JP4429611B2 - Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil - Google Patents
Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil Download PDFInfo
- Publication number
- JP4429611B2 JP4429611B2 JP2003026626A JP2003026626A JP4429611B2 JP 4429611 B2 JP4429611 B2 JP 4429611B2 JP 2003026626 A JP2003026626 A JP 2003026626A JP 2003026626 A JP2003026626 A JP 2003026626A JP 4429611 B2 JP4429611 B2 JP 4429611B2
- Authority
- JP
- Japan
- Prior art keywords
- foil
- copper alloy
- copper
- alloy composite
- composite foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、強度、導電性、表面形状に優れた銅合金複合箔、並びに該銅合金複合箔の製造方法に関するものであり、例えば、ICカードのアンテナ等のような高周波伝送回路の用途に最適な銅合金複合箔を提供するものである。
【0002】
【従来の技術】
近年、高機能電子機器に対する小型化、処理速度の高速化等の要求から、その回路配線に用いられる材料は、一般に狭ピッチ化・軽量化に有利な薄型であり、かつ高周波電流に対するインピーダンスの低いことが要求されている。その1つの例がICカードである。
最近までは主に、磁気信号を記録させた磁気カードが携帯に便利であることから、キャッシュカードやクレジットカード、テレフォンカード、ポイントカードなど種々の分野で幅広く利用されてきている。これに対しICカードは、カード内にICを内蔵することで、より高度な判断、複雑な演算が可能となり、記憶容量は磁気カードの100倍程度大きく、かつ情報の読み書きが可能で、安全性が高いという特徴もある。
ICカードの情報伝達方法には、接点への物理的接触により交信する接触型以外に、電磁波などを用いて最大数m程度の空間的な距離をあけて交信することのできる非接触型のものがある。
【0003】
ICカードのこれらの特徴により、ICカードは例えば、IDカード、乗車券、定期券、電子マネー、高速道路ゲート通行券、健康保険証、住民票、医療カード、物流管理カード等といった非常に広い範囲での利用が見込まれている。
非接触型ICカードはその通信距離により、密着型(通信距離〜2mm)、近接型(同10cm)、近傍型(同70cm)、マイクロ波型(同数m)の4タイプに分かれており、通信周波数は密着型では4.91MHz、近接型、近傍型では13.56MHz、マイクロ波型では2.45および5.8GHzとMHzからGHz域までわたっている。
【0004】
この非接触型ICカードの基本構造は、絶縁シート、アンテナ、ICチップからなり、ICチップには強誘電体メモリ、不揮発性メモリ、ROM、RAM、変復調回路、電源回路、暗号回路、制御回路などが組み込まれている。このICカードのアンテナ部材としては、被覆銅線巻き線、銀ペースト、アルミ箔、銅箔などが使用されており、巻き数、用途、製造コストなどにより使い分けられている。巻き数が少なく高導電性が必要な場合は、アンテナ材料として圧延純銅箔や電解銅箔を用いることが多い。
【0005】
しかし、アンテナ用材料として通常の電解銅箔のような表面粗さの大きい箔を用いると、高周波信号の発信、受信の際にインピーダンスが増大し、高周波領域では使用できない場合がある。一方、電解、圧延に限らず純銅箔を用いた場合においては、材料強度が低いため、部品を組み立てる工程で箔が変形したり、狭ピッチの配線のため、引っ張り応力がかかると破断して生産性を下げるという不具合がある。
また、リードフレーム材料などとして用いられている高強度高導電性銅合金は、純銅の箔に比べると高い材料強度を有しているが、近年の信号伝達の高速化、小型化、高い信頼性などの要求に対処するには不十分である。
従って、さらなる狭ピッチ、軽量化に対応すべく、これら従来の銅合金の特性を向上させた銅合金の使用が各種出願されている(例えば特許文献1参照)が、アンテナ用材料として十分な強度と高周波領域での伝送ロス低減という特性を満足するものにはいたっていない。
【0006】
特開2002−167633号公報
【0007】
【発明が解決しようとする課題】
本発明は上記近年の要望に鑑み、上記課題を解決すべく鋭意研究を行った結果、高強度と高導電性を併せ持ち、なおかつ表面に銅又は/及び銀のごとく抵抗の小さい層を設けたインピーダンスの低い銅合金複合箔を開発し、近年の要望に対応した箔を提供することに成功したもので、強度、導電性、表面形状に優れた、例えば、ICカードのアンテナ等のような高周波伝送回路の用途に最適な銅合金複合箔並びにその製造方法を提供するものである。
【課題を解決するための手段】
【0008】
本発明の基本的な考え方は、次のとおりである。即ち、
高周波領域では、電流が表層を流れるため導電性に優れる銅又は/及び銀を表面に配置し、強度は芯材となる銅合金圧延箔(材)で持たせる。また、電解銅箔などと比べ、繰り返し曲げ性に優れる銅合金圧延箔の使用により、折り曲げされる用途での使用にも耐えうる材料とすることである。
表面の銅または銀層は、導電性から高純度であることが望ましいが、微量の添加元素を加えて合金化してもよい。
【0009】
本願の請求項1の発明は、銅合金圧延箔の少なくとも片方の表面に厚さが少なくとも0.01〜3μmで、表面粗さが、Rzで、0.3〜5.0μmであり、Raで0.02〜0.5μmである銀のめっき層を設けたことを特徴とする高周波伝送回路用銅合金複合箔である。
【0010】
本願の請求項2の発明は、銅合金圧延箔の少なくとも片方の表面に厚さが0.01〜3μmで、表面粗さが、Rzで、0.3〜5.0μmであり、Raで0.02〜0.5μmである銅のめっき層を設けたことを特徴とする高周波伝送回路用銅合金複合箔である。
【0011】
本願の請求項3の発明は、銅合金圧延箔の少なくとも片方の表面に銅めっき層及び銀めっき層からなるめっき層を設け、該めっき層の厚さが0.01〜3μmで、表面粗さが、Rzで、0.3〜5.0μmであり、Raで0.02〜0.5μmであることを特徴とする高周波伝送回路用銅合金複合箔である。
【0012】
本願の請求項4の発明は、請求項1乃至3のいずれかに記載の銅合金複合箔であって、該銅合金複合箔の引っ張り強さが500N/mm2以上であることを特徴とする高周波伝送回路用銅合金複合箔である。
【0013】
本願の請求項5の発明は、平滑層上に、粗化処理、防錆処理のいずれか又は両者を施したことを特徴とする請求項1乃至4の何れかに記載の銅合金複合箔である。
【0015】
本願の請求項6の発明は、銅合金からなるインゴットを圧延により所望の厚さの箔に加工した後、該加工銅合金箔の少なくとも片方の表面にめっきにより厚さが0.01〜3μmで、表面粗さが、Rzで、0.3〜5.0μmであり、Raで0.02〜0.5μmである銅又は/及び銀のめっき層を施すことを特徴とする高周波伝送回路用銅合金複合箔の製造方法である。
【0017】
本願の請求項7の発明は、銅合金からなるインゴットを圧延により中間サイズの厚さの箔にまで加工し、該加工銅合金箔の少なくともその一方の箔表面に銅めっき又は/及び銀めっきを施し、次いで圧延加工を施して厚さが0.01〜3μmで、表面粗さが、Rzで、0.3〜5.0μmであり、Raで0.02〜0.5μmである銅又は/及び銀のめっき層とすることを特徴とする高周波伝送回路用銅合金複合箔の製造方法である。
【0018】
本願の請求項8の発明は、銅合金からなるインゴットを圧延により中間サイズの厚さの箔にまで加工し、少なくともその一方の箔表面に銅めっき又は/及び銀めっきを施し、次いで熱処理を施し、或いは熱処理と圧延加工処理を施して、厚さが0.01〜3μmの銅又は/及び銀からなるめっき層とすることを特徴とする高周波伝送回路用銅合金複合箔の製造方法である。
【0019】
本願の請求項9の発明は、請求項1乃至5のいずれかに記載の銅合金複合箔を用いて、或いは請求項6乃至8のいずれかに記載の製造方法で製造した高周波伝送回路用銅合金複合箔を用いて作成したことを特徴とする高周波伝送回路である。
【0020】
【発明の実施の形態】
本発明における銅合金複合箔の表面に形成する銅又は/及び銀の層は、所望の厚さとした銅合金材(箔又は中間厚さの板)にめっきして形成することができ、銅又は/及び銀の層は圧延や焼鈍などの工程以前に施しても良く、最終的に箔の表面に薄い層として残存させれば良い。
芯材が、固溶型、または析出・固溶型合金の場合(例えば、亜鉛などを含む場合)には、熱処理などの銅めっき後の加工により、表面層まで合金元素(Zn)が拡散し表面まで合金化(Cu−Zn合金)される場合があり、表面の導電率を低下させるため熱処理などの条件を適宜設定し、表面層の導電率を確保する必要がある。
従来の銅合金箔を使用して高周波で通電すると表皮効果のため抵抗が極端に増大するためインピーダンスの増大を招き、正常な信号の送受信が不可能となる場合がある。この現象を解析した結果、従来の銅合金箔を使用すると、銅合金箔は純銅箔に比べ導電率が低いため表皮効果での影響が大きいことがわかった。
【0021】
また、表面粗さが粗くなった場合も上記不具合の発生がある。表面粗さの指標としては、Rz、Raの両者が影響する。
本発明において種々実験、検討した結果、導電率の低い銅合金材料を芯材とする本発明銅合金複合箔は高周波伝送における表皮効果に対して、Rzが5.0μm以下、Raが0.5μm以下とすることが好ましい。
【0022】
一方、表面粗さが平滑すぎると、搬送時においてスリップが生じて、箔表面に傷の発生を誘発する。箔(一般に箔とは、0.080mm以下のもの)の製造、取り扱いは板の製造、取り扱いと異なり、箔の薄さのため低い張力でライン上を搬送させなければならず、板に比べて搬送ロールが同調し難く、スリップ傷が発生しやすい。スリップ傷は、箔全長に渡って発生することもあり、強いスリップ傷でRzが5.0μmを超えるものは、この発生部位にて箔に折れが発生することもある。大きなスリップ傷が発生した部位をそのまま回路部品として加工した製品は、スリップ傷が発生しなかった製品と比べ、表皮効果のため、インピーダンスが大きくなり、高周波伝送回路用として使用できない状態となる。
このため、銅合金複合箔のRzは0.3μm以上、Raは0.02μm以上とすることが望ましい。
【0023】
箔の強度は、部品を組み立てる工程で箔が変形したり、狭ピッチの配線を行う場合に負荷される引張り応力などに耐えられるだけの十分な高い強度が必要とされ、本発明銅合金複合箔では引っ張り強度で、500N/mm2以上、望ましくは700N/mm2以上が必要である。これより低い場合には、組み立て加工時の破断や通板時にしわや折れなどが発生し、生産性を損ねる他、しわによりインピーダンスが増大する恐れがあるからである。
【0024】
本発明では箔の強度を銅合金の芯材にて持たせ、かつ表面に銅や銀のごとく導電性の高い金属を配することで高周波伝送時での表皮効果によるロスを減少させている。銀や銅での周波数と電流の流れる深さ(表皮深さ)は、10MHzで約20μm、0.5GHzで約3μm、1GHzで約2μm、10GHzで約0.6μmと計算されており、表面の少しの粗さや導電率(不純物含有)により、大きな効果がでてくる。
表面に存在する銅や銀層の厚みについては、表面の平滑化の効果も加わるが、その使用用途での周波数に応じた表皮深さの約1/10以上の厚みを有しておれば効果を発する。
つまり、密着型、近接型、近傍型では、約2μm程度の厚さが必要であり、マイクロ波型では、0.1μm程度の厚さで効果を発揮する。
【0025】
なお、エッチングによる回路形成に対しては、銀よりも銅層の方が同一のエッチャントで溶解除去しやすいため好ましい。
また、高周波特性からは、表面に粗化処理膜、防錆処理膜を形成しない方が望ましいが、樹脂などとの密着性や耐食性が要求される場合には、高周波特性を一部犠牲にして施してもよい。
【0026】
粗化処理膜としては、Cuまたは、CuとCo,Ni,Fe,Crからなる微細粒子、若しくはこれらとV,Mo,Wなどの元素の酸化物との混合物を電解析出させる。なおこの粗化膜上に更に平滑なCuめっきを施し、粉落ちを防止すると良く、通常0.01mg/dm2以上の付着量で基板樹脂との密着力を向上させることができる。
また、更にこの上に防錆処理、シランカップリング剤処理をほどこしても良い。防錆処理としては、一般的にNi,Zn,Crやこれらの合金めっきやクロメート処理または、BTAなどの有機防錆処理を施す。
シランカップリング剤処理としては、ビニル系、エポキシ系など使用される基板により適宜選択する。
【0027】
次に、本発明の実施例を用いて詳細に説明する。
なお、この説明は、本発明の一般的な説明をする目的でなされたものであり、何ら限定的意味を持つものではない。
【0028】
実施例1
電気銅を主原料とし、銅ベリリウム母合金、コバルトを副原料として配合し、高周波溶解炉にて真空中で銅−ベリリウム−コバルト合金を溶解製造し、厚さ28mmのインゴットに鋳造した。
続いて、インゴットに熱間加工を施し、冷間加工と溶体化処理を繰り返した後、最終の冷間圧延を行い、厚さ33μmの箔として時効処理を施した。得られた合金の組成は、Be=0.4wt%、Co=5.2wt%であった。
得られた箔の表面に、公知の前処理を施し、シアン浴にてCuを両面1μmの厚さにめっきを施した。めっきした銅合金複合箔の表面粗度は、Raで0.2μm、Rzで3.1μmであった
得られた複合箔の、引っ張り強さは、1010N/mm2、導電率は30IACS%であった。
【0029】
実施例2
実施例1と同様にして製造した銅合金箔に、Cuめっきに替えて、シアン浴でAgめっきを両面1μmの厚さに施した。
表面の粗度は、Raで0.23μm、Rzで3.2μmであった。
得られた銅合金複合箔の、引っ張り強さは、1020N/mm2、導電率は29IACS%であった。
【0030】
実施例3
電気銅を主原料とし、銅ベリリウム母合金、コバルトを副原料として、実施例1と同様の配合で、高周波溶解炉にて真空中で銅―ベリリウムーコバルト合金を溶解製造し、厚さ25mmのインゴットに鋳造した。
続いて、インゴットに熱間加工を施し、冷間加工と溶体化処理を繰り返した後、最終の冷間圧延を行い、厚さ29μmの箔とした後、両面に厚さ3μmのシアンCuめっきを施した後、時効処理を施した。
表面の粗度は、Raで0.2μm、Rzで2.2μmであった。
得られた複合箔の引っ張り強さは、920N/mm2、導電率は36IACS%であった。
【0031】
実施例4
実施例3で鋳造したインゴットに熱間加工を施し、冷間加工と溶体化処理を繰り返し、厚さ35μmの箔とした後、両面に厚さ3μmのシアンCuめっきを施した後、最終の冷間圧延を行い35μmとしてから、時効処理を施した。
表面の粗度は、Raで0.17μm、Rzで2.1μmであった。
得られた複合箔の引っ張り強さは、910N/mm2、導電率は35IACS%であった。
【0032】
比較例1
電気銅を主原料とし、銅ベリリウム母合金、コバルトを副原料として、高周波溶解炉にて真空中で銅―ベリリウムーコバルト合金を溶解製造し、実施例1と同じ合金組成の厚さ30mmのインゴットを鋳造した。
続いて、インゴットに熱間加工を施し、冷間加工と溶体化処理を繰り返した後、最終の冷間圧延を行い、厚さ35μmの箔として時効処理を施した。
表面の粗度は、Raで0.3μm、Rzで3.6μmであった。
引っ張り強さは、1080N/mm2、導電率は26IACS%であった。
【0033】
実施例1乃至4で得られた銅合金複合箔並びに比較例1で得られた銅合金箔につき、伝送ロスの評価を行った。
評価は各実施例、比較例1で作成した銅箔を高周波基板用樹脂を含浸させたガラス布プリプレグ上に置いて加熱プレスして積層板とし、次いで箔表面にドライフィルムエッチングレジストを貼りエッチングし、高周波プリント配線板を作成した。 配線板の箔の巾:100μm、導体間:100μmのパターンを得た。これを用いて、4GHzの信号を500mm送り伝送ロスを測定した。
各実施例の比較例1と比べた伝送ロスの減少率は、下記であった。
実施例1:13%
実施例2:12%
実施例3:42%
実施例4:35%
また、実施例は全て製造上にてスリップ傷などの発生もなく、外観は良好であった。
【0034】
実施例5
8%錫−リン青銅を、電気銅、リン含有銅、錫を原料として、真空鋳造し厚さ30mmのインゴットを得た。組成は、Sn=8.2wt%,P=0.03wt%であった。
本インゴットに熱間加工を施した後、冷間加工と圧延を繰り返し、厚さ30μmの箔を得た。得られた箔に公知の前処理を施した後、光沢硫酸銅めっき浴にて両面に厚さ2.5μmの銅めっきを施した。
表面粗度は、Raで0.2μm、Rzで1.8μmであった。
得られた複合箔の、引っ張り強さは、610N/mm2であり、導電率は25IACS%であった。
【0035】
実施例6
実施例5と同様に作成した銅合金複合箔につき、低温アニールを模擬すべく、250℃、30分の大気加熱を行い、表面を硫酸で酸洗いした。
粗度、引っ張り強さは実施例5と同等であり、導電率は23IACS%であった。
【0036】
実施例7
実施例5の銅合金複合箔につき、焼けめっき後カプセルめっきを施し、微細粗化処理した。さらに防錆処理としてCrを0.02mg/dm2電気めっきしビニル系のシランカップリング剤処理を施した。
粗度は、Raで0.27μm、Rzで2.5μmであり、引っ張り強さ、導電率は実施例5と同等であった。
【0037】
実施例8
実施例5と同様にして、厚さ34.6μmの箔を得た。この箔に公知の前処理を施した後、両面にシアン浴にてAgを厚さ0.1μmめっきした後、光沢硫酸銅めっきを厚さ0.1μm施した。
粗度は、Raで0.3μm、Rzで3.0μmであった。引っ張り強さは、692N/mm2、導電率は13IACS%であった。
【0038】
比較例2
実施例5で得られた厚さ30mmのインゴットに熱間加工を施した後、冷間加工と圧延を繰り返し、厚さ35μmの箔を得た。
表面の粗度は、Raで0.4μm、Rzで3.2μmであった。引っ張り強さは、700N/mm2、導電率は12IACS%であった。
【0039】
これらの箔につき前記と同様の方法で伝送ロスを測定した。
実施例5乃至8と比較例2とを比べた伝送ロスの減少率は、下記であった。
実施例5:35%
実施例6:23%
実施例7:13%
実施例8:9%
上記においても、各実施例では製造上にてスリップ傷などの発生もなく、外観も良好であった。
【0040】
また、本発明の銅合金複合箔は従来の電解銅箔や圧延の純銅箔の強度が約400N/mm2程度であるのと比べ実施例1乃至4では1000N/mm2程度、実施例5、8でも600N/mm2以上と強度が高く、また、繰り返し曲げも測定の結果約3倍の強度を有している。
【0041】
【発明の効果】
上述したごとく、本発明の銅合金複合箔は従来の電解銅箔や圧延の純銅箔と比べ強度が高く、また、繰り返し曲げにも優れ、かつ銅合金圧延箔で著しい劣化を示した伝送ロスも防止できるため工業上非常に優れている。
また、特殊な銅合金の使用に限定されることなく、高強度銅合金のいずれにも応用できることからも工業的価値が高い。
更に、本発明銅合金複合箔は、高周波伝送回路として優れた特性を備えていることから、接触型、非接触型ICカードのアンテナ用材料等として好適に使用できる等の優れた効果を有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy composite foil having excellent strength, conductivity, and surface shape, and a method for producing the copper alloy composite foil, and is suitable for use in high frequency transmission circuits such as IC card antennas, for example. A copper alloy composite foil is provided.
[0002]
[Prior art]
In recent years, due to demands for miniaturization and high processing speed of high-performance electronic devices, the materials used for the circuit wiring are generally thin and advantageous for narrow pitch and light weight, and have low impedance to high-frequency currents. It is requested. One example is an IC card.
Until recently, a magnetic card on which a magnetic signal has been recorded is convenient for carrying and has been widely used in various fields such as a cash card, a credit card, a telephone card, and a point card. On the other hand, the IC card incorporates an IC in the card, so that more advanced judgments and complicated calculations are possible, the storage capacity is about 100 times larger than that of a magnetic card, and information can be read and written. There is also a feature that is high.
In addition to the contact type that communicates by physical contact with the contacts, the IC card information transmission method is a non-contact type that can communicate at a maximum spatial distance of several meters using electromagnetic waves. There is.
[0003]
Due to these features of the IC card, the IC card has a very wide range such as an ID card, a boarding ticket, a commuter pass, electronic money, a highway gate pass ticket, a health insurance card, a resident card, a medical card, a logistics management card, etc. The use in is expected.
Non-contact type IC cards are divided into four types, contact type (communication distance ~ 2 mm), proximity type (10 cm), proximity type (70 cm), and microwave type (same number m), depending on the communication distance. The frequency ranges from 4.91 MHz for the contact type, 13.56 MHz for the proximity type and the proximity type, and 2.45 and 5.8 GHz for the microwave type, ranging from MHz to GHz.
[0004]
The basic structure of this non-contact type IC card consists of an insulating sheet, an antenna, and an IC chip. The IC chip includes a ferroelectric memory, nonvolatile memory, ROM, RAM, modulation / demodulation circuit, power supply circuit, encryption circuit, control circuit, etc. Is incorporated. As the antenna member of this IC card, coated copper wire winding, silver paste, aluminum foil, copper foil, and the like are used, and they are properly used depending on the number of windings, application, manufacturing cost, and the like. When the number of turns is small and high conductivity is required, rolled pure copper foil or electrolytic copper foil is often used as the antenna material.
[0005]
However, when a foil having a large surface roughness such as a normal electrolytic copper foil is used as an antenna material, the impedance increases when a high-frequency signal is transmitted or received, and may not be used in a high-frequency region. On the other hand, in the case of using pure copper foil, not limited to electrolysis and rolling, the material strength is low, so the foil is deformed in the process of assembling the parts, and because of narrow pitch wiring, it breaks when tensile stress is applied. There is a problem of lowering the nature.
In addition, high-strength, high-conductivity copper alloys used as lead frame materials have higher material strength than pure copper foil, but in recent years, signal transmission has become faster, smaller, and more reliable. It is not enough to deal with such requests.
Accordingly, various applications have been filed for the use of copper alloys with improved characteristics of these conventional copper alloys in order to cope with further narrow pitch and weight reduction (see, for example, Patent Document 1), but sufficient strength as an antenna material. However, it does not meet the characteristics of transmission loss reduction in the high frequency range.
[0006]
JP 2002-167633 A
[Problems to be solved by the invention]
As a result of intensive studies to solve the above problems in view of the above-mentioned recent demands, the present invention has both high strength and high conductivity, and an impedance provided with a low resistance layer such as copper or / and silver on the surface. Has developed a copper alloy composite foil with low strength and succeeded in providing a foil that meets recent demands, and has excellent strength, conductivity, and surface shape, such as high frequency transmission such as an IC card antenna The present invention provides a copper alloy composite foil that is optimal for circuit applications and a method for producing the same.
[Means for Solving the Problems]
[0008]
The basic idea of the present invention is as follows. That is,
In the high-frequency region, copper or / and silver having excellent conductivity are arranged on the surface because current flows through the surface layer, and the strength is given by the copper alloy rolled foil (material) that becomes the core material. In addition, the use of a copper alloy rolled foil that is excellent in repeated bendability as compared with an electrolytic copper foil or the like makes it a material that can withstand use in a bent application.
The copper or silver layer on the surface is desirably conductive and highly pure, but may be alloyed by adding a small amount of an additive element.
[0009]
In the invention of claim 1 of the present application, at least one surface of the copper alloy rolled foil has a thickness of at least 0.01 to 3 μm, a surface roughness of Rz, 0.3 to 5.0 μm, and Ra. A copper alloy composite foil for a high-frequency transmission circuit , wherein a silver plating layer having a thickness of 0.02 to 0.5 μm is provided.
[0010]
The invention of claim 2 of the present application has a thickness of 0 . For high-frequency transmission circuits , characterized in that a copper plating layer having a surface roughness of 0.1 to 3 μm, Rz of 0.3 to 5.0 μm, and Ra of 0.02 to 0.5 μm is provided. It is a copper alloy composite foil.
[0011]
In the invention of claim 3 of the present application, a plating layer comprising a copper plating layer and a silver plating layer is provided on at least one surface of the copper alloy rolled foil, and the thickness of the plating layer is 0 . A copper alloy composite foil for a high-frequency transmission circuit , characterized in that the surface roughness is 0.1 to 3 μm, the surface roughness is 0.3 to 5.0 μm in Rz, and 0.02 to 0.5 μm in Ra.
[0012]
Invention of Claim 4 of this application is the copper alloy composite foil in any one of Claims 1 thru | or 3, Comprising: The tensile strength of this copper alloy composite foil is 500 N / mm < 2 > or more, It is characterized by the above-mentioned. This is a copper alloy composite foil for high-frequency transmission circuits .
[0013]
Invention of Claim 5 of this application is a copper alloy composite foil in any one of Claims 1 thru | or 4 which performed either the roughening process, the antirust process, or both on the smooth layer. is there.
[0015]
In the invention of claim 6 of the present application, after an ingot made of a copper alloy is processed into a foil having a desired thickness by rolling, the thickness of the processed copper alloy foil is reduced to 0 . A high frequency characterized by applying a copper or / and silver plating layer having a surface roughness of 0.1 to 3 μm, Rz of 0.3 to 5.0 μm, and Ra of 0.02 to 0.5 μm. It is a manufacturing method of the copper alloy composite foil for transmission circuits .
[0017]
The invention of claim 7, by rolling an ingot of a copper alloy processed to a foil of intermediate sized thickness, copper plating and / or silver plating on at least the foil sheet surface of the one of the processing a copper alloy foil And then rolling to give a thickness of 0 . A high frequency characterized by a copper or / and silver plating layer having a surface roughness of 0.1 to 3 μm, Rz of 0.3 to 5.0 μm, and Ra of 0.02 to 0.5 μm. It is a manufacturing method of the copper alloy composite foil for transmission circuits .
[0018]
In the invention of claim 8 of the present application, an ingot made of a copper alloy is processed into a foil having an intermediate size by rolling, copper plating and / or silver plating is applied to at least one of the foil surfaces, and then heat treatment is performed. Or it is a manufacturing method of the copper alloy composite foil for high frequency transmission circuits characterized by performing heat processing and a rolling process process, and setting it as the plating layer which has a thickness of 0.01-3 micrometers copper or / and silver.
[0019]
The invention of claim 9, using a copper alloy composite foil according to any one of claims 1 to 5, or a high-frequency transmission circuit manufactured by the manufacturing method according to any one of claims 6乃Itaru 8 The high frequency transmission circuit is characterized by being made using a copper alloy composite foil.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The copper or / and silver layer formed on the surface of the copper alloy composite foil in the present invention can be formed by plating a copper alloy material (foil or intermediate thickness plate) having a desired thickness. / And the silver layer may be applied before the rolling or annealing step, and may be finally left as a thin layer on the surface of the foil.
When the core material is a solid solution type or a precipitation / solid solution type alloy (for example, when zinc is included), the alloying element (Zn) diffuses to the surface layer by processing after copper plating such as heat treatment. In some cases, the surface is alloyed (Cu—Zn alloy). In order to reduce the surface conductivity, it is necessary to appropriately set conditions such as heat treatment to ensure the conductivity of the surface layer.
When a conventional copper alloy foil is used and energized at a high frequency, the resistance increases drastically due to the skin effect, leading to an increase in impedance, and normal signal transmission and reception may not be possible. As a result of analyzing this phenomenon, it was found that when a conventional copper alloy foil is used, the copper alloy foil has a lower electrical conductivity than a pure copper foil, so that the skin effect is large.
[0021]
Moreover, when the surface roughness becomes rough, the above-mentioned problem occurs. Both Rz and Ra affect the surface roughness index.
As a result of various experiments and examinations in the present invention, the copper alloy composite foil of the present invention having a copper alloy material having low conductivity as a core material has an Rz of 5.0 μm or less and an Ra of 0.5 μm with respect to the skin effect in high-frequency transmission. The following is preferable.
[0022]
On the other hand, if the surface roughness is too smooth, slip occurs during conveyance, and induces scratches on the foil surface. Production and handling of foil (generally 0.080 mm or less) is different from production and handling of plates, and because of the thinness of the foil, it must be conveyed on the line with low tension, compared to the plate. The conveyance roll is difficult to synchronize and slip damage is likely to occur. Slip flaws may occur over the entire length of the foil, and those with strong slip flaws having an Rz of more than 5.0 μm may cause the foil to be broken at this site. A product obtained by processing a part where a large scratch is generated as a circuit component as it is is not usable for a high-frequency transmission circuit due to the skin effect due to the skin effect compared to a product where no slip is generated.
For this reason, it is desirable that Rz of the copper alloy composite foil is 0.3 μm or more and Ra is 0.02 μm or more.
[0023]
The strength of the foil is required to be high enough to withstand the tensile stress applied when the foil is deformed in the process of assembling the parts or when wiring with a narrow pitch is performed. Then, the tensile strength is required to be 500 N / mm 2 or more, preferably 700 N / mm 2 or more. If it is lower than this, it may cause breakage during assembly processing, wrinkles or creases during sheet passing, etc., impairing productivity, and wrinkles may increase impedance.
[0024]
In the present invention, the loss due to the skin effect at the time of high-frequency transmission is reduced by providing the strength of the foil with the core material of the copper alloy and arranging a highly conductive metal such as copper or silver on the surface. The frequency and the depth of current flow (skin depth) in silver and copper are calculated to be about 20 μm at 10 MHz, about 3 μm at 0.5 GHz, about 2 μm at 1 GHz, and about 0.6 μm at 10 GHz. A little effect can be achieved by a little roughness and electrical conductivity (impurities included).
As for the thickness of the copper or silver layer present on the surface, the effect of smoothing the surface is also added, but it is effective if it has a thickness of about 1/10 or more of the skin depth according to the frequency in its use To emit.
That is, the contact type, the proximity type, and the proximity type require a thickness of about 2 μm, and the microwave type exhibits an effect with a thickness of about 0.1 μm.
[0025]
For circuit formation by etching, the copper layer is preferable to silver because it is easier to dissolve and remove with the same etchant.
In addition, from the viewpoint of high frequency characteristics, it is desirable not to form a roughened film or rust preventive film on the surface. However, if high adhesion and corrosion resistance are required, the high frequency characteristics may be partially sacrificed. You may give it.
[0026]
As the roughening film, Cu, fine particles made of Cu and Co, Ni, Fe, or Cr, or a mixture of these and oxides of elements such as V, Mo, and W are electrolytically deposited. In addition, it is preferable to further smooth the Cu plating on the roughened film to prevent powder falling off, and the adhesion with the substrate resin can be improved with an adhesion amount of usually 0.01 mg / dm 2 or more.
Further, a rust prevention treatment and a silane coupling agent treatment may be further performed thereon. As the rust prevention treatment, Ni, Zn, Cr, alloy plating or chromate treatment thereof, or organic rust prevention treatment such as BTA is generally performed.
The silane coupling agent treatment is appropriately selected depending on the substrate used, such as vinyl or epoxy.
[0027]
Next, it demonstrates in detail using the Example of this invention.
This description is made for the purpose of general description of the present invention, and has no limiting meaning.
[0028]
Example 1
An electrolytic copper was used as a main raw material, a copper beryllium mother alloy and cobalt were added as auxiliary materials, and a copper-beryllium-cobalt alloy was melted and produced in a vacuum in a high-frequency melting furnace, and cast into an ingot having a thickness of 28 mm.
Subsequently, the ingot was hot worked, and after cold working and solution treatment were repeated, the final cold rolling was performed, and an aging treatment was performed as a foil having a thickness of 33 μm. The composition of the obtained alloy was Be = 0.4 wt% and Co = 5.2 wt%.
A known pretreatment was performed on the surface of the obtained foil, and Cu was plated to a thickness of 1 μm on both sides in a cyan bath. The surface roughness of the plated copper alloy composite foil was 0.2 μm for Ra and 3.1 μm for Rz. The resulting composite foil had a tensile strength of 1010 N / mm 2 and a conductivity of 30 IACS%. It was.
[0029]
Example 2
The copper alloy foil produced in the same manner as in Example 1 was subjected to Ag plating in a cyan bath to a thickness of 1 μm on both sides instead of Cu plating.
The surface roughness was 0.23 μm for Ra and 3.2 μm for Rz.
The obtained copper alloy composite foil had a tensile strength of 1020 N / mm 2 and an electrical conductivity of 29 IACS%.
[0030]
Example 3
A copper-beryllium-cobalt alloy was melted and manufactured in vacuum in a high-frequency melting furnace with the same composition as in Example 1 using electrolytic copper as the main raw material, copper beryllium master alloy and cobalt as the auxiliary raw materials, and having a thickness of 25 mm Cast into ingot.
Subsequently, the ingot was hot worked, and after cold working and solution treatment were repeated, the final cold rolling was performed to obtain a 29 μm thick foil, and then a cyan copper plating with a thickness of 3 μm was applied to both sides. After applying, an aging treatment was performed.
The surface roughness was 0.2 μm for Ra and 2.2 μm for Rz.
The resulting composite foil had a tensile strength of 920 N / mm 2 and an electrical conductivity of 36 IACS%.
[0031]
Example 4
The ingot cast in Example 3 was hot-worked, cold work and solution treatment were repeated to form a foil having a thickness of 35 μm, and then a cyan Cu plating having a thickness of 3 μm was applied to both sides, and then the final cold An aging treatment was performed after hot rolling to 35 μm.
The surface roughness was 0.17 μm for Ra and 2.1 μm for Rz.
The resulting composite foil had a tensile strength of 910 N / mm 2 and an electrical conductivity of 35 IACS%.
[0032]
Comparative Example 1
A copper-beryllium-cobalt alloy was melted and produced in vacuum in a high-frequency melting furnace using electrolytic copper as the main raw material, copper beryllium mother alloy and cobalt as the auxiliary raw materials, and an ingot with a thickness of 30 mm having the same alloy composition as in Example 1. Was cast.
Subsequently, the ingot was hot worked, and after cold working and solution treatment were repeated, the final cold rolling was performed, and an aging treatment was performed as a foil having a thickness of 35 μm.
The surface roughness was 0.3 μm for Ra and 3.6 μm for Rz.
The tensile strength was 1080 N / mm 2 and the conductivity was 26 IACS%.
[0033]
The copper alloy composite foil obtained in Examples 1 to 4 and the copper alloy foil obtained in Comparative Example 1 were evaluated for transmission loss.
Evaluation is carried out by placing the copper foil prepared in each Example and Comparative Example 1 on a glass cloth prepreg impregnated with a resin for a high frequency substrate, heating and pressing to form a laminate, and then etching by attaching a dry film etching resist on the foil surface. A high frequency printed wiring board was created. A pattern with a width of foil of the wiring board: 100 μm and between conductors: 100 μm was obtained. Using this, the transmission loss was measured by sending a 4 GHz signal by 500 mm.
The reduction rate of the transmission loss compared with the comparative example 1 of each Example was the following.
Example 1: 13%
Example 2: 12%
Example 3: 42%
Example 4: 35%
In all the examples, there was no occurrence of slip scratches in production, and the appearance was good.
[0034]
Example 5
8% tin-phosphorous bronze was vacuum cast using electrolytic copper, phosphorus-containing copper, and tin as raw materials to obtain an ingot having a thickness of 30 mm. The composition was Sn = 8.2 wt% and P = 0.03 wt%.
After subjecting the ingot to hot working, cold working and rolling were repeated to obtain a foil having a thickness of 30 μm. The obtained foil was subjected to a known pretreatment, and then a copper plating with a thickness of 2.5 μm was applied to both surfaces in a bright copper sulfate plating bath.
The surface roughness was 0.2 μm for Ra and 1.8 μm for Rz.
The obtained composite foil had a tensile strength of 610 N / mm 2 and an electrical conductivity of 25 IACS%.
[0035]
Example 6
The copper alloy composite foil prepared in the same manner as in Example 5 was heated in the atmosphere at 250 ° C. for 30 minutes to simulate low temperature annealing, and the surface was pickled with sulfuric acid.
The roughness and tensile strength were the same as in Example 5, and the conductivity was 23 IACS%.
[0036]
Example 7
The copper alloy composite foil of Example 5 was subjected to capsule plating after burnt plating and finely roughened. Further, 0.02 mg / dm 2 of Cr was electroplated as a rust preventive treatment, and a vinyl silane coupling agent treatment was performed.
The roughness was 0.27 μm for Ra and 2.5 μm for Rz, and the tensile strength and conductivity were the same as in Example 5.
[0037]
Example 8
In the same manner as in Example 5, a foil having a thickness of 34.6 μm was obtained. This foil was subjected to a known pretreatment, and then Ag was plated to a thickness of 0.1 μm on both sides using a cyan bath, followed by a bright copper sulfate plating of 0.1 μm.
The roughness was 0.3 μm for Ra and 3.0 μm for Rz. The tensile strength was 692 N / mm 2 and the conductivity was 13 IACS%.
[0038]
Comparative Example 2
After hot working the 30 mm thick ingot obtained in Example 5, cold working and rolling were repeated to obtain a 35 μm thick foil.
The surface roughness was 0.4 μm for Ra and 3.2 μm for Rz. The tensile strength was 700 N / mm 2 and the conductivity was 12 IACS%.
[0039]
The transmission loss was measured for these foils by the same method as described above.
The reduction rate of the transmission loss comparing Examples 5 to 8 and Comparative Example 2 was as follows.
Example 5: 35%
Example 6: 23%
Example 7: 13%
Example 8: 9%
Also in the above, in each Example, there was no generation | occurrence | production of a slip damage | wound etc. on manufacture, and the external appearance was also favorable.
[0040]
Further, the copper alloy composite foil conventional electrolytic copper foil and the strength of the rolled pure copper foil than that of the approximately 400 N / mm 2 Example 1 to 4, 1000 N / mm 2 approximately of the present invention, Example 5, 8 is as high as 600 N / mm 2 or more, and repeated bending has a strength about three times as a result of measurement.
[0041]
【The invention's effect】
As described above, the copper alloy composite foil of the present invention is higher in strength than conventional electrolytic copper foil and rolled pure copper foil, is excellent in repeated bending, and has a transmission loss that shows significant deterioration in the copper alloy rolled foil. Because it can be prevented, it is very industrially superior.
Moreover, it is not limited to the use of a special copper alloy, and since it can be applied to any high-strength copper alloy, it has a high industrial value.
Furthermore, since the copper alloy composite foil of the present invention has excellent characteristics as a high-frequency transmission circuit, it has excellent effects such as being suitable for use as an antenna material for contact-type and non-contact-type IC cards. It is.
Claims (9)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003026626A JP4429611B2 (en) | 2003-02-04 | 2003-02-04 | Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil |
US10/543,917 US20060147742A1 (en) | 2003-02-04 | 2004-02-04 | Composite copper foil, method of production thereof and high frequency transmission circuit using said composite copper foil |
DE112004000245T DE112004000245T5 (en) | 2003-02-04 | 2004-02-04 | Composite copper foil, process for its production and high-frequency transmission circuit using a composite copper foil |
PCT/JP2004/001107 WO2004070087A1 (en) | 2003-02-04 | 2004-02-04 | Composite copper foil, method for production thereof and high frequency transmission circuit using said composite copper foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003026626A JP4429611B2 (en) | 2003-02-04 | 2003-02-04 | Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006155899A JP2006155899A (en) | 2006-06-15 |
JP4429611B2 true JP4429611B2 (en) | 2010-03-10 |
Family
ID=36633957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003026626A Expired - Fee Related JP4429611B2 (en) | 2003-02-04 | 2003-02-04 | Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4429611B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI414638B (en) * | 2006-06-07 | 2013-11-11 | Furukawa Electric Co Ltd | A method for manufacturing a surface-treated electrolytic copper foil, and a circuit board |
JP4367457B2 (en) | 2006-07-06 | 2009-11-18 | パナソニック電工株式会社 | Silver film, silver film manufacturing method, LED mounting substrate, and LED mounting substrate manufacturing method |
JP5282675B2 (en) * | 2009-06-23 | 2013-09-04 | 日立電線株式会社 | Copper foil for printed wiring board and method for producing the same |
JP2011179053A (en) * | 2010-02-26 | 2011-09-15 | Hitachi Cable Ltd | Roughened foil and method of producing the same |
US9845521B2 (en) | 2010-12-13 | 2017-12-19 | Kobe Steel, Ltd. | Copper alloy |
JP5871426B2 (en) * | 2012-01-31 | 2016-03-01 | 古河電気工業株式会社 | Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission |
TW201448338A (en) * | 2013-01-18 | 2014-12-16 | Furukawa Electric Co Ltd | Copper foil, anode for lithium ion battery, and lithium ion secondary battery |
JP2014152352A (en) | 2013-02-06 | 2014-08-25 | Sh Copper Products Corp | Composite copper foil and production method thereof |
JP6746817B1 (en) * | 2020-03-05 | 2020-08-26 | 日本メクトロン株式会社 | Printed wiring board and manufacturing method thereof |
JP7547935B2 (en) | 2020-10-30 | 2024-09-10 | 大日本印刷株式会社 | Coil and manufacturing method thereof, power transmission device, power receiving device, and power transmission system |
-
2003
- 2003-02-04 JP JP2003026626A patent/JP4429611B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006155899A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5417538B1 (en) | Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board | |
KR101090198B1 (en) | High frequency cooper foil and method for manufacturing the same, and high frequency circuit using the same | |
KR100466062B1 (en) | Copper-alloy foil to be used for laminate sheet | |
JP5475897B1 (en) | Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board | |
JP3476264B2 (en) | Copper foil for printed circuit inner layer and method of manufacturing the same | |
JP4296250B2 (en) | Copper foil for high frequency circuit and manufacturing method thereof | |
TW201039702A (en) | Copper foil for printed wiring board and method for producing same | |
JP3295308B2 (en) | Electrolytic copper foil | |
KR101931895B1 (en) | Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board | |
EP1180917B1 (en) | Laminate sheet of copper-alloy foil and liquid crystal polymer | |
JP4429611B2 (en) | Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil | |
KR102275187B1 (en) | Roughening copper foil, copper-clad laminate and printed wiring board | |
US6808825B2 (en) | Copper alloy foil | |
WO2004070087A1 (en) | Composite copper foil, method for production thereof and high frequency transmission circuit using said composite copper foil | |
JP5116943B2 (en) | Copper foil for high frequency circuit and manufacturing method thereof | |
JP4744938B2 (en) | Metal materials for printed wiring boards | |
JP2003041334A (en) | Copper alloy foil for laminate | |
JP6379055B2 (en) | Surface-treated copper foil and laminate | |
CN102783255B (en) | Copper foil for printed circuit board and copper-clad laminate for printed circuit board | |
US20030096082A1 (en) | Copper alloy foil | |
KR102288666B1 (en) | Composite metal foil, composite metal foil with carrier, metal-clad laminate obtained using said composite metal foil or said composite metal foil with carrier, and printed wiring board | |
JP3765718B2 (en) | Copper alloy foil for high frequency circuits | |
JP3760089B2 (en) | Copper alloy foil for high frequency circuits | |
JP4539939B2 (en) | Copper alloy foil for high frequency circuits | |
JP2003041332A (en) | Copper alloy foil for laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080624 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080625 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080801 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090619 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090925 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20091105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4429611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |