JP6487704B2 - Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board - Google Patents

Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board Download PDF

Info

Publication number
JP6487704B2
JP6487704B2 JP2015025259A JP2015025259A JP6487704B2 JP 6487704 B2 JP6487704 B2 JP 6487704B2 JP 2015025259 A JP2015025259 A JP 2015025259A JP 2015025259 A JP2015025259 A JP 2015025259A JP 6487704 B2 JP6487704 B2 JP 6487704B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
layer
treated
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025259A
Other languages
Japanese (ja)
Other versions
JP2016149438A (en
JP2016149438A5 (en
Inventor
岡本 健
健 岡本
真鍋 久徳
久徳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2015025259A priority Critical patent/JP6487704B2/en
Priority to KR1020150054287A priority patent/KR102097843B1/en
Priority to CN201510283536.3A priority patent/CN106211567B/en
Priority to TW104118618A priority patent/TWI666977B/en
Publication of JP2016149438A publication Critical patent/JP2016149438A/en
Publication of JP2016149438A5 publication Critical patent/JP2016149438A5/ja
Application granted granted Critical
Publication of JP6487704B2 publication Critical patent/JP6487704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は伝送特性に優れ、絶縁性樹脂基材(以下「樹脂基材」という)との高い引き剥がし強さを備え、また、エッチング後の樹脂基材の曇り度(HAZE値)が低くて、透過度が高いプリント配線板を作製することができる処理銅箔に関する。   The present invention is excellent in transmission characteristics, has high peeling strength with an insulating resin base material (hereinafter referred to as “resin base material”), and has a low haze (HAZE value) of the resin base material after etching. The present invention relates to a treated copper foil capable of producing a printed wiring board having high transmittance.

情報通信機器等に使用されるプリント配線板は、樹脂基材上に導電性のある配線パターンを形成したものである。この樹脂基材としては、ガラス布や紙などの補強材に絶縁性のあるフェノール樹脂やエポキシ樹脂、ポリフェニレンエーテル樹脂、ビスマレイミドトリアジン樹脂などを含浸したリジットプリント配線板用、ポリイミド樹脂やシクロオレフィンポリマー樹脂などで構成されるフレキシブルプリント配線板用が挙げられる。一方、導電性のある配線パターンの材料としては一般的に銅箔が用いられている。   A printed wiring board used for information communication equipment or the like is obtained by forming a conductive wiring pattern on a resin base material. This resin base material is used for rigid printed wiring boards in which reinforcing materials such as glass cloth and paper are impregnated with insulating phenol resin, epoxy resin, polyphenylene ether resin, bismaleimide triazine resin, polyimide resin and cycloolefin polymer. For flexible printed wiring boards made of resin or the like. On the other hand, copper foil is generally used as a conductive wiring pattern material.

このプリント配線板は、樹脂基材と銅箔を加熱、加圧することで銅張積層板を作製した後、配線パターンを形成するために銅箔の不要部分をエッチングにより除去することで作製することができる。   This printed wiring board is made by heating and pressurizing the resin base material and copper foil to produce a copper-clad laminate and then removing unnecessary portions of the copper foil by etching to form a wiring pattern. Can do.

銅箔は、その製法によって電解銅箔と圧延銅箔の2種類に大別され、それぞれの特徴から用途に合わせて使い分けられている。なお、いずれの銅箔も、そのまま使用されることはほとんどなく、粗化処理層をはじめ、耐熱処理層、防錆処理層等々の各種処理層を設けたものが使用されている(以下、各種処理層が設けられている銅箔を「処理銅箔」という)。   Copper foils are roughly classified into two types, electrolytic copper foils and rolled copper foils, depending on the production method. In addition, any copper foil is rarely used as it is, and is provided with various treatment layers such as a roughening treatment layer, a heat-resistant treatment layer, a rust prevention treatment layer, and the like (hereinafter referred to as various types). A copper foil provided with a treatment layer is referred to as a “treatment copper foil”).

プリント配線板を実用上問題なく使用するにあたっては、樹脂基材と処理銅箔との引き剥がし強さ、すなわち密着性が重要な特性の1つである。
引き剥がし強さは、常態はもちろんのこと、耐熱性、耐薬品性、耐吸湿性が確保され、引き剥がし強さが維持される必要がある。
そのための有効な手段の1つとして、銅箔には粗化処理層を設けることがなされてきた。
When the printed wiring board is used without any problem in practice, the peel strength between the resin base material and the treated copper foil, that is, the adhesiveness is one of the important characteristics.
As for the peel strength, not only the normal state but also the heat resistance, chemical resistance and moisture absorption resistance are secured, and the peel strength needs to be maintained.
As one effective means for that purpose, a roughening layer has been provided on the copper foil.

最近では、高速・高周波伝送対応プリント配線板の需要が高まってきており、このようなプリント配線板には、これまでの特性に加え、伝送損失に代表される「伝送特性」も重要である。   Recently, the demand for high-speed, high-frequency transmission-compatible printed wiring boards is increasing. In addition to the conventional characteristics, “transmission characteristics” represented by transmission loss are also important for such printed wiring boards.

伝送損失とは、プリント配線板を流れる電流が距離などに応じて減衰する度合いを示すもので、一般的に周波数が高くなるにしたがって伝送損失は大きくなる傾向にある。伝送損失が大きいということは、所定の電流の一部しか負荷側に伝わらないということであるので、実用上問題なく使用するには、伝送損失はより低く抑えなければならない。   The transmission loss indicates the degree to which the current flowing through the printed wiring board is attenuated according to the distance or the like. Generally, the transmission loss tends to increase as the frequency increases. A large transmission loss means that only a part of a predetermined current is transmitted to the load side. Therefore, in order to use it without any practical problem, the transmission loss must be kept lower.

プリント配線板の伝送損失は、誘電体損失と導体損失を足し合わせたものである。誘電体損失は樹脂基材に由来するもので、誘電率と誘電正接に起因する。一方、導体損失は導電体、即ち、銅箔に由来するもので、導体抵抗に起因する。したがって、伝送損失を下げるためには、樹脂基材の誘電率や誘電正接を小さくすることはもちろん、銅箔の導体抵抗を小さくすることが必要である。   The transmission loss of a printed wiring board is a sum of dielectric loss and conductor loss. The dielectric loss is derived from the resin base material and is caused by the dielectric constant and the dielectric loss tangent. On the other hand, the conductor loss is derived from the conductor, that is, the copper foil, and is caused by the conductor resistance. Therefore, in order to reduce transmission loss, it is necessary to reduce the conductor resistance of the copper foil as well as the dielectric constant and dielectric loss tangent of the resin base material.

上述の通り、電流の周波数が高くなるにしたがって伝送損失は大きくなる傾向にあるが、それは導体損失、即ち、導体抵抗が高くなるためであって、「表皮効果」と「処理銅箔の表面形状」が関係している。
表皮効果とは、導電体を流れる電流は周波数が高くなるにしたがって導電体の表面近くを流れる効果のことである。そして導電体表面の電流に対して1/e倍の電流となる点までの距離と定義される表皮深さδは、式(1)で表される。

δ=(2/(ωσμ))1/2 (式1)

ωは角周波数、σは導電率、μは透磁率である。
As described above, the transmission loss tends to increase as the current frequency increases. This is because the conductor loss, that is, the conductor resistance increases, and the “skin effect” and “surface shape of the treated copper foil”. Is involved.
The skin effect is an effect in which the current flowing through the conductor flows near the surface of the conductor as the frequency increases. The skin depth δ, which is defined as the distance to a point where the current is 1 / e times the current on the conductor surface, is expressed by equation (1).

δ = (2 / (ωσμ)) 1/2 (Formula 1)

ω is the angular frequency, σ is the conductivity, and μ is the magnetic permeability.

銅の場合、その導電率と比透磁率から、式(1)は次のようになる。

δ=0.066/f1/2 (式2)

fは周波数である。
In the case of copper, Equation (1) is as follows from its conductivity and relative permeability.

δ = 0.066 / f 1/2 (Formula 2)

f is the frequency.

式(2)より、電流は周波数が高くなるにしたがって導電体の表面により近いところを流れることが分かり、例えば、周波数10MHzのときの表皮深さは約20μmであるのに対し、周波数40GHzのときは約0.3μmとなり、ほとんど表面だけを流れていることになる。   From equation (2), it can be seen that the current flows closer to the surface of the conductor as the frequency increases. For example, when the frequency is 10 MHz, the skin depth is about 20 μm, while the frequency is 40 GHz. Is about 0.3 μm, and almost flows only on the surface.

このことから、従来のように、樹脂基材との密着性を高めるために粗化処理層を設けた処理銅箔に高周波電流を流した場合、電流は粗化処理層の表面形状に沿って流れることになり、主に中心部をまっすぐ流れる場合と比べるとその伝播距離が増えるため、導体抵抗が大きくなり、伝送損失の増大につながると考えられる。   From this, when a high-frequency current is passed through a treated copper foil provided with a roughened layer in order to improve adhesion to the resin base material as in the past, the current follows the surface shape of the roughened layer. Compared with the case of flowing straight through the center, the propagation distance is increased, so that the conductor resistance is increased, leading to an increase in transmission loss.

したがって、高速・高周波伝送対応プリント配線板用の処理銅箔としては、導体抵抗を低く抑えることが必要で、そのためには、粗化処理層を構成する粗化粒子の粒子径を小さくし、表面粗さを小さくした方がよいと考えられる。   Therefore, it is necessary to keep the conductor resistance low as a treated copper foil for high-speed, high-frequency transmission-compatible printed wiring boards. For that purpose, the particle diameter of the roughened particles constituting the roughened layer is reduced, and the surface It is considered better to reduce the roughness.

一方で、高速・高周波伝送用途に限ったことではないが、プリント配線板の視認性も重要な特性となってきている。具体的には、ポリイミド樹脂系のフレキシブルプリント配線板において、配線パターンを形成した後の樹脂基材部分、すなわち銅箔がエッチングされ露出した部分の視認性のことである。   On the other hand, although not limited to high-speed and high-frequency transmission applications, the visibility of printed wiring boards has become an important characteristic. Specifically, in the polyimide resin-based flexible printed wiring board, the resin substrate portion after the wiring pattern is formed, that is, the visibility of the exposed portion of the copper foil.

これは、はんだを使わない実装技術として異方性導電フィルム(ACF)が使用されるようになり求められるようになった特性である。例えば、プリント回路板(PCB)とフレキシブルプリント配線板(FPC)を上下で接続する際、それらの間にACFを挟み込み加熱、加圧することで、上下方向に対する導通を得ている。FPCとPCBの導通を取る位置を確実に合わせなければ、当然に上下間の導通が取れないため、それぞれには位置決め用の印がマーキングされており、それらをCCDカメラで認識しながら位置合わせしている。   This is a characteristic that has been demanded since anisotropic conductive film (ACF) has been used as a mounting technology that does not use solder. For example, when a printed circuit board (PCB) and a flexible printed wiring board (FPC) are connected vertically, the ACF is sandwiched between them and heated and pressurized to obtain conduction in the vertical direction. If the FPC and PCB continuity positions are not aligned with each other, naturally there is no continuity between the upper and lower sides, so each is marked with a positioning mark, and they are aligned while being recognized by the CCD camera. ing.

このとき、CCDカメラは、FPCの銅箔がエッチングされ露出した樹脂基材越しに真上から撮影しているため、その樹脂基材が曇っていると、透過度が劣るために印を認識することができず、正確な位置合わせができなくなる。したがって、曇りはできる限り無い方が好ましい。   At this time, since the CCD camera is shooting from directly above the exposed resin base material after the FPC copper foil is etched, if the resin base material is cloudy, the transparency is inferior and the mark is recognized. Cannot be accurately aligned. Therefore, it is preferable that there is no fogging as much as possible.

また、光学式外観自動検査装置(AOI)によるプリント配線板の完成検査が行われるようになったことも視認性が求められる一因である。AOIは、プリント配線板の配線パターンを光学的に把握し、画像処理によって良否を判定する装置であり、パターンの欠けや細り、太り、ピンホール、傷等の欠陥を検出することができる。   Further, the completion inspection of the printed wiring board by the optical appearance automatic inspection apparatus (AOI) has been performed. AOI is a device that optically grasps a wiring pattern of a printed wiring board and determines pass / fail by image processing, and can detect defects such as chipping, thinning, thickening, pinholes, and scratches.

このとき、プリント配線板の銅箔がエッチングされ露出した樹脂基材が曇っていると、透過度が劣るために配線パターンを把握することができず正確な検査ができなくなる。したがって、曇りはできる限り無い方が好ましい。   At this time, if the resin base material exposed by etching the copper foil of the printed wiring board is cloudy, the wiring pattern cannot be grasped due to inferior transmittance, and accurate inspection cannot be performed. Therefore, it is preferable that there is no fogging as much as possible.

プリント配線板の配線パターンを光学的に把握できる性質を視認性とすると、樹脂基材の曇りが少なければ、透過度が高く、配線パターンを光学的に把握しやすいため、視認性が良いということになる。   Assuming that the property of optically grasping the wiring pattern of the printed wiring board is visibility, if the resin base material is less fogged, the transparency is high and the wiring pattern is easy to grasp optically, so the visibility is good. become.

視認性は曇り度、すなわちHAZE値を測定することによって数値化することができる。一般的には、HAZE値が80%以下であると視認性が良いとされている。   Visibility can be quantified by measuring haze, ie, HAZE value. Generally, it is said that the visibility is good when the HAZE value is 80% or less.

このHAZE値は、処理銅箔の表面形状の影響を強く受け、粗化処理層を構成する粗化粒子の粒子径や処理銅箔の表面粗さが小さいほど、HAZE値は小さくなり、透過度が高い。即ち、視認性が良くなる傾向にある。   This HAZE value is strongly influenced by the surface shape of the treated copper foil, and the smaller the particle size of the roughened particles constituting the roughened layer and the surface roughness of the treated copper foil, the smaller the HAZE value and the transmittance. Is expensive. That is, the visibility tends to be improved.

以上のように、プリント配線板として実用上問題なく使用するためには、何より樹脂基材と処理銅箔との密着性が十分確保されていることが重要であるが、高速・高周波伝送やACF実装、AOI検査等にも対応するには、優れた伝送特性や視認性も同時に備える必要がある。   As described above, in order to use it as a printed wiring board without any practical problems, it is important to ensure sufficient adhesion between the resin base material and the treated copper foil. In order to support mounting, AOI inspection, etc., it is necessary to have excellent transmission characteristics and visibility at the same time.

これらプリント配線板に要求される特性の中で、伝送特性に着目すると、粗化処理層を備えない未処理銅箔は、表面粗さが小さいため、電流の伝播距離を短くでき、その結果、抵抗を小さくできることから、導体としては最も優れていると考えられる。   Among the characteristics required for these printed wiring boards, paying attention to the transmission characteristics, the untreated copper foil without the roughened layer has a small surface roughness, so that the current propagation distance can be shortened. Since the resistance can be reduced, it is considered the most excellent conductor.

しかし、密着性に着目した場合、粗化処理層を備えないものは、アンカー効果が少なく樹脂基材との密着力が弱いため、引き剥がし強さを確保できず、プリント配線板に用いることは困難である。   However, when paying attention to adhesiveness, those that do not have a roughening treatment layer have little anchor effect and weak adhesion to the resin base material, so the peel strength cannot be secured, and it can be used for printed wiring boards. Have difficulty.

未処理銅箔に粗化処理層を設け、さらに粗化処理層を構成する粗化粒子の付着量を増加させたり、粒子径を大きくしたりすれば、アンカー効果が高まるので、引き剥がし強さを高めることができるが、前述の通り、粗化処理層を設けると電流の伝播距離が長くなり、導体抵抗が大きくなり伝送損失が増加する。   If a roughened layer is provided on the untreated copper foil, and the adhesion amount of the roughened particles constituting the roughened layer is increased or the particle diameter is increased, the anchor effect is enhanced, so that the peeling strength is increased. However, as described above, the provision of the roughening layer increases the current propagation distance, increases the conductor resistance, and increases the transmission loss.

さらに、この場合、視認性に着目すると、プリント配線板の銅箔がエッチングされ露出した樹脂基材のHAZE値が大きくなるため、視認性が悪化する。   Further, in this case, when attention is paid to the visibility, the HAZE value of the resin base material exposed by etching the copper foil of the printed wiring board is increased, so that the visibility is deteriorated.

このように、樹脂基材と銅箔の密着性に対し、伝送特性及び視認性は、基本的には相反する特性であるが、高速・高周波伝送に対応するプリント配線板は、実用上それらすべてを満足させなければならない。   In this way, the transmission characteristics and visibility are basically contradictory to the adhesion between the resin base and the copper foil, but printed wiring boards that support high-speed and high-frequency transmission are practically all of them. Must be satisfied.

そこで、樹脂基材との引き剥がし強さが十分にあり、かつ、伝送損失が未処理銅箔と同程度に優れ、銅箔をエッチングして露出した樹脂基材のHAZE値が小さくて視認性に優れるプリント配線板を作製することができる処理銅箔の開発が望まれている。   Therefore, the peel strength from the resin substrate is sufficient, the transmission loss is as good as the untreated copper foil, and the HAZE value of the resin substrate exposed by etching the copper foil is small and visibility Development of a treated copper foil capable of producing a printed wiring board that is excellent in resistance is desired.

特開2013−155415号公報JP2013-155415A 国際公開番号WO2003/102277International Publication Number WO2003 / 102277 国際公開番号WO2014/133164International Publication Number WO2014 / 133164

特許文献1には、高周波伝送対応の絶縁樹脂との接着性を向上させるべく粗化処理層及び耐熱処理層を設けた処理銅箔が開示されている。   Patent Document 1 discloses a treated copper foil provided with a roughening treatment layer and a heat-resistant treatment layer in order to improve adhesion with an insulating resin compatible with high-frequency transmission.

高周波伝送対応の絶縁樹脂は接着に寄与する極性の高い官能基が少なく接着特性が低いため、特許文献1に開示されている処理銅箔は粗化処理層を構成する粒子を大きくすることで引き剥がし強さを確保しようとするものである。   Since the insulating resin for high frequency transmission has few functional groups with high polarity that contribute to adhesion and low adhesion characteristics, the treated copper foil disclosed in Patent Document 1 is drawn by increasing the particles constituting the roughened layer. It is intended to ensure the peel strength.

しかし、粗化粒子が大きいと電流伝播距離が長くなるため伝送損失が増加するという問題がある。   However, when the coarse particles are large, there is a problem that the transmission loss increases because the current propagation distance becomes long.

また、耐熱処理層、防錆処理層及びシランカップリング剤層によって更に伝送損失が増加し、特に耐熱処理層がNiを含有する場合には、表皮深さが浅くなるので、電流が銅箔の表面部分に集中して流れるようになり、より処理層表面の凹凸の影響を受け、伝送損失が更に増加するという問題がある。   Further, the transmission loss is further increased by the heat-resistant treatment layer, the rust-proof treatment layer, and the silane coupling agent layer, and particularly when the heat-resistant treatment layer contains Ni, the skin depth becomes shallow, so that the current is reduced to the copper foil. There is a problem that the flow is concentrated on the surface portion, and the transmission loss is further increased due to the influence of the unevenness on the surface of the treatment layer.

特許文献2には、高周波伝送対応樹脂基材の接着性を向上させるべく、粗化処理層と亜鉛及びニッケルを含有する防錆処理層、防錆処理層上にクロメート層、クロメート層上にシランカップリング剤吸着層を設けた処理銅箔であって、処理面の表面粗さを一定の範囲に調製することで伝送損失を抑制しようとする処理銅箔が開示されている。   In Patent Document 2, in order to improve the adhesion of a resin base material for high-frequency transmission, a roughened layer, a rust-proof layer containing zinc and nickel, a chromate layer on the rust-proof layer, and a silane on the chromate layer A treated copper foil provided with a coupling agent adsorption layer, which is intended to suppress transmission loss by adjusting the surface roughness of the treated surface to a certain range, is disclosed.

しかし、粗化処理層の粗化粒子が大きいため、電流伝播距離が長くなって伝送損失が増加するという問題がある。   However, since the roughening particles in the roughening treatment layer are large, there is a problem that the current propagation distance becomes long and the transmission loss increases.

また、防錆処理層にNiを含有するため、表皮深さが浅くなって、電流が銅箔の表面部分に集中して流れ、伝送損失が更に増加するという問題がある。   Moreover, since Ni is contained in the rust-proofing layer, there is a problem that the skin depth becomes shallow, current flows in a concentrated manner on the surface portion of the copper foil, and transmission loss further increases.

特許文献3には粒径10nm〜250nmの銅粒子が3μm×3μmの領域において400〜2500個付着した処理銅箔であって、処理面のうねりの最大高低差(Wmax)が1.2μm以下であり、かつ、L*a*b*表色系の明度L*が30以下の色調を備え、HAZE値が低い処理銅箔が開示され、実施例において、Ni含有の防錆処理層及びシランカップリング剤層を備えた処理銅箔が開示されている。   Patent Document 3 discloses a treated copper foil in which 400 to 2500 copper particles having a particle diameter of 10 nm to 250 nm are attached in a region of 3 μm × 3 μm, and the maximum difference in waviness (Wmax) of the waviness of the treated surface is 1.2 μm or less. In addition, a treated copper foil having a lightness L * of the L * a * b * color system of 30 or less and a low HAZE value is disclosed, and in the examples, a Ni-containing anticorrosive layer and a silane coupling are disclosed. A treated copper foil with an agent layer is disclosed.

しかし、特許文献3に開示される処理銅箔は粗化粒子の付着量が少ないため該処理銅箔を使用した銅張積層板の引き剥がし強さは弱いという問題がある。   However, the treated copper foil disclosed in Patent Document 3 has a problem that the peel strength of a copper-clad laminate using the treated copper foil is weak because the amount of roughened particles attached is small.

また、防錆処理層にNiを含有すれば、表皮深さが浅くなって、電流が銅箔の表面部分に集中して流れ、未処理銅箔と比べて伝送損失が増加するという問題がある。   In addition, if Ni is contained in the rust-proofing layer, the skin depth becomes shallow, and current concentrates on the surface of the copper foil, causing a problem that transmission loss increases compared to untreated copper foil. .

本発明者らは、前記諸問題点を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、粗化処理層が、一次粒子径が40nm〜200nmの微細銅粒子で形成され、酸化防止処理層がモリブデンとコバルトを含有し、絶縁性樹脂基材と接着させる処理面の十点平均粗さRzが0.5μm〜1.6μmで、かつ、前記未処理銅箔と前記処理面との色差ΔE*abが45〜60である処理銅箔であれば、粗化処理層を設けた場合も未処理銅箔と同程度の伝送損失である優れた導体でありながら、樹脂基材と接着させた場合には高い引き剥がし強さを実現でき、また、当該処理銅箔を用いた銅張積層板は、エッチング除去後の露出した樹脂基材のHAZE値が低くて、透過度が高くなるという刮目すべき知見を得て、前記技術的課題を達成したものである。
The present inventors made it a technical subject to solve the above-mentioned problems, and as a result of repeating trial and error many trial manufactures and experiments, the roughened layer was a fine copper having a primary particle diameter of 40 nm to 200 nm. A 10-point average roughness Rz of the treatment surface formed of particles, the antioxidant treatment layer containing molybdenum and cobalt, and bonded to the insulating resin base material is 0.5 μm to 1.6 μm, and the untreated copper foil If the treated copper foil having a color difference ΔE * ab of 45 to 60 with the treated surface, even though a roughened layer is provided, it is an excellent conductor with the same transmission loss as the untreated copper foil, When bonded to a resin substrate, high peel strength can be achieved, and the copper clad laminate using the treated copper foil has a low HAZE value for the exposed resin substrate after etching removal, The technical problem has been achieved by obtaining the remarkable knowledge that the transmittance becomes high.

前記技術的課題は次のとおり、本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

本発明は、未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に酸化防止処理層を備えてなるニッケルを含有しない銅張積層板用処理銅箔であって、前記粗化処理層は一次粒子径が40nm〜200nmの微細銅粒子で形成され前記酸化防止処理層はモリブデンとコバルトを含有し絶縁性樹脂基材と接着させる処理面の十点平均粗さRzは0.5μm〜1.6μmで、かつ、前記未処理銅箔と前記処理面との色差ΔE*abが45〜60である銅張積層板用処理銅箔である。
The present invention is a treated copper foil for copper clad laminate not containing nickel, comprising a roughened layer on at least one surface of the untreated copper foil and an antioxidant layer on the roughened layer, The roughened layer is formed of fine copper particles having a primary particle size of 40 nm to 200 nm, the antioxidant layer contains molybdenum and cobalt, and the ten-point average roughness Rz of the treated surface to be bonded to the insulating resin substrate is The copper foil for copper clad laminates is 0.5 to 1.6 μm and has a color difference ΔE * ab of 45 to 60 between the untreated copper foil and the treated surface.

また本発明は、前記酸化防止処理層上にクロメート層及び/又はシランカップリング剤層を備えてなる前記銅張積層板用処理銅箔である。
Moreover, this invention is the process copper foil for copper clad laminated boards which comprises a chromate layer and / or a silane coupling agent layer on the said antioxidant process layer.

また本発明は、前記銅張積層板用処理銅箔を絶縁性樹脂基材の少なくとも一方の面に張り合わせてなる銅張積層板の前記処理銅箔をエッチング除去した前記絶縁性樹脂基材のHAZE値が80%以下である前記銅張積層板用処理銅箔である。The present invention also provides the HAZE of the insulating resin base material obtained by etching and removing the treated copper foil of the copper-clad laminate obtained by pasting the treated copper foil for copper-clad laminate on at least one surface of the insulating resin base material. It is the said processed copper foil for copper clad laminated boards whose value is 80% or less.

また本発明は、前記銅張積層板用処理銅箔を絶縁性樹脂基材の少なくとも一方の面に張り合わせてなる銅張積層板である。Moreover, this invention is a copper clad laminated board formed by bonding the said process copper foil for copper clad laminated boards to the at least one surface of an insulating resin base material.

また本発明は、ポリイミド化合物を含む絶縁性樹脂基材との引き剥がし強さが1.0kN/m以上である前記銅張積層板である。Moreover, this invention is the said copper clad laminated board whose peeling strength with the insulating resin base material containing a polyimide compound is 1.0 kN / m or more.

また本発明は、前記銅張積層板の前記処理銅箔をエッチング除去した前記絶縁性樹脂基材のHAZE値が80%以下である銅張積層板である。Moreover, this invention is a copper clad laminated board whose HAZE value of the said insulating resin base material which etched away the said process copper foil of the said copper clad laminated board is 80% or less.

また本発明は、硫酸銅五水和物10〜70g/Lにジエチレントリアミン塩50〜150g/Lを添加した水溶液を電流密度0.5〜5A/dmThe present invention also provides an aqueous solution obtained by adding 50 to 150 g / L of a diethylenetriamine salt to 10 to 70 g / L of copper sulfate pentahydrate, with a current density of 0.5 to 5 A / dm. 2 、電気量40〜140C/dm, Electricity 40 ~ 140C / dm 2 、液温25〜50℃で電解させて未処理銅箔上に粗化処理層を形成させることを特徴とする前記銅張積層板用処理銅箔の製造方法である。The method for producing a treated copper foil for a copper-clad laminate, wherein a roughened layer is formed on the untreated copper foil by electrolysis at a liquid temperature of 25 to 50 ° C.

また本発明は、銅張積層板用処理銅箔と絶縁性樹脂基材とを加熱しながら加圧して張り合わせることを特徴とする前記銅張積層板の製造方法である。Moreover, this invention is a manufacturing method of the said copper clad laminated board characterized by pressurizing and bonding the process copper foil for copper clad laminated boards, and an insulating resin base material.

本明細書において、本発明における粗化処理層を特に樹脂誘導浸透層と言うことがある。   In the present specification, the roughened layer in the present invention may be particularly referred to as a resin-induced permeation layer.

本発明における処理銅箔は、粗化処理層(樹脂誘導浸透層)を構成する粗化粒子の一次粒子径が40〜200nm の微細な銅粒子であって、かつ、未処理銅箔と各処理層形成後の処理面との色差ΔE*abが45〜60の範囲で、酸化防止処理層はモリブデンとコバルトを含有し、ニッケル等の伝送損失を上昇させる金属を含有しないため、各処理層を設けたとしても、周波数40GHzでの伝送損失が-5.5dB/100mm以上になり、樹脂誘導浸透層を備えることによる伝送損失を5%未満に抑制することができる。
The treated copper foil in the present invention is a fine copper particle having a primary particle size of 40 to 200 nm of the roughened particles constituting the roughened layer (resin-induced permeation layer), and the untreated copper foil and each treatment. Since the color difference ΔE * ab with the treated surface after layer formation is in the range of 45-60, the antioxidant treated layer contains molybdenum and cobalt, and does not contain metals such as nickel that increase transmission loss. Even if it is provided, the transmission loss at a frequency of 40 GHz is −5.5 dB / 100 mm or more, and the transmission loss due to the provision of the resin-induced permeation layer can be suppressed to less than 5%.

また、樹脂基材と加熱、加圧成形する際、その樹脂が粗化粒子間に均一に浸透し、処理銅箔表面と樹脂が大きな面積で立体的に接着するため、銅張積層板とした際には強力な引き剥がし強さを実現することができ、ポリイミド化合物を含む樹脂基材においても、1.0kN/m以上の高い引き剥がし強さを実現することができる。   In addition, when the resin base material is heated and pressure-molded, the resin uniformly penetrates between the roughened particles, and the treated copper foil surface and the resin are three-dimensionally bonded in a large area. In some cases, a strong peeling strength can be realized, and a high peeling strength of 1.0 kN / m or more can be realized even in a resin base material containing a polyimide compound.

さらに、エッチング除去後の露出した樹脂基材はHAZE値が30〜80%と低く、透過度が高いプリント配線板になるので、AOIを用いての検査や、CCDカメラを用いての位置決めを正確に行うことができる。   Furthermore, the exposed resin base material after etching removal has a low HAZE value of 30-80% and is a highly transparent printed wiring board, so accurate inspection using AOI and positioning using a CCD camera are accurate. Can be done.

加えて、処理面の十点平均粗さRzは0.5μm〜1.6μmであるので、樹脂基材と強く密着させることができる。   In addition, since the ten-point average roughness Rz of the treated surface is 0.5 μm to 1.6 μm, it can be strongly adhered to the resin base material.

本発明における処理銅箔断面の模式図である。It is a schematic diagram of the process copper foil cross section in this invention. 本発明における処理銅箔断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the process copper foil cross section in this invention.

<未処理銅箔>
本発明に使用する各処理前の銅箔(以下「未処理銅箔」という)は特に限定されるものではなく、表裏の区別のない銅箔、表裏の区別のある銅箔いずれも使用することができる。
<Untreated copper foil>
The copper foil before each treatment (hereinafter referred to as “untreated copper foil”) used in the present invention is not particularly limited, and a copper foil with no distinction between front and back and a copper foil with distinction between front and back should be used. Can do.

表面処理を施す一方の面(以下「処理面」という)は特に限定されるものではなく、圧延銅箔はいずれの面でも良いことはもちろんのこと、電解銅箔においても析出面又は光沢面のいずれの面でも良い。
なお、圧延銅箔を用いる際は、炭化水素系有機溶剤に浸漬し、圧延油を除去してから粗化処理を行うことが好ましい。
One surface to be surface-treated (hereinafter referred to as “treated surface”) is not particularly limited, and the rolled copper foil may be any surface, and the electrolytic copper foil may have a precipitation surface or a glossy surface. Either side is acceptable.
In addition, when using rolled copper foil, it is preferable to perform a roughening process after immersing in a hydrocarbon type organic solvent and removing rolling oil.

未処理銅箔の厚さは表面処理後にプリント配線板に使用できる厚さであれば特に限定されるものではないが、6〜300μmが好ましく、より好ましくは9〜70μmである。   Although the thickness of untreated copper foil will not be specifically limited if it is the thickness which can be used for a printed wiring board after surface treatment, 6-300 micrometers is preferable, More preferably, it is 9-70 micrometers.

また、未処理銅箔の表面処理を施す面は、JIS Z8781に定義される表色系L*a*b*を測定したとき、L*83〜88、a*14〜17、b*15〜19の範囲であることが好ましい。   In addition, the surface of the untreated copper foil subjected to surface treatment is L * 83 to 88, a * 14 to 17, b * 15 to when measuring the color system L * a * b * defined in JIS Z8781. A range of 19 is preferred.

<樹脂誘導浸透層(粗化処理層)>
樹脂誘導浸透層を構成する微細銅粒子の一次粒子径は40〜200nmが好ましく、より好ましくは50〜190nmである。
本発明においては、下限値を40nmとするが、40nm未満の粒子が含まれることを排除するものではない。しかし、40nmに満たない粒子が多いとフレキシブルプリント配線板に使用できるだけの十分な引き剥がし強さが得られない虞があり、また、200nmを超えるとHAZE値が高くなるのでいずれの場合も好ましくない。
<Resin-induced permeation layer (roughening treatment layer)>
The primary particle diameter of the fine copper particles constituting the resin-induced permeation layer is preferably 40 to 200 nm, more preferably 50 to 190 nm.
In the present invention, the lower limit is set to 40 nm, but this does not exclude the inclusion of particles of less than 40 nm. However, if there are many particles less than 40 nm, there is a possibility that sufficient peel strength sufficient for use in a flexible printed wiring board may not be obtained, and if it exceeds 200 nm, the HAZE value becomes high, which is not preferable in any case. .

また、微細銅粒子の凸部の間隔は40〜200nmの範囲であることが好ましい。   Moreover, it is preferable that the space | interval of the convex part of a fine copper particle is the range of 40-200 nm.

樹脂誘導浸透層の厚みは75〜380nmが好ましく、より好ましくは120〜200nmである。   The thickness of the resin-induced permeation layer is preferably 75 to 380 nm, more preferably 120 to 200 nm.

厚みが75nmに満たないと十分な引き剥がし強さが得られない虞があり、380nmを超えるとHAZE値が高くなるのでいずれの場合も好ましくない。   If the thickness is less than 75 nm, sufficient peel strength may not be obtained, and if it exceeds 380 nm, the HAZE value becomes high, which is not preferable in either case.

樹脂誘導浸透層の一次粒子径、微細銅粒子の凸部の間隔及び厚みは、例えば、電界放射型走査電子顕微鏡等で30,000〜80,000倍に拡大して観察し、計測することで測定することができる。
The primary particle diameter of the resin-induced permeation layer, the spacing and thickness of the convex portions of the fine copper particles can be measured by, for example, magnifying and measuring 30,000 to 80,000 times with a field emission scanning electron microscope or the like. it can.

樹脂誘導浸透層の形成に用いる電解液は、硫酸銅五水和物10〜70g/Lにジエチレントリアミン塩50〜150g/Lを添加した水溶液を硫酸でpH3〜6に調製したものが好ましい。   The electrolyte used for forming the resin-induced permeation layer is preferably an aqueous solution prepared by adding 50 to 150 g / L of diethylenetriamine salt to 10 to 70 g / L of copper sulfate pentahydrate and adjusting the pH to 3 to 6 with sulfuric acid.

硫酸銅五水和物の濃度が10g/L未満であると、銅粒子の一次粒子径が40nmに満たない粒子が増え、また、70g/Lを超えると一次粒子径が200nmを超える粒子が増えるのでいずれも好ましくない。
If the concentration of copper sulfate pentahydrate is less than 10 g / L, the number of particles whose primary particle size is less than 40 nm will increase, and if it exceeds 70 g / L, the number of particles whose primary particle size will exceed 200 nm will increase. Therefore, neither is preferable.

電解液に添加するジエチレントリアミン塩は特に限定されないが、ジエチレントリアミン五酢酸五ナトリウムを好適に用いることができる。   Although the diethylenetriamine salt added to electrolyte solution is not specifically limited, Diethylenetriamine pentaacetic acid pentasodium can be used suitably.

電解液には伝送損失を上昇させない範囲において、コバルト含有化合物を添加することもできる。   A cobalt-containing compound can also be added to the electrolyte so long as transmission loss is not increased.

電解液に白金属酸化物被覆チタン等の不溶性電極を陽極として、未処理銅箔を陰極として浸し、電流密度0.5〜5A/dm2、電気量40〜140C/dm2、液温25〜50℃の電解条件で電解させて樹脂誘導浸透層を形成させることが好ましい。 As an anode an insoluble electrode such as white metal oxide coated titanium electrolytic solution immersed untreated copper foil as a cathode current density 0.5~5A / dm 2, the amount of electricity 40~140C / dm 2, a liquid temperature 25 to 50 ° C. It is preferable to form a resin-induced permeation layer by electrolysis under the above electrolysis conditions.

電流密度が0.5A/dm2、電気量が40C/dm2より低いと、微細銅粒子が十分に付着せず、また、電流密度が5A/dm2、電気量が140C/dm2より高いと銅粒子の一次粒子径が200nmを超えるのでいずれも好ましくない。
If the current density is 0.5 A / dm 2 and the amount of electricity is lower than 40 C / dm 2 , fine copper particles will not adhere sufficiently, and if the current density is 5 A / dm 2 and the amount of electricity is higher than 140 C / dm 2 Since the primary particle diameter of a copper particle exceeds 200 nm, neither is preferable.

<酸化防止処理層>
本発明における処理銅箔は樹脂誘導浸透層上に酸化防止処理層を備える。
<Antioxidation treatment layer>
The treated copper foil in the present invention includes an antioxidant treatment layer on the resin-induced permeation layer.

酸化防止処理層の付着量は30〜300mg/m2が好ましく、50〜120mg/m2がより好ましい。 Adhesion amount of antioxidant treatment layer is preferably 30~300mg / m 2, 50~120mg / m 2 is more preferable.

酸化防止処理層の付着量が30mg/m2未満であると樹脂誘導浸透層を完全に被覆できず、また、300mg/m2を超えると、伝送損失が増加する虞があり、また、300mg/m2より多くても酸化防止性能の向上は望めないからである。 If the adhesion amount of the antioxidant treatment layer is less than 30 mg / m 2 , the resin-induced permeation layer cannot be completely covered, and if it exceeds 300 mg / m 2 , transmission loss may increase, and 300 mg / m 2 This is because it is not possible to improve the antioxidant performance even if it exceeds m 2 .

また、酸化防止処理層に含まれるコバルトは20〜155mg/m2が好ましく、モリブデンは10〜145 mg/m2が好ましい。
下限値の各濃度に満たないと酸化防止性能が十分でなく、また、上限値の各濃度を超えると伝送損失が増加する虞があるからである。
Also, the cobalt contained in the anti-oxidation layer is preferably 20~155mg / m 2, the molybdenum is preferably 10~145 mg / m 2.
Is not sufficient antioxidant performance and less than the density of the lower limit, also be either et transmission loss exceeds the concentration of the upper limit is likely to be increased.

酸化防止処理層を形成する電解液は、コバルト含有化合物10〜100g/L水溶液にモリブデン含有化合物を1〜80g/L含有する水溶液をpH4〜10に調製したものが好ましい。   The electrolytic solution for forming the antioxidant treatment layer is preferably prepared by adjusting an aqueous solution containing 1 to 80 g / L of a molybdenum-containing compound to a pH of 4 to 10 in an aqueous solution of 10 to 100 g / L of a cobalt-containing compound.

コバルト含有化合物としては、例えば、硫酸コバルト七水和物を挙げることができる。   Examples of the cobalt-containing compound include cobalt sulfate heptahydrate.

モリブデン含有化合物としては、例えば、モリブデン酸ニナトリウム二水和物を挙げることができる。   Examples of the molybdenum-containing compound include disodium molybdate dihydrate.

電解液に、白金属酸化物被覆チタン等の不溶性電極を陽極として、樹脂誘導浸透層を形成した銅箔を陰極として浸し、電流密度0.1〜10A/dm2、電気量5〜20C/dm2、液温20〜50℃の条件で電解させて酸化防止処理層を形成させることができる。 The electrolyte solution, an insoluble electrode such as white metal oxide coated titanium as an anode, immersed copper foil to form a resin derived permeation layer as a cathode, a current density of 0.1 to 10 A / dm 2, the amount of electricity 5~20C / dm 2, The oxidation treatment layer can be formed by electrolysis under conditions of a liquid temperature of 20 to 50 ° C.

<クロメート層及びシランカップリング剤層>
本発明おける処理銅箔は、必要に応じて酸化防止処理層上にクロメート層及び/又はシランカップリング剤層を設けることができる。
<Chromate layer and silane coupling agent layer>
The treated copper foil in the present invention can be provided with a chromate layer and / or a silane coupling agent layer on the antioxidant treatment layer as necessary.

クロメート層を形成する電解液は、クロム酸含有化合物10〜100g/L水溶液をpH2〜12に調製したものが好ましい。   The electrolytic solution for forming the chromate layer is preferably prepared by adjusting the pH of the chromic acid-containing compound to 10 to 100 g / L.

クロム酸含有化合物としては、例えば、二クロム酸ナトリウム二水和物を挙げることができる。   Examples of the chromic acid-containing compound include sodium dichromate dihydrate.

クロメート層は、電解液に白金属酸化物被覆チタン等の不溶性電極を陽極として、酸化防止処理層を形成した銅箔を陰極として浸し、液温20〜50℃、電流密度0.1〜10A/dm2、電気量0.5〜20C/dm2の条件で電解させて形成させることができる。 Chromate layer is immersed as an anode an insoluble electrode such as white metal oxide coated titanium electrolytic solution, a copper foil to form an anti-oxidation treatment layer as a cathode, a liquid temperature 20 to 50 ° C., a current density of 0.1 to 10 A / dm 2 In addition, it can be formed by electrolysis under the condition that the amount of electricity is 0.5 to 20 C / dm 2 .

なお、クロメート層には亜鉛を含有させても良い。   The chromate layer may contain zinc.

クロメート層上、若しくは、酸化防止処理層上にシランカップリング剤層を設けることができる。   A silane coupling agent layer can be provided on the chromate layer or the antioxidant treatment layer.

シランカップリング剤層に用いるシランカップリング剤は特に限定されるものではなく、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基及びメルカプト基を含有するシランカップリング剤を使用することができるが、アミノ基、エポキシ基又はビニル基含有のシランカップリング剤は耐吸湿性と防錆性の効果が非常に高く、より好適に用いることができる。   The silane coupling agent used in the silane coupling agent layer is not particularly limited, and includes a vinyl group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an amino group, a ureido group, and a mercapto group. However, the amino group, epoxy group or vinyl group-containing silane coupling agent has very high effects of moisture absorption resistance and rust prevention, and can be used more suitably.

シランカップリング剤は1種でも、2種以上を組み合わせて使用しても良い。   A silane coupling agent may be used alone or in combination of two or more.

液温20〜50℃に調製したシランカップリング剤水溶液に浸漬した後、または、スプレー等の方法で散布した後、水洗することで形成することができる。   After immersing in a silane coupling agent aqueous solution prepared at a liquid temperature of 20 to 50 ° C. or after spraying by a method such as spraying, it can be formed by washing with water.

<樹脂基材>
本発明の銅張積層板に用いる樹脂基材としては、エポキシ樹脂、ポリフェニレンエーテル樹脂、ビスマレイミドトリアジン樹脂、シクロオレフィンポリマー樹脂を含有するものを挙げることができる。
また、ポリイミド化合物を含有する樹脂基材においても高い引き剥がし強さを得ることができる。
<Resin substrate>
Examples of the resin base material used for the copper clad laminate of the present invention include those containing an epoxy resin, a polyphenylene ether resin, a bismaleimide triazine resin, and a cycloolefin polymer resin.
Moreover, high peeling strength can be obtained also in the resin base material containing a polyimide compound.

<色差ΔE*abの測定>
未処理銅箔の処理前の面と処理銅箔処理面のJIS Z8781に定義される表色系L*a*b*を測定した後、( [ΔL*]2+[Δa*]2+[Δb*]2)1/2に表される式によって算出することができる。
<Measurement of color difference ΔE * ab>
After measuring the color system L * a * b * defined in JIS Z8781 of the untreated copper foil surface and the treated copper foil treated surface, ([ΔL *] 2 + [Δa *] 2 + [ Δb *] 2 ) 1/2 can be calculated.

本発明の実施例を以下に示すが、本発明はこれに限定されない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

<未処理銅箔>
実施例及び比較例の未処理銅箔として、厚さ12μmの圧延銅箔又は電解銅箔を用いた。
なお、圧延銅箔は、炭化水素系有機溶剤に60秒間浸漬して圧延油の除去を行ったのちに各処理を行った。
<Untreated copper foil>
As an untreated copper foil of Examples and Comparative Examples, a rolled copper foil or an electrolytic copper foil having a thickness of 12 μm was used.
The rolled copper foil was immersed in a hydrocarbon-based organic solvent for 60 seconds to remove the rolling oil and then subjected to each treatment.

(実施例1〜6)
<樹脂誘導浸透層の形成>
電解液として、表1記載の硫酸銅五水和物及びジエチレントリアミン五酢酸五ナトリウム濃度、pH及び液温にそれぞれ調製した水溶液を使用した。なお、pHは硫酸にて調製した。
(Examples 1-6)
<Formation of resin-induced permeation layer>
As the electrolytic solution, copper sulfate pentahydrate and diethylenetriaminepentaacetic acid pentasodium concentration, pH and liquid temperature prepared in Table 1 were used, respectively. The pH was adjusted with sulfuric acid.

電解液に、陽極として白金属酸化物にて表面を被覆したチタン、陰極として未処理銅箔を浸し、両極に対し表1記載の各電解条件で電解を行って未処理銅箔の一方の面に樹脂誘導浸透層を形成した。   Titanium whose surface is coated with a white metal oxide as an anode and an untreated copper foil as a cathode are immersed in an electrolytic solution, and electrolysis is performed on each electrode under each electrolysis condition described in Table 1 to provide one surface of the untreated copper foil. A resin-induced permeation layer was formed on the substrate.

<コバルト−モリブデン含有酸化防止処理層>
硫酸コバルト七水和物38g/L、モリブデン酸ニナトリウム二水和物23g/L、クエン酸三ナトリウム二水和物45g/L、硫酸ナトリウム80g/Lを含有するpH5.6、液温30℃の水溶液に、陽極として白金属酸化物にて表面を被覆したチタン、陰極に樹脂誘導浸透層を備えた処理銅箔を使用して、両極に対して電流密度7.0A/dm2、電気量14C/dm2の電解条件で樹脂誘導浸透層上にコバルト-モリブデン含有酸化防止処理層を設けた。
<Cobalt-molybdenum-containing antioxidant treatment layer>
Cobalt sulfate heptahydrate 38g / L, disodium molybdate dihydrate 23g / L, trisodium citrate dihydrate 45g / L, pH 5.6 containing sodium sulfate 80g / L, liquid temperature 30 ° C Using a treated copper foil with a surface coated with a white metal oxide as the anode and a resin-induced permeation layer on the cathode, current density 7.0A / dm 2 , electric quantity 14C A cobalt-molybdenum-containing antioxidant treatment layer was provided on the resin-induced permeation layer under the electrolytic conditions of / dm 2 .

<クロメート層>
液温35℃の二クロム酸ナトリウム二水和物40g/L水溶液を水酸化ナトリウムにてpH12.0に調製したクロメート水溶液に、陽極に白金、陰極に樹脂誘導層及びコバルト-モリブデン含有酸化防止処理層を備えた処理銅箔を使用して、両極に対して電流密度2.0A/dm2、電気量10C/dm2の電解条件でコバルト-モリブデン含有酸化防止処理層上にクロメート層を設けた。
<Chromate layer>
Sodium dichromate dihydrate 40g / L aqueous solution with a liquid temperature of 35 ° C was adjusted to pH 12.0 with sodium hydroxide to an aqueous chromate solution containing platinum as the anode, a resin induction layer as the cathode, and an antioxidant treatment containing cobalt-molybdenum. Using the treated copper foil provided with a layer, a chromate layer was provided on the cobalt-molybdenum-containing antioxidant treatment layer under electrolysis conditions of a current density of 2.0 A / dm 2 and an electric quantity of 10 C / dm 2 for both electrodes.

<シランカップリング剤層>
液温30℃のγ-アミノプロピルトリエトキシシラン5ml/Lを含有する水溶液に各処理層を備えた処理銅箔を10秒間浸漬して、クロメート層上にシランカップリング剤層を形成させた。
<Silane coupling agent layer>
A treated copper foil provided with each treatment layer was immersed in an aqueous solution containing 5 ml / L of γ-aminopropyltriethoxysilane at a liquid temperature of 30 ° C. for 10 seconds to form a silane coupling agent layer on the chromate layer.

シランカップリング剤層を形成させた後、温度約25℃にて自然乾燥させて、各実施例の処理銅箔とした。   After forming the silane coupling agent layer, it was naturally dried at a temperature of about 25 ° C. to obtain a treated copper foil of each example.

(比較例1)
樹脂誘導浸透層を設けなかったこと以外は実施例1と同一の条件で作製した。
(Comparative Example 1)
It was produced under the same conditions as in Example 1 except that the resin-induced permeation layer was not provided.

(比較例2)
硫酸銅五水和物47g/L、硫酸100g/Lからなる電解液に未処理銅箔を浸し、電流密度50A/dm2、電気量130C/dm2、液温30℃の電解条件にて電解して微細粒子層を形成させた後、硫酸銅五水和物200g/L、硫酸100g/Lからなる電解液に浸して電流密度5A/dm2、電気量400C/dm2、液温40℃の電解条件にて電解することで樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 2)
Untreated copper foil is immersed in an electrolytic solution consisting of 47 g / L copper sulfate pentahydrate and 100 g / L sulfuric acid, and electrolysis is performed under electrolysis conditions of current density 50 A / dm 2 , electric quantity 130 C / dm 2 , and liquid temperature 30 ° C. After forming a fine particle layer, it is immersed in an electrolytic solution consisting of copper sulfate pentahydrate 200 g / L, sulfuric acid 100 g / L, current density 5 A / dm 2 , electric quantity 400 C / dm 2 , liquid temperature 40 ° C. It was produced under the same conditions as in Example 1 except that the resin-induced permeation layer was formed by electrolysis under the above electrolysis conditions.

(比較例3)
硫酸銅五水和物40g/L、クエン酸ナトリウム二水和物120g/L、トリエタノールアミン10g/Lからなる電解液に未処理銅箔を浸し、電流密度1.25A/dm2、電気量100C/dm2、液温45℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 3)
Untreated copper foil is immersed in an electrolyte solution consisting of copper sulfate pentahydrate 40 g / L, sodium citrate dihydrate 120 g / L, triethanolamine 10 g / L, current density 1.25 A / dm 2 , electric quantity 100 C It was produced under the same conditions as in Example 1 except that a resin-induced permeation layer was formed by electrolysis under the electrolytic conditions of / dm 2 and a liquid temperature of 45 ° C.

(比較例4)
硫酸銅五水和物60.9g/L、硫酸コバルト七水和物28.6g/L、硫酸ニッケル六水和物49.2g/Lからなり、硫酸にてpH2.5に調製した電解液に未処理銅箔を浸し、電流密度20A/dm2、電気量40C/dm2、液温30℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 4)
Copper sulfate pentahydrate 60.9g / L, cobalt sulfate heptahydrate 28.6g / L, nickel sulfate hexahydrate 49.2g / L It was produced under the same conditions as in Example 1, except that the resin-induced permeation layer was formed by immersing the foil and performing electrolysis under electrolysis conditions of current density 20 A / dm 2 , electric quantity 40 C / dm 2 , and liquid temperature 30 ° C. .

(比較例5)
比較例3の電解液に未処理銅箔を浸し、電流密度0.5A/dm2、電気量100C/dm2、液温45℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 5)
Except for immersing untreated copper foil in the electrolyte solution of Comparative Example 3 and forming a resin-induced permeation layer by electrolysis under electrolysis conditions of current density 0.5 A / dm 2 , electric quantity 100 C / dm 2 , and liquid temperature 45 ° C. Was produced under the same conditions as in Example 1.

(比較例6)
比較例4の電解液に未処理銅箔を浸し、電流密度30A/dm2、電気量40C/dm2、液温30℃の電解条件にて電解して樹脂誘導浸透層を形成させた以外は実施例1と同一の条件で作製した。
(Comparative Example 6)
Except for immersing untreated copper foil in the electrolytic solution of Comparative Example 4 and performing electrolysis under electrolytic conditions of a current density of 30 A / dm 2 , an electric quantity of 40 C / dm 2 and a liquid temperature of 30 ° C. to form a resin-induced permeation layer. It was produced under the same conditions as in Example 1.

(比較例7)
硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物2.0g/L、酢酸ナトリウム三水和物10g/L、pH4.5からなる電解液で、電流密度5.0A/dm2、電気量10C/dm2、液温30℃の電解条件で電解させて酸化防止処理層を形成させた以外は実施例3と同一の条件にて作製した。
(Comparative Example 7)
Electrolytic solution consisting of nickel sulfate hexahydrate 30 g / L, sodium hypophosphite monohydrate 2.0 g / L, sodium acetate trihydrate 10 g / L, pH 4.5, current density 5.0 A / dm 2 It was produced under the same conditions as in Example 3 except that the oxidation treatment layer was formed by electrolysis under an electrolysis condition of an electric quantity of 10 C / dm 2 and a liquid temperature of 30 ° C.

(比較例8)
硫酸ニッケル六水和物55g/L、硫酸コバルト七水和物22g/L、pH3.0からなる電解液で、電流密度5A/dm2、電気量10C/dm2、液温40℃の電解条件で電解させて酸化防止処理層を形成させた以外は実施例3と同一の条件にて作製した。
(Comparative Example 8)
Electrolytic solution consisting of nickel sulfate hexahydrate 55 g / L, cobalt sulfate heptahydrate 22 g / L, pH 3.0, current density 5 A / dm 2 , electric quantity 10 C / dm 2 , electrolysis conditions of liquid temperature 40 ° C This was prepared under the same conditions as in Example 3 except that an oxidation treatment layer was formed by electrolysis.

<銅張積層板>
実施例及び比較例の各処理銅箔の処理面を被接着面として、真空熱プレス機(北川精機製KVHC-II)を使用してポリイミド樹脂系基材(カネカ製、品名:FRS-142、厚さ25μm)を真空下(7torr)、温度260℃で15分間予熱した後、真空下(7torr)、温度300℃、圧力4MPaで10分間、加熱、加圧成型を行い、銅張積層板を得た。
<Copper-clad laminate>
Using the treated surface of each treated copper foil of Examples and Comparative Examples as the adherend surface, a polyimide resin base material (manufactured by Kaneka, product name: FRS-142) using a vacuum heat press (KVHC-II manufactured by Kitagawa Seiki) 25mm thick) is preheated at 260 ° C for 15 minutes under vacuum (7torr), then heated and pressure molded for 10 minutes at 300 ° C and pressure 4MPa under vacuum (7torr) to form a copper clad laminate Obtained.

未処理銅箔又は、処理銅箔の評価は次の方法により行った。   Evaluation of untreated copper foil or treated copper foil was performed by the following method.

<表面粗さの測定>
未処理銅箔又は、処理銅箔の各処理層が設けられた面について、JIS B0651-2001に規定される触針式表面粗さ計に適合するサーフコーダーSE1700α(株式会社小坂研究所製)にて触針として触針先端半径2μmのものを使用し、粗さ曲線用カットオフ値0.8mm、測定距離4.0mmとしてJISB0601-1994に定義される十点平均粗さRzを測定した。
<Measurement of surface roughness>
For the surface of each untreated copper foil or treated layer of treated copper foil, surf coder SE1700α (manufactured by Kosaka Laboratory Co., Ltd.) that conforms to the stylus type surface roughness meter specified in JIS B0651-2001 A ten-point average roughness Rz defined in JISB0601-1994 was measured with a stylus tip radius of 2 μm as the stylus and a cut-off value for the roughness curve of 0.8 mm and a measurement distance of 4.0 mm.

一次粒子径の測定>
電界放射型走査電子顕微鏡FE-SEM(日本電子製JSM-7800F)を使用し、試料台を40°傾斜させながら倍率80,000倍で観察し、観察された樹脂誘導浸透層を構成する銅の微細粒子の一次粒子の長さを10点計測した平均値を一次粒子径の値とした。
<Measurement of primary particle size>
Using a field-emission scanning electron microscope FE-SEM (JEOL JSM-7800F), the specimen stage was tilted by 40 ° and observed at a magnification of 80,000 times, and the fine copper particles constituting the resin-induced permeation layer were observed. The average value obtained by measuring the length of primary particles at 10 points was taken as the primary particle size value.

<色差ΔE*ab>
分光測色計(コニカミノルタ製CM-600d)を使用し、各処理銅箔のJIS Z8781に定義される表色系L*a*b*を測定し、未処理銅箔のL*a*b*との色差ΔE*ab(=([ΔL*]2+[Δa*]2+[Δb*]2)1/2)を求めた。
<Color difference ΔE * ab>
Using a spectrocolorimeter (CM-600d manufactured by Konica Minolta), the color system L * a * b * defined in JIS Z8781 of each treated copper foil is measured, and the L * a * b of untreated copper foil A color difference ΔE * ab (= ([ΔL *] 2 + [Δa *] 2 + [Δb *] 2 ) 1/2 ) from * was determined.

銅張積層板の評価は次の方法により行った。   The copper clad laminate was evaluated by the following method.

<引き剥がし強さ>
エッチングマシン(二宮システム製SPE-40)を使用し、エッチングにより幅1mmの銅回路サンプルを作製した。JIS C6481に準拠し、万能試験機を用いて引き剥がし強さを測定した。
<Stripping strength>
A copper circuit sample with a width of 1 mm was prepared by etching using an etching machine (SPE-40, manufactured by Ninomiya System). In accordance with JIS C6481, the peel strength was measured using a universal testing machine.

<HAZE値(曇り度)>
エッチングマシンを使用し、銅張積層板の銅を全面エッチングした。JIS K7136に準拠し、ヘーズメーター(日本電色製NDH7000)を使用してエッチング後のポリイミド樹脂のHAZE値を測定した。
<HAZE value (cloudiness)>
The entire surface of the copper clad laminate was etched using an etching machine. The HAZE value of the polyimide resin after etching was measured using a haze meter (Nippon Denshoku NDH7000) in accordance with JIS K7136.

<伝送損失>
エッチングマシンを使用し、エッチングによりシングルエンドのマイクロストリップラインを形成した。なお、本基板の回路幅は特性インピーダンスが50Ωになるように幅110μmとした。作製した回路基板をネットワークアナライザー(アジレント製N5247A)を使用して周波数40GHzのSパラメータ(S21)を測定した。
<Transmission loss>
Using an etching machine, single-ended microstrip lines were formed by etching. The circuit width of this substrate was 110 μm so that the characteristic impedance was 50Ω. A S-parameter (S21) with a frequency of 40 GHz was measured on the fabricated circuit board using a network analyzer (Agilent N5247A).

各評価結果を表2に示す。
Each evaluation result is shown in Table 2.

実施例1〜6より、本発明における処理銅箔は樹脂誘導浸透層を設けることによって伝送損失は上昇せず、高い伝送特性を示すと共に、ポリイミド樹脂系基材との引き剥がし強さは3倍以上上昇することが確認された。   From Examples 1 to 6, the treated copper foil in the present invention does not increase the transmission loss by providing the resin-induced permeation layer, exhibits high transmission characteristics, and is 3 times stronger than the polyimide resin base material. It has been confirmed that it rises.

本発明における処理銅箔は伝送損失が未処理銅箔と同程度という優れた導体でありながら樹脂基材との引き剥がし強さを高めることができ、かつ、本発明の処理銅箔を使用した銅張積層板は、エッチング後の露出した樹脂基材のHAZE値が低くて、透過度が高いのでAOIを用いた検査やCCDカメラを用いた位置決めが正確にできる。
したがって、本発明の処理銅箔は産業上の利用可能性の高い発明である。
The treated copper foil in the present invention is capable of increasing the peel strength from the resin base material while being an excellent conductor having a transmission loss comparable to that of the untreated copper foil, and using the treated copper foil of the present invention. Copper-clad laminates have a low HAZE value for exposed resin substrates after etching and high transparency, so that inspection using AOI and positioning using a CCD camera can be performed accurately.
Therefore, the treated copper foil of the present invention is an invention with high industrial applicability.

1 銅箔
2 樹脂誘導浸透層
3 酸化防止処理層
1 Copper foil 2 Resin-induced permeation layer 3 Antioxidation treatment layer

Claims (8)

未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に酸化防止処理層を備えてなるニッケルを含有しない銅張積層板用処理銅箔であって、前記粗化処理層は一次粒子径が40nm〜200nmの微細銅粒子で形成され前記酸化防止処理層はモリブデンとコバルトを含有し絶縁性樹脂基材と接着させる処理面の十点平均粗さRzは0.5μm〜1.6μmで、かつ、前記未処理銅箔と前記処理面との色差ΔE*abが45〜60である銅張積層板用処理銅箔。 A copper foil for copper clad laminate not containing nickel, comprising a roughened layer on at least one surface of an untreated copper foil and an antioxidant layer on the roughened layer, the roughening treatment The layer is formed of fine copper particles having a primary particle diameter of 40 nm to 200 nm, and the anti-oxidation treatment layer contains molybdenum and cobalt, and the ten-point average roughness Rz of the treatment surface to be bonded to the insulating resin substrate is 0.5 μm to 1.6 μm. A treated copper foil for a copper clad laminate, which is μm and has a color difference ΔE * ab of 45 to 60 between the untreated copper foil and the treated surface. 前記酸化防止処理層上にクロメート層及び/又はシランカップリング剤層を備えてなる請求項1記載の銅張積層板用処理銅箔。 The treated copper foil for a copper clad laminate according to claim 1, further comprising a chromate layer and / or a silane coupling agent layer on the antioxidant treatment layer. 請求項1又は2記載の銅張積層板用処理銅箔を絶縁性樹脂基材の少なくとも一方の面に張り合わせてなる銅張積層板の前記処理銅箔をエッチング除去した前記絶縁性樹脂基材のHAZE値が80%以下である請求項1又は2記載の銅張積層板用処理銅箔。 The insulating resin base material obtained by etching and removing the treated copper foil of a copper clad laminated board obtained by laminating the treated copper foil for copper clad laminated board according to claim 1 or 2 to at least one surface of the insulating resin base material. The treated copper foil for copper clad laminates according to claim 1 or 2, wherein the HAZE value is 80% or less. 請求項1乃至3いずれか記載の銅張積層板用処理銅箔を絶縁性樹脂基材の少なくとも一方の面に張り合わせてなる銅張積層板。 A copper-clad laminate obtained by attaching the treated copper foil for a copper-clad laminate according to any one of claims 1 to 3 to at least one surface of an insulating resin substrate. ポリイミド化合物を含む絶縁性樹脂基材との引き剥がし強さが1.0kN/m以上である請求項4記載の銅張積層板。 The copper clad laminate according to claim 4, wherein the peel strength from the insulating resin substrate containing the polyimide compound is 1.0 kN / m or more. 請求項4又は5記載の銅張積層板の前記処理銅箔をエッチング除去した前記絶縁性樹脂基材のHAZE値が80%以下である銅張積層板。 A copper clad laminate in which the HAZE value of the insulating resin base material obtained by etching away the treated copper foil of the copper clad laminate of claim 4 or 5 is 80% or less. 硫酸銅五水和物10〜70g/Lにジエチレントリアミン塩50〜150g/Lを添加した水溶液を電流密度0.5〜5A/dm、電気量40〜140C/dm、液温25〜50℃で電解させて未処理銅箔上に粗化処理層を形成させることを特徴とする請求項1乃至3いずれか記載の銅張積層板用処理銅箔の製造方法。 Electrolysis of an aqueous solution was added diethylenetriamine salt 50 to 150 g / L copper sulfate pentahydrate 10~70g / L current density 0.5~5A / dm 2, the amount of electricity 40~140C / dm 2, a liquid temperature of 25 to 50 ° C. 4. The method for producing a treated copper foil for a copper-clad laminate according to claim 1, wherein a roughened layer is formed on the untreated copper foil. 5. 銅張積層板用処理銅箔と絶縁性樹脂基材とを加熱しながら加圧して張り合わせることを特徴とする請求項4乃至6いずれか記載の銅張積層板の製造方法。
The method for producing a copper-clad laminate according to any one of claims 4 to 6, wherein the treated copper foil for a copper-clad laminate and the insulating resin substrate are pressed and bonded together while being heated.
JP2015025259A 2015-02-12 2015-02-12 Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board Active JP6487704B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015025259A JP6487704B2 (en) 2015-02-12 2015-02-12 Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board
KR1020150054287A KR102097843B1 (en) 2015-02-12 2015-04-17 Treated copper foil, and copper-clad laminate and printed wiring board using the treated copper foil
CN201510283536.3A CN106211567B (en) 2015-02-12 2015-05-28 Handle copper foil, copper-clad laminated board and printed wiring board using the processing copper foil
TW104118618A TWI666977B (en) 2015-02-12 2015-06-09 Processed copper foil, copper-clad laminated board using the processed copper foil, and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025259A JP6487704B2 (en) 2015-02-12 2015-02-12 Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board

Publications (3)

Publication Number Publication Date
JP2016149438A JP2016149438A (en) 2016-08-18
JP2016149438A5 JP2016149438A5 (en) 2017-07-06
JP6487704B2 true JP6487704B2 (en) 2019-03-20

Family

ID=56691843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025259A Active JP6487704B2 (en) 2015-02-12 2015-02-12 Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board

Country Status (4)

Country Link
JP (1) JP6487704B2 (en)
KR (1) KR102097843B1 (en)
CN (1) CN106211567B (en)
TW (1) TWI666977B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687409B2 (en) * 2016-02-09 2020-04-22 福田金属箔粉工業株式会社 High chroma treated copper foil, copper clad laminate using the treated copper foil, and method for producing the treated copper foil
JP6471140B2 (en) * 2016-11-30 2019-02-13 福田金属箔粉工業株式会社 Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate
WO2018211951A1 (en) * 2017-05-19 2018-11-22 三井金属鉱業株式会社 Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board
WO2019111914A1 (en) * 2017-12-05 2019-06-13 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board each using same
CN108289370A (en) * 2018-01-25 2018-07-17 江西景旺精密电路有限公司 A kind of PCB antioxygens surface treatment technology
JPWO2020230870A1 (en) * 2019-05-15 2020-11-19
JP2021095596A (en) * 2019-12-13 2021-06-24 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
KR102349377B1 (en) * 2019-12-19 2022-01-12 일진머티리얼즈 주식회사 Surface-treated copper foil, preparing method thereof, copper foil laminate including the same, and printed wiring board including the same
JP7421208B2 (en) * 2019-12-24 2024-01-24 日本電解株式会社 Surface treated copper foil and its manufacturing method
CN114828447A (en) * 2021-01-28 2022-07-29 鹏鼎控股(深圳)股份有限公司 Circuit board and manufacturing method thereof
KR102495997B1 (en) * 2021-03-11 2023-02-06 일진머티리얼즈 주식회사 Surface-treated copper foil with low surface roughness and low flexural strain, copper foil laminate comprising the same, and printed wiring board comprising the same
CN114919254A (en) * 2022-05-27 2022-08-19 广州方邦电子股份有限公司 Metal foil, flexible metal-clad plate, semiconductor, negative electrode material, and battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246393A (en) * 1988-03-25 1989-10-02 Fukuda Metal Foil & Powder Co Ltd Surface treatment of copper foil for inner layer or copper lined laminated sheet
TW511408B (en) * 2000-09-18 2002-11-21 Nippon Denkai Kk Method of producing copper foil for fine wiring
CN1316066C (en) 2002-06-04 2007-05-16 三井金属矿业株式会社 Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board
JP2005206915A (en) * 2004-01-26 2005-08-04 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuited board, and its production method
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
JP4681936B2 (en) * 2005-05-20 2011-05-11 福田金属箔粉工業株式会社 Copper foil for plasma display electromagnetic wave shielding filter
TW200934330A (en) * 2007-11-26 2009-08-01 Furukawa Electric Co Ltd Surface treated copper foil and method for surface treating the same, and stack circuit board
JP5634103B2 (en) * 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP5871426B2 (en) 2012-01-31 2016-03-01 古河電気工業株式会社 Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
WO2014038717A1 (en) 2012-09-10 2014-03-13 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board using same
JP5362924B1 (en) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
KR102116928B1 (en) 2013-02-28 2020-05-29 미쓰이금속광업주식회사 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP2014224313A (en) 2013-04-26 2014-12-04 Jx日鉱日石金属株式会社 Copper foil for high-frequency circuit, copper-clad laminate sheet for high-frequency circuit, printed wiring board for high-frequency circuit, carrier-provided copper foil for high-frequency circuit, electronic apparatus and method of producing printed wiring board

Also Published As

Publication number Publication date
CN106211567B (en) 2019-10-18
CN106211567A (en) 2016-12-07
TWI666977B (en) 2019-07-21
JP2016149438A (en) 2016-08-18
KR20160099439A (en) 2016-08-22
KR102097843B1 (en) 2020-04-06
TW201630483A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6487704B2 (en) Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board
TWI749123B (en) Surface treatment copper foil and copper clad laminate
JP6083619B2 (en) Processed copper foil for low dielectric resin substrate, copper-clad laminate and printed wiring board using the treated copper foil
KR102116928B1 (en) Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP5764700B2 (en) Copper-clad laminate for high-frequency substrates and surface-treated copper foil
JP5242710B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
TWI479036B (en) Surface treatment of copper foil and the use of its laminate, copper foil, printed wiring board, electronic equipment, and printed wiring board manufacturing methods
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
WO2015033917A1 (en) Surface-processed copper foil, copper clad laminate obtained using such surface-processed copper foil, and printed wiring board
TWI728012B (en) High-chroma processed copper foil, copper clad laminate using the processed copper foil, and manufacturing method of the processed copper foil
TW201425650A (en) Surface-treated copper foil and laminated board using same
TW202030379A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
TWI556951B (en) Surface treatment of copper foil and the use of its laminated board
KR102638749B1 (en) Surface treated copper foil, copper clad laminate and printed wiring board
TWI734976B (en) Surface treatment copper foil, copper clad laminate and printed circuit board
JP5816230B2 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6487704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250