JP2005206915A - Copper foil for printed circuited board, and its production method - Google Patents

Copper foil for printed circuited board, and its production method Download PDF

Info

Publication number
JP2005206915A
JP2005206915A JP2004016947A JP2004016947A JP2005206915A JP 2005206915 A JP2005206915 A JP 2005206915A JP 2004016947 A JP2004016947 A JP 2004016947A JP 2004016947 A JP2004016947 A JP 2004016947A JP 2005206915 A JP2005206915 A JP 2005206915A
Authority
JP
Japan
Prior art keywords
layer
copper foil
copper
nickel
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016947A
Other languages
Japanese (ja)
Inventor
Hisatoku Manabe
久徳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2004016947A priority Critical patent/JP2005206915A/en
Publication of JP2005206915A publication Critical patent/JP2005206915A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper foil for a two layer flexible board obtained by a casting method using a pyromellitic acid type polyimide precursor as the raw material, in which the ten point average roughness Rz of the copper foil face adhered to polyimide is ≤1.5 μm, and 90° normal peeling strength with polyimide is ≥1.0 kN/m, and to provide its production method. <P>SOLUTION: In the copper foil for a two layer flexible board, at least either side of the copper foil is provided with a fine cilia-shaped copper roughening treatment layer or a nickel and/or antimony-containing cilia-shaped copper alloy roughening treatment layer with a roughening particle length of 0.01 to 0.5 μm, also, the surface of the roughening treatment layer is provided with an alloy barrier layer composed of a tungsten or molybdenum-containing nickel-phosphorus layer, and also, the surface of the barrier layer is provided with a chromate film layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はプリント配線板用銅箔及びその製造方法に関するものであり、更に詳しくは銅箔の少なくとも一方の面に粗化粒子長さが0.01〜0.5μmである微細な繊毛状銅粗化処理もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理を施し、更に該粗化処理層上にタングステンもしくはモリブデンを含有するニッケル−リン層から成る合金バリアー層を施し、更に該バリアー層上にクロメート皮膜層を施す事で銅箔処理面の十点平均粗さRzを1.5μm以下にする事ができ、更に上記表面処理を施した銅箔を用い、ピロメリット酸型のポリイミドを原料としてキャスティング法にて作成した2層フレキシブル基板において、ポリイミドとの90°常態引き剥がし強さが1.0kN/m以上である2層フレキシブル基板用銅箔及びその製造方法に関するものである。   The present invention relates to a copper foil for printed wiring boards and a method for producing the same, and more specifically, a fine ciliary copper roughening treatment having a roughened particle length of 0.01 to 0.5 μm on at least one surface of the copper foil or A ciliary copper alloy containing nickel and / or antimony is subjected to a roughening treatment, and an alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum is further provided on the roughening treatment layer, and further on the barrier layer. By applying a chromate film layer, the 10-point average roughness Rz of the copper foil treated surface can be reduced to 1.5 μm or less. Further, using the copper foil with the above surface treatment, casting with pyromellitic acid type polyimide as a raw material In addition to the copper foil for two-layer flexible substrate, the 90 ° normal peel strength with polyimide is 1.0 kN / m or more in the two-layer flexible substrate prepared by the method, and its manufacturing method It is.

プリント配線板はパソコン、携帯電話などの高密度配線を必要とする各種電気機器に広く用いられているが、この分野の近年の開発速度は他の産業分野に比べても格段に速く、それに伴い、プリント配線板に要求される品質も高くなってきている。   Printed wiring boards are widely used in various electrical devices that require high-density wiring, such as personal computers and mobile phones, but the recent development speed in this field is much faster than other industrial fields. The quality required for printed wiring boards is also increasing.

プリント配線板は大きく分けリジッド基板とフレキシブル基板がある。リジッド基板は紙、ないし、ガラス布を熱硬化性樹脂で固めた銅張積層板を使用した柔軟性の無いプリント配線板でありコンピューター、パソコンをはじめとして筺体の中に収められて固定されているプリント配線板は殆どがリジッド基板である。   A printed wiring board is roughly classified into a rigid substrate and a flexible substrate. Rigid board is a non-flexible printed wiring board that uses a copper-clad laminate made of paper or glass cloth hardened with thermosetting resin, and is fixed in a housing such as a computer or personal computer. Most printed wiring boards are rigid boards.

一方フレキシブル基板はポリイミドやポリエステルなど可撓性がある絶縁フィルム上に、導体パターンを形成したプリント配線板であり、可動部、屈曲性が必要な場所や折り曲げた状態で収納する場所等に用いられる。このフレキシブル基板には弾性率が高く、耐熱性、耐薬品性があり、寸法安定性に優れるポリイミドフィルムを使用する場合が多い。
その形態はポリイミドフィルム(12〜125μm)/接着剤層(10〜25μm)/銅箔(18,35μm)からなる3層フレキシブル基板とポリイミドフィルム(12〜125μm)/銅層(3〜18μm)からなる2層フレキシブル基板がある。
On the other hand, the flexible substrate is a printed wiring board in which a conductor pattern is formed on a flexible insulating film such as polyimide or polyester, and is used for a movable part, a place where flexibility is required, or a place where it is stored in a folded state. . This flexible substrate often uses a polyimide film having a high elastic modulus, heat resistance and chemical resistance, and excellent dimensional stability.
Its form consists of a polyimide film (12-125 μm) / adhesive layer (10-25 μm) / three-layer flexible substrate made of copper foil (18,35 μm) and a polyimide film (12-125 μm) / copper layer (3-18 μm) There is a two-layer flexible substrate.

市場としてはまだ3層フレキシブル板の方が多いが近年の電子情報機器の高性能化・多機能化と小型軽量・携帯化が急速に進む中、それに伴いICの高集積化・高速度化・小型化が進みLCDドライバ回路基板としてCOF(Chip On Flexible Printed Circuit)が主流になりつつある。COF実装は回路パターン形成後のフレキシブル基板に直接ICを実装するもので耐熱性、寸法安定性等が必須条件になる。特に耐熱性は近年の環境問題を配慮した鉛フリーはんだの使用頻度増加に伴い実装温度が上昇しておりこれまでよりも高い耐熱性が要求されている。 There are still more three-layer flexible boards in the market, but with the recent progress of high performance, multi-functionality, small size, light weight, and portability of electronic information devices, ICs are becoming more highly integrated, faster, COF (Chip On Flexible Printed Circuit) is becoming mainstream as an LCD driver circuit board. In COF mounting, IC is directly mounted on a flexible board after circuit pattern formation, and heat resistance, dimensional stability, etc. are indispensable conditions. In particular, with regard to heat resistance, the mounting temperature has risen with the increasing frequency of use of lead-free solder in consideration of environmental problems in recent years, and higher heat resistance is required than before.

一方、従来から使用されていた3層フレキシブル基板では接着剤層の存在で耐熱性が十分でない問題がある。更に先にも触れたが2層フレキシブル基板は3層フレキシブル基板の半分以下の厚みが可能であり小型・薄型・携帯化が急速に進んでいる電子情報機器用途に向いている。この様な市況の中フレキシブル基板としては3層フレキシブル基板から2層フレキシブル基板にシフトしており、見方によれば全く別の市場として2層フレキシブル基板が伸びてきているとも言える。   On the other hand, the conventional three-layer flexible substrate has a problem that the heat resistance is not sufficient due to the presence of the adhesive layer. As mentioned earlier, the two-layer flexible substrate can be less than half the thickness of the three-layer flexible substrate, and is suitable for electronic information equipment applications that are rapidly becoming smaller, thinner and more portable. Under such market conditions, the flexible substrate is shifting from the three-layer flexible substrate to the two-layer flexible substrate, and it can be said that the two-layer flexible substrate is growing as a completely different market according to the viewpoint.

2層フレキシブル基板の製法としては、スパッタ/銅めっき法、ラミネート法、キャスティング法がある。
スパッタ/銅めっき法はポリイミドフィルムを数種類の前処理を行った後銅または異種金属をスパッタリングする事で薄い導電層を形成し、更に湿式電解めっき法により銅層を形成する工法である。銅箔を使用せずめっきにより導体の形成を行うため導体厚みの自由度が高い。ラミネート法は接着性を有するポリイミドフィルムと銅箔を加熱圧着する工法であり使用する銅箔は12,18,35μmが一般的である。
As a manufacturing method of the two-layer flexible substrate, there are a sputtering / copper plating method, a laminating method, and a casting method.
The sputtering / copper plating method is a method of forming a thin conductive layer by sputtering copper or a different metal after performing several kinds of pretreatments on a polyimide film, and further forming a copper layer by a wet electrolytic plating method. Since the conductor is formed by plating without using a copper foil, the flexibility of the conductor thickness is high. The laminating method is a method in which a polyimide film having adhesiveness and a copper foil are heat-pressed, and the used copper foil is generally 12, 18, 35 μm.

キャスティング法は銅箔上にポリイミド前駆体であるポリイミドワニスを塗工し熱処理を行う事でポリイミド化させる工法であり使用する銅箔は12,18,35μmが一般的である。2層フレキシブル基板はそれぞれの工法で一長一短有るが銅箔を使用するラミネート法、キャスティング法で要求される銅箔特性で特に重要な特性は以下の2点である。
(1)ポリイミドフィルムと十分な引き剥がし強さを有すること。
(2)超低粗度であること。
The casting method is a method in which polyimide varnish, which is a polyimide precursor, is applied onto a copper foil and heat-treated to form a polyimide. The two-layer flexible substrate has advantages and disadvantages in each method, but the following two points are particularly important in the copper foil properties required for the laminating method and the casting method using copper foil.
(1) Having sufficient peeling strength with the polyimide film.
(2) Ultra low roughness.

要求特性(1)を満足するための一般的な方法として硫酸及び硫酸銅浴からの陰極電解により得られた未処理銅箔への粗面化処理がある。粗面化処理とは未処理銅箔の少なくとも一方の面を硫酸及び硫酸銅水溶液中で限界電流密度またはそれ以上で陰極電解し銅の突起物を析出させ、更に該層上に銅又は銅合金のカバーメッキを施すものである。この結果機械的投錨効果が高くなり、引き剥がし強さは格段に上昇する。   As a general method for satisfying the required characteristic (1), there is a roughening treatment to an untreated copper foil obtained by cathodic electrolysis from sulfuric acid and a copper sulfate bath. Roughening treatment means that at least one surface of an untreated copper foil is catholyzed in sulfuric acid and a copper sulfate aqueous solution at a critical current density or higher to deposit copper protrusions, and copper or a copper alloy is further deposited on the layer. Cover plating is applied. As a result, the mechanical anchoring effect is enhanced and the peel strength is significantly increased.

しかしながらこの粗面化処理により解決される問題は上記した銅箔要求特性の(1)のみであり、逆に(2)は銅箔表面粗度が上昇するため満足できなくなる。近年のフレキシブルプリント配線板の回路ピッチは急速に細線化しており超高細線フレキシブルプリント配線板では40μm以下の要求も珍しくない。   However, the problem solved by this roughening treatment is only the above-mentioned copper foil required characteristic (1), and conversely (2) is not satisfactory because the copper foil surface roughness increases. In recent years, the circuit pitch of flexible printed wiring boards has been rapidly reduced, and it is not uncommon for ultra-high thin flexible printed wiring boards to have a requirement of 40 μm or less.

また、パソコン等は電気信号が高周波化しておりGHzオーダーでは電流が回路表面にのみ流れる表皮効果が現れる為回路の直線性が重要になる。更に回路形成後、半導体等のチップを搭載するとき裏面からの光学的な位置決めや熱圧着実装時の位置ずれを無くす為エッチング後のポリイミドフィルムの透明性も重要となる。これら要求特性は全て銅箔表面の超低粗度化で達成できる特性である。この様に(1)と(2)は相反する特性であるために同時に達成させる事が非常に困難であることが分かる。   In addition, the linearity of the circuit is important for personal computers and the like because the electrical signal is becoming high frequency and the skin effect that current flows only on the circuit surface appears in the GHz order. Furthermore, the transparency of the polyimide film after etching is also important in order to eliminate optical positioning from the back surface and misalignment during thermocompression mounting when mounting a chip such as a semiconductor after circuit formation. All of these required characteristics can be achieved by ultra-low roughness of the copper foil surface. Thus, it can be seen that (1) and (2) are very difficult to achieve at the same time because of their conflicting characteristics.

これら問題点を解決する方法として例えばフレキシブル基板用銅箔に適した銅箔表面処理方法としては、銅箔の表面に銅-コバルト-ニッケルからなるめっきによる粗化処理後、コバルトめっき層或いはコバルト及びニッケルからなるめっき層を形成した後、クロム酸化物の単独皮膜処理或いはクロム酸化物と亜鉛及び(又は)亜鉛酸化物の処理を形成する方法(特許文献1参照)や、銅箔表面に銅-コバルト-ニッケル合金めっきによる粗化処理後、コバルト-ニッケル合金めっき層を形成し、更に亜鉛-ニッケル合金めっきを形成した後、クロム酸化物の単独皮膜処理或いはクロム酸化物と亜鉛及び(又は)亜鉛酸化物の処理を形成する方法(特許文献2参照)が提案されている。
本方法は確かに選択エッチング性のあるアルカリエッチング液に可溶であり低粗度ではあるが常態引き剥がし強さが十分でないという欠点がある。
As a method for solving these problems, for example, a copper foil surface treatment method suitable for a copper foil for a flexible substrate includes a cobalt plating layer or cobalt and a roughening treatment by plating made of copper-cobalt-nickel on the surface of the copper foil. After forming a plating layer made of nickel, a method of forming a single coating of chromium oxide or a treatment of chromium oxide with zinc and / or zinc oxide (see Patent Document 1), or copper- After roughening treatment by cobalt-nickel alloy plating, a cobalt-nickel alloy plating layer is formed, and after further zinc-nickel alloy plating is formed, chromium oxide single coating treatment or chromium oxide and zinc and / or zinc A method of forming an oxide treatment has been proposed (see Patent Document 2).
This method has a drawback that it is soluble in an alkaline etching solution having selective etching properties and has a low roughness, but the normal peel strength is not sufficient.

また、十分な常態引き剥がし強さを得る方法として、ヒ素、アンチモン、ビスマス、セレン、テルルを含む酸性銅電解浴中で限界電流密度前後で電解する方法(特許文献3、特許文献4参照)や、クロム又はタングステンの一種又は二種を含む酸性銅電解浴中で限界電流密度前後で電解する方法(特許文献5参照)が提案されている。本方法は確かに銅箔粗面が粗され投錨効果が高くなるため常態引き剥がし強さを得るには有効な手段であるが反面粗面粗度が上昇し現在の超細線フレキシブル基板で要求されている様なファインラインには不向きである。   In addition, as a method for obtaining sufficient normal peel strength, a method of electrolysis around an limiting current density in an acidic copper electrolytic bath containing arsenic, antimony, bismuth, selenium, tellurium (see Patent Document 3 and Patent Document 4) In addition, there has been proposed a method of electrolyzing around an upper limit current density in an acidic copper electrolytic bath containing one or two of chromium or tungsten (see Patent Document 5). This method is an effective means to obtain the normal peel strength because the rough surface of the copper foil is rough and the anchoring effect is high, but on the other hand, the roughness of the rough surface increases and is required for the current ultra-fine wire flexible substrate. It is not suitable for the fine line.

更に本方法の様に銅箔粗面粗度が高い場合、エッチング後のポリイミドフィルム表面は銅箔表面形状をそのまま転写する為透明性が極めて悪くなる欠点がある。
特開平4−96395号公報 特開平9−87889号公報 特公昭53−39327号公報 特公昭54−38053号公報 特許第2717911号公報
Furthermore, when the roughness of the copper foil rough surface is high as in the present method, the polyimide film surface after etching has the disadvantage that the transparency is extremely deteriorated because the shape of the copper foil surface is transferred as it is.
Japanese Patent Laid-Open No. 4-96395 Japanese Patent Laid-Open No. 9-87889 Japanese Patent Publication No.53-39327 Japanese Examined Patent Publication No. 54-38053 Japanese Patent No. 2717911

本発明は上記した銅箔を使用する工法で製造される2層フレキシブル基板用銅箔として特に強い要求を受ける
(1)ポリイミドフィルムと十分な引き剥がし強さを有すること。
(2)超低粗度であること。
以上2点について銅箔表面に行う表面処理技術を改良することで解決し、ピロメリット酸型のポリイミド前駆体を原料としてキャスティング法にて作成した2層フレキシブル基板において、ポリイミドと接着する銅箔面の十点平均粗さRzを1.5μm以下にする事ができ、更にポリイミドと90°常態引き剥がし強さが1.0kN/m以上である2層フレキシブル基板用銅箔及びその製造方法を提供することを課題とする。
The present invention receives a particularly strong demand as a copper foil for a two-layer flexible board manufactured by a method using the above-described copper foil.
(1) Having sufficient peeling strength with the polyimide film.
(2) Ultra low roughness.
The copper foil surface that adheres to the polyimide in the two-layer flexible substrate created by the casting method using the pyromellitic acid type polyimide precursor as a raw material. Provided is a copper foil for a two-layer flexible substrate having a 10-point average roughness Rz of 1.5 μm or less, and having a 90 ° normal peel strength of 1.0 kN / m or more and a method for producing the same. Is an issue.

2層フレキシブル基板用銅箔として上記(1)、(2)の問題を解決するために様々な銅箔処理方法を検討した結果、銅箔の少なくとも一方の面に粗化粒子長さが0.01〜0.5μmである微細な繊毛状銅粗化処理もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理を施し、且つ該粗化処理上にタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層を施し、且つ該バリアー層上にクロメート皮膜層を施す事により銅箔処理面の十点平均粗さRzを1.5μm以下にする事ができ、更に本発明の表面処理を施した銅箔を用い、ピロメリット酸型のポリイミド前駆体を原料としてキャスティング法にて作成した2層フレキシブル基板において、ポリイミドとの90°常態引き剥がし強さを1.0kN/m以上に出来るとの知見を得た。   As a result of studying various copper foil treatment methods for solving the problems (1) and (2) above as a copper foil for a two-layer flexible substrate, the roughened particle length is 0.01 to at least on one surface of the copper foil. A fine ciliary copper roughening treatment of 0.5 μm or a ciliary copper alloy roughening treatment containing nickel and / or antimony is applied, and a nickel-phosphorous layer containing tungsten or molybdenum is formed on the roughening treatment. By applying an alloy barrier layer and applying a chromate film layer on the barrier layer, the 10-point average roughness Rz of the copper foil treated surface can be reduced to 1.5 μm or less, and the copper subjected to the surface treatment of the present invention is further provided. Obtained knowledge that 90 ° normal peel strength with polyimide can be increased to 1.0 kN / m or more in a two-layer flexible substrate prepared by casting method using pyromellitic acid type polyimide precursor as a raw material using foil It was.

本発明の効果は上記表面処理を行うことによりポリイミドフィルムと十分な引き剥がし強さを確保する事ができ更に超低粗度であることから超細線パターンを描く事が可能となる銅箔が得られる。その用途は超細線パターン、回路直線性、十分な常態引き剥がし強さ、エッチング後のポリイミドフィルムについて高い透明性が要求される2層フレキシブル基板用銅箔として向いている。   The effect of the present invention is to obtain a copper foil that can ensure a sufficient peel strength from the polyimide film by performing the above surface treatment and can draw a super fine line pattern because of its ultra low roughness. It is done. Its application is suitable as a copper foil for a two-layer flexible substrate, which requires ultra-fine wire pattern, circuit linearity, sufficient normal peel strength, and high transparency for the polyimide film after etching.

以下に本発明について詳述する。
本発明は以下に詳述する何れの表面処理が欠けても目的とする表面処理銅箔を得ることが出来ない。
The present invention is described in detail below.
In the present invention, the target surface-treated copper foil cannot be obtained even if any of the surface treatments described in detail below is lacking.

まず、使用する未処理銅箔であるがフレキシブル基板に使用される銅箔は圧延処理銅箔が一般的であるが、近年のフレキシブル基板市場の隆盛に伴い圧延銅箔並みの特性を有する電解処理銅箔の開発も進んでいる。このため圧延処理銅箔に限定する必要性は無く何れの銅箔を使用しても良い。   First of all, the copper foil used for flexible substrates is the untreated copper foil used, but the rolled copper foil is common, but with the recent rise of the flexible substrate market, the electrolytic treatment has the same characteristics as the rolled copper foil. Copper foil is also being developed. For this reason, it is not necessary to limit to a rolled copper foil, and any copper foil may be used.

〔繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層〕
繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層は未処理銅箔表面に行う一層目表面処理層であり水溶性電気分解法によるめっき法により形成するものである。本処理層を施すことによりポリイミド前駆体との塗れ性が向上しポリイミドフィルム形成後の90°常態引き剥がし強さが向上する。
[Ciliary copper roughening layer or ciliary copper alloy roughening layer containing nickel and / or antimony]
The ciliated copper roughening layer or the ciliary copper alloy roughening layer containing nickel and / or antimony is a first surface treatment layer formed on the surface of the untreated copper foil and is formed by a plating method using a water-soluble electrolysis method. Is. By applying this treatment layer, the coatability with the polyimide precursor is improved, and the 90 ° normal peel strength after the formation of the polyimide film is improved.

また、本処理は微細な繊毛状粗化処理層であり先にも触れたが一般的な粗化処理方法とは異なり粗面粗度の上昇を極めて低く抑えることが可能であり高いエッチング精度、エッチング後のポリイミドフィルムについて高い透明性を有する事が出来る利点もある。また、銅箔との固着性も高く一般的によく言われる粉落ちが少ない利点もある。   In addition, this treatment is a fine ciliary roughening treatment layer, and as mentioned earlier, unlike general roughening treatment methods, it is possible to suppress the increase in roughness of the surface extremely low, high etching accuracy, There is also an advantage that the polyimide film after etching can have high transparency. In addition, there is also an advantage that the adhesiveness to the copper foil is high and there is little powder omission that is generally said.

本発明の繊毛状粗化処理の粒子長さが0.01〜0.5μmの範囲の場合全ての特性に於いて良好であるがこの範囲外では、0.01μm未満の場合、ポリイミド前駆体との塗れ性が悪くなり後のタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層の析出量にもよるが十分な90°常態引き剥がし強さが得られにくくなる不具合が生じる場合がある。一方、0.5μmを超える場合は粗面粗度が大きくなり、その結果エッチング精度が悪くなる、エッチング後のポリイミドフィルムの透明性が悪くなる不具合が生じる場合がある。   When the particle length of the cilia-like roughening treatment of the present invention is in the range of 0.01 to 0.5 μm, it is good in all properties, but outside this range, if less than 0.01 μm, the coatability with the polyimide precursor is Depending on the amount of precipitation of the alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum after the deterioration, there may be a problem that sufficient 90 ° normal peel strength cannot be obtained. On the other hand, when the thickness exceeds 0.5 μm, the roughness of the rough surface increases, and as a result, the etching accuracy may be deteriorated and the transparency of the polyimide film after etching may be deteriorated.

本処理層の外観色調は茶色〜黒色を呈し各金属元素の組み合わせにより銅箔の色目をコントロールする事が可能である。銅単独粗化処理の場合茶色〜茶褐色を呈し、銅−ニッケルの合金粗化処理層では灰色〜黒色を呈し、銅−アンチモンの合金粗化処理層では黒色を呈し、銅−ニッケル−アンチモンの3元系合金粗化処理層では灰色〜黒色を呈する。   The appearance color tone of this treatment layer is brown to black, and the color of the copper foil can be controlled by a combination of metal elements. In the case of copper single roughening treatment, brown-brown color is exhibited, the copper-nickel alloy roughening treatment layer is gray-black, the copper-antimony alloy roughening treatment layer is black, and the copper-nickel-antimony 3 The base alloy roughening layer exhibits gray to black.

本粗化処理層を施す電解浴及び電解条件としては例えば以下に示す条件が良い。
硫酸銅五水和物 10〜100g/L(特に好ましくは30〜70g/L)
硫酸ニッケル六水和物 0〜100g/L(特に好ましくは10〜70g/L)
酒石酸アンチモニルカリウム 0〜10g/L(特に好ましくは1〜5g/L)
ジエチレントリアミン五酢酸五ナトリウム(以下DTPA・5Na)
10〜300g/L(特に好ましくは40〜100g/L)
pH 2.5〜13.0(特に好ましくは3.5〜6.0)
pHの調整は硫酸及び水酸化ナトリウムを使用
電流密度 0.5〜10.0A/dm2(特に好ましくは1.0〜4.0A/dm2
電気量 10〜400A・sec/dm2(特に好ましくは20〜150A・sec/dm2
液温 20〜70℃(特に好ましくは20〜50℃)
陽極 銅
As an electrolytic bath and electrolytic conditions for applying the roughening treatment layer, for example, the following conditions are preferable.
Copper sulfate pentahydrate 10-100g / L (particularly preferably 30-70g / L)
Nickel sulfate hexahydrate 0-100 g / L (particularly preferably 10-70 g / L)
Potassium antimonyl tartrate 0-10 g / L (particularly preferably 1-5 g / L)
Diethylenetriaminepentaacetic acid pentasodium (hereinafter DTPA · 5Na)
10 to 300 g / L (particularly preferably 40 to 100 g / L)
pH 2.5-13.0 (particularly preferably 3.5-6.0)
The pH adjustment is using sulfuric acid and sodium hydroxide current density 0.5~10.0A / dm 2 (particularly preferably 1.0~4.0A / dm 2)
Electricity 10 ~ 400A ・ sec / dm 2 (particularly preferably 20 ~ 150A ・ sec / dm 2 )
Liquid temperature 20-70 ° C (preferably 20-50 ° C)
Anode copper

金属イオンの供給源としては硫酸塩、酢酸塩、クエン酸塩等を使用するればよくこれらに限定されるものでは無い。DTPA・5Na濃度は10〜300g/Lが適当であり、この範囲外で
は、10g/L以下の場合十分な微細化効果が得られにくくなり粗化粒子が粗大化する。
300g/L以上では電流効率の低下を招き粗化処理の析出量が極端に減少し、更に電圧も上昇し不経済である。また、ジエチレントリアミン五酢酸塩と類似の分子構造をもつアミノカルボン酸塩を用いて本処理を行っても固着性のある粗化粒子を得ることは出来ない。
The metal ion supply source is not limited to sulfate, acetate, citrate and the like. The concentration of DTPA · 5Na is suitably 10 to 300 g / L. Outside this range, when the concentration is 10 g / L or less, it is difficult to obtain a sufficient refining effect and coarse particles become coarse.
If it is 300 g / L or more, the current efficiency is lowered, the amount of precipitation in the roughening treatment is extremely reduced, and the voltage is further increased, which is not economical. Further, even when this treatment is performed using an aminocarboxylate having a molecular structure similar to that of diethylenetriaminepentaacetate, it is not possible to obtain roughened particles having stickiness.

また、電気量は10〜400A・sec/dm2がよくこの範囲では二層目処理層となるタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層の析出量にもよるがポリイミドとの90°常態引き剥がし強さが高く、更に超低粗度となる。逆に電気量が10A・sec/dm2未満の場合、ポリイミドとの塗れ性が悪くなり90°常態引き剥がし強さが低くなる不具合を生じる。また、400A・sec/dm2より多い場合は、銅箔との固着性が低くなり粉落ちが多くなる、粗面粗度が高くなる等の不具合を生じる。 In addition, the amount of electricity is 10 to 400 A · sec / dm 2, and in this range, it depends on the amount of precipitation of the alloy barrier layer consisting of a nickel-phosphorous layer containing tungsten or molybdenum as the second treatment layer, but with polyimide. 90 ° normal peel strength is high, and ultra-low roughness is achieved. On the other hand, when the amount of electricity is less than 10 A · sec / dm 2 , the wettability with polyimide deteriorates and the 90 ° normal peel strength decreases. On the other hand, when it exceeds 400 A · sec / dm 2 , problems such as poor adhesion to the copper foil, increased powder fall, and increased roughness of the rough surface occur.

〔タングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層〕
タングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層は繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層後に行う二層目表面処理層であり水溶性電気分解法によるめっき法により形成するものである。本処理層を施すことにより繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層との相乗効果によりポリイミドフィルム形成後の90°常態引き剥がし強さが格段に向上する。90°常態引き剥がし強さが格段に向上する詳細なメカニズムは分かっていないが本合金バリアー層ではなくニッケル単独層でも同様な現象が確認できる事からニッケルとポリイミドとの相性が良いものと推測される。
[Alloy barrier layer made of nickel-phosphorus layer containing tungsten or molybdenum]
The alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum is a ciliary copper roughening layer or a second surface treatment layer performed after a ciliary copper alloy roughening layer containing nickel and / or antimony. It is formed by a plating method using a water-soluble electrolysis method. By applying this treatment layer, the 90 ° normal peel strength after polyimide film formation is remarkably high due to the synergistic effect with the ciliary copper roughening treatment layer or the ciliary copper alloy roughening treatment layer containing nickel and / or antimony. To improve. Although the detailed mechanism by which the 90 ° normal peel strength is significantly improved is not known, the same phenomenon can be confirmed not only in the alloy barrier layer but also in the nickel single layer, and it is assumed that the compatibility between nickel and polyimide is good. The

一方、ニッケル単独層は回路形成時によく使用される塩化第二鉄や塩化第二銅のエッチング液には可溶であるものの、パターンめっき法等でよく使用されるアルカリエッチング液には不溶であり、電気絶縁性を損なうエッチング残(ステイン)を生じるという重大な欠点を有している。近年の回路の狭小化を考えた場合、塩化第二鉄、塩化第二銅でファインパターンが描けるのはもちろん必須条件であるが、レジストなどの多種多様化によりアルカリエッチング性も必須条件である。   On the other hand, the nickel single layer is soluble in the ferric chloride and cupric chloride etchants often used in circuit formation, but is insoluble in the alkaline etchant often used in pattern plating. In addition, it has a serious drawback that an etching residue (stain) that impairs electrical insulation is generated. When considering the narrowing of circuits in recent years, it is an indispensable condition that a fine pattern can be drawn with ferric chloride or cupric chloride, but alkali etching is also an indispensable condition due to various types of resists.

一方、タングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層は90°常態引き剥がし強さが十分であると同時に各元素の含有率にもよるがアルカリエッチング液に可溶でありニッケル単独層より汎用性が高い利点がある。   On the other hand, an alloy barrier layer composed of a nickel-phosphorus layer containing tungsten or molybdenum has sufficient 90 ° normal peel strength, and at the same time, depending on the content of each element, it is soluble in an alkaline etchant and nickel alone There is an advantage that it is more versatile than the layer.

本合金バリアー中各元素の良好な含有率は重量パーセント(wt%)で以下の条件である。
60wt%≦ニッケル≦99wt%(一層目処理層のニッケルも含む)
1wt%≦リン≦20wt%
0.1wt%≦タングステン≦20wt%もしくは0.1wt%≦モリブデン≦20wt%
更に好ましくは
80wt%≦ニッケル≦95wt%(一層目処理層のニッケルも含む)
3wt%≦リン≦17wt%
0.4wt%≦タングステン≦15wt%もしくは0.4wt%≦モリブデン≦20wt%
The good content of each element in this alloy barrier is the following conditions in weight percent (wt%).
60wt% ≤nickel≤99wt% (including nickel in the first layer)
1wt% ≤ phosphorus ≤ 20wt%
0.1wt% ≦ tungsten ≦ 20wt% or 0.1wt% ≦ molybdenum ≦ 20wt%
More preferably
80wt% ≦ nickel ≦ 95wt% (including nickel in the first layer)
3wt% ≤ phosphorus ≤ 17wt%
0.4wt% ≤ tungsten ≤ 15wt% or 0.4wt% ≤ molybdenum ≤ 20wt%

また、本合金バリアー層の析出量も重要であり40〜500mg/m2の範囲が好ましく、更に好ましくは50〜300mg/m2である。本合金バリアー層の析出量が40mg/m2未満の場合、本合金バリアーの効力が十分に発揮できず90°常態引き剥がし強さに於いて十分な値が得られ無い場合がある。一方、500mg/m2を超える場合、銅の純度が下がる、コスト高となり不経済である、回路形成時のエッチング時間が長くなる等の問題が発生する場合がある。 Also, precipitation of the alloy barrier layer is also important range of 40 to 500 mg / m 2 are preferred, more preferably from 50 to 300 mg / m 2. When the precipitation amount of this alloy barrier layer is less than 40 mg / m 2 , the effectiveness of this alloy barrier cannot be fully exhibited, and a sufficient value may not be obtained in the 90 ° normal peel strength. On the other hand, when it exceeds 500 mg / m 2 , problems such as copper purity lowering, high cost and uneconomical, and long etching time during circuit formation may occur.

本合金バリアー層を施す電解浴及び電解条件としては例えば以下に示す条件が良い。
タングステン含有ニッケル−リン層の場合
硫酸ニッケル六水和物 10〜100g/L(特に好ましくは20〜50g/L)
タングステン酸ナトリウム二水和物 0.1〜20g/L(特に好ましくは0.5〜10g/L)
次亜リン酸ナトリウム一水和物 0.1〜10g/L(特に好ましくは 0.5〜5g/L)
酢酸ナトリウム三水和物 2〜20g/L(特に好ましくは3〜15g/L)
pH 3.0〜5.5(特に好ましくは3.5〜5.0)
pHの調整は硫酸を使用
電流密度 0.1〜10.0A/dm2(特に好ましくは0.5〜5.0A/dm2
電気量 1.0〜30.0A・sec/dm2(特に好ましくは2.0〜20.0A・sec/dm2
液温 20〜50℃(特に好ましくは 25〜40℃)
陽極 白金
As an electrolytic bath for applying the alloy barrier layer and electrolytic conditions, for example, the following conditions are preferable.
In the case of a nickel-phosphorus layer containing tungsten, nickel sulfate hexahydrate 10 to 100 g / L (particularly preferably 20 to 50 g / L)
Sodium tungstate dihydrate 0.1-20 g / L (particularly preferably 0.5-10 g / L)
Sodium hypophosphite monohydrate 0.1-10 g / L (particularly preferably 0.5-5 g / L)
Sodium acetate trihydrate 2-20g / L (particularly preferably 3-15g / L)
pH 3.0-5.5 (particularly preferably 3.5-5.0)
Use sulfuric acid to adjust pH Current density 0.1 to 10.0 A / dm 2 (particularly preferably 0.5 to 5.0 A / dm 2 )
Amount of electricity 1.0 to 30.0 A · sec / dm 2 (particularly preferably 2.0 to 20.0 A · sec / dm 2 )
Liquid temperature 20-50 ° C (particularly preferably 25-40 ° C)
Anode platinum

モリブデン含有ニッケル−リン層の場合
硫酸ニッケル六水和物 10〜100g/L(特に好ましくは20〜50g/L)
モリブデン酸二ナトリウム二水和物 1〜200g/L(特に好ましくは10〜100g/L)
次亜リン酸ナトリウム一水和物 1〜70g/L(特に好ましくは 5〜40g/L)
クエン酸三ナトリウム二水和物 10〜100g/L(特に好ましくは20〜70g/L)
pH 9.0〜12.0(特に好ましくは10.0〜11.0)
pHの調整はアンモニア水を使用
電流密度 0.1〜10.0A/dm2(特に好ましくは0.5〜5.0A/dm2
電気量 1.0〜30.0A・sec/dm2(特に好ましくは2.0〜20.0A・sec/dm2
液温 20〜50℃(特に好ましくは 25〜40℃)
陽極 白金
In the case of molybdenum-containing nickel-phosphorus layer Nickel sulfate hexahydrate 10 to 100 g / L (particularly preferably 20 to 50 g / L)
Disodium molybdate dihydrate 1 to 200 g / L (particularly preferably 10 to 100 g / L)
Sodium hypophosphite monohydrate 1-70 g / L (particularly preferably 5-40 g / L)
Trisodium citrate dihydrate 10-100 g / L (particularly preferably 20-70 g / L)
pH 9.0-12.0 (particularly preferably 10.0-11.0)
Use ammonia water to adjust pH Current density 0.1 to 10.0 A / dm 2 (particularly preferably 0.5 to 5.0 A / dm 2 )
Amount of electricity 1.0 to 30.0 A · sec / dm 2 (particularly preferably 2.0 to 20.0 A · sec / dm 2 )
Liquid temperature 20-50 ° C (particularly preferably 25-40 ° C)
Anode platinum

ニッケル、リン、タングステン、モリブデンイオンの供給源としては以下のものが使用できる。但し、これに限定されるものではない。ニッケルイオンの供給源としては硫酸ニッケル、硫酸ニッケルアンモニウム、塩化ニッケル、酢酸ニッケルなどが使用できる。リンイオンの供給源としては亜リン酸ナトリウム、次亜リン酸ナトリウム、亜リン酸ニッケルなどが使用できる。タングステンイオンの供給源としてはタングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム等が使用できる。モリブデンイオンの供給源としてはモリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸アンモニウムなどが使用できる。また導電性の付与として硫酸ナトリウムを添加してもよい。   As the supply source of nickel, phosphorus, tungsten and molybdenum ions, the following can be used. However, it is not limited to this. Nickel sulfate, nickel ammonium sulfate, nickel chloride, nickel acetate and the like can be used as a nickel ion supply source. As a source of phosphorus ions, sodium phosphite, sodium hypophosphite, nickel phosphite and the like can be used. As a supply source of tungsten ions, sodium tungstate, potassium tungstate, ammonium tungstate, or the like can be used. As a supply source of molybdenum ions, sodium molybdate, potassium molybdate, ammonium molybdate and the like can be used. Moreover, you may add sodium sulfate as provision of electroconductivity.

pHは本合金バリアー層にタングステン、モリブデンを使用した場合で適正領域が異なるが、タングステンを使用した場合のpHは3.0〜5.5位がよく、モリブデンを使用した場合は9.0〜12.0位がよい。このpHの範囲では三元素の同時析出、バリアー特性、作業性のすべてが良いが、これもまた上記条件に限定されるものではない。また、タングステン含有ニッケル−リン層を形成させる電解液はpHの緩衝剤として酢酸浴を採用しているが、廃液作業を行う場合キレート浴とは違い中和凝集沈澱法により容易にニッケルを取り除くことが可能であり環境対策上非常に有利である。   The pH varies in the appropriate range when tungsten or molybdenum is used for the alloy barrier layer, but the pH is preferably about 3.0 to 5.5 when tungsten is used, and about 9.0 to 12.0 when molybdenum is used. In this pH range, the simultaneous precipitation of the three elements, the barrier properties, and the workability are all good, but this is not limited to the above conditions. In addition, the electrolytic solution for forming the tungsten-containing nickel-phosphorous layer employs an acetic acid bath as a pH buffering agent. However, unlike the chelate bath, nickel can be easily removed by a neutralization coagulation precipitation method when performing waste liquid work. Is possible and is very advantageous for environmental measures.

〔クロメート皮膜層〕
クロメート皮膜層は一層目表面処理層である繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層、次いで二層目表面処理層であるタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層を施した後に行う三層目表面処理層であり水溶性電気分解法によるめっき法又は水溶液への浸漬により形成するものである。このクロメート皮膜層を施す事により様々な特性が向上し、例えば、耐酸化性を向上させる、基材との接着力を向上させる為常態引き剥がし強さが強くなる等の効果をもたらす。
[Chromate film layer]
The chromate coating layer contains a ciliary copper roughening layer which is the first surface treatment layer or a ciliary copper alloy roughening layer containing nickel and / or antimony, and then a second surface treatment layer of tungsten or molybdenum. This is a third surface treatment layer formed after the alloy barrier layer made of a nickel-phosphorus layer is formed, and is formed by plating by a water-soluble electrolysis method or immersion in an aqueous solution. By applying this chromate film layer, various properties are improved. For example, the oxidation resistance is improved, and the normal peel strength is increased in order to improve the adhesion to the substrate.

また、このクロメート皮膜層を形成させる浴は公知のものでよく、例えばクロム酸、重クロム酸ナトリウム、重クロム酸カリウムなどの6価クロムを有する物であればい。また、このクロム酸液はアルカリ性、酸性のどちらでもかまわない。上記2種類のクロム酸液はそれぞれ長所、短所があり、使用目的に応じて使い分ければよいが、アルカリ性クロム酸液を使用した場合酸性クロム酸液に比べクロメート皮膜層の耐食性がわずかに劣る、接合基材との接着性がわずかに劣ると言う欠点があるが本発明表面処理上にアルカリ性クロム酸液でクロメート皮膜層を施しても上記した問題は発生しない。   Moreover, the bath for forming this chromate film layer may be a known bath, and any material having hexavalent chromium such as chromic acid, sodium dichromate, potassium dichromate, etc. may be used. The chromic acid solution may be alkaline or acidic. Each of the above two types of chromic acid solution has advantages and disadvantages, and may be properly used depending on the purpose of use. However, when an alkaline chromic acid solution is used, the chromate film layer has a slightly lower corrosion resistance than the acidic chromic acid solution. Although there is a disadvantage that the adhesion to the bonding substrate is slightly inferior, the above-mentioned problem does not occur even if the chromate film layer is applied with the alkaline chromic acid solution on the surface treatment of the present invention.

また、アルカリ性クロム酸液として特公昭58-15950号にある亜鉛イオン、6価クロムイオンを含むアルカリ性ジンククロメート液を使用してもよく、本クロム酸液を使用することで、クロム単独酸液からのクロメート皮膜層よりも耐酸化性を向上させる事が出来る。もちろん酸性クロム酸液を使用しても問題無く同様の結果が得られる。   In addition, an alkaline zinc chromate solution containing zinc ions and hexavalent chromium ions described in Japanese Patent Publication No. 58-15950 may be used as the alkaline chromic acid solution. Oxidation resistance can be improved as compared with the chromate film layer. Of course, even if an acidic chromic acid solution is used, the same result can be obtained without any problem.

クロメート皮膜層を施す電解浴及び電解条件としては例えば以下に示す様な条件がある。
重クロム酸ナトリウム 10g/L
浴温度 30℃
pH 4.2
電流密度 0.5A/dm2
電解時間 5秒
陽極 白金
Examples of the electrolytic bath and electrolysis conditions for applying the chromate film layer include the following conditions.
Sodium dichromate 10g / L
Bath temperature 30 ℃
pH 4.2
Current density 0.5A / dm 2
Electrolysis time 5 seconds Anode Platinum

以下に本発明の実施例と比較例を説明する。
(実施例1〜26)
Examples of the present invention and comparative examples will be described below.
(Examples 1 to 26)

あらかじめ用意しておいた表面粗度Rz 0.72μm(十点平均粗さ)の35μm未処理圧延銅箔を炭化水素系有機溶剤に60秒間浸漬し圧延油の除去を行った。水洗後、100g/L硫酸溶液中で陰極に銅板、陽極に上記未処理圧延銅箔を使用し電流密度5A/dm2で6秒間電解を行い、未処理圧延銅箔表面の酸化層除去及び活性化を行った。 The rolling oil was removed by immersing a previously prepared 35 μm untreated rolled copper foil having a surface roughness of Rz 0.72 μm (10-point average roughness) in a hydrocarbon-based organic solvent for 60 seconds. After washing with water, perform electrolysis at a current density of 5 A / dm 2 for 6 seconds using a copper plate as the cathode and the above-mentioned untreated rolled copper foil as the anode in a 100 g / L sulfuric acid solution. Made.

水洗後、本発明の一層目表面処理層となる繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理を実施例1〜26について陽極に銅板を使用し、浴温度40℃の一定条件とし表1に示す電解浴組成及び電解条件で形成した。尚、本浴中のDTPA・5Na濃度は実施例1〜26で一定であり60g/Lである。   After washing with water, a ciliary copper roughening layer or a ciliary copper alloy roughening treatment containing nickel and / or antimony, which becomes the first surface treatment layer of the present invention, using a copper plate as an anode for Examples 1 to 26, The bath was formed at the constant bath temperature of 40 ° C. and the electrolytic bath composition and electrolytic conditions shown in Table 1. In addition, DTPA * 5Na density | concentration in this bath is constant in Examples 1-26, and is 60 g / L.

水洗後、本発明の二層目表面処理層となるタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層を実施例1〜26について陽極に白金を使用し、浴温度30℃一定とし表1に示す電解浴組成及び電解条件で形成を行った。尚、タングステン含有ニッケル−リン層を形成する場合の実施例1〜4、8〜12、15〜18、21〜24は酢酸浴を使用するが電解浴中酢酸ナトリウム三水和物濃度は一定条件であり10g/Lである。また、モリブデン含有ニッケル−リン層を形成する場合の実施例5〜7、13、14、19、20、25、26はクエン酸浴を使用するが電解浴中クエン酸三ナトリウム二水和物濃度は一定条件であり50g/Lである。   After washing with water, an alloy barrier layer composed of a nickel-phosphorus layer containing tungsten or molybdenum as the second surface treatment layer of the present invention was used, and platinum was used as the anode for Examples 1 to 26, and the bath temperature was kept at 30 ° C. Formation was performed with the electrolytic bath composition and electrolytic conditions shown in 1. In Examples 1 to 4, 8 to 12, 15 to 18, and 21 to 24 when forming a tungsten-containing nickel-phosphorus layer, an acetic acid bath is used, but the concentration of sodium acetate trihydrate in the electrolytic bath is constant. It is 10g / L. Further, Examples 5 to 7, 13, 14, 19, 20, 25, and 26 when forming a molybdenum-containing nickel-phosphorous layer use a citric acid bath, but the concentration of trisodium citrate dihydrate in the electrolytic bath Is a constant condition and is 50 g / L.

水洗後、本発明の三層目表面処理層となるクロメート皮膜層を実施例1〜26について以下に示す電解浴組成及び電解条件で形成を行った。
重クロム酸ナトリウム 10g/L
浴温度 30℃
pH 4.2
電流密度 0.5A/dm2
電解時間 5秒
陽極 白金
After washing with water, a chromate film layer serving as the third surface treatment layer of the present invention was formed with the electrolytic bath composition and electrolysis conditions shown below for Examples 1 to 26.
Sodium dichromate 10g / L
Bath temperature 30 ℃
pH 4.2
Current density 0.5A / dm 2
Electrolysis time 5 seconds Anode Platinum

以上、三層から成る本発明表面処理を行った圧延処理銅箔表面を各元素毎に析出量を定量した結果を表2に示す。尚、一層目表面処理層となる繊毛状粗化処理層にニッケルを使用した実施例8〜14,21〜26については二層目表面処理層となるタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層から析出したニッケルとの合計の析出量を示した。   Table 2 shows the results of quantifying the precipitation amount for each element on the surface of the rolled copper foil subjected to the surface treatment of the present invention consisting of three layers. In addition, about Examples 8-14 and 21-26 which used nickel for the cilia-like roughening processing layer used as the 1st surface treatment layer, from the nickel-phosphorus layer containing tungsten or molybdenum used as the 2nd layer surface treatment layer The total amount of precipitation with nickel deposited from the alloy barrier layer.

次にこの圧延処理銅箔にピロメリット酸型のポリイミド前駆体をバーコーターを使用しクリアランス350μmで塗布を行った。このポリイミド前駆体はセパラブルフラスコ中にN,N−ジメチルアセトアミドを採取し、無水ピロメリット酸、4,4'−ジアミノジフェニルエーテルを撹拌しながら溶解させ撹拌により重合反応を行なうことで得られた。   Next, a pyromellitic acid type polyimide precursor was applied to the rolled copper foil with a clearance of 350 μm using a bar coater. This polyimide precursor was obtained by collecting N, N-dimethylacetamide in a separable flask, dissolving pyromellitic anhydride and 4,4′-diaminodiphenyl ether with stirring, and performing a polymerization reaction by stirring.

次いでポリイミド前駆体塗布後の銅箔を大気中雰囲気の乾燥機で130℃−10分,200℃−4分で溶剤を揮発させた後イナート乾燥機により360℃−2分間の加熱硬化処理を行い2層フレキシブル基板を作製した。この時のポリイミド膜の厚みは32〜37μmであった。   Next, the copper foil after coating the polyimide precursor was vaporized at 130 ° C for 10 minutes and 200 ° C for 4 minutes with a drier in the atmosphere, and then heat-cured at 360 ° C for 2 minutes with an inert drier. A two-layer flexible substrate was produced. The thickness of the polyimide film at this time was 32 to 37 μm.

比較例Comparative example

(比較例1)
本発明の一層目処理層となる繊毛状粗化処理を行わなかった事以外は実施例1〜26と同じ方法で表面処理を行い、同じ方法で2層フレキシブル基板を作製した。尚、本比較例において一層目処理層となるタングステン含有ニッケル−リン層からなる合金バリアー層の電解浴組成、電解条件を表1に示し、圧延処理銅箔表面の各元素析出量の定量結果を表2に示した。
(比較例2〜5)
(Comparative Example 1)
Surface treatment was performed in the same manner as in Examples 1 to 26 except that ciliary roughening treatment, which was the first treatment layer of the present invention, was not performed, and a two-layer flexible substrate was produced in the same manner. In this comparative example, the electrolytic bath composition and electrolysis conditions of the alloy barrier layer composed of the tungsten-containing nickel-phosphorous layer that is the first treatment layer in this comparative example are shown in Table 1, and the quantitative results of the amount of each element deposited on the surface of the rolled copper foil are shown. It is shown in Table 2.
(Comparative Examples 2 to 5)

本発明の二層目処理層となるタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層を行わなかった事以外は実施例1〜26と同じ方法で表面処理を行い、同じ方法で2層フレキシブル基板を作製した。尚、本比較例において一層目処理層となる繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層の電解浴組成、電解条件を表1に示し、圧延処理銅箔表面の各元素析出量の定量結果を表2に示した。
(比較例6)
Surface treatment was carried out in the same manner as in Examples 1 to 26 except that an alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum as the second treatment layer of the present invention was not used. A layer flexible substrate was prepared. The electrolytic bath composition and electrolysis conditions of the ciliary copper roughening layer or the ciliary copper alloy roughening layer containing nickel and / or antimony, which are the first treatment layer in this comparative example, are shown in Table 1, and rolled. Table 2 shows the quantitative results of the amount of each element deposited on the treated copper foil surface.
(Comparative Example 6)

本発明の二層目処理層となるタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層の代わりにニッケル単独層を施した事以外は実施例1〜26と同じ方法で表面処理を行い、同じ方法で2層フレキシブル基板を作製した。尚、本比較例において一層目処理層となる繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する繊毛状銅合金粗化処理層の電解浴組成、電解条件、二層目処理層となるニッケル単独層の電解浴組成、電解条件を表1に示し、圧延処理銅箔表面の各元素析出量の定量結果を表2に示した。
(比較例7)
Surface treatment was performed in the same manner as in Examples 1 to 26 except that a single nickel layer was used instead of an alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum as the second treatment layer of the present invention. A two-layer flexible substrate was produced by the same method. In this comparative example, a ciliary copper roughening layer or a ciliary copper alloy roughening layer containing nickel and / or antimony, which is the first layer in this comparative example, the electrolytic bath composition, electrolysis conditions, and the second layer Table 1 shows the electrolytic bath composition and electrolysis conditions of the nickel single layer, and Table 2 shows the quantitative results of the amount of each element deposited on the surface of the rolled copper foil.
(Comparative Example 7)

あらかじめ用意しておいた表面粗度Rz 0.72μm(十点平均粗さ)の35μm未処理圧延銅箔を炭化水素系有機溶剤に60秒間浸漬し圧延油の除去を行った。水洗後、100g/L硫酸溶液中で陰極に銅板、陽極に上記未処理圧延銅箔を使用し電流密度5A/dm2で6秒間電解を行い、未処理圧延銅箔表面の酸化層除去及び活性化を行った。 The rolling oil was removed by immersing a previously prepared 35 μm untreated rolled copper foil having a surface roughness of Rz 0.72 μm (10-point average roughness) in a hydrocarbon-based organic solvent for 60 seconds. After washing with water, perform electrolysis at a current density of 5 A / dm 2 for 6 seconds using a copper plate as the cathode and the above-mentioned untreated rolled copper foil as the anode in a 100 g / L sulfuric acid solution. Made.

水洗後以下の浴組成の電解浴を用いて陰極電解し粗面化処理を施した。
硫酸銅五水和物 70g/L
硫酸 100g/L
液温 35℃
電流密度 20A/dm2
電解時間 5秒
陽極 白金
After washing with water, cathodic electrolysis was performed using an electrolytic bath having the following bath composition, and surface roughening was performed.
Copper sulfate pentahydrate 70g / L
Sulfuric acid 100g / L
Liquid temperature 35 ℃
Current density 20A / dm 2
Electrolysis time 5 seconds Anode Platinum

次いで以下の浴組成の電解浴を用いて陰極電解し粗面化処理にカバーめっきを施した。
硫酸銅五水和物 250g/L
硫酸 100g/L
液温 45℃
電流密度 10A/dm2
電解時間 30秒
陽極 白金
Next, cathodic electrolysis was performed using an electrolytic bath having the following bath composition, and cover plating was applied to the surface roughening treatment.
Copper sulfate pentahydrate 250g / L
Sulfuric acid 100g / L
Liquid temperature 45 ℃
Current density 10A / dm 2
Electrolysis time 30 seconds Anode Platinum

次いで以下の浴組成の電解液を用いて防錆処理を施した。
重クロム酸ナトリウム 10g/L
浴温度 30℃
pH 4.2
電流密度 0.5A/dm2
電解時間 5秒
陽極 白金
以上の様にして得られた圧延処理銅箔を実施例1〜26と同じ方法で2層フレキシブル基板を作製した。
Next, rust prevention treatment was performed using an electrolytic solution having the following bath composition.
Sodium dichromate 10g / L
Bath temperature 30 ℃
pH 4.2
Current density 0.5A / dm 2
Electrolysis time 5 seconds Anode Platinum A two-layer flexible substrate was produced from the rolled copper foil obtained as described above in the same manner as in Examples 1 to 26.

以上のようにして得られた2層フレキシブル基板の90°常態引き剥がし強さ、粗化処理面粗度(Rz:十点平均粗さ)、アルカリエッチング性を評価した結果を表3に示す。尚、各試験の評価方法を以下に示す。   Table 3 shows the results of evaluating the 90 ° normal peel strength, the roughened surface roughness (Rz: 10-point average roughness), and the alkali etching property of the two-layer flexible substrate obtained as described above. In addition, the evaluation method of each test is shown below.

90°常態引き剥がし強さ
JIS C 5016の方法に準じて測定。
厚み2mmの塩化ビニル板上に塩化第二銅エッチングにより銅幅1mmの回路形成後の
2層フレキシブル基板を両面テープにより固定し引っ張り試験機を使用し毎50mmの
スピードで90°での引き剥がし強さを測定した。
90 ° normal peel strength
Measured according to JIS C 5016 method.
After forming a circuit with a copper width of 1 mm by etching cupric chloride on a 2 mm thick vinyl chloride plate
The two-layer flexible substrate was fixed with double-sided tape, and the peel strength at 90 ° was measured at a speed of 50 mm every time using a tensile tester.

粗化処理面粗度(Rz:十点平均粗さ)
JIS B 0601の方法に準じて測定。
Roughening surface roughness (Rz: 10-point average roughness)
Measured according to the method of JIS B 0601.

アルカリエッチング性
(株)ヤマトヤ商会製アルカエッチ使用。
47〜50℃に保持したアルカエッチ1L中に2層フレキシブル基板を浸漬し、マグネッ
トスターラーで撹拌を行いながら10分間保持。その後水洗し乾燥を行い目視にてエ
ッチング残の確認を行った。
評価:○ エッチング残が全く認められない。
× 強度のエッチング残が認められる。
Alkali etchability Alkaetch used by Yamatoya Corporation.
A 2-layer flexible substrate is immersed in 1L of Alkaetch maintained at 47-50 ° C and held for 10 minutes while stirring with a magnetic stirrer. Thereafter, it was washed with water and dried, and the etching residue was visually confirmed.
Evaluation: ○ No etching residue is observed.
X A strong etching residue is observed.

表3に示した通り本発明表面処理層を有する銅箔を用いて作製した2層フレキシブル基板はポリイミドとの密着性が良好であり90°常態引き剥がし強さにおいても1.0kN/m以上あり、銅箔粗化処理面の十点平均粗さRzが1.5μm以下であり、アルカリエッチング液にも可溶である事が分かる。また、添付した図2の本願発明銅箔表面処理形状電子顕微鏡写真から分かる様に本粗化処理粒子は極めて微細である事から銅箔表面形状を転写するポリイミドフィルム表面に於いてエッチング後極めて高い透明性を有する事が出来ることが分かる。   As shown in Table 3, the two-layer flexible substrate produced using the copper foil having the surface-treated layer of the present invention has good adhesion to polyimide, and the 90 ° normal peel strength is 1.0 kN / m or more, It can be seen that the ten-point average roughness Rz of the copper foil roughening-treated surface is 1.5 μm or less and is soluble in an alkaline etching solution. Further, as can be seen from the electron micrograph of the copper foil surface treatment shape of the present invention of FIG. 2 attached, since the roughened particles are extremely fine, the polyimide film surface to which the copper foil surface shape is transferred is extremely high after etching. It turns out that it can have transparency.

一方、本発明表面処理方法を1種類以上行わなかった比較例1〜5は90°常態引き剥がし強さが0.40kN/m以下と低く超細線パターンの要求が高い2層フレキシブル基板用途に適していないことが分かる。また、比較例6については90°常態引き剥がし強さは実施例レベルで十分に高い値であるがアルカリエッチング試験においてエッチング残が発生しており本発明表面処理方法に比べ汎用性が低い欠点があることが分かる。   On the other hand, Comparative Examples 1 to 5 in which one or more kinds of the surface treatment method of the present invention were not performed are suitable for use in a two-layer flexible substrate where the 90 ° normal peel strength is as low as 0.40 kN / m or less and the demand for the ultrafine wire pattern is high. I understand that there is no. Further, as for Comparative Example 6, the 90 ° normal peel strength is a sufficiently high value at the Example level, but there is a defect that etching residue is generated in the alkali etching test and is less versatile than the surface treatment method of the present invention. I understand that there is.

また、比較例7は90°常態引き剥がし強さは実施例よりも高い値であるが粗面粗度が高く超細線パターンが要求される2層フレキシブル基板用途に適していない事が分かる。更に添付した図3の従来銅箔表面処理形状電子顕微鏡写真から分かる様に粗化粒子径が本発明粗化処理径に比べ格段に大きい事から銅箔表面形状を転写するポリイミドフィルム表面に於いてエッチング後の透明性が悪くなり2層フレキシブル基板製造工程において支障を来たす事が予想される。

Figure 2005206915
Figure 2005206915
Figure 2005206915
In addition, it can be seen that Comparative Example 7 has a 90 ° normal peel strength higher than that of the Example, but is not suitable for a two-layer flexible substrate application where the roughness of the rough surface is high and a super fine line pattern is required. Furthermore, as can be seen from the attached copper foil surface treatment shape electron micrograph of FIG. 3, the roughened particle diameter is much larger than the roughened treatment diameter of the present invention. It is expected that the transparency after etching will be worsened and will hinder the manufacturing process of the two-layer flexible substrate.
Figure 2005206915
Figure 2005206915
Figure 2005206915

本発明表面処理方法を用い作製した銅箔を使用し2層フレキシブル基板を作製することでポリイミドとの十分な引き剥がし強さを確保でき更に超低粗度であることから超細線パターンを描く事が可能となる銅箔が得られる。また、将来的には今以上に回路ピッチ間の細線化が予想される2層フレキシブル基板においても十分に対応出来るものと考えられる。   By using a copper foil prepared using the surface treatment method of the present invention, a two-layer flexible substrate can be prepared to ensure sufficient peel strength from the polyimide, and the ultra-low roughness can be used to draw an ultra-fine line pattern. The copper foil which becomes possible is obtained. Further, in the future, it is considered that it can sufficiently cope with a two-layer flexible substrate that is expected to have a finer pitch between circuit pitches.

本願発明表面処理銅箔断面模式図This invention surface treatment copper foil cross-sectional schematic diagram 本願発明の銅箔表面処理形状電子顕微鏡写真(実施例2)Copper foil surface treatment shape electron micrograph of the present invention (Example 2) 従来の銅箔表面処理形状電子顕微鏡写真(比較例7)Conventional copper foil surface treatment shape electron micrograph (Comparative Example 7)

符号の説明Explanation of symbols

1−銅箔
2−繊毛状銅粗化処理層もしくはニッケル及び/又はアンチモンを含有する
繊毛状銅合金粗化処理層
3−タングステンもしくはモリブデンを含有するニッケル−リン層
4−クロメート皮膜層
1-copper foil 2-ciliary copper roughening layer or containing nickel and / or antimony
Ciliated copper alloy roughening layer 3-nickel-phosphorus layer containing tungsten or molybdenum 4-chromate film layer

Claims (8)

銅箔の少なくとも一方の面に微細な繊毛状粗化処理層を有し、且つ前記該粗化処理層上にタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層を有し、且つ前記該合金バリアー層上にクロメート皮膜層を有することを特徴とする2層フレキシブル基板用銅箔。   A fine cilia-like roughened layer on at least one surface of the copper foil, and an alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum on the roughened layer; and A copper foil for a two-layer flexible substrate, comprising a chromate film layer on the alloy barrier layer. 微細な繊毛状粗化処理層が銅であることを特徴とする請求項1に記載の2層フレキシブル基板用銅箔。   2. The copper foil for a two-layer flexible substrate according to claim 1, wherein the fine cilia-like roughened layer is copper. 微細な繊毛状粗化処理層がニッケル及び/又はアンチモンを含む銅合金であることを特徴とする請求項1に記載の2層フレキシブル基板用銅箔。   2. The copper foil for a two-layer flexible substrate according to claim 1, wherein the fine ciliary roughening layer is a copper alloy containing nickel and / or antimony. 微細な繊毛状粗化処理の粒子長さが0.01〜0.5μmであることを特徴とする請求項1〜3のいずれかに記載の2層フレキシブル基板用銅箔。   4. The copper foil for a two-layer flexible substrate according to claim 1, wherein the fine ciliary roughening treatment has a particle length of 0.01 to 0.5 [mu] m. ポリイミドと接着する銅箔面の十点平均粗さRzが1.5μm以下であることを特徴とする請求項1〜4のいずれかに記載の2層フレキシブル基板用銅箔。   The copper foil for a two-layer flexible substrate according to any one of claims 1 to 4, wherein the ten-point average roughness Rz of the copper foil surface bonded to polyimide is 1.5 µm or less. 銅箔の少なくとも一方の面に微細な繊毛状粗化処理層を施し、且つ前記該粗化処理層上にタングステンもしくはモリブデンを含有するニッケル−リン層からなる合金バリアー層を施し、且つ前記該合金バリアー層上にクロメート皮膜層を施すことを特徴とする2層フレキシブル基板用銅箔の製造方法。   A fine ciliary roughening treatment layer is applied to at least one surface of the copper foil, and an alloy barrier layer comprising a nickel-phosphorus layer containing tungsten or molybdenum is provided on the roughening treatment layer; and the alloy A method for producing a copper foil for a two-layer flexible substrate, comprising applying a chromate film layer on the barrier layer. 微細な繊毛状粗化処理層を施す電解液がジエチレントリアミン五酢酸塩と銅を含む電解浴であることを特徴とする請求項6に記載の2層フレキシブル基板用銅箔の製造方法。   7. The method for producing a copper foil for a two-layer flexible substrate according to claim 6, wherein the electrolytic solution for applying the fine ciliary roughening treatment layer is an electrolytic bath containing diethylenetriaminepentaacetate and copper. 微細な繊毛状粗化処理層を施す電解液がジエチレントリアミン五酢酸塩とニッケル及び/又はアンチモンと銅を含む電解浴であることを特徴とする請求項6に記載の2層フレキシブル基板用銅箔の製造方法。 7. The copper foil for a two-layer flexible substrate according to claim 6, wherein the electrolytic solution for applying the fine ciliary roughening layer is an electrolytic bath containing diethylenetriaminepentaacetate and nickel and / or antimony and copper. Production method.
JP2004016947A 2004-01-26 2004-01-26 Copper foil for printed circuited board, and its production method Pending JP2005206915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016947A JP2005206915A (en) 2004-01-26 2004-01-26 Copper foil for printed circuited board, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016947A JP2005206915A (en) 2004-01-26 2004-01-26 Copper foil for printed circuited board, and its production method

Publications (1)

Publication Number Publication Date
JP2005206915A true JP2005206915A (en) 2005-08-04

Family

ID=34901938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016947A Pending JP2005206915A (en) 2004-01-26 2004-01-26 Copper foil for printed circuited board, and its production method

Country Status (1)

Country Link
JP (1) JP2005206915A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JP2007165674A (en) * 2005-12-15 2007-06-28 Fukuda Metal Foil & Powder Co Ltd Copper foil for flexible printed wiring board for cof
JP2008007803A (en) * 2006-06-27 2008-01-17 Furukawa Circuit Foil Kk Surface-treated copper foil
JP2009295858A (en) * 2008-06-06 2009-12-17 Mitsubishi Materials Corp Flexible base material
JP2011179078A (en) * 2010-03-02 2011-09-15 Fukuda Metal Foil & Powder Co Ltd Treated copper foil
KR101189132B1 (en) 2012-01-20 2012-10-10 엘에스엠트론 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR101189131B1 (en) 2012-01-20 2012-10-10 엘에스엠트론 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP2015038880A (en) * 2008-02-22 2015-02-26 コロラド ステイト ユニバーシティ リサーチ ファウンデーション Lithium ion battery
JP2015061756A (en) * 2013-08-21 2015-04-02 Jx日鉱日石金属株式会社 Copper foil with carrier and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
WO2016005651A1 (en) * 2014-07-11 2016-01-14 Savroc Ltd A chromium-containing coating, a method for its production and a coated object
JP2016501753A (en) * 2012-12-21 2016-01-21 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Multilayer flexible metal-clad laminate and manufacturing method thereof
JP2016149438A (en) * 2015-02-12 2016-08-18 福田金属箔粉工業株式会社 Treatment copper foil, copper-clad laminate using the treatment copper foil, and print circuit board
CN106413248A (en) * 2015-07-29 2017-02-15 福田金属箔粉工业株式会社 Treated copper foil for low dielectric resin substrate and copper-clad laminate and printed writing board using the same
US10443143B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing a chromium coating and a coated object
US10443142B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing chromium-containing multilayer coating and a coated object
JP2021098892A (en) * 2019-12-19 2021-07-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Surface treated copper foil, method of producing the same, copper foil laminate comprising the same, and printed circuit board comprising the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438053A (en) * 1977-08-29 1979-03-22 Mitsubishi Electric Corp Safety device for elevator cage
JPS6113688A (en) * 1984-06-28 1986-01-21 福田金属箔粉工業株式会社 Copper foil for printed circuit and method of producing same
JPS62142389A (en) * 1985-12-17 1987-06-25 福田金属箔粉工業株式会社 Copper foil for printed circuit and manufacture of the same
JPS63500250A (en) * 1985-06-28 1988-01-28 サーキット フォイル ユー.エス.エイ.インコーポレイテッド Treatment for copper foil
JPH01246393A (en) * 1988-03-25 1989-10-02 Fukuda Metal Foil & Powder Co Ltd Surface treatment of copper foil for inner layer or copper lined laminated sheet
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JPH1018075A (en) * 1996-06-28 1998-01-20 Nikko Gould Foil Kk Electrolytic copper foil
JPH10341066A (en) * 1997-06-10 1998-12-22 Furukawa Electric Co Ltd:The Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
JP2002012998A (en) * 2000-04-28 2002-01-15 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed wiring board and surface treatment method therefor
JP2002167691A (en) * 2000-11-27 2002-06-11 Furukawa Circuit Foil Kk Metallic foil and laminated sheet for circuit board substrate using the foil
JP2003171781A (en) * 2001-09-28 2003-06-20 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuit board, and production method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438053A (en) * 1977-08-29 1979-03-22 Mitsubishi Electric Corp Safety device for elevator cage
JPS6113688A (en) * 1984-06-28 1986-01-21 福田金属箔粉工業株式会社 Copper foil for printed circuit and method of producing same
JPS63500250A (en) * 1985-06-28 1988-01-28 サーキット フォイル ユー.エス.エイ.インコーポレイテッド Treatment for copper foil
JPS62142389A (en) * 1985-12-17 1987-06-25 福田金属箔粉工業株式会社 Copper foil for printed circuit and manufacture of the same
JPH01246393A (en) * 1988-03-25 1989-10-02 Fukuda Metal Foil & Powder Co Ltd Surface treatment of copper foil for inner layer or copper lined laminated sheet
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JPH1018075A (en) * 1996-06-28 1998-01-20 Nikko Gould Foil Kk Electrolytic copper foil
JPH10341066A (en) * 1997-06-10 1998-12-22 Furukawa Electric Co Ltd:The Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
JP2002012998A (en) * 2000-04-28 2002-01-15 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed wiring board and surface treatment method therefor
JP2002167691A (en) * 2000-11-27 2002-06-11 Furukawa Circuit Foil Kk Metallic foil and laminated sheet for circuit board substrate using the foil
JP2003171781A (en) * 2001-09-28 2003-06-20 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuit board, and production method therefor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JP4660819B2 (en) * 2005-12-15 2011-03-30 福田金属箔粉工業株式会社 Copper foil for flexible printed wiring boards for COF
JP2007165674A (en) * 2005-12-15 2007-06-28 Fukuda Metal Foil & Powder Co Ltd Copper foil for flexible printed wiring board for cof
JP2008007803A (en) * 2006-06-27 2008-01-17 Furukawa Circuit Foil Kk Surface-treated copper foil
EP2849265A3 (en) * 2008-02-22 2015-07-01 Colorado State University Research Foundation Lithium-ion battery
JP2015038880A (en) * 2008-02-22 2015-02-26 コロラド ステイト ユニバーシティ リサーチ ファウンデーション Lithium ion battery
JP2009295858A (en) * 2008-06-06 2009-12-17 Mitsubishi Materials Corp Flexible base material
JP2011179078A (en) * 2010-03-02 2011-09-15 Fukuda Metal Foil & Powder Co Ltd Treated copper foil
CN102196675A (en) * 2010-03-02 2011-09-21 福田金属箔粉工业株式会社 Processed copper foil
KR101189132B1 (en) 2012-01-20 2012-10-10 엘에스엠트론 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR101189131B1 (en) 2012-01-20 2012-10-10 엘에스엠트론 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP2016501753A (en) * 2012-12-21 2016-01-21 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Multilayer flexible metal-clad laminate and manufacturing method thereof
US10645805B2 (en) 2012-12-21 2020-05-05 Nexflex Co., Ltd. Multi-layer flexible metal-clad laminate and manufacturing method thereof
JP2015061756A (en) * 2013-08-21 2015-04-02 Jx日鉱日石金属株式会社 Copper foil with carrier and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
US10443143B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing a chromium coating and a coated object
US10443142B2 (en) 2014-01-15 2019-10-15 Savroc Ltd Method for producing chromium-containing multilayer coating and a coated object
WO2016005651A1 (en) * 2014-07-11 2016-01-14 Savroc Ltd A chromium-containing coating, a method for its production and a coated object
US10487412B2 (en) 2014-07-11 2019-11-26 Savroc Ltd Chromium-containing coating, a method for its production and a coated object
TWI666977B (en) * 2015-02-12 2019-07-21 日商福田金屬箔粉工業股份有限公司 Processed copper foil, copper-clad laminated board using the processed copper foil, and printed wiring board
CN106211567A (en) * 2015-02-12 2016-12-07 福田金属箔粉工业株式会社 Process Copper Foil, the copper-clad laminated board using this process Copper Foil and printed wiring board
CN106211567B (en) * 2015-02-12 2019-10-18 福田金属箔粉工业株式会社 Handle copper foil, copper-clad laminated board and printed wiring board using the processing copper foil
JP2016149438A (en) * 2015-02-12 2016-08-18 福田金属箔粉工業株式会社 Treatment copper foil, copper-clad laminate using the treatment copper foil, and print circuit board
TWI663268B (en) * 2015-07-29 2019-06-21 日商福田金屬箔粉工業股份有限公司 Processed copper foil for low dielectric constant resin substrate and copper-clad laminate using the same, method for processing roughened layer of the processed copper foil, manufacturing method of copper-clad laminate, and printed wiring board
CN106413248A (en) * 2015-07-29 2017-02-15 福田金属箔粉工业株式会社 Treated copper foil for low dielectric resin substrate and copper-clad laminate and printed writing board using the same
JP2021098892A (en) * 2019-12-19 2021-07-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Surface treated copper foil, method of producing the same, copper foil laminate comprising the same, and printed circuit board comprising the same
JP7064563B2 (en) 2019-12-19 2022-05-10 イルジン マテリアルズ カンパニー リミテッド Surface-treated copper foil, its manufacturing method, copper foil laminated board including it, and printed wiring board including it
US11622445B2 (en) 2019-12-19 2023-04-04 Iljin Materials Co., Ltd. Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same

Similar Documents

Publication Publication Date Title
US7790269B2 (en) Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP2717911B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP5481577B1 (en) Copper foil with carrier
JP4927503B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP4934409B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP3081026B2 (en) Electrolytic copper foil for printed wiring boards
JP2005206915A (en) Copper foil for printed circuited board, and its production method
JP2006210689A (en) Copper foil for high frequency printed wiring board and its production method
US20100282500A1 (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
WO2014136785A1 (en) Copper foil with attached carrier, copper-clad laminate using same, printed circuit board, electronic device, and method for manufacturing printed circuit board
JP2010180454A (en) Surface-treated copper foil, method for manufacturing the same and copper-clad laminate
JP4202840B2 (en) Copper foil and method for producing the same
JP5248684B2 (en) Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP2920083B2 (en) Copper foil for printed circuit and manufacturing method thereof
KR100654737B1 (en) Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
JP4429539B2 (en) Electrolytic copper foil for fine pattern
JP2717910B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP2011174132A (en) Copper foil for printed circuit board
JP4941204B2 (en) Copper foil for printed wiring board and surface treatment method thereof
JP4660819B2 (en) Copper foil for flexible printed wiring boards for COF
JP5151761B2 (en) Method for producing rolled copper foil for printed wiring board
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5467009B2 (en) RESIST-FORMED WIRING BOARD AND ELECTRONIC CIRCUIT MANUFACTURING METHOD
JP3564460B2 (en) Copper foil for printed wiring board and method for producing the same
JP4698957B2 (en) Electrolytic copper foil and electrolytic polishing method for electrolytic copper foil glossy surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A977 Report on retrieval

Effective date: 20080901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A02