めっき層13上の表面Aに所望のパターンを有するレジストを配置するレジスト配置ステップを実施することができる。次いで、粗化めっき層13上の表面A、すなわち、レジストを配置した面側にエッチング液を供給するエッチングステップを実施できる。 The specific procedure of the patterning step is not particularly limited, and can be performed by any procedure. For example, in the case of the conductive substrate 10A in which the metal layer 12 and the roughening plating layer 13 are stacked on the insulating substrate 11 as shown in FIG. 1A, first, a resist having a desired pattern on the surface A on the roughening plating layer 13 A resist placement step can be performed to place the Then, an etching step can be performed in which the etching solution is supplied to the surface A on the roughened plating layer 13, ie, the side on which the resist is disposed.
 エッチングステップにおいて用いるエッチング液は特に限定されるものではなく、金属層や、粗化めっき層の組成等に応じて任意に選択することができる。例えば、金属層と粗化めっき層とがエッチング液に対してほぼ同様の反応性を示す場合には、一般的に金属層のエッチングに用いられるエッチング液を好ましく用いることができる。 The etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the composition of the metal layer, the roughened plating layer, and the like. For example, when the metal layer and the roughened plating layer exhibit substantially the same reactivity with the etching solution, an etching solution generally used for etching the metal layer can be preferably used.
 エッチング液としては例えば、硫酸、過酸化水素(過酸化水素水)、塩酸、塩化第二銅、及び塩化第二鉄から選択された1種類以上を含む混合水溶液を好ましく用いることができる。エッチング液中の各成分の含有量は、特に限定されるものではない。 For example, a mixed aqueous solution containing one or more selected from sulfuric acid, hydrogen peroxide (hydrogen peroxide water), hydrochloric acid, cupric chloride and ferric chloride can be preferably used as the etching solution. The content of each component in the etching solution is not particularly limited.
 エッチング液は室温で用いることもできるが、反応性を高めるため加温して用いることもでき、例えば40℃以上50℃以下に加熱して用いることもできる。 The etching solution can be used at room temperature, but can also be used by heating to enhance the reactivity, for example, it can be used by heating to 40 ° C. or more and 50 ° C. or less.
 また、図1Bのように絶縁性基材11の一方の面11a、他方の面11bに金属層12A、12B、粗化めっき層13A、13Bを積層した導電性基板10Bについてもパターン化するパターニング工程を実施できる。この場合例えば粗化めっき層13A、13B上の表面A、及び表面Bに所望のパターンを有するレジストを配置するレジスト配置ステップを実施できる。次いで、粗化めっき層13A、13B上の表面A、及び表面B、すなわち、レジストを配置した面側にエッチング液を供給するエッチングステップを実施できる。 In addition, as shown in FIG. 1B, a patterning process is also performed on the conductive substrate 10B in which the metal layers 12A and 12B and the roughening plated layers 13A and 13B are laminated on one surface 11a and the other surface 11b of the insulating base material 11. Can be implemented. In this case, for example, a resist disposing step of disposing a resist having a desired pattern on the surface A and the surface B on the roughened plating layers 13A and 13B can be performed. Then, an etching step can be performed in which the etching solution is supplied to the surface A and the surface B on the roughened plating layers 13A and 13B, that is, the surface on which the resist is disposed.
 エッチングステップで形成するパターンについては特に限定されるものではなく、任意の形状とすることができる。例えば図1Aに示した導電性基板10Aの場合、既述のように金属層12、粗化めっき層13を複数の直線や、ぎざぎざに屈曲した線(ジグザグ直線)を含むようにパターンを形成することもできる。 The pattern to be formed in the etching step is not particularly limited, and may have an arbitrary shape. For example, in the case of the conductive substrate 10A shown in FIG. 1A, as described above, the metal layer 12 and the roughening plating layer 13 are patterned to include a plurality of straight lines and lines (zigzag straight lines) bent into jagged lines. It can also be done.
 また、図1Bに示した導電性基板10Bの場合、金属層12Aと、金属層12Bとでメッシュ状の配線となるようにパターンを形成することもできる。この場合、粗化めっき層13Aは、金属層12Aと同様の形状に、粗化めっき層13Bは金属層12Bと同様の形状になるようにそれぞれパターン化を行うことが好ましい。 Further, in the case of the conductive substrate 10B shown in FIG. 1B, the metal layer 12A and the metal layer 12B may form a pattern so as to form a mesh-like wiring. In this case, the roughening plating layer 13A is preferably patterned to have the same shape as the metal layer 12A, and the roughening plating layer 13B is formed to have the same shape as the metal layer 12B.
 また、例えばパターニング工程で上述の導電性基板10Aについて金属層12等をパターン化した後、パターン化した2枚以上の導電性基板を積層する積層工程を実施することもできる。積層する際、例えば各導電性基板の金属層のパターンが交差するように積層することにより、メッシュ状の配線を備えた積層導電性基板を得ることもできる。 For example, after patterning the metal layer 12 etc. about the above-mentioned conductive substrate 10A at a patterning process, the lamination process which laminates | stacks two or more patterned conductive substrates can also be implemented. When laminating, for example, by laminating so that the patterns of the metal layers of the respective conductive substrates intersect, it is also possible to obtain a laminated conductive substrate provided with a mesh-like wiring.
 積層した2枚以上の導電性基板を固定する方法は特に限定されるものではないが、例えば接着剤等により固定することができる。 Although the method of fixing the laminated two or more conductive substrates is not particularly limited, for example, it can be fixed by an adhesive or the like.
 以上の本実施形態の導電性基板の製造方法により得られる導電性基板は、絶縁性基材の少なくとも一方の面上に形成された金属層上に、粗化めっき層を積層した構造を有している。そして、粗化めっき層は、絶縁性基材と対向する面とは反対側の面が粗化面である粗化めっき層となっている。このため、レジストとの密着性が高く、サイドエッチングの発生を抑制できる。 The conductive substrate obtained by the method for producing a conductive substrate of the present embodiment described above has a structure in which a roughened plating layer is laminated on a metal layer formed on at least one surface of an insulating substrate. ing. And the roughening plating layer is a roughening plating layer whose surface opposite to the surface facing the insulating base is a roughening surface. Therefore, the adhesion to the resist is high, and the occurrence of side etching can be suppressed.
 以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 以下の実施例、比較例において作製した試料について以下の方法により評価を行った。
(1)粗化めっき層の成分分析
 粗化めっき層の成分分析は、X線光電子分光装置(PHI社製、形式:QuantaSXM)により行った。なお、X線源には単色化Al(1486.6eV)を使用した。
The present invention will be described by way of specific examples and comparative examples, but the present invention is not limited to these examples.
(Evaluation method)
The samples produced in the following examples and comparative examples were evaluated by the following methods.
(1) Component Analysis of Roughened Plating Layer Component analysis of the roughened plating layer was performed using an X-ray photoelectron spectrometer (manufactured by PHI, type: Quanta SXM). In addition, monochromatization Al (1486.6 eV) was used for X-ray source.
 後述のように、以下の各実施例、比較例では、図1Aの構造を有する導電性基板を作製した。そこで、図1Aにおける粗化めっき層13の外部に露出した表面AをArイオンエッチングし、最表面から10nm内部のNi 2Pスペクトル、及びCu LMMスペクトルを測定した。 As described later, in each of the following examples and comparative examples, a conductive substrate having the structure of FIG. 1A was produced. Therefore, the surface A exposed to the outside of the roughened plating layer 13 in FIG. 1A was subjected to Ar ion etching, and a Ni 2 P spectrum and a Cu LMM spectrum inside 10 nm from the outermost surface were measured.
 これにより、実施例1~実施例10、比較例1~比較例4のいずれにおいてもニッケルの単体と、ニッケル酸化物と、ニッケル水酸化物と、銅とを含むことが確認できた。
(2)粗化めっき層が含有する結晶の形状、サイズ
 粗化めっき層の粗化面となる、絶縁性基材と対向する面とは反対側の面、具体的には図1Aの表面Aについて、走査型電子顕微鏡により観察を行い、粗化めっき層が含有する結晶の形状、サイズについて評価を行った。
As a result, it was confirmed that each of Examples 1 to 10 and Comparative Examples 1 to 4 contained a single substance of nickel, a nickel oxide, a nickel hydroxide, and copper.
(2) Shape and size of the crystal contained in the roughening plating layer The surface opposite to the surface facing the insulating substrate, which is the roughening surface of the roughening plating layer, specifically, the surface A of FIG. 1A The surface of the roughened plating layer was observed with a scanning electron microscope to evaluate the shape and size of the crystal contained in the roughened plating layer.
 評価に当たってまず、粗化めっき層の粗化面上の任意の位置において領域を50000倍に拡大した。そして、該観察領域に存在する結晶の形状の観察を行った。粒状の結晶が観察された場合には粒状、針状の結晶が観察された場合には針状として表1の結晶形状の欄に示している。 In the evaluation, first, the area was enlarged 50000 times at an arbitrary position on the roughened surface of the roughened plating layer. Then, the shape of the crystal present in the observation area was observed. When granular crystals are observed, granular or needle-like crystals are indicated as needle-like in the crystal shape column of Table 1 when observed.
 そして、粒状結晶が観察された場合には、評価の対象となる粒状結晶20個を選択し、平均結晶粒サイズ、および標準偏差σを測定、算出した。なお、粒状結晶の結晶粒サイズとは粒状結晶の測定を行う粒状結晶を完全に包摂する最小サイズの円の直径を意味する。また、針状結晶が観察された場合には、評価の対象となる針状結晶20個を選択し、平均長さ、平均幅、平均アスペクト比、および標準偏差σを測定、算出した。 Then, when granular crystals were observed, 20 granular crystals to be evaluated were selected, and the average crystal grain size and the standard deviation σ were measured and calculated. The grain size of the granular crystals means the diameter of a circle of the smallest size which completely incorporates the granular crystals for which the measurement of the granular crystals is to be carried out. Further, when needle crystals were observed, 20 needle crystals to be evaluated were selected, and the average length, average width, average aspect ratio, and standard deviation σ were measured and calculated.
 粒状結晶を評価した場合、その結晶粒サイズの平均値、標準偏差は表1中の「結晶粒サイズ/長さ」の欄に記載している。 When the granular crystals are evaluated, the average value and the standard deviation of the crystal grain sizes are described in the “grain size / length” column of Table 1.
 針状結晶を評価した場合、その長さの平均値、標準偏差は表1中の「結晶粒サイズ/長さ」の欄に記載しており、幅、アスペクト比の平均値、標準偏差は、それぞれ表1中の「幅」、「アスペクト比」の欄に記載している。 When acicular crystals are evaluated, the average value of the length and the standard deviation are described in the column of "grain size / length" in Table 1, and the width, the average value of aspect ratio, and the standard deviation are Each is described in the column of "width" and "aspect ratio" in Table 1.
 各パラメータについては既に説明したため、ここでは説明を省略する。
(3)サイドエッチング量
 まず、以下の実施例、比較例において得られた導電性基板の粗化めっき層表面にドライフィルムレジスト(日立化成RY3310)をラミネート法により貼り付けた。そして、フォトマスクを介して紫外線露光を行い、さらに1%炭酸ナトリウム水溶液によりレジストを溶解して現像した。これにより粗化めっき層上に、互いに平行な複数の直線状のパターンのレジストを有するサンプルを作製した。
Since each parameter has already been described, the description is omitted here.
(3) Amount of Side Etching First, a dry film resist (Hitachi Chemical Co., Ltd. RY3310) was attached to the surface of the roughened plated layer of the conductive substrate obtained in the following Examples and Comparative Examples by a lamination method. Then, ultraviolet exposure was performed through a photomask, and the resist was dissolved and developed with a 1% aqueous solution of sodium carbonate. A sample having resists of a plurality of linear patterns parallel to one another was thus produced on the roughened plating layer.
 次いで、サンプルを硫酸10重量%、過酸化水素3重量%からなる30℃のエッチング液に浸漬した。 The sample was then immersed in an etchant at 30 ° C. consisting of 10 wt% sulfuric acid and 3 wt% hydrogen peroxide.
 得られたサンプルについて、レジストを剥離させることなく、導電性基板の各層の積層方向と平行であって、かつレジストの直線状のパターンと垂直な断面を観察した。この場合、図5に示したように、絶縁性基材51上に、パターン化した金属層52、パターン化した粗化めっき層53、レジスト54が積層された断面形状が観察される。そして、レジストの幅方向の端部54aと、パターン化した金属層52の幅方向の端部52aとの間の距離Lをサイドエッチング量として測定した。 With respect to the obtained sample, a cross section parallel to the stacking direction of the layers of the conductive substrate and perpendicular to the linear pattern of the resist was observed without peeling the resist. In this case, as shown in FIG. 5, the cross-sectional shape in which the patterned metal layer 52, the patterned roughened plating layer 53, and the resist 54 are stacked on the insulating base material 51 is observed. Then, the distance L between the end 54 a in the width direction of the resist and the end 52 a in the width direction of the patterned metal layer 52 was measured as the side etching amount.
 なお、エッチング液への浸漬を開始してから、60秒後、120秒後、180秒後のそれぞれで導電性基板をエッチング液から取り出し、洗浄後、上述のようにサイドエッチング量の評価を行った。
(試料の作製条件)
 以下に説明する条件で導電性基板を作製し、上述の評価方法により評価を行った。
[実施例1]
 図1Aに示した構造を有する導電性基板を作製した。
(金属層形成工程)
 長さ300m、幅250mm、厚さ100μmの長尺状のポリエチレンテレフタレート樹脂(PET)製の絶縁性基材の一方の面上に金属層として銅層を成膜した。
The conductive substrate is taken out of the etching solution 60 seconds, 120 seconds, and 180 seconds after the start of immersion in the etching solution, and after cleaning, the side etching amount is evaluated as described above. The
(Sample preparation conditions)
A conductive substrate was produced under the conditions described below, and evaluated by the above-mentioned evaluation method.
Example 1
A conductive substrate having the structure shown in FIG. 1A was produced.
(Metal layer formation process)
A copper layer was formed as a metal layer on one surface of an insulating base made of a long polyethylene terephthalate resin (PET) having a length of 300 m, a width of 250 mm, and a thickness of 100 μm.
 金属層形成工程では、金属薄膜層形成工程と、金属めっき層形成工程と、を実施した。 In the metal layer forming step, a metal thin film layer forming step and a metal plating layer forming step were performed.
 まず、金属薄膜層形成工程について説明する。 First, the metal thin film layer forming step will be described.
 金属薄膜層形成工程では、基材として上述の絶縁性基材を用い、絶縁性基材の一方の面上に金属薄膜層として、銅薄膜層を形成した。 In the metal thin film layer forming step, a copper thin film layer was formed as a metal thin film layer on one surface of the insulating base using the above-mentioned insulating base as a base.
 金属薄膜層形成工程ではまず、予め60℃まで加熱して水分を除去した上述の絶縁性基材を、スパッタリング装置のチャンバー内に設置した。 In the metal thin film layer forming step, first, the above-mentioned insulating substrate from which water was removed by heating in advance to 60 ° C. was placed in the chamber of the sputtering apparatus.
 次に、チャンバー内を1×10-3Paまで排気した後、アルゴンガスを導入し、チャンバー内の圧力を1.3Paとした。 Next, after evacuating the chamber to 1 × 10 −3 Pa, argon gas was introduced to adjust the pressure in the chamber to 1.3 Pa.
 スパッタリング装置のカソードに予めセットしておいた銅ターゲットに電力を供給し、絶縁性基材の一方の面上に銅薄膜層を厚さが0.7μmになるように成膜した。 Electric power was supplied to a copper target set in advance at the cathode of the sputtering apparatus, and a copper thin film layer was formed to a thickness of 0.7 μm on one surface of the insulating substrate.
 次に、金属めっき層形成工程においては金属めっき層として銅めっき層を形成した。銅めっき層は、電気めっき法により銅めっき層の厚さが0.3μmになるように成膜した。 Next, in the metal plating layer forming step, a copper plating layer was formed as the metal plating layer. The copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.3 μm.
 以上の金属薄膜層形成工程と、金属めっき層形成工程とを実施することで、金属層として厚さ1.0μmの銅層を形成した。 By performing the metal thin film layer forming process and the metal plating layer forming process described above, a copper layer having a thickness of 1.0 μm was formed as a metal layer.
 金属層形成工程で作製した、絶縁性基材上に厚さ1.0μmの銅層が形成された基板を20g/Lの硫酸に30sec浸漬し、洗浄した後に以下の粗化めっき層形成工程を実施した。
(粗化めっき層形成工程)
 粗化めっき層形成工程では、めっき液を用いて電解めっき法により、銅層の一方の面上に粗化めっき層を形成した。
The substrate having the 1.0 μm thick copper layer formed on the insulating base, which was prepared in the metal layer forming step, is immersed in 20 g / L sulfuric acid for 30 seconds and washed, and then the following roughened plating layer forming step is performed. Carried out.
(Roughened plating layer formation process)
In the roughening plating layer formation step, a roughening plating layer was formed on one surface of the copper layer by electrolytic plating using a plating solution.
 なお、めっき液として、ニッケルイオン、銅イオン、アミド硫酸、水酸化ナトリウムを含有するめっき液を調製した。めっき液には、硫酸ニッケル6水和物、硫酸銅5水和物を添加することで、ニッケルイオン、銅イオンを供給した。 A plating solution containing nickel ions, copper ions, amidosulfuric acid, and sodium hydroxide was prepared as a plating solution. Nickel ions and copper ions were supplied to the plating solution by adding nickel sulfate hexahydrate and copper sulfate pentahydrate.
 そして、めっき液中のニッケルイオンの濃度が6.5g/L、銅イオンの濃度が0.2g/L、アミド硫酸の濃度が11g/Lとなるように各成分を添加調製した。 Then, each component was added and prepared so that the concentration of nickel ion in the plating solution was 6.5 g / L, the concentration of copper ion was 0.2 g / L, and the concentration of amidosulfuric acid was 11 g / L.
 また、水酸化ナトリウム水溶液をめっき液に添加して、めっき液のpHを3.6に調整した。 In addition, an aqueous solution of sodium hydroxide was added to the plating solution to adjust the pH of the plating solution to 3.6.
 粗化めっき層形成工程においてはめっき液の温度が40℃、電流密度が0.08A/dm、めっき時間が180secの条件で電解めっきを行い、粗化めっき層を形成した。 In the roughening plating layer formation step, electrolytic plating was performed under the conditions of a plating solution temperature of 40 ° C., a current density of 0.08 A / dm 2 , and a plating time of 180 seconds to form a roughening plating layer.
 形成した粗化めっき層の膜厚は111nmとなった。 The film thickness of the roughening plating layer formed became 111 nm.
 以上の工程により得られた導電性基板について、既述の粗化めっき層の成分分析、粗化めっき層が含有する結晶の形状、サイズの評価、サイドエッチング量の評価を実施した。結果を表1、表2に示す。
[実施例2~実施例10]
 各実施例において、粗化めっき層を形成する際のめっき液中のニッケルイオン濃度、銅イオン濃度、pH、粗化めっき層の成膜時の電流密度、及びめっき時間を表1に示したように変更した点以外は実施例1と同様にして導電性基板を作製し、評価を行った。結果を表1、表2に示す。
[比較例1~比較例4]
 各実施例において、粗化めっき層を形成する際のめっき液中のニッケルイオン濃度、銅イオン濃度、pH、粗化めっき層の成膜時の電流密度、及びめっき時間を表1に示したように変更した点以外は実施例1と同様にして導電性基板を作製し、評価を行った。結果を表1に示す。
The conductive substrate obtained by the above steps was subjected to component analysis of the roughened plating layer described above, evaluation of the shape and size of crystals contained in the roughened plating layer, and evaluation of the side etching amount. The results are shown in Tables 1 and 2.
[Examples 2 to 10]
As shown in Table 1, the nickel ion concentration, the copper ion concentration, the pH, the current density at the time of film formation of the roughening plating layer, and the plating time in the plating solution when forming the roughening plating layer in each example. A conductive substrate was produced and evaluated in the same manner as in Example 1 except that it was changed to The results are shown in Tables 1 and 2.
[Comparative Example 1 to Comparative Example 4]
As shown in Table 1, the nickel ion concentration, the copper ion concentration, the pH, the current density at the time of film formation of the roughening plating layer, and the plating time in the plating solution when forming the roughening plating layer in each example. A conductive substrate was produced and evaluated in the same manner as in Example 1 except that it was changed to The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果によると、実施例1~実施例10では、粗化めっき層は、粒状、又は針状の結晶を含有していることが確認できた。そして、粒状結晶の場合は平均結晶粒サイズが50nm以上150nm以下、針状結晶の場合は、平均長さが100nm以上300nm以下であり、平均幅が30nm以上80nm以下、平均アスペクト比が2.0以上4.5以下であることが確認できた。
Figure JPOXMLDOC01-appb-T000001
According to the results shown in Table 1, in Examples 1 to 10, it was confirmed that the roughened plating layer contains granular or needle-like crystals. In the case of granular crystals, the average crystal grain size is 50 nm to 150 nm, and in the case of needle crystals, the average length is 100 nm to 300 nm, and the average width is 30 nm to 80 nm, and the average aspect ratio is 2.0. It could be confirmed that the above was 4.5 or less.
 一方、比較例1~比較例4では粗化めっき層が粒状又は針状の結晶を含有していることが確認できたものの、そのサイズは上述の範囲を満たすものではなかった。 On the other hand, in Comparative Examples 1 to 4, although it was confirmed that the roughened plating layer contained granular or needle-like crystals, the size thereof did not satisfy the above-mentioned range.
 その結果、実施例1~実施例10ではサイドエッチング量を十分に抑制できているのに対して、比較例1~比較例4ではサイドエッチング量が大きくなることが確認された。 As a result, it was confirmed that the side etching amount can be sufficiently suppressed in Examples 1 to 10, while the side etching amount is large in Comparative Examples 1 to 4.
 以上に導電性基板、導電性基板の製造方法を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 The conductive substrate and the method of manufacturing the conductive substrate have been described above in the embodiments and examples and the like, but the present invention is not limited to the embodiments and the examples and the like. Various changes and modifications are possible within the scope of the present invention as set forth in the claims.
 本出願は、2017年4月17日に日本国特許庁に出願された特願2017-081580号に基づく優先権を主張するものであり、特願2017-081580号の全内容を本国際出願に援用する。 This application claims the priority of Japanese Patent Application No. 2017-081580, filed on Apr. 17, 2017, to the Japanese Patent Office, and the entire contents of Japanese Patent Application No. 2017-081580 I will use it.
10A、10B、20A、20B、30         導電性基板
11、51                      絶縁性基材
12、12A、12B、52              金属層
13、13A、13B、32A、32B、53      粗化めっき層
10A, 10B, 20A, 20B, 30 Conductive substrate 11, 51 Insulating base 12, 12A, 12B, 52 Metal layer 13, 13A, 13B, 32A, 32B, 53 roughened plating layer

Claims (5)

  1.  絶縁性基材と、
     前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
     前記金属層上に形成された粗化めっき層とを有し、
     前記粗化めっき層は、平均結晶粒サイズが50nm以上150nm以下の粒状結晶を含む導電性基板。
    An insulating base material,
    A metal layer formed on at least one surface of the insulating substrate;
    And a roughening plated layer formed on the metal layer;
    The roughened plating layer is a conductive substrate including granular crystals having an average crystal grain size of 50 nm or more and 150 nm or less.
  2.  絶縁性基材と、
     前記絶縁性基材の少なくとも一方の面上に形成された金属層と、
     前記金属層上に形成された粗化めっき層とを有し、
     前記粗化めっき層は平均長さが100nm以上300nm以下であり、平均幅が30nm以上80nm以下、平均アスペクト比が2.0以上4.5以下の針状結晶を含む導電性基板。
    An insulating base material,
    A metal layer formed on at least one surface of the insulating substrate;
    And a roughening plated layer formed on the metal layer;
    The conductive substrate includes needle-like crystals having an average length of 100 nm to 300 nm, an average width of 30 nm to 80 nm, and an average aspect ratio of 2.0 to 4.5.
  3.  前記粗化めっき層の厚さが50nm以上350nm以下である請求項1または請求項2に記載の導電性基板。 The conductive substrate according to claim 1, wherein a thickness of the roughening plating layer is 50 nm or more and 350 nm or less.
  4.  前記金属層が銅または銅合金の層である請求項1~請求項3のいずれか一項に記載の導電性基板。 The conductive substrate according to any one of claims 1 to 3, wherein the metal layer is a layer of copper or a copper alloy.
  5.  絶縁性基材の少なくとも一方の面上に金属層を形成する金属層形成工程と、
     前記金属層上に粗化めっき層を形成する粗化めっき層形成工程と、を有し、
     前記粗化めっき層形成工程では、ニッケルイオン、および銅イオンを含有するめっき液を用いて電解法により前記粗化めっき層を成膜する導電性基板の製造方法。
    A metal layer forming step of forming a metal layer on at least one surface of the insulating substrate;
    Forming a roughened plating layer on the metal layer;
    The said roughening plating layer formation process is a manufacturing method of the conductive substrate which forms a film of the said roughening plating layer by an electrolysis method using the plating solution containing a nickel ion and a copper ion.
PCT/JP2018/015248 2017-04-17 2018-04-11 Conductive substrate and method for producing conductive substrate WO2018193935A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019513577A JP6954345B2 (en) 2017-04-17 2018-04-11 Conductive substrate, manufacturing method of conductive substrate
CN201880025236.7A CN110537393B (en) 2017-04-17 2018-04-11 Conductive substrate and method for manufacturing conductive substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017081580 2017-04-17
JP2017-081580 2017-04-17

Publications (1)

Publication Number Publication Date
WO2018193935A1 true WO2018193935A1 (en) 2018-10-25

Family

ID=63855842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015248 WO2018193935A1 (en) 2017-04-17 2018-04-11 Conductive substrate and method for producing conductive substrate

Country Status (4)

Country Link
JP (1) JP6954345B2 (en)
CN (1) CN110537393B (en)
TW (1) TWI765021B (en)
WO (1) WO2018193935A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145769A (en) * 1976-05-31 1977-12-05 Nippon Mining Co Method of surface treating printed circuit copper foil
JPH07243088A (en) * 1994-01-21 1995-09-19 Olin Corp Method for treating nodular copper-nickel alloy for copper foil
JPH1018075A (en) * 1996-06-28 1998-01-20 Nikko Gould Foil Kk Electrolytic copper foil
JP2001217516A (en) * 2000-02-03 2001-08-10 Nikko Materials Co Ltd Copper foil with superior laser boring property and its manufacturing method
JP2009149928A (en) * 2007-12-19 2009-07-09 Hitachi Cable Ltd Copper foil for printed circuit
WO2017033740A1 (en) * 2015-08-26 2017-03-02 住友金属鉱山株式会社 Conductive substrate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313277B2 (en) * 1995-09-22 2002-08-12 古河サーキットフォイル株式会社 Electrodeposited copper foil for fine pattern and its manufacturing method
JP2006005149A (en) * 2004-06-17 2006-01-05 Furukawa Circuit Foil Kk Conductive substrate and circuit board material with resistive layer
JP2007046095A (en) * 2005-08-09 2007-02-22 Mitsubishi Shindoh Co Ltd Copper foil, and surface treatment method therefor
JP2007103440A (en) * 2005-09-30 2007-04-19 Mitsui Mining & Smelting Co Ltd Wiring board and method of manufacturing the same
CN101466875B (en) * 2006-06-12 2011-01-05 日矿金属株式会社 Rolled copper or copper alloy foil with roughened surface and method of roughening rolled copper or copper alloy foil
JP4973231B2 (en) * 2006-09-05 2012-07-11 日立化成工業株式会社 Copper etching method and wiring board and semiconductor package using this method
CN103266335B (en) * 2007-09-28 2016-08-10 Jx日矿日石金属株式会社 Copper foil for printed circuit and copper-clad laminate
CN101981230B (en) * 2008-06-17 2013-01-16 Jx日矿日石金属株式会社 Copper foil for printed circuit board and copper clad laminate plate for printed circuit board
EP2624671A4 (en) * 2010-09-27 2016-12-21 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
JP5417538B1 (en) * 2012-06-11 2014-02-19 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP2014152352A (en) * 2013-02-06 2014-08-25 Sh Copper Products Corp Composite copper foil and production method thereof
TW201400643A (en) * 2013-08-09 2014-01-01 Xin Hong Co Ltd Pattern conductive trace structure and formation method thereof
JP2015200025A (en) * 2014-03-31 2015-11-12 Jx日鉱日石金属株式会社 Carrier-provided copper foil, printed wiring board, laminate sheet, electronic equipment, laminate and method of producing printed wiring board
JP6555341B2 (en) * 2015-04-28 2019-08-07 住友金属鉱山株式会社 Conductive substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145769A (en) * 1976-05-31 1977-12-05 Nippon Mining Co Method of surface treating printed circuit copper foil
JPH07243088A (en) * 1994-01-21 1995-09-19 Olin Corp Method for treating nodular copper-nickel alloy for copper foil
JPH1018075A (en) * 1996-06-28 1998-01-20 Nikko Gould Foil Kk Electrolytic copper foil
JP2001217516A (en) * 2000-02-03 2001-08-10 Nikko Materials Co Ltd Copper foil with superior laser boring property and its manufacturing method
JP2009149928A (en) * 2007-12-19 2009-07-09 Hitachi Cable Ltd Copper foil for printed circuit
WO2017033740A1 (en) * 2015-08-26 2017-03-02 住友金属鉱山株式会社 Conductive substrate

Also Published As

Publication number Publication date
TWI765021B (en) 2022-05-21
CN110537393B (en) 2022-09-20
CN110537393A (en) 2019-12-03
JP6954345B2 (en) 2021-10-27
TW201842625A (en) 2018-12-01
JPWO2018193935A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
TWI434965B (en) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
CN103731974B (en) 2 layers of flexible substrate and using 2 layers of flexible substrate as the printed wiring board of base material
KR101339598B1 (en) Two-layered flexible substrate, and copper electrolyte for producing same
JP5769030B2 (en) Metallized resin film and method for producing the same
JP4955104B2 (en) Method for forming an electronic circuit
JP2012057191A (en) Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
WO2018193935A1 (en) Conductive substrate and method for producing conductive substrate
JP6806092B2 (en) Blackening plating solution, manufacturing method of conductive substrate
WO2018193940A1 (en) Conductive substrate
JP6597139B2 (en) Blackening plating solution, conductive substrate
JP5835670B2 (en) Printed wiring board and manufacturing method thereof
JP7003665B2 (en) Blackening plating solution, manufacturing method of conductive substrate
JP2012186307A (en) Two-layer flexible substrate, method of manufacturing the same, two-layer flexible printed wiring board whose base material is two-layer flexible substrate, and method of manufacturing the same
JP2011091114A (en) Printed circuit board and method of manufacturing the same
JP6365422B2 (en) Method for manufacturing conductive substrate
JP6164145B2 (en) Conductive substrate, method for manufacturing conductive substrate
WO2017130867A1 (en) Conductive substrate
TWI791427B (en) Blackening plating solution and method of manufacturing conductive substrate
JP2013018245A (en) Metallized polyimide film and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788099

Country of ref document: EP

Kind code of ref document: A1