WO2021117339A1 - Surface-treated copper foil, copper-clad laminate plate, and printed wiring board - Google Patents

Surface-treated copper foil, copper-clad laminate plate, and printed wiring board Download PDF

Info

Publication number
WO2021117339A1
WO2021117339A1 PCT/JP2020/038989 JP2020038989W WO2021117339A1 WO 2021117339 A1 WO2021117339 A1 WO 2021117339A1 JP 2020038989 W JP2020038989 W JP 2020038989W WO 2021117339 A1 WO2021117339 A1 WO 2021117339A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
treated
layer
treatment layer
base material
Prior art date
Application number
PCT/JP2020/038989
Other languages
French (fr)
Japanese (ja)
Inventor
郁浩 五刀
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to KR1020227017427A priority Critical patent/KR20220087525A/en
Priority to CN202080082012.7A priority patent/CN114761622B/en
Publication of WO2021117339A1 publication Critical patent/WO2021117339A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Definitions

  • This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
  • Copper-clad laminates are widely used in various applications such as flexible printed wiring boards.
  • This flexible printed wiring board is mounted by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern") and connecting electronic components on the conductor pattern with solder. Manufactured.
  • the loss of signal power (transmission loss) in an electronic circuit can be roughly divided into two.
  • the first is the conductor loss, that is, the loss due to the copper foil
  • the second is the dielectric loss, that is, the loss due to the resin base material.
  • the conductor loss has a skin effect in the high frequency region and has the characteristic that the current flows on the surface of the conductor. Therefore, if the surface of the copper foil is rough, the current will flow along a complicated path. Therefore, in order to reduce the conductor loss of the high frequency signal, it is desirable to reduce the surface roughness of the copper foil.
  • transmission loss and “conductor loss” are simply used in the present specification, they mainly mean “transmission loss of high frequency signal” and "conductor loss of high frequency signal”.
  • Patent Document 1 proposes a method of providing a roughening treatment layer formed of roughened particles on a copper foil and forming a silane coupling treatment layer on the outermost surface layer.
  • the roughened layer can enhance the adhesiveness between the copper foil and the resin base material by the anchor effect of the roughened particles, but it may increase the conductor loss due to the skin effect, so that it can be applied to the copper foil surface. It is desirable to reduce the amount of coarsened particles to be electrodeposited. On the other hand, if the number of roughened particles electrodeposited on the surface of the copper foil is reduced, the anchoring effect of the roughened particles is reduced, and sufficient adhesiveness between the copper foil and the resin base material cannot be obtained.
  • a resin base material formed of a low-dielectric material such as a liquid crystal polymer or a low-dielectric polyimide is more difficult to adhere to a copper foil than a conventional resin base material, so that the adhesiveness between the copper foil and the resin base material is improved.
  • the development of a method to enhance it is desired.
  • the silane coupling treatment layer has an effect of improving the adhesiveness between the copper foil and the resin base material, the effect of improving the adhesiveness may not be sufficient depending on the type.
  • An embodiment of the present invention has been made to solve the above problems, and is a surface-treated copper foil capable of enhancing adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
  • the purpose is to provide.
  • Another object of the present invention is to provide a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil.
  • an embodiment of the present invention aims to provide a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.
  • the present inventors have conducted a load area ratio that separates the protruding valley portion and the core portion among various indexes of the surface roughness of the surface-treated layer. Based on the finding that SMr2 is closely related to the adhesiveness between the surface-treated copper foil and the resin base material, by controlling SMr2 to a specific range, the surface-treated copper foil and the resin base material can be combined. They have found that the adhesiveness between them can be enhanced, and have completed the embodiment of the present invention.
  • the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil, and has a load area ratio that separates the protruding valley portion and the core portion of the surface-treated layer.
  • the present invention relates to a surface-treated copper foil having an SMr2 of 91 to 96%. Further, an embodiment of the present invention relates to a copper-clad laminate comprising the surface-treated copper foil and a resin base material adhered to the surface-treated layer of the surface-treated copper foil. Further, an embodiment of the present invention relates to a printed wiring board including a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
  • a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications.
  • a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil.
  • a printed wiring board having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.
  • the surface-treated copper foil according to the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil. That is, the surface treatment layer may be formed on only one surface of the copper foil, or may be formed on both surfaces of the copper foil. Further, when the surface treatment layers are formed on both surfaces of the copper foil, the types of the surface treatment layers may be the same or different.
  • the surface treatment layer has a load area ratio SMr2 that separates the protruding valley portion and the core portion from 91 to 96%.
  • the load area ratio SMr2 that separates the protruding valley portion and the core portion represents the ratio of the protruding valley portion below the core portion, and the smaller the ratio of the protruding valley portion, the larger the value of SMr2.
  • SMr2 is measured according to ISO 25178.
  • the anchor effect can be enhanced by setting SMr2 of the surface treatment layer to 91% or more (reducing the proportion of protruding valleys). As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting SMr2 of the surface treatment layer to 96% or less, it is possible to suppress an increase in transmission loss due to the skin effect.
  • the surface treatment layer has a load area ratio SMr1 that separates the protruding peak portion and the core portion, preferably 16 to 28%.
  • the load area ratio SMr1 that separates the protruding mountain portion and the core portion represents the ratio of the protruding peak portion above the core portion, and the larger the ratio of the protruding peak portion, the larger the value of SMr1.
  • SMr1 is measured according to ISO 25178.
  • SMr1 of the surface treatment layer 16% or more (increasing the ratio of the protruding peaks), it is possible to easily disperse the peeling force in the height direction of the protruding peaks due to the presence of the protruding peaks. it can. As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting SMr1 of the surface treatment layer to 28% or less, it is possible to suppress an increase in transmission loss due to the skin effect.
  • the surface-treated layer has a protruding peak height Spk of preferably 1.2 to 2.5 ⁇ m.
  • the protruding peak height Spk is measured in accordance with ISO 25178.
  • the resin base material is adhered to the surface-treated layer of the surface-treated copper foil, if the protruding peak portion of the surface-treated layer is low, the peeling force is concentrated on the surface of the core portion. Therefore, by setting the Spk of the surface treatment layer to 1.2 ⁇ m or more (increasing the protruding ridge), it is possible to easily disperse the peeling force in the height direction of the protruding ridge due to the presence of the protruding ridge. .. As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting the Spk of the surface treatment layer to 2.5 ⁇ m or less, it is possible to suppress an increase in transmission loss due to the skin effect.
  • the level difference Sk of the core portion of the surface treatment layer is preferably 1.0 to 2.0 ⁇ m.
  • the level difference Sk of the core portion of the surface treatment layer represents the degree of variation in the height of the portion (core portion) excluding the protruding peak portion and the protruding valley portion, and is measured in accordance with ISO 25178.
  • the Sk of the surface treatment layer is set to 1.0 ⁇ m or more (increasing the variation in the height of the core portion), the upper surface of the core portion is made uneven and the peeling force is increased in the height direction of the core portion. It can be easily dispersed. As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased.
  • the Sk of the surface treatment layer is set to 2.0 ⁇ m or less, it is possible to suppress an increase in transmission loss due to the skin effect.
  • the type of the surface treatment layer is not particularly limited, and various surface treatment layers known in the art can be used.
  • the surface treatment layer include a roughening treatment layer, a heat resistance treatment layer, a rust prevention treatment layer, a chromate treatment layer, a silane coupling treatment layer and the like. These layers may be used alone or in combination of two or more.
  • the surface treatment layer preferably has a roughening treatment layer from the viewpoint of adhesiveness to the resin base material.
  • the surface treatment layer has one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer, these layers are on the roughening treatment layer. It is preferable that it is provided in.
  • FIG. 1 shows a schematic cross-sectional view of a surface-treated copper foil having a roughening-treated layer on one surface of the copper foil.
  • the roughening treatment layer formed on one surface of the copper foil 10 includes a primary roughening particle 20, a cover plating layer 30 covering the primary roughening particle 20, and a cover plating layer 30.
  • the primary roughened particles 20 coated with the cover plating layer 30 are substantially spherical, and the secondary roughened particles 40 are formed so as to spread in a dendritic shape. With such a structure, it becomes easy to control SMr2, SMr1, Spk and Sk of the surface treatment layer within the above range.
  • the primary roughened particles 20 are not particularly limited, but are formed from an element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or an alloy containing two or more kinds of elements. be able to. Among them, the primary roughened particles 20 are preferably formed from copper or a copper alloy, particularly copper.
  • the cover plating layer 30 is not particularly limited, but can be formed of copper, silver, gold, nickel, cobalt, zinc, or the like.
  • the secondary roughened particles 40 are not particularly limited, but can be formed from a metal selected from the group consisting of nickel, cobalt, copper, and zinc, or an alloy containing two or more kinds of metals. Among them, the secondary roughened particles 40 are preferably formed from a copper alloy, particularly a Cu—Co—Ni alloy.
  • the roughened layer can be formed by electroplating.
  • the conditions may be adjusted according to the electroplating apparatus used and are not particularly limited, but typical conditions are as follows. (Formation condition R1 of primary roughened particles 20)
  • Plating solution composition 5 to 15 g / L Cu, 40 to 100 g / L sulfuric acid
  • Plating solution temperature 20 to 50 ° C.
  • Electroplating Conditions current density 30 ⁇ 60A / dm 2, coulombs 40 ⁇ 100As / dm 2
  • the formation condition R1 of the primary roughened particles 20 As the amount of coulomb decreases, the growth of the primary roughened particles 20 in the Z direction (direction perpendicular to the copper foil 10) is suppressed. Further, under the formation condition R2 of the cover plating layer 30, as the amount of coulomb increases, the layer grows uniformly and thickly in the XYZ direction. Therefore, by controlling the amount of coulomb (R1) / amount of coulomb (R2) to 6.0 or less, preferably 4.0 or less, the shape of the primary roughened particles 20 coated with the cover plating layer 30 is substantially spherical. It can be controlled to have a substantially hemispherical shape.
  • the secondary coarse particles 20 are formed on the cover plating layer 30.
  • the chemical particles 40 are likely to be formed so as to spread in a dendritic shape.
  • the amount of coulomb (R1) / amount of coulomb (R2) exceeds 6.0, the growth of the primary roughened particles 20 in the Z direction becomes large, so that the primary roughened particles 20 coated with the cover plating layer 30
  • the shape is approximately ellipsoidal to semi-ellipsoidal. Therefore, the secondary roughened particles 40 formed on the cover plating layer 30 are less likely to spread like dendritic particles.
  • the heat-resistant treatment layer and the rust-prevention treatment layer are not particularly limited, and can be formed from materials known in the art. Since the heat-resistant treatment layer may also function as a rust-preventive treatment layer, one layer having both the functions of the heat-resistant treatment layer and the rust-preventive treatment layer is formed as the heat-resistant treatment layer and the rust-preventive treatment layer. May be good.
  • the heat-resistant layer and / or rust-preventive layer includes nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • the heat-resistant treatment layer and / or the rust-prevention treatment layer is preferably a Ni—Zn layer or a Zn layer.
  • the Ni—Zn layer has a lower Ni content than the Zn content or the Zn layer does not contain Ni, the conductor loss can be reduced without significantly reducing the heat resistance effect and the rust preventive effect. It is preferable because it becomes.
  • the heat-resistant treatment layer and the rust-prevention treatment layer can be formed by electroplating.
  • the conditions may be adjusted according to the electroplating apparatus to be used and are not particularly limited, but the conditions for forming the heat resistant treatment layer (Ni—Zn layer) using a general electroplating apparatus are as follows. is there. Plating solution composition: 1 to 30 g / L Ni, 1 to 30 g / L Zn Plating solution pH: 2-5 Plating liquid temperature: 30 to 50 ° C Electroplating conditions: current density 1-10 A / dm 2 , time 0.1-5 seconds
  • the chromate-treated layer is not particularly limited and can be formed from a material known in the art.
  • the term "chromate-treated layer" as used herein means a layer formed of a solution containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • the chromate-treated layer can be any element (metal, alloy, oxide, nitride, sulfide, etc.) such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, and titanium. It can be a layer containing (may be in the form).
  • Examples of the chromate-treated layer include a chromate-treated layer treated with an aqueous solution of chromic anhydride or potassium dichromate, and a chromate-treated layer treated with a treatment solution containing chromic anhydride or potassium dichromate and zinc.
  • the chromate-treated layer can be formed by a known method such as immersion chromate treatment and electrolytic chromate treatment. These conditions are not particularly limited, but for example, the conditions for forming a general immersion chromate-treated layer are as follows. Chromate solution composition: 1 to 10 g / L K 2 Cr 2 O 7 , 0.01 to 10 g / L Zn Chromate solution pH: 2-5 Chromate liquid temperature: 30-55 ° C
  • the silane coupling treatment layer is not particularly limited, and can be formed from a material known in the art.
  • the term "silane coupling-treated layer" as used herein means a layer formed of a silane coupling agent.
  • the silane coupling agent is not particularly limited, and those known in the art can be used.
  • Examples of silane coupling agents include amino-based silane coupling agents, epoxy-based silane coupling agents, mercapto-based silane coupling agents, metharoxy-based silane coupling agents, vinyl-based silane coupling agents, and imidazole-based silane coupling agents. , Triazine-based silane coupling agent and the like. Among these, amino-based silane coupling agents and epoxy-based silane coupling agents are preferable.
  • silane coupling agent can be used alone or in combination of two or more.
  • a typical method for forming a silane coupling treatment layer a 1.2% by volume aqueous solution (pH: 10) of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.) ) Is applied and dried to form a silane coupling treatment layer.
  • the copper foil is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
  • Electrolytic copper foil is generally produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath, but a flat S-plane (shine surface) formed on the drum side and an S-plane. It has an M surface (matte surface) formed on the opposite side.
  • the surface treatment layer and the resin are formed by forming a surface treatment layer on the M surface of the electrolytic copper foil and adhering the surface treatment layer to the resin base material. Adhesion with the base material can be improved.
  • the material of the copper foil is not particularly limited, but when the copper foil is a rolled copper foil, tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number) usually used as a circuit pattern of a printed wiring board are used.
  • High-purity copper such as C1020 or JIS H3510 alloy number C1011) can be used.
  • copper alloys such as Sn-containing copper, Ag-containing copper, copper alloys to which Cr, Zr, Mg and the like are added, and Corson-based copper alloys to which Ni and Si and the like are added can also be used.
  • copper foil is a concept including copper alloy foil.
  • the thickness of the copper foil is not particularly limited, but may be, for example, 1 to 1000 ⁇ m, 1 to 500 ⁇ m, 1 to 300 ⁇ m, 3 to 100 ⁇ m, 5 to 70 ⁇ m, 6 to 35 ⁇ m, or 9 to 18 ⁇ m. ..
  • the surface-treated copper foil having the above-mentioned structure can be produced according to a method known in the art.
  • SMr2, SMr1, Spk and Sk of the surface treatment layer can be controlled by adjusting the formation conditions of the surface treatment layer, particularly the formation conditions of the roughening treatment layer described above.
  • the load area ratio SMr2 that separates the protruding valley portion and the core portion of the surface-treated layer is controlled to 91 to 96%, so that the surface-treated copper foil is a surface-treated copper foil.
  • the anchor effect can be enhanced when a resin base material is adhered to the surface. Therefore, this surface-treated copper foil can enhance the adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
  • the copper-clad laminate according to the embodiment of the present invention includes the above-mentioned surface-treated copper foil and a resin base material adhered to the surface-treated layer of the above-mentioned surface-treated copper foil.
  • This copper-clad laminate can be manufactured by adhering a resin base material to the surface-treated layer of the above-mentioned surface-treated copper foil.
  • the resin base material is not particularly limited, and those known in the art can be used. Examples of resin base materials include paper base material phenol resin, paper base material epoxy resin, synthetic fiber cloth base material epoxy resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass non-woven fabric base material epoxy resin, and glass. Examples thereof include cloth-based epoxy resins, polyester films, polyimide films, liquid crystal polymers, and fluororesins.
  • the method for adhering the surface-treated copper foil to the resin base material is not particularly limited, and can be performed according to a method known in the art.
  • the surface-treated copper foil and the resin base material may be laminated and thermocompression bonded.
  • the copper-clad laminate manufactured as described above can be used for manufacturing a printed wiring board.
  • the copper-clad laminate according to the embodiment of the present invention uses the above-mentioned surface-treated copper foil, it is possible to improve the adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
  • the printed wiring board according to the embodiment of the present invention includes a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
  • This printed wiring board can be manufactured by etching the surface-treated copper foil of the copper-clad laminate to form a circuit pattern.
  • the method for forming the circuit pattern is not particularly limited, and a known method such as a subtractive method or a semi-additive method can be used. Among them, the subtractive method is preferable as the method for forming the circuit pattern.
  • a predetermined resist pattern is formed by applying, exposing and developing a resist on the surface of the surface-treated copper foil of the copper-clad laminate.
  • the surface-treated copper foil of the portion (unnecessary portion) where the resist pattern is not formed is removed by etching to form a circuit pattern.
  • the resist pattern on the surface-treated copper foil is removed.
  • the various conditions in this subtractive method are not particularly limited, and can be performed according to the conditions known in the art.
  • the printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, it is excellent in adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications, and a circuit pattern. ..
  • Example 1 A rolled copper foil A (young rate after recrystallization of 120 GPa, thickness of 12 ⁇ m) is prepared, one surface is degreased and pickled, and then a roughened treated layer is formed as a surface treated layer to form a surface treated copper. I got the foil.
  • the conditions for forming the roughened layer were as follows. ⁇ Conditions for forming primary roughened particles R1> Plating solution composition: 11 g / L Cu, 50 g / L sulfuric acid Plating solution temperature: 25 ° C. Electroplating conditions: current density 35.6 A / dm 2 , coulomb amount 72.7 As / dm 2
  • Plating solution composition 20 g / L Cu, 100 g / L sulfuric acid Plating solution temperature: 50 ° C.
  • Electroplating conditions current density 9.9 A / dm 2 , coulomb amount 30.3 As / dm 2
  • Example 1 A surface-treated copper foil was obtained in the same manner as in Example 1 except that at least one of the type of rolled copper foil, the current density and the amount of coulomb in R1, R2 and Y was changed as shown in Table 1.
  • the rolled copper foil B is a rolled copper foil having a Young's modulus of 85 GPa and a thickness of 12 ⁇ m after recrystallization.
  • FIG. 2 shows SEM photographs (20,000 times, inclination of 40 °) of the surface-treated layer (roughened layer) in the surface-treated copper foils of Example 1 and Comparative Example 1.
  • ⁇ SMr2, SMr1, Spk, Sk of the surface treatment layer> Images were taken using a laser microscope (LEXT OLS4000) manufactured by Olympus Corporation. The captured image was analyzed using the analysis software of a laser microscope (LEXT OLS4100) manufactured by Olympus Corporation. Measurements of SMr2, SMr1, Spk and Sk were performed in accordance with ISO 25178, respectively. In addition, as these measurement results, the average value of the values measured at any three places was used as the measurement result. The temperature at the time of measurement was 23 to 25 ° C.
  • the main setting conditions for the laser microscope and analysis software are as follows.
  • Objective lens MPLAPON50XLEXT (magnification: 50x, numerical aperture: 0.95, immersion type: air, mechanical lens barrel length: ⁇ , cover glass thickness: 0, field of view: FN18)
  • Optical zoom magnification 1x
  • Scanning mode XYZ High accuracy (height resolution: 10 nm, number of pixels of captured data: 1024 x 1024)
  • Captured image size [number of pixels]: 257 ⁇ m in width ⁇ 258 ⁇ m in length [1024 ⁇ 1024] (Since it is measured in the lateral direction, the evaluation length is equivalent to 257 ⁇ m)
  • Filter Gaussian filter Noise removal: Measurement pretreatment Surface (
  • the strength (TD180 ° peel strength) when the circuit (surface-treated copper foil) is peeled off from the surface of the resin base material at a speed of 50 mm / min in the TD180 ° direction is based on JIS C6471: 1995. Was measured. The measurement was performed three times, and the average value was used as the result of peel strength. If the peel strength is 0.50 kgf / cm or more, it can be said that the adhesiveness between the circuit (surface-treated copper foil) and the resin base material is good.
  • the circuit width was adjusted by a normal subtractive etching method using a copper chloride etching solution.
  • Table 2 shows the results of the above characteristic evaluation.
  • the surface-treated copper foils of Examples 1 to 14 in which SMr2 of the surface-treated layer was within a predetermined range had high peel strength.
  • the surface-treated copper foil of Comparative Example 1 in which SMr2 of the surface-treated layer was out of the predetermined range had low peel strength.
  • a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications. ..
  • a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil.
  • a printed wiring board having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A surface-treated copper foil comprising a copper foil and a surface treatment layer formed on at least one surface of the copper foil. In the surface-treated copper foil, the load area ratio SMr2 that separates a protruding valley and the core section of the surface treatment layer is 91-96%.

Description

表面処理銅箔、銅張積層板及びプリント配線板Surface-treated copper foil, copper-clad laminate and printed wiring board
 本開示は、表面処理銅箔、銅張積層板及びプリント配線板に関する。 This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
 銅張積層板は、フレキシブルプリント配線板などの各種用途において広く用いられている。このフレキシブルプリント配線板は、銅張積層板の銅箔をエッチングして導体パターン(「配線パターン」とも称される)を形成し、導体パターン上に電子部品を半田で接続して実装することによって製造される。 Copper-clad laminates are widely used in various applications such as flexible printed wiring boards. This flexible printed wiring board is mounted by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern") and connecting electronic components on the conductor pattern with solder. Manufactured.
 近年、パソコン、モバイル端末などの電子機器では、通信の高速化及び大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なフレキシブルプリント配線板が求められている。特に、電気信号の周波数は、高周波になるほど信号電力の損失(減衰)が大きくなり、データが読み取れなくなり易いため、信号電力の損失を低減することが求められている。 In recent years, in electronic devices such as personal computers and mobile terminals, the frequency of electric signals has been increasing along with the increase in communication speed and capacity, and a flexible printed wiring board capable of coping with this has been required. In particular, as the frequency of the electric signal becomes higher, the loss (attenuation) of the signal power becomes larger and the data tends to be unreadable. Therefore, it is required to reduce the loss of the signal power.
 電子回路における信号電力の損失(伝送損失)は大きく二つに分けることができる。その一は、導体損失、すなわち銅箔による損失であり、その二は、誘電体損失、すなわち樹脂基材による損失である。
 導体損失は、高周波域では表皮効果があり、電流は導体の表面を流れるという特性を有するため、銅箔表面が粗いと複雑な経路を辿って、電流が流れることになる。したがって、高周波信号の導体損失を少なくするためには、銅箔の表面粗さを小さくすることが望ましい。以下、本明細書において、単に「伝送損失」及び「導体損失」と記載した場合は、「高周波信号の伝送損失」及び「高周波信号の導体損失」を主に意味する。
The loss of signal power (transmission loss) in an electronic circuit can be roughly divided into two. The first is the conductor loss, that is, the loss due to the copper foil, and the second is the dielectric loss, that is, the loss due to the resin base material.
The conductor loss has a skin effect in the high frequency region and has the characteristic that the current flows on the surface of the conductor. Therefore, if the surface of the copper foil is rough, the current will flow along a complicated path. Therefore, in order to reduce the conductor loss of the high frequency signal, it is desirable to reduce the surface roughness of the copper foil. Hereinafter, when the terms "transmission loss" and "conductor loss" are simply used in the present specification, they mainly mean "transmission loss of high frequency signal" and "conductor loss of high frequency signal".
 他方、誘電体損失は、樹脂基材の種類に依存するため、高周波信号が流れる回路基板においては、低誘電材料(例えば、液晶ポリマー、低誘電ポリイミド)から形成された樹脂基材を用いることが望ましい。また、誘電体損失は、銅箔と樹脂基材との間を接着する接着剤によっても影響を受けるため、銅箔と樹脂基材との間は接着剤を用いずに接着することが望ましい。
 そこで、銅箔と樹脂基材との間を接着剤の使用なしに接着するために、銅箔の少なくとも一方の面に表面処理層を形成することが提案されている。例えば、特許文献1には、銅箔上に粗化粒子から形成される粗化処理層を設けるとともに、最表層にシランカップリング処理層を形成する方法が提案されている。
On the other hand, since the dielectric loss depends on the type of the resin base material, it is possible to use a resin base material formed of a low dielectric material (for example, a liquid crystal polymer or a low dielectric polyimide) in a circuit board through which a high frequency signal flows. desirable. Further, since the dielectric loss is also affected by the adhesive that adheres between the copper foil and the resin base material, it is desirable to adhere between the copper foil and the resin base material without using an adhesive.
Therefore, it has been proposed to form a surface treatment layer on at least one surface of the copper foil in order to bond the copper foil and the resin base material without using an adhesive. For example, Patent Document 1 proposes a method of providing a roughening treatment layer formed of roughened particles on a copper foil and forming a silane coupling treatment layer on the outermost surface layer.
特開2012-112009号公報Japanese Unexamined Patent Publication No. 2012-112009
 粗化処理層は、粗化粒子によるアンカー効果によって、銅箔と樹脂基材との間の接着性を高めることができるが、表皮効果によって導体損失を増大させることがあるため、銅箔表面に電着させる粗化粒子を少なくすることが望ましい。他方、銅箔表面に電着させる粗化粒子を少なくすると、粗化粒子によるアンカー効果が低下してしまい、銅箔と樹脂基材との接着性が十分に得られない。特に、液晶ポリマー、低誘電ポリイミドなどの低誘電材料から形成された樹脂基材は、従来の樹脂基材よりも銅箔と接着し難いため、銅箔と樹脂基材との間の接着性を高める手法の開発が望まれている。
 また、シランカップリング処理層は、銅箔と樹脂基材との間の接着性を向上させる効果を有するものの、その種類によっては、接着性の向上効果が十分ではないこともある。
The roughened layer can enhance the adhesiveness between the copper foil and the resin base material by the anchor effect of the roughened particles, but it may increase the conductor loss due to the skin effect, so that it can be applied to the copper foil surface. It is desirable to reduce the amount of coarsened particles to be electrodeposited. On the other hand, if the number of roughened particles electrodeposited on the surface of the copper foil is reduced, the anchoring effect of the roughened particles is reduced, and sufficient adhesiveness between the copper foil and the resin base material cannot be obtained. In particular, a resin base material formed of a low-dielectric material such as a liquid crystal polymer or a low-dielectric polyimide is more difficult to adhere to a copper foil than a conventional resin base material, so that the adhesiveness between the copper foil and the resin base material is improved. The development of a method to enhance it is desired.
Further, although the silane coupling treatment layer has an effect of improving the adhesiveness between the copper foil and the resin base material, the effect of improving the adhesiveness may not be sufficient depending on the type.
 本発明の実施形態は、上記のような問題を解決するためになされたものであり、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することを目的とする。
 また、本発明の実施形態は、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することを目的とする。
 さらに、本発明の実施形態は、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することを目的とする。
An embodiment of the present invention has been made to solve the above problems, and is a surface-treated copper foil capable of enhancing adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications. The purpose is to provide.
Another object of the present invention is to provide a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil.
Further, an embodiment of the present invention aims to provide a printed wiring board having excellent adhesion between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.
 本発明者らは、上記の問題を解決すべく表面処理銅箔について鋭意研究を行った結果、表面処理層の表面粗さの各種指標のうち、突出谷部とコア部を分離する負荷面積率SMr2が、表面処理銅箔と樹脂基材との間の接着性と密接に関係しているという知見に基づき、SMr2を特定の範囲に制御することにより、表面処理銅箔と樹脂基材との間の接着性を高め得ることを見出し、本発明の実施形態を完成するに至った。 As a result of diligent research on the surface-treated copper foil in order to solve the above problems, the present inventors have conducted a load area ratio that separates the protruding valley portion and the core portion among various indexes of the surface roughness of the surface-treated layer. Based on the finding that SMr2 is closely related to the adhesiveness between the surface-treated copper foil and the resin base material, by controlling SMr2 to a specific range, the surface-treated copper foil and the resin base material can be combined. They have found that the adhesiveness between them can be enhanced, and have completed the embodiment of the present invention.
 すなわち、本発明の実施形態は、銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、前記表面処理層の突出谷部とコア部を分離する負荷面積率SMr2が91~96%である表面処理銅箔に関する。
 また、本発明の実施形態は、前記表面処理銅箔と、前記表面処理銅箔の表面処理層に接着された樹脂基材とを備える銅張積層板に関する。
 さらに、本発明の実施形態は、前記銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板に関する。
That is, the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil, and has a load area ratio that separates the protruding valley portion and the core portion of the surface-treated layer. The present invention relates to a surface-treated copper foil having an SMr2 of 91 to 96%.
Further, an embodiment of the present invention relates to a copper-clad laminate comprising the surface-treated copper foil and a resin base material adhered to the surface-treated layer of the surface-treated copper foil.
Further, an embodiment of the present invention relates to a printed wiring board including a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
 本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。
 また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
 さらに、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。
According to the embodiment of the present invention, it is possible to provide a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications.
Further, according to the embodiment of the present invention, it is possible to provide a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil.
Further, according to the embodiment of the present invention, it is possible to provide a printed wiring board having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.
銅箔の一方の面に粗化処理層を有する表面処理銅箔の断面模式図である。It is sectional drawing of the surface-treated copper foil which has a roughening treatment layer on one surface of a copper foil. 実施例1及び比較例1の表面処理銅箔における表面処理層のSEM写真である。3 is an SEM photograph of the surface-treated layer in the surface-treated copper foil of Example 1 and Comparative Example 1.
 以下、本発明の好適な実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。以下の実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、以下の実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。 Hereinafter, preferred embodiments of the present invention will be specifically described, but the present invention should not be construed as being limited to these, and shall be based on the knowledge of those skilled in the art as long as the gist of the present invention is not deviated. , Various changes and improvements can be made. The plurality of components disclosed in the following embodiments can form various inventions by appropriate combinations. For example, some components may be removed from all the components shown in the following embodiments.
 本発明の実施形態に係る表面処理銅箔は、銅箔と、銅箔の少なくとも一方の面に形成された表面処理層とを有する。すなわち、表面処理層は、銅箔の一方の面のみに形成されていてもよいし、銅箔の両方の面に形成されていてもよい。また、銅箔の両方の面に表面処理層が形成される場合、表面処理層の種類は同一であっても異なっていてもよい。 The surface-treated copper foil according to the embodiment of the present invention has a copper foil and a surface-treated layer formed on at least one surface of the copper foil. That is, the surface treatment layer may be formed on only one surface of the copper foil, or may be formed on both surfaces of the copper foil. Further, when the surface treatment layers are formed on both surfaces of the copper foil, the types of the surface treatment layers may be the same or different.
 表面処理層は、突出谷部とコア部を分離する負荷面積率SMr2が、91~96%である。
 ここで、突出谷部とコア部を分離する負荷面積率SMr2は、コア部の下にある突出谷部の割合を表し、突出谷部の割合が少ないほどSMr2の値が大きくなる。SMr2は、ISO 25178に準拠して測定される。表面処理銅箔の表面処理層に樹脂基材を接着した場合、表面処理層の突出谷部の割合が多いと、表面処理層を形成する粒子(例えば、粗化粒子)が小さい部分が多くなる及び/又は当該粒子が無い部分の面積が大きくなるため、アンカー効果が十分に発揮されない。そこで、表面処理層のSMr2を91%以上とすること(突出谷部の割合を少なくすること)により、アンカー効果を高めることができる。その結果、表面処理銅箔と樹脂基材との接着力が高くなる。一方、表面処理層のSMr2を96%以下とすることにより、表皮効果による伝送損失の増大を抑制することができる。
The surface treatment layer has a load area ratio SMr2 that separates the protruding valley portion and the core portion from 91 to 96%.
Here, the load area ratio SMr2 that separates the protruding valley portion and the core portion represents the ratio of the protruding valley portion below the core portion, and the smaller the ratio of the protruding valley portion, the larger the value of SMr2. SMr2 is measured according to ISO 25178. When the resin base material is adhered to the surface treatment layer of the surface treatment copper foil, if the proportion of the protruding valleys of the surface treatment layer is large, the particles (for example, roughened particles) forming the surface treatment layer are often small. And / or because the area of the portion where the particles are absent becomes large, the anchor effect is not sufficiently exhibited. Therefore, the anchor effect can be enhanced by setting SMr2 of the surface treatment layer to 91% or more (reducing the proportion of protruding valleys). As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting SMr2 of the surface treatment layer to 96% or less, it is possible to suppress an increase in transmission loss due to the skin effect.
 表面処理層は、突出山部とコア部を分離する負荷面積率SMr1が、好ましくは16~28%である。
 ここで、突出山部とコア部を分離する負荷面積率SMr1は、コア部の上にある突出山部の割合を表し、突出山部の割合が多いほどSMr1の値が大きくなる。SMr1は、ISO 25178に準拠して測定される。表面処理銅箔の表面処理層に樹脂基材を接着した場合、表面処理層の突出山部の割合が少ないと、表面処理層から樹脂基材が剥離するときの力(以下、「剥離力」という)がコア部の表面に集中してしまう。そこで、表面処理層のSMr1を16%以上とすること(突出山部の割合を高くすること)により、突出山部の存在によって剥離力を突出山部の高さ方向に分散させ易くすることができる。その結果、表面処理銅箔と樹脂基材との接着力が高くなる。一方、表面処理層のSMr1を28%以下とすることにより、表皮効果による伝送損失の増大を抑制することができる。
The surface treatment layer has a load area ratio SMr1 that separates the protruding peak portion and the core portion, preferably 16 to 28%.
Here, the load area ratio SMr1 that separates the protruding mountain portion and the core portion represents the ratio of the protruding peak portion above the core portion, and the larger the ratio of the protruding peak portion, the larger the value of SMr1. SMr1 is measured according to ISO 25178. When the resin base material is adhered to the surface treatment layer of the surface-treated copper foil, if the proportion of the protruding peaks of the surface treatment layer is small, the force when the resin base material is peeled from the surface treatment layer (hereinafter, "peeling force"). ) Concentrates on the surface of the core part. Therefore, by setting SMr1 of the surface treatment layer to 16% or more (increasing the ratio of the protruding peaks), it is possible to easily disperse the peeling force in the height direction of the protruding peaks due to the presence of the protruding peaks. it can. As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting SMr1 of the surface treatment layer to 28% or less, it is possible to suppress an increase in transmission loss due to the skin effect.
 表面処理層は、突出山部高さSpkが、好ましくは1.2~2.5μmである。
 ここで、突出山部高さSpkは、ISO 25178に準拠して測定される。表面処理銅箔の表面処理層に樹脂基材を接着した場合、表面処理層の突出山部が低いと、剥離力がコア部の表面に集中してしまう。そこで、表面処理層のSpkを1.2μm以上とすること(突出山部を高くすること)により、突出山部の存在によって剥離力を突出山部の高さ方向に分散させ易くすることができる。その結果、表面処理銅箔と樹脂基材との接着力が高くなる。一方、表面処理層のSpkを2.5μm以下とすることにより、表皮効果による伝送損失の増大を抑制することができる。
The surface-treated layer has a protruding peak height Spk of preferably 1.2 to 2.5 μm.
Here, the protruding peak height Spk is measured in accordance with ISO 25178. When the resin base material is adhered to the surface-treated layer of the surface-treated copper foil, if the protruding peak portion of the surface-treated layer is low, the peeling force is concentrated on the surface of the core portion. Therefore, by setting the Spk of the surface treatment layer to 1.2 μm or more (increasing the protruding ridge), it is possible to easily disperse the peeling force in the height direction of the protruding ridge due to the presence of the protruding ridge. .. As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting the Spk of the surface treatment layer to 2.5 μm or less, it is possible to suppress an increase in transmission loss due to the skin effect.
 表面処理層は、表面処理層のコア部のレベル差Skが、好ましくは1.0~2.0μmである。
 ここで、表面処理層のコア部のレベル差Skは、突出山部と突出谷部を除いた部分(コア部)の高さのバラツキの程度を表し、ISO 25178に準拠して測定される。表面処理銅箔の表面処理層に樹脂基材を接着した場合、コア部の高さのバラツキが小さいと、コア部が略平面状となり、その上面に剥離力が集中してしまう。そこで、表面処理層のSkを1.0μm以上とすること(コア部の高さのバラツキを大きくすること)により、コア部の上面を凸凹面状とし、剥離力をコア部の高さ方向に分散させ易くすることができる。その結果、表面処理銅箔と樹脂基材との接着力が高くなる。一方、表面処理層のSkを2.0μm以下とすることにより、表皮効果による伝送損失の増大を抑制することができる。
In the surface treatment layer, the level difference Sk of the core portion of the surface treatment layer is preferably 1.0 to 2.0 μm.
Here, the level difference Sk of the core portion of the surface treatment layer represents the degree of variation in the height of the portion (core portion) excluding the protruding peak portion and the protruding valley portion, and is measured in accordance with ISO 25178. When the resin base material is adhered to the surface-treated layer of the surface-treated copper foil, if the height variation of the core portion is small, the core portion becomes substantially flat and the peeling force is concentrated on the upper surface thereof. Therefore, by setting the Sk of the surface treatment layer to 1.0 μm or more (increasing the variation in the height of the core portion), the upper surface of the core portion is made uneven and the peeling force is increased in the height direction of the core portion. It can be easily dispersed. As a result, the adhesive force between the surface-treated copper foil and the resin base material is increased. On the other hand, by setting the Sk of the surface treatment layer to 2.0 μm or less, it is possible to suppress an increase in transmission loss due to the skin effect.
 表面処理層の種類は、特に限定されず、当該技術分野において公知の各種表面処理層を用いることができる。
 表面処理層の例としては、粗化処理層、耐熱処理層、防錆処理層、クロメート処理層、シランカップリング処理層などが挙げられる。これらの層は、単一又は2種以上を組み合わせて用いることができる。その中でも表面処理層は、樹脂基材との接着性の観点から、粗化処理層を有することが好ましい。
 また、表面処理層が、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択される1種以上の層を有する場合、これらの層は粗化処理層上に設けられることが好ましい。
The type of the surface treatment layer is not particularly limited, and various surface treatment layers known in the art can be used.
Examples of the surface treatment layer include a roughening treatment layer, a heat resistance treatment layer, a rust prevention treatment layer, a chromate treatment layer, a silane coupling treatment layer and the like. These layers may be used alone or in combination of two or more. Among them, the surface treatment layer preferably has a roughening treatment layer from the viewpoint of adhesiveness to the resin base material.
When the surface treatment layer has one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer, these layers are on the roughening treatment layer. It is preferable that it is provided in.
 ここで、一例として、銅箔の一方の面に粗化処理層を有する表面処理銅箔の断面模式図を図1に示す。
 図1に示されるように、銅箔10の一方の面に形成された粗化処理層は、一次粗化粒子20と、一次粗化粒子20を被覆するかぶせめっき層30と、かぶせめっき層30上に形成された二次粗化粒子40とを含む。かぶせめっき層30で被覆された一次粗化粒子20は略球状であり、二次粗化粒子40は樹枝状に広がるように形成されていることが好ましい。このような構造であれば、表面処理層のSMr2、SMr1、Spk及びSkを上記の範囲に制御し易くなる。
Here, as an example, FIG. 1 shows a schematic cross-sectional view of a surface-treated copper foil having a roughening-treated layer on one surface of the copper foil.
As shown in FIG. 1, the roughening treatment layer formed on one surface of the copper foil 10 includes a primary roughening particle 20, a cover plating layer 30 covering the primary roughening particle 20, and a cover plating layer 30. Includes the secondary roughened particles 40 formed above. It is preferable that the primary roughened particles 20 coated with the cover plating layer 30 are substantially spherical, and the secondary roughened particles 40 are formed so as to spread in a dendritic shape. With such a structure, it becomes easy to control SMr2, SMr1, Spk and Sk of the surface treatment layer within the above range.
 一次粗化粒子20としては、特に限定されないが、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択される元素又は2種以上の元素を含む合金から形成することができる。その中でも一次粗化粒子20は、銅又は銅合金、特に銅から形成されることが好ましい。
 かぶせめっき層30としては、特に限定されないが、銅、銀、金、ニッケル、コバルト、亜鉛などから形成することができる。
 二次粗化粒子40としては、特に限定されないが、ニッケル、コバルト、銅、亜鉛からなる群から選択される金属又は2種以上の金属を含む合金から形成することができる。その中でも二次粗化粒子40は、銅合金、特にCu-Co-Ni合金から形成されることが好ましい。
The primary roughened particles 20 are not particularly limited, but are formed from an element selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or an alloy containing two or more kinds of elements. be able to. Among them, the primary roughened particles 20 are preferably formed from copper or a copper alloy, particularly copper.
The cover plating layer 30 is not particularly limited, but can be formed of copper, silver, gold, nickel, cobalt, zinc, or the like.
The secondary roughened particles 40 are not particularly limited, but can be formed from a metal selected from the group consisting of nickel, cobalt, copper, and zinc, or an alloy containing two or more kinds of metals. Among them, the secondary roughened particles 40 are preferably formed from a copper alloy, particularly a Cu—Co—Ni alloy.
 粗化処理層は、電気めっきによって形成することができる。その条件は、使用する電気めっき装置に応じて調整すればよく特に限定されないが、典型的な条件は以下の通りである。
(一次粗化粒子20の形成条件R1)
 めっき液組成:5~15g/LのCu、40~100g/Lの硫酸
 めっき液温度:20~50℃
 電気めっき条件:電流密度30~60A/dm2、クーロン量40~100As/dm2
The roughened layer can be formed by electroplating. The conditions may be adjusted according to the electroplating apparatus used and are not particularly limited, but typical conditions are as follows.
(Formation condition R1 of primary roughened particles 20)
Plating solution composition: 5 to 15 g / L Cu, 40 to 100 g / L sulfuric acid Plating solution temperature: 20 to 50 ° C.
Electroplating Conditions: current density 30 ~ 60A / dm 2, coulombs 40 ~ 100As / dm 2
(かぶせめっき層30の形成条件R2)
 めっき液組成:10~30g/LのCu、70~130g/Lの硫酸
 めっき液温度:30~60℃
 電気めっき条件:電流密度4.8~15A/dm2、クーロン量10~35As/dm2
(Formation condition R2 of the cover plating layer 30)
Plating solution composition: 10 to 30 g / L Cu, 70 to 130 g / L sulfuric acid Plating solution temperature: 30 to 60 ° C.
Electroplating conditions: Current density 4.8 to 15 A / dm 2 , Coulomb amount 10 to 35 As / dm 2
(二次粗化粒子40の形成条件Y)
 めっき液組成:10~20g/LのCu、5~15g/LのCo、5~15g/LのNi
 pH:2~3
 めっき液温度:30~40℃
 電気めっき条件:電流密度15~45A/dm2、クーロン量15~55As/dm2
(Formation condition Y of secondary roughened particles 40)
Plating solution composition: 10 to 20 g / L Cu, 5 to 15 g / L Co, 5 to 15 g / L Ni
pH: 2-3
Plating liquid temperature: 30-40 ° C
Electroplating Conditions: current density 15 ~ 45A / dm 2, coulombs 15 ~ 55As / dm 2
 一次粗化粒子20の形成条件R1において、クーロン量が小さくなるほど、一次粗化粒子20のZ方向(銅箔10に対して垂直な方向)の成長が抑制される。また、かぶせめっき層30の形成条件R2において、クーロン量が大きくなるほど、層はXYZ方向に均一に厚く成長する。そのため、クーロン量(R1)/クーロン量(R2)を、6.0以下、好ましくは4.0以下に制御することにより、かぶせめっき層30で被覆された一次粗化粒子20の形状を略球状~略半球状の形状に制御することができる。そして、かぶせめっき層30で被覆された一次粗化粒子20を略球状~略半球状の形状に制御した上で二次粗化粒子40を形成することにより、かぶせめっき層30上に二次粗化粒子40が樹枝状に広がるように形成され易くなる。
 なお、クーロン量(R1)/クーロン量(R2)が6.0を超えると、一次粗化粒子20のZ方向の成長が大きくなるため、かぶせめっき層30で被覆された一次粗化粒子20の形状が略楕円体~略半楕円体の形状となる。そのため、かぶせめっき層30上に形成される二次粗化粒子40が樹枝状に広がり難くなる。
Under the formation condition R1 of the primary roughened particles 20, as the amount of coulomb decreases, the growth of the primary roughened particles 20 in the Z direction (direction perpendicular to the copper foil 10) is suppressed. Further, under the formation condition R2 of the cover plating layer 30, as the amount of coulomb increases, the layer grows uniformly and thickly in the XYZ direction. Therefore, by controlling the amount of coulomb (R1) / amount of coulomb (R2) to 6.0 or less, preferably 4.0 or less, the shape of the primary roughened particles 20 coated with the cover plating layer 30 is substantially spherical. It can be controlled to have a substantially hemispherical shape. Then, by controlling the primary roughened particles 20 coated with the cover plating layer 30 into a substantially spherical to substantially hemispherical shape and then forming the secondary roughened particles 40, the secondary coarse particles 20 are formed on the cover plating layer 30. The chemical particles 40 are likely to be formed so as to spread in a dendritic shape.
When the amount of coulomb (R1) / amount of coulomb (R2) exceeds 6.0, the growth of the primary roughened particles 20 in the Z direction becomes large, so that the primary roughened particles 20 coated with the cover plating layer 30 The shape is approximately ellipsoidal to semi-ellipsoidal. Therefore, the secondary roughened particles 40 formed on the cover plating layer 30 are less likely to spread like dendritic particles.
 耐熱処理層及び防錆処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。なお、耐熱処理層は防錆処理層としても機能することがあるため、耐熱処理層及び防錆処理層として、耐熱処理層及び防錆処理層の両方の機能を有する1つの層を形成してもよい。
 耐熱処理層及び/又は防錆処理層としては、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選択される1種以上の元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。その中でも耐熱処理層及び/又は防錆処理層はNi-Zn層又はZn層であることが好ましい。特に、Ni含有量がZn含有量に比べて少ないNi-Zn層、又はNiを含まないZn層であれば、耐熱効果及び防錆効果を大きく低減させることなく、導体損失を低減することが可能になるため好ましい。
The heat-resistant treatment layer and the rust-prevention treatment layer are not particularly limited, and can be formed from materials known in the art. Since the heat-resistant treatment layer may also function as a rust-preventive treatment layer, one layer having both the functions of the heat-resistant treatment layer and the rust-preventive treatment layer is formed as the heat-resistant treatment layer and the rust-preventive treatment layer. May be good.
The heat-resistant layer and / or rust-preventive layer includes nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. It can be a layer containing one or more elements (which may be in any form such as metal, alloy, oxide, nitride, sulfide, etc.) selected from the group of. Among them, the heat-resistant treatment layer and / or the rust-prevention treatment layer is preferably a Ni—Zn layer or a Zn layer. In particular, if the Ni—Zn layer has a lower Ni content than the Zn content or the Zn layer does not contain Ni, the conductor loss can be reduced without significantly reducing the heat resistance effect and the rust preventive effect. It is preferable because it becomes.
 耐熱処理層及び防錆処理層は、電気めっきによって形成することができる。その条件は、使用する電気めっき装置に応じて調整すればよく特に限定されないが、一般的な電気めっき装置を用いて耐熱処理層(Ni-Zn層)を形成する際の条件は以下の通りである。
 めっき液組成:1~30g/LのNi、1~30g/LのZn
 めっき液pH:2~5
 めっき液温度:30~50℃
 電気めっき条件:電流密度1~10A/dm2、時間0.1~5秒
The heat-resistant treatment layer and the rust-prevention treatment layer can be formed by electroplating. The conditions may be adjusted according to the electroplating apparatus to be used and are not particularly limited, but the conditions for forming the heat resistant treatment layer (Ni—Zn layer) using a general electroplating apparatus are as follows. is there.
Plating solution composition: 1 to 30 g / L Ni, 1 to 30 g / L Zn
Plating solution pH: 2-5
Plating liquid temperature: 30 to 50 ° C
Electroplating conditions: current density 1-10 A / dm 2 , time 0.1-5 seconds
 クロメート処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。
 ここで、本明細書において「クロメート処理層」とは、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で形成された層を意味する。クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素、チタンなどの元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。クロメート処理層の例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層などが挙げられる。
The chromate-treated layer is not particularly limited and can be formed from a material known in the art.
Here, the term "chromate-treated layer" as used herein means a layer formed of a solution containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate. The chromate-treated layer can be any element (metal, alloy, oxide, nitride, sulfide, etc.) such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, and titanium. It can be a layer containing (may be in the form). Examples of the chromate-treated layer include a chromate-treated layer treated with an aqueous solution of chromic anhydride or potassium dichromate, and a chromate-treated layer treated with a treatment solution containing chromic anhydride or potassium dichromate and zinc.
 クロメート処理層は、浸漬クロメート処理、電解クロメート処理などの公知の方法によって形成することができる。それらの条件は、特に限定されないが、例えば、一般的な浸漬クロメート処理層を形成する際の条件は以下の通りである。
 クロメート液組成:1~10g/LのK2Cr27、0.01~10g/LのZn
 クロメート液pH:2~5
 クロメート液温度:30~55℃
The chromate-treated layer can be formed by a known method such as immersion chromate treatment and electrolytic chromate treatment. These conditions are not particularly limited, but for example, the conditions for forming a general immersion chromate-treated layer are as follows.
Chromate solution composition: 1 to 10 g / L K 2 Cr 2 O 7 , 0.01 to 10 g / L Zn
Chromate solution pH: 2-5
Chromate liquid temperature: 30-55 ° C
 シランカップリング処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。
 ここで、本明細書において「シランカップリング処理層」とは、シランカップリング剤で形成された層を意味する。
 シランカップリング剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤、メタクリロキシ系シランカップリング剤、ビニル系シランカップリング剤、イミダゾール系シランカップリング剤、トリアジン系シランカップリング剤などが挙げられる。これらの中でも、アミノ系シランカップリング剤、エポキシ系シランカップリング剤が好ましい。上述のシランカップリング剤は、単独又は2種以上を組み合わせて用いることができる。
 代表的なシランカップリング処理層の形成方法としては、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製 KBM603)の1.2体積%水溶液(pH:10)を塗布し、乾燥させることでシランカップリング処理層を形成する方法が挙げられる。
The silane coupling treatment layer is not particularly limited, and can be formed from a material known in the art.
Here, the term "silane coupling-treated layer" as used herein means a layer formed of a silane coupling agent.
The silane coupling agent is not particularly limited, and those known in the art can be used. Examples of silane coupling agents include amino-based silane coupling agents, epoxy-based silane coupling agents, mercapto-based silane coupling agents, metharoxy-based silane coupling agents, vinyl-based silane coupling agents, and imidazole-based silane coupling agents. , Triazine-based silane coupling agent and the like. Among these, amino-based silane coupling agents and epoxy-based silane coupling agents are preferable. The above-mentioned silane coupling agent can be used alone or in combination of two or more.
As a typical method for forming a silane coupling treatment layer, a 1.2% by volume aqueous solution (pH: 10) of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.) ) Is applied and dried to form a silane coupling treatment layer.
 銅箔としては、特に限定されず、電解銅箔又は圧延銅箔のいずれであってもよい。電解銅箔は、硫酸銅めっき浴からチタン又はステンレスのドラム上に銅を電解析出させることによって一般に製造されるが、ドラム側に形成される平坦なS面(シャイン面)と、S面の反対側に形成されるM面(マット面)とを有する。一般に、電解銅箔のM面は凹凸を有しているため、表面処理層を電解銅箔のM面に形成し、この表面処理層を樹脂基材と接着させることにより、表面処理層と樹脂基材との接着性を高めることができる。 The copper foil is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil. Electrolytic copper foil is generally produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath, but a flat S-plane (shine surface) formed on the drum side and an S-plane. It has an M surface (matte surface) formed on the opposite side. Generally, since the M surface of the electrolytic copper foil has irregularities, the surface treatment layer and the resin are formed by forming a surface treatment layer on the M surface of the electrolytic copper foil and adhering the surface treatment layer to the resin base material. Adhesion with the base material can be improved.
 銅箔の材料としては、特に限定されないが、銅箔が圧延銅箔の場合、プリント配線板の回路パターンとして通常使用されるタフピッチ銅(JIS H3100 合金番号C1100)、無酸素銅(JIS H3100 合金番号C1020又はJIS H3510 合金番号C1011)などの高純度の銅を用いることができる。また、例えば、Sn入り銅、Ag入り銅、Cr、Zr又はMgなどを添加した銅合金、Ni及びSiなどを添加したコルソン系銅合金のような銅合金も用いることができる。なお、本明細書において「銅箔」とは、銅合金箔も含む概念である。 The material of the copper foil is not particularly limited, but when the copper foil is a rolled copper foil, tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number) usually used as a circuit pattern of a printed wiring board are used. High-purity copper such as C1020 or JIS H3510 alloy number C1011) can be used. Further, for example, copper alloys such as Sn-containing copper, Ag-containing copper, copper alloys to which Cr, Zr, Mg and the like are added, and Corson-based copper alloys to which Ni and Si and the like are added can also be used. In addition, in this specification, "copper foil" is a concept including copper alloy foil.
 銅箔の厚みは、特に限定されないが、例えば1~1000μm、或いは1~500μm、或いは1~300μm、或いは3~100μm、或いは5~70μm、或いは6~35μm、或いは9~18μmとすることができる。 The thickness of the copper foil is not particularly limited, but may be, for example, 1 to 1000 μm, 1 to 500 μm, 1 to 300 μm, 3 to 100 μm, 5 to 70 μm, 6 to 35 μm, or 9 to 18 μm. ..
 上記のような構成を有する表面処理銅箔は、当該技術分野において公知の方法に準じて製造することができる。ここで、表面処理層のSMr2、SMr1、Spk及びSkは、表面処理層の形成条件、特に、上述した粗化処理層の形成条件などを調整することによって制御することができる。 The surface-treated copper foil having the above-mentioned structure can be produced according to a method known in the art. Here, SMr2, SMr1, Spk and Sk of the surface treatment layer can be controlled by adjusting the formation conditions of the surface treatment layer, particularly the formation conditions of the roughening treatment layer described above.
 本発明の実施形態に係る表面処理銅箔は、表面処理層の突出谷部とコア部を分離する負荷面積率SMr2を91~96%に制御しているため、表面処理銅箔の表面処理層に樹脂基材を接着した場合にアンカー効果を高めることができる。そのため、この表面処理銅箔は、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。 In the surface-treated copper foil according to the embodiment of the present invention, the load area ratio SMr2 that separates the protruding valley portion and the core portion of the surface-treated layer is controlled to 91 to 96%, so that the surface-treated copper foil is a surface-treated copper foil. The anchor effect can be enhanced when a resin base material is adhered to the surface. Therefore, this surface-treated copper foil can enhance the adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔と、上記の表面処理銅箔の表面処理層に接着された樹脂基材とを備える。この銅張積層板は、上記の表面処理銅箔の表面処理層に樹脂基材を接着することによって製造することができる。
 樹脂基材としては、特に限定されず、当該技術分野において公知のものを用いることができる。樹脂基材の例としては、紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂、ガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム、液晶ポリマー、フッ素樹脂などが挙げられる。
The copper-clad laminate according to the embodiment of the present invention includes the above-mentioned surface-treated copper foil and a resin base material adhered to the surface-treated layer of the above-mentioned surface-treated copper foil. This copper-clad laminate can be manufactured by adhering a resin base material to the surface-treated layer of the above-mentioned surface-treated copper foil.
The resin base material is not particularly limited, and those known in the art can be used. Examples of resin base materials include paper base material phenol resin, paper base material epoxy resin, synthetic fiber cloth base material epoxy resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass non-woven fabric base material epoxy resin, and glass. Examples thereof include cloth-based epoxy resins, polyester films, polyimide films, liquid crystal polymers, and fluororesins.
 表面処理銅箔と樹脂基材との接着方法としては、特に限定されず、当該技術分野において公知の方法に準じて行うことができる。例えば、表面処理銅箔と樹脂基材とを積層させて熱圧着すればよい。
 上記のようにして製造された銅張積層板は、プリント配線板の製造に用いることができる。
The method for adhering the surface-treated copper foil to the resin base material is not particularly limited, and can be performed according to a method known in the art. For example, the surface-treated copper foil and the resin base material may be laminated and thermocompression bonded.
The copper-clad laminate manufactured as described above can be used for manufacturing a printed wiring board.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔を用いているため、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。 Since the copper-clad laminate according to the embodiment of the present invention uses the above-mentioned surface-treated copper foil, it is possible to improve the adhesiveness to a resin base material, particularly a resin base material suitable for high-frequency applications.
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして形成された回路パターンを備える。このプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして回路パターンを形成することによって製造することができる。回路パターンの形成方法としては、特に限定されず、サブトラクティブ法、セミアディティブ法などの公知の方法を用いることができる。その中でも、回路パターンの形成方法はサブトラクティブ法が好ましい。 The printed wiring board according to the embodiment of the present invention includes a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate. This printed wiring board can be manufactured by etching the surface-treated copper foil of the copper-clad laminate to form a circuit pattern. The method for forming the circuit pattern is not particularly limited, and a known method such as a subtractive method or a semi-additive method can be used. Among them, the subtractive method is preferable as the method for forming the circuit pattern.
 サブトラクティブ法によってプリント配線板を製造する場合、次のようにして行うことが好ましい。まず、銅張積層板の表面処理銅箔の表面にレジストを塗布、露光及び現像することによって所定のレジストパターンを形成する。次に、レジストパターンが形成されていない部分(不要部)の表面処理銅箔をエッチングによって除去して回路パターンを形成する。最後に、表面処理銅箔上のレジストパターンを除去する。
 なお、このサブトラクティブ法における各種条件は、特に限定されず、当該技術分野において公知の条件に準じて行うことができる。
When the printed wiring board is manufactured by the subtractive method, it is preferable to carry out as follows. First, a predetermined resist pattern is formed by applying, exposing and developing a resist on the surface of the surface-treated copper foil of the copper-clad laminate. Next, the surface-treated copper foil of the portion (unnecessary portion) where the resist pattern is not formed is removed by etching to form a circuit pattern. Finally, the resist pattern on the surface-treated copper foil is removed.
The various conditions in this subtractive method are not particularly limited, and can be performed according to the conditions known in the art.
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板を用いているため、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れている。 Since the printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, it is excellent in adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications, and a circuit pattern. ..
 以下、本発明の実施形態を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
 圧延銅箔A(再結晶化後のヤング率が120GPa、厚さ12μm)を準備し、一方の面を脱脂及び酸洗した後、表面処理層として粗化処理層を形成することによって表面処理銅箔を得た。粗化処理層の形成条件は、次の通りとした。
<一次粗化粒子の形成条件R1>
 めっき液組成:11g/LのCu、50g/Lの硫酸
 めっき液温度:25℃
 電気めっき条件:電流密度35.6A/dm2、クーロン量72.7As/dm2
(Example 1)
A rolled copper foil A (young rate after recrystallization of 120 GPa, thickness of 12 μm) is prepared, one surface is degreased and pickled, and then a roughened treated layer is formed as a surface treated layer to form a surface treated copper. I got the foil. The conditions for forming the roughened layer were as follows.
<Conditions for forming primary roughened particles R1>
Plating solution composition: 11 g / L Cu, 50 g / L sulfuric acid Plating solution temperature: 25 ° C.
Electroplating conditions: current density 35.6 A / dm 2 , coulomb amount 72.7 As / dm 2
(かぶせめっき層の形成条件R2)
 めっき液組成:20g/LのCu、100g/Lの硫酸
 めっき液温度:50℃
 電気めっき条件:電流密度9.9A/dm2、クーロン量30.3As/dm2
(Conditions for forming the cover plating layer R2)
Plating solution composition: 20 g / L Cu, 100 g / L sulfuric acid Plating solution temperature: 50 ° C.
Electroplating conditions: current density 9.9 A / dm 2 , coulomb amount 30.3 As / dm 2
(二次粗化粒子40の形成条件Y)
 めっき液組成:15.5g/LのCu、7.5g/LのCo、9.5g/LのNi
 pH:2.4
 めっき液温度:36℃
 電気めっき条件:電流密度33.1A/dm2、クーロン量44.8As/dm2
(Formation condition Y of secondary roughened particles 40)
Plating solution composition: 15.5 g / L Cu, 7.5 g / L Co, 9.5 g / L Ni
pH: 2.4
Plating liquid temperature: 36 ° C
Electroplating conditions: current density 33.1 A / dm 2 , coulomb amount 44.8 As / dm 2
(実施例2~14、及び比較例1)
 圧延銅箔の種類、R1、R2及びYにおける電流密度及びクーロン量の少なくとも1つを表1に示す通りに変更したこと以外は実施例1と同様にして表面処理銅箔を得た。なお、表1において、圧延銅箔Bは、再結晶化後のヤング率が85GPa、厚さ12μmの圧延銅箔である。
(Examples 2 to 14 and Comparative Example 1)
A surface-treated copper foil was obtained in the same manner as in Example 1 except that at least one of the type of rolled copper foil, the current density and the amount of coulomb in R1, R2 and Y was changed as shown in Table 1. In Table 1, the rolled copper foil B is a rolled copper foil having a Young's modulus of 85 GPa and a thickness of 12 μm after recrystallization.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の実施例及び比較例で得られた表面処理銅箔について、走査電子顕微鏡(SEM)を用いて表面処理層の表面状態を観察した。その結果、実施例1~14では、粗化粒子(特に二次粗化粒子)が樹枝状に広がった構造が多く確認されたのに対し、比較例1では当該構造がほとんど確認されなかった。代表例として、実施例1及び比較例1の表面処理銅箔における表面処理層(粗化処理層)のSEM写真(20,000倍、傾斜40°)を図2に示す。 With respect to the surface-treated copper foils obtained in the above Examples and Comparative Examples, the surface state of the surface-treated layer was observed using a scanning electron microscope (SEM). As a result, in Examples 1 to 14, many structures in which the roughened particles (particularly secondary roughened particles) were spread in a dendritic shape were confirmed, whereas in Comparative Example 1, the structure was hardly confirmed. As a representative example, FIG. 2 shows SEM photographs (20,000 times, inclination of 40 °) of the surface-treated layer (roughened layer) in the surface-treated copper foils of Example 1 and Comparative Example 1.
 次に、上記の実施例及び比較例で得られた表面処理銅箔について、下記の特性評価を行った。
<表面処理層のSMr2、SMr1、Spk、Sk>
 オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4000)を用いて画像撮影を行なった。撮影した画像の解析は、オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4100)の解析ソフトを用いて行った。SMr2、SMr1、Spk及びSkの測定はISO 25178にそれぞれ準拠して行った。また、これらの測定結果は、任意の3か所で測定した値の平均値を測定結果とした。なお、測定時の温度は23~25℃とした。また、レーザー顕微鏡及び解析ソフトにおける主要な設定条件は下記の通りである。
 対物レンズ:MPLAPON50XLEXT(倍率:50倍、開口数:0.95、液浸タイプ:空気、機械的鏡筒長:∞、カバーガラス厚:0、視野数:FN18)
 光学ズーム倍率:1倍
 走査モード:XYZ高精度(高さ分解能:10nm、取込みデータの画素数:1024×1024)
 取込み画像サイズ[画素数]:横257μm×縦258μm[1024×1024]
(横方向に測定するため、評価長さとしては257μmに相当)
 DIC:オフ
 マルチレイヤー:オフ
 レーザー強度:100
 オフセット:0
 コンフォーカルレベル:0
 ビーム径絞り:オフ
 画像平均:1回
 ノイズリダクション:オン
 輝度むら補正:オン
 光学的ノイズフィルタ:オン
 カットオフ:無し(λc、λs、λf全て無し)
 フィルタ:ガウシアンフィルタ
 ノイズ除去:測定前処理
 表面(傾き)補正:実施
Next, the following characteristic evaluations were performed on the surface-treated copper foils obtained in the above Examples and Comparative Examples.
<SMr2, SMr1, Spk, Sk of the surface treatment layer>
Images were taken using a laser microscope (LEXT OLS4000) manufactured by Olympus Corporation. The captured image was analyzed using the analysis software of a laser microscope (LEXT OLS4100) manufactured by Olympus Corporation. Measurements of SMr2, SMr1, Spk and Sk were performed in accordance with ISO 25178, respectively. In addition, as these measurement results, the average value of the values measured at any three places was used as the measurement result. The temperature at the time of measurement was 23 to 25 ° C. The main setting conditions for the laser microscope and analysis software are as follows.
Objective lens: MPLAPON50XLEXT (magnification: 50x, numerical aperture: 0.95, immersion type: air, mechanical lens barrel length: ∞, cover glass thickness: 0, field of view: FN18)
Optical zoom magnification: 1x Scanning mode: XYZ High accuracy (height resolution: 10 nm, number of pixels of captured data: 1024 x 1024)
Captured image size [number of pixels]: 257 μm in width × 258 μm in length [1024 × 1024]
(Since it is measured in the lateral direction, the evaluation length is equivalent to 257 μm)
DIC: Off Multi-layer: Off Laser intensity: 100
Offset: 0
Confocal level: 0
Beam diameter Aperture: Off Image average: 1 time Noise reduction: On Brightness unevenness correction: On Optical noise filter: On Cutoff: None (λc, λs, λf all none)
Filter: Gaussian filter Noise removal: Measurement pretreatment Surface (tilt) correction: Implementation
<ピール強度>
 表面処理銅箔を樹脂基材[LCP:液晶ポリマー樹脂(ヒドロキシ安息香酸(エステル)とヒドロキシナフトエ酸(エステル)との共重合体)フィルム(株式会社クラレ製Vecstar(登録商標)CTQ;厚み50μm又は100μm)]と貼り合わせた後、幅3mmの回路をTD方向(圧延銅箔の幅方向)に形成した。次に、回路(表面処理銅箔)を樹脂基材の表面に対して、50mm/分の速度でTD180°方向に引き剥がすときの強さ(TD180°ピール強度)をJIS C6471:1995に準拠して測定した。測定は3回行い、その平均値をピール強度の結果とした。ピール強度は、0.50kgf/cm以上であれば、回路(表面処理銅箔)と樹脂基材との接着性が良好であるといえる。
 なお、回路幅の調整は、塩化銅エッチング液を用いる通常のサブトラクティブエッチング方法によって行った。
<Peel strength>
Surface-treated copper foil is used as a resin base material [LCP: liquid crystal polymer resin (copolymer of hydroxybenzoic acid (ester) and hydroxynaphthoic acid (ester)) film (Vectar (registered trademark) CTQ manufactured by Kuraray Co., Ltd .; thickness 50 μm or After bonding with 100 μm)], a circuit having a width of 3 mm was formed in the TD direction (width direction of the rolled copper foil). Next, the strength (TD180 ° peel strength) when the circuit (surface-treated copper foil) is peeled off from the surface of the resin base material at a speed of 50 mm / min in the TD180 ° direction is based on JIS C6471: 1995. Was measured. The measurement was performed three times, and the average value was used as the result of peel strength. If the peel strength is 0.50 kgf / cm or more, it can be said that the adhesiveness between the circuit (surface-treated copper foil) and the resin base material is good.
The circuit width was adjusted by a normal subtractive etching method using a copper chloride etching solution.
 上記の特性評価の結果を表2に示す。 Table 2 shows the results of the above characteristic evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、表面処理層のSMr2が所定の範囲内にある実施例1~14の表面処理銅箔はピール強度が高かった。
 一方、表面処理層のSMr2が所定の範囲外である比較例1の表面処理銅箔はピール強度が低かった。
As shown in Table 1, the surface-treated copper foils of Examples 1 to 14 in which SMr2 of the surface-treated layer was within a predetermined range had high peel strength.
On the other hand, the surface-treated copper foil of Comparative Example 1 in which SMr2 of the surface-treated layer was out of the predetermined range had low peel strength.
 以上の結果からわかるように、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。また、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。さらに、本発明の実施形態によれば、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。 As can be seen from the above results, according to the embodiment of the present invention, it is possible to provide a surface-treated copper foil capable of enhancing the adhesiveness with a resin base material, particularly a resin base material suitable for high frequency applications. .. Further, according to the embodiment of the present invention, it is possible to provide a copper-clad laminate having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high-frequency applications and a surface-treated copper foil. Further, according to the embodiment of the present invention, it is possible to provide a printed wiring board having excellent adhesiveness between a resin base material, particularly a resin base material suitable for high frequency applications, and a circuit pattern.

Claims (10)

  1.  銅箔と、前記銅箔の少なくとも一方の面に形成された表面処理層とを有し、
     前記表面処理層の突出谷部とコア部を分離する負荷面積率SMr2が91~96%である表面処理銅箔。
    It has a copper foil and a surface treatment layer formed on at least one surface of the copper foil.
    A surface-treated copper foil having a load area ratio SMr2 of 91 to 96% that separates the protruding valley portion and the core portion of the surface-treated layer.
  2.  前記表面処理層の突出山部とコア部を分離する負荷面積率SMr1が16~28%である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the load area ratio SMr1 for separating the protruding peak portion and the core portion of the surface-treated layer is 16 to 28%.
  3.  前記表面処理層の突出山部高さSpkが1.2~2.5μmである、請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the protruding peak height Spk of the surface-treated layer is 1.2 to 2.5 μm.
  4.  前記表面処理層のコア部のレベル差Skが1.0~2.0μmである、請求項1~3のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 3, wherein the level difference Sk of the core portion of the surface-treated layer is 1.0 to 2.0 μm.
  5.  前記表面処理層が粗化処理層を有する、請求項1~4のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 4, wherein the surface-treated layer has a roughened-treated layer.
  6.  前記粗化処理層が、一次粗化粒子と、前記一次粗化粒子を被覆するかぶせめっき層と、前記かぶせめっき層上に形成された二次粗化粒子とを含む、請求項5に記載の表面処理銅箔。 The fifth aspect of the present invention, wherein the roughening treatment layer includes primary roughened particles, a cover plating layer covering the primary roughened particles, and secondary roughened particles formed on the cover plating layer. Surface-treated copper foil.
  7.  前記表面処理層は、前記粗化処理層上に、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択される1種以上の層を更に有する、請求項5又は6に記載の表面処理銅箔。 The surface treatment layer further comprises one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer on the roughening treatment layer. The surface-treated copper foil according to 5 or 6.
  8.  前記銅箔が圧延銅箔である、請求項1~7のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein the copper foil is a rolled copper foil.
  9.  請求項1~8のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の表面処理層に接着された樹脂基材とを備える銅張積層板。 A copper-clad laminate comprising the surface-treated copper foil according to any one of claims 1 to 8 and a resin base material adhered to the surface-treated layer of the surface-treated copper foil.
  10.  請求項9に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板。 A printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate according to claim 9.
PCT/JP2020/038989 2019-12-13 2020-10-15 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board WO2021117339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227017427A KR20220087525A (en) 2019-12-13 2020-10-15 Surface treatment copper foil, copper clad laminate and printed wiring board
CN202080082012.7A CN114761622B (en) 2019-12-13 2020-10-15 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019225894A JP2021095596A (en) 2019-12-13 2019-12-13 Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2019-225894 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021117339A1 true WO2021117339A1 (en) 2021-06-17

Family

ID=76329719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038989 WO2021117339A1 (en) 2019-12-13 2020-10-15 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board

Country Status (5)

Country Link
JP (1) JP2021095596A (en)
KR (1) KR20220087525A (en)
CN (1) CN114761622B (en)
TW (1) TW202122642A (en)
WO (1) WO2021117339A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281774A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2023281775A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281776A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281777A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2023281778A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate board, and printed wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240030268A (en) * 2022-08-30 2024-03-07 롯데에너지머티리얼즈 주식회사 Surface-treated copper foil with pillar type nodule structure, copper clad laminate comprising the same, and printed wiring board comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152352A (en) * 2013-02-06 2014-08-25 Sh Copper Products Corp Composite copper foil and production method thereof
JP2017036495A (en) * 2015-08-06 2017-02-16 Jx金属株式会社 Copper foil with carrier, laminate, manufacturing method of printed wiring board, and manufacturing method of electronic device
JP2018090903A (en) * 2016-12-05 2018-06-14 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for producing printed wiring board, and method for producing electronic device
JP2019178416A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Metal material, printed wiring board, printed wiring board manufacturing method, and electronic equipment manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112009A (en) 2010-11-26 2012-06-14 Hitachi Cable Ltd Copper foil, and method for producing copper foil
JP6487704B2 (en) * 2015-02-12 2019-03-20 福田金属箔粉工業株式会社 Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board
JP6083619B2 (en) * 2015-07-29 2017-02-22 福田金属箔粉工業株式会社 Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil
JP6945523B2 (en) * 2016-04-14 2021-10-06 三井金属鉱業株式会社 Surface-treated copper foil, copper foil with carrier, and methods for manufacturing copper-clad laminates and printed wiring boards using them.
US10820414B2 (en) * 2016-12-05 2020-10-27 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
JP7251927B2 (en) * 2018-06-05 2023-04-04 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board
JP7251928B2 (en) * 2018-06-05 2023-04-04 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board
JP2019019414A (en) * 2018-10-26 2019-02-07 Jx金属株式会社 Surface-treated copper foil, laminate and printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152352A (en) * 2013-02-06 2014-08-25 Sh Copper Products Corp Composite copper foil and production method thereof
JP2017036495A (en) * 2015-08-06 2017-02-16 Jx金属株式会社 Copper foil with carrier, laminate, manufacturing method of printed wiring board, and manufacturing method of electronic device
JP2018090903A (en) * 2016-12-05 2018-06-14 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for producing printed wiring board, and method for producing electronic device
JP2019178416A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Metal material, printed wiring board, printed wiring board manufacturing method, and electronic equipment manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281774A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2023281775A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2023281776A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281777A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2023281778A1 (en) * 2021-07-09 2023-01-12 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate board, and printed wiring board

Also Published As

Publication number Publication date
TW202122642A (en) 2021-06-16
KR20220087525A (en) 2022-06-24
CN114761622A (en) 2022-07-15
CN114761622B (en) 2024-01-12
JP2021095596A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2021117339A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
JP7114499B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
WO2019208521A1 (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
JP4682271B2 (en) Copper foil for printed wiring boards
WO2021117338A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
KR20100076055A (en) Copper foil for printed wiring board
TWI747088B (en) Surface treatment copper foil, copper clad laminate and printed wiring board
JP2023009304A (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP2023009305A (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP4391449B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2019081913A (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP2011014651A (en) Copper foil for printed wiring board
WO2024070247A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2022153580A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2024070248A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2024070245A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2024070246A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281777A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2023281778A1 (en) Surface-treated copper foil, copper-clad laminate board, and printed wiring board
WO2023281774A1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2023281776A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281759A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2019081943A (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
TW202413724A (en) Surface treated copper foil, copper clad laminates and printed wiring boards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017427

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898701

Country of ref document: EP

Kind code of ref document: A1