JP5151761B2 - Method for producing rolled copper foil for printed wiring board - Google Patents

Method for producing rolled copper foil for printed wiring board Download PDF

Info

Publication number
JP5151761B2
JP5151761B2 JP2008188255A JP2008188255A JP5151761B2 JP 5151761 B2 JP5151761 B2 JP 5151761B2 JP 2008188255 A JP2008188255 A JP 2008188255A JP 2008188255 A JP2008188255 A JP 2008188255A JP 5151761 B2 JP5151761 B2 JP 5151761B2
Authority
JP
Japan
Prior art keywords
copper foil
layer
nickel
cobalt
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008188255A
Other languages
Japanese (ja)
Other versions
JP2009188369A (en
Inventor
雄行 松本
健治 横溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008188255A priority Critical patent/JP5151761B2/en
Publication of JP2009188369A publication Critical patent/JP2009188369A/en
Application granted granted Critical
Publication of JP5151761B2 publication Critical patent/JP5151761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、粗化面と光沢面を有するプリント配線板用圧延銅箔に関するものであり、特に、プリント配線板用圧延銅箔の光沢面の表面上に、ソフトエッチング処理した後の局部的に侵食した凹みの発生を防止し、更に耐加熱変色性と酸溶解性に優れた皮膜を有するプリント配線板用圧延銅箔およびその製造方法に関するものである。   The present invention relates to a rolled copper foil for a printed wiring board having a roughened surface and a glossy surface, and in particular, locally on the glossy surface of the rolled copper foil for a printed wiring board after soft etching treatment. The present invention relates to a rolled copper foil for printed wiring boards, which has a film that prevents the occurrence of eroded dents and has excellent heat discoloration resistance and acid solubility, and a method for producing the same.

プリント配線板は、一般に銅箔と合成樹脂等の基材とを加熱圧着して張り合わせて銅張積層板を形成し、その後目的とする回路を形成するためにフォトレジストによる回路を印刷した後、不要の銅部をエッチングにより除去して回路を形成することにより作製される。   A printed wiring board is generally formed by bonding a copper foil and a base material such as a synthetic resin by thermocompression bonding to form a copper-clad laminate, and then printing a circuit using a photoresist to form a desired circuit, The circuit is formed by removing unnecessary copper portions by etching.

プリント配線板用銅箔は、基材との接着面となる粗化面と配線の表面になる光沢面を有する。   The copper foil for printed wiring boards has a roughened surface that becomes an adhesive surface with a substrate and a glossy surface that becomes the surface of the wiring.

粗化面においては、基材との接着力を確保するための処理を行い、さらに基材との接着性における耐熱、耐薬品などの接着特性やエッチング特性などを安定化させることについて様々な表面処理が付与されている。   On the roughened surface, various surface treatments are carried out to ensure adhesion to the substrate, and to stabilize adhesion and etching properties such as heat resistance and chemical resistance in adhesion to the substrate. Processing has been granted.

一方、反対側の面である光沢面においては、耐加熱変色性、半田ぬれ性、レジスト密着性、ソフトエッチングの際の溶解性、表面の均一性などが要求されている。   On the other hand, the glossy surface which is the opposite surface is required to have heat discoloration resistance, solder wettability, resist adhesion, solubility during soft etching, surface uniformity, and the like.

そこで、粗化面側、光沢面側において、それぞれ別の処理法が必要であり検討されている。   Therefore, different treatment methods are necessary and studied on the roughened surface side and the glossy surface side, respectively.

特にプリント配線板用圧延銅箔は、電解銅箔よりも優れた屈曲特性を示し、携帯電話の折り曲げ部やスライド部、デジタルカメラ、プリンターなどの可動部、また、HDDやDVD、CDなどのディスク関連機器の可動部の配線材料に広く用いられている。圧延銅箔は、銅張積層板を形成する際の熱履歴により、結晶粒が大きく成長して粒界が少なく、結晶粒が高配向性を示し、これにより屈曲の際に生じるクラックの進展が遅くなり優れた屈曲特性を発現する。   In particular, rolled copper foils for printed wiring boards exhibit bending properties superior to electrolytic copper foils, such as mobile phone bent parts and slide parts, movable parts such as digital cameras and printers, and disks such as HDDs, DVDs, and CDs. Widely used as wiring material for movable parts of related equipment. In rolled copper foil, due to the thermal history when forming a copper clad laminate, the crystal grains grow large and there are few grain boundaries, and the crystal grains show high orientation, which causes cracks to develop during bending. Slow down and develop excellent bending properties.

しかしながら、完全な単結晶の状態にはならず局部的に結晶配向性の異なる部分が生じることは否めない。   However, it cannot be denied that a portion having a different crystal orientation is locally generated instead of a complete single crystal state.

ここで、プリント配線板用銅箔の光沢面側に要求される特性について更に詳細に記す。   Here, the characteristic requested | required by the glossy surface side of the copper foil for printed wiring boards is described in detail.

最近プリント配線板には、電子機器の小型、軽量化から、特に薄くて軽くまた折り曲げ性に優れたフレキシブル基板の需要が増えており、基材としては、ポリイミド基材が主に用いられる。リジッド基板用のガラスエポキシ基材と銅箔とを張り合わせる際には温度160〜170℃で1〜2時間加熱圧着されるが、フレキシブル基板用のポリイミド基材に対しては高温の条件で張り合わされ、特に接着剤を介さない2層フレキ(ポリイミドワニスを直接銅箔上へ塗布し、フレキシブル基板とする方法でポリイミド層と銅箔層の2層構造となっているため、2層フレキと呼ぶ)においては、更に高温で張り合わせるため、銅箔の光沢面側特性のうち、耐加熱変色性は極めて重要な特性の一つになっており、耐加熱変色性においてはこれまで200〜250℃で10分程度の処理で酸化されなければ良かったが、先に述べた、特に2層フレキに対しては、300℃で30分の加熱処理でも酸化変色しないような耐加熱変色性が求められている。   Recently, the demand for flexible substrates that are particularly thin, light, and excellent in bendability is increasing for printed wiring boards due to the reduction in size and weight of electronic devices, and polyimide substrates are mainly used as substrates. When a glass epoxy base material for a rigid substrate is bonded to a copper foil, it is heat-pressed at a temperature of 160 to 170 ° C. for 1 to 2 hours, but it is bonded to a polyimide base material for a flexible substrate under a high temperature condition. In particular, a two-layer flexible film that does not use an adhesive (referred to as a two-layer flexible because a polyimide substrate and a copper foil layer have a two-layer structure by applying a polyimide varnish directly on a copper foil and forming a flexible substrate). ), The heat discoloration resistance is one of the most important characteristics among the glossy surface side characteristics of the copper foil. However, for the two-layer flexible film described above, heat discoloration resistance that does not cause oxidative discoloration even at 30 ° C. for 30 minutes is required. There.

また、配線のファイン化にともない、銅箔の薄厚化、配線形成の際のドライフィルムレジストとの密着性確保、めっきの前処理において過酸化水素と硫酸よりなる酸溶液を用いて所望量のソフトエッチング処理がなされる。ソフトエッチングでは、酸溶液での溶解性と表面の均一性が求められる。   In addition, with the finer wiring, thinning of copper foil, ensuring adhesion with dry film resist during wiring formation, and using an acid solution consisting of hydrogen peroxide and sulfuric acid in the pretreatment of plating, a desired amount of soft Etching is performed. Soft etching requires solubility in an acid solution and surface uniformity.

酸溶解性に対しては、銅用の酸溶解液を用いて表面処理層の溶解速度が銅と同等の溶解速度を備えることが必要になっている。   For acid solubility, it is necessary that the dissolution rate of the surface treatment layer should be equal to that of copper using an acid solution for copper.

また表面の均一性については、特に、圧延銅箔においては、前記した部分的に結晶配向性の異なる部分において、エッチング速度が異なり局部的に侵食した凹み(3μm程度ソフトエッチングした場合、大きさが50〜100μm、深さが1〜2μmの侵食凹み)が生じ、これは配線形成後に部分的な欠陥を招くことになり発生を防止する必要があった。   As for surface uniformity, in particular, in the rolled copper foil, in the part where the crystal orientation is partially different, the etching rate is different and the locally eroded dent (when soft etching is about 3 μm, the size is small. An erosion dent having a depth of 50 to 100 μm and a depth of 1 to 2 μm was generated. This resulted in a partial defect after the wiring was formed, and it was necessary to prevent the occurrence.

一般にプリント配線板用銅箔の光沢面側の処理においては、銅箔素材表面の直上に亜鉛めっきして防錆層としてのクロメート処理が施されるが、本構成ではソフトエッチング処理時に局部的に侵食された凹み部が生じ、また200〜250℃で10分程度の耐加熱変色性しか示さない。   Generally, in the processing on the glossy side of copper foil for printed wiring boards, chroming treatment is applied as a rust-proof layer by galvanizing directly on the copper foil material surface. An eroded dent is formed, and only exhibits heat discoloration resistance at 200 to 250 ° C. for about 10 minutes.

そこで、特許文献4に示されるように、銅箔の表面に銅めっき層を形成することで、300℃、30分の耐加熱変色性を有するプリント配線板用銅箔が提案されている。また特許文献3に示されるように銅めっき層を施すことで接着力と屈曲性の良好な銅箔が提案されている。   Thus, as shown in Patent Document 4, a copper foil for printed wiring boards having a heat discoloration resistance at 300 ° C. for 30 minutes has been proposed by forming a copper plating layer on the surface of the copper foil. Moreover, as shown in Patent Document 3, a copper foil having good adhesive strength and flexibility has been proposed by applying a copper plating layer.

さらに特許文献1,2に示されるように銅箔の表面をエッチング処理することで光沢面の表面を改善することが提案されている。   Further, as disclosed in Patent Documents 1 and 2, it has been proposed to improve the surface of the glossy surface by etching the surface of the copper foil.

特開平7−74464号公報Japanese Patent Laid-Open No. 7-74464 特開2004−238647号公報JP 2004-238647 A 特開2007−19322号公報JP 2007-19322 A 特許第3113445号公報Japanese Patent No. 311445

しかしながら、ソフトエッチング処理した後の局部的に侵食した凹みの発生の防止と耐加熱変色性の双方を満足するプリント配線板用銅箔は得られていない。   However, a copper foil for printed wiring boards that satisfies both the prevention of the occurrence of locally eroded dents after the soft etching treatment and the resistance to heat discoloration has not been obtained.

本発明の目的は、圧延銅箔の光沢面側において、ソフトエッチング処理の際、局部的に侵食された凹みが生じることがなく、また300℃、30分の高温処理でも変色を起こさず更に酸溶液に対する溶解性が良好なプリント配線板用銅箔およびその製造方法を提供することにある。   The object of the present invention is to prevent the formation of locally eroded dents during the soft etching process on the glossy surface side of the rolled copper foil, and without causing discoloration even at a high temperature treatment of 300 ° C. for 30 minutes. It is providing the copper foil for printed wiring boards with the favorable solubility with respect to a solution, and its manufacturing method.

本発明の製造方法は、後の製造工程において表面処理として所望のソフトエッチングを行うことが必須となっているプリント配線板用圧延銅箔の製造方法であって、素材となる圧延銅箔素材の光沢面側に、上記ソフトエッチング時にエッチングされる深さと同等若しくはそれ以上の厚さを有し、かつ、電解めっき浴を用いためっきによって形成される銅めっき層を形成し、粗化面側には粗化めっき層を形成し、次いで光沢面側と粗化面側との両側において、それらの上にニッケルとコバルトからなる合金層、亜鉛層及びクロメート層を順次形成し、上記銅めっき層の厚さが0.1μm以上、7μm以下であり、上記ニッケルとコバルトからなる合金層におけるニッケル付着量を0.5μg/cm 2 以上、2.0μg/cm 2 以下とし、コバルト付着量をニッケル付着量とコバルト付着量の合計に対して40%以上、80%以下の重量比とし、上記亜鉛層の亜鉛付着量を0.5μg/cm 2 以上、2.0μg/cm 2 以下とし、上記クロメート層のクロム付着量を0.3μg/cm 2 以上、1.2μg/cm 2 以下とすることを特徴とするプリント配線板用圧延銅箔の製造方法である。 The production method of the present invention is a method for producing a rolled copper foil for a printed wiring board in which it is essential to perform desired soft etching as a surface treatment in a later production process, and the rolled copper foil material used as a material On the glossy surface side, a copper plating layer having a thickness equal to or greater than the depth etched during the soft etching and formed by plating using an electrolytic plating bath is formed, and on the roughened surface side Forming a rough plating layer, and then forming an alloy layer made of nickel and cobalt, a zinc layer and a chromate layer on both the glossy surface side and the rough surface side in order , thickness of 0.1μm or more and 7μm or less, a nickel adhesion amount in the alloy layer made of the nickel and cobalt 0.5 [mu] g / cm 2 or more, and 2.0 [mu] g / cm 2 or less, with cobalt The amount of 40% or more with respect to the total nickel deposition amount and cobalt deposition amount, and 80% or less by weight, a zinc coating weight of the zinc layer 0.5 [mu] g / cm 2 or more, and 2.0 [mu] g / cm 2 or less the chromium add-on amount of the chromate layer 0.3 [mu] g / cm 2 or more, 1.2 ug / cm 2 or less and a manufacturing method of the printed wiring board rolled copper foil, characterized by.

本発明の製造方法は、上記銅めっき層の厚さが0.3μm以上、7μm以下であるとよい。
ここで、圧延銅箔の表面を均一化する前記ソフトエッチングは、銅めっき層の厚み分もしくは銅めっき層以下の厚み分行うとよい。あるいはソフトエッチングを行った後に銅めっき層の一部が残るように行うとよい。
Production method of the present invention, the thickness of the copper plating layer is 0.3 [mu] m or more, may Ru der below 7 [mu] m.
Here, the soft etching for making the surface of the rolled copper foil uniform may be performed by the thickness of the copper plating layer or the thickness of the copper plating layer or less. Or it is good to carry out so that a part of copper plating layer may remain after performing soft etching.

本発明によれば、圧延銅箔素材表面にソフトエッチングする深さに相当する厚み分(0.1μm以上、7μm以下)の銅めっき層を施し、その上にニッケルとコバルトよりなる合金層、亜鉛層、クロメート層よりなる光沢面を形成することで、ソフトエッチング後の外観において局部的に侵食された凹み部がなく、300℃、30分の高温処理に対して変色しないプリント配線板用銅箔を提供することができる。   According to the present invention, a copper plating layer having a thickness (0.1 μm or more and 7 μm or less) corresponding to the depth of soft etching is applied to the surface of the rolled copper foil material, and an alloy layer made of nickel and cobalt is formed thereon, zinc By forming a glossy surface consisting of a layer and a chromate layer, there is no dent that is locally eroded in the appearance after soft etching, and the copper foil for printed wiring boards that does not change color at 300 ° C for 30 minutes at high temperature Can be provided.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は本発明のプリント配線基板用銅箔Aの詳細断面を示したものである。   FIG. 1 shows a detailed cross section of a copper foil A for printed wiring board according to the present invention.

図1において、10は、圧延銅箔素材で、この一方が光沢面11g、他方が粗化面11rとされる。   In FIG. 1, 10 is a rolled copper foil material, one of which is a glossy surface 11g and the other is a roughened surface 11r.

光沢面11g側の圧延銅箔素材10には、結晶配向性がランダムである銅めっき層12、ニッケルとコバルトの合金層13、亜鉛層14、クロメート層15が順次形成されて光沢面11gが形成される。また粗化面11r側には、粗化めっき層16、ニッケルとコバルトからなる合金層17、亜鉛層18及びクロメート層19が順次形成されて粗化面11rが形成される。この粗化めっき層16に、合金層17、亜鉛層18及びクロメート層19を形成する際には、それぞれ単独でめっきを行うようにしても、光沢面11g側の合金層13、亜鉛層14、クロメート層15と同時にめっきするようにしてもよい。   On the rolled copper foil material 10 on the glossy surface 11g side, a copper plating layer 12, a nickel-cobalt alloy layer 13, a zinc layer 14, and a chromate layer 15 are formed in this order to form a glossy surface 11g. Is done. On the roughened surface 11r side, a roughened plated layer 16, an alloy layer 17 made of nickel and cobalt, a zinc layer 18 and a chromate layer 19 are sequentially formed to form the roughened surface 11r. When the alloy layer 17, the zinc layer 18 and the chromate layer 19 are formed on the rough plating layer 16, the alloy layer 13 on the glossy surface 11g side, the zinc layer 14, Plating may be performed simultaneously with the chromate layer 15.

更に、粗化面11rには、クロメート層19の上にシランカップリング層20が形成される。   Furthermore, a silane coupling layer 20 is formed on the chromate layer 19 on the roughened surface 11r.

このように本発明は、圧延銅箔素材10の表面にソフトエッチングする深さに相当する厚み分の銅めっき層12を施し、その上にニッケルとコバルトからなる合金層13を形成し、更にその上に亜鉛層14、クロメート層15を順次形成して光沢面11gを形成することで、ソフトエッチング処理の際、局部的に侵食された凹みが生じることがなく、また300℃、30分の高温処理でも変色を起こさず更に酸溶液に対する溶解性が良好なプリント配線板用銅箔Aとすることができる。   Thus, in the present invention, a copper plating layer 12 having a thickness corresponding to the depth of soft etching is applied to the surface of the rolled copper foil material 10, and an alloy layer 13 made of nickel and cobalt is formed thereon, and further The zinc layer 14 and the chromate layer 15 are sequentially formed on the surface to form the glossy surface 11g, so that a locally eroded dent is not generated during the soft etching process, and the high temperature is 300 ° C. for 30 minutes. It can be set as the copper foil A for printed wiring boards which does not discolor also by a process and has the further favorable solubility with respect to an acid solution.

本発明に用いられる銅箔としての圧延銅箔素材10は、厚さ、表面の粗さや形態については特に限定するものではない。   The rolled copper foil material 10 as the copper foil used in the present invention is not particularly limited in terms of thickness, surface roughness and form.

圧延銅箔素材10の光沢面11g側に形成する銅めっき層12は電解めっき浴を用いてめっきされ、めっき厚みは銅箔をソフトエッチングする厚みだけ施すが、配線形成においては各製造条件にもよるが、一般に0.1μm以上〜7μm以下程度エッチングする場合が多く、銅めっき層12は、望ましくは0.1μm以上〜7μm以下程度施す。また、配線が形成される銅箔は、厚みの規定があるため、圧延銅箔素材10と銅めっき層12の総厚みが所望の銅箔厚み(18.1μm以上〜25μm以下)となるように構成される。   The copper plating layer 12 to be formed on the glossy surface 11g side of the rolled copper foil material 10 is plated using an electrolytic plating bath, and the plating thickness is applied only to the thickness by which the copper foil is soft-etched. However, in general, etching is often performed in a range of about 0.1 μm to 7 μm, and the copper plating layer 12 is desirably applied in a range of about 0.1 μm to 7 μm. Moreover, since the copper foil in which wiring is formed has a regulation of thickness, the total thickness of the rolled copper foil material 10 and the copper plating layer 12 is set to a desired copper foil thickness (18.1 μm to 25 μm). Composed.

銅めっき層12は、無光沢、光沢めっきと特に限定はされず、また浴の種類も限定するものではないが、環境面、取り扱い面において一般的な硫酸銅−硫酸浴が推奨される。   The copper plating layer 12 is not particularly limited to matte or bright plating, and the type of bath is not limited, but a general copper sulfate-sulfuric acid bath is recommended in terms of environment and handling.

銅めっきを行うためのめっき浴組成および処理条件例を次に示す。   A plating bath composition for copper plating and an example of processing conditions are shown below.

硫酸銅五水和物(CuSO4・5H2O):100〜250g/L
硫酸(H2SO4):50〜150g/L
液温:30〜50℃
電流密度Dk:1〜20A/dm2
処理時間:電流密度によりソフトエッチングする量(深さ)の厚み分の処理時間
銅めっき層12を施した後、ニッケルとコバルトの合金層13を形成する。
Copper sulfate pentahydrate (CuSO 4 .5H 2 O): 100 to 250 g / L
Sulfuric acid (H 2 SO 4 ): 50 to 150 g / L
Liquid temperature: 30-50 degreeC
Current density Dk: 1 to 20 A / dm 2
Processing time: Processing time corresponding to the thickness (depth) of soft etching depending on the current density After the copper plating layer 12 is applied, an alloy layer 13 of nickel and cobalt is formed.

ニッケルとコバルトの合金層13は、電解めっき浴を用いてニッケル付着量が0.5μg/cm2以上〜2.0μg/cm2以下で、コバルト付着量はニッケル付着量とコバルト付着量の合計に対して40〜80%の重量比でめっきされる。 Alloy layer 13 of nickel and cobalt, nickel adhesion amount using an electrolytic plating bath at 0.5 [mu] g / cm 2 or more ~2.0μg / cm 2 or less, cobalt deposition amount in the total of the nickel deposition amount and cobalt deposition amount It is plated at a weight ratio of 40 to 80%.

ニッケル付着量が0.5μg/cm2未満では300℃、30分の高温処理によって変色が生じ、耐熱酸化性が悪化し、2.0μg/cm2を超えると表面色が灰色状になり、半田ぬれ性が悪化するために好ましくない。一方コバルト付着量については、ニッケル付着量とコバルト付着量の合計に対して重量比40%未満では、酸溶解性が悪化し、重量比80%を超える場合においては効果に変化が無く不経済である。 If the nickel adhesion is less than 0.5 μg / cm 2 , discoloration occurs due to high temperature treatment at 300 ° C. for 30 minutes, and the heat oxidation resistance deteriorates. If it exceeds 2.0 μg / cm 2 , the surface color becomes gray and the solder This is not preferable because the wettability deteriorates. On the other hand, with respect to the cobalt adhesion amount, if the weight ratio is less than 40% with respect to the sum of the nickel adhesion amount and the cobalt adhesion amount, the acid solubility deteriorates, and if the weight ratio exceeds 80%, the effect does not change and is uneconomical. is there.

ニッケル−コバルトめっきを行うためのめっき浴組成及び処理条件例を次に示す。   An example of a plating bath composition and processing conditions for performing nickel-cobalt plating is shown below.

硫酸ニッケル六水和物(NiSO4・6H2O):150〜200g/L
硫酸コバルト七水和物(CoSO4・7H2O):20〜30g/L
クエン酸一水和物(C687・H2O):10〜20g/L
液温:35〜45℃
pH:3.0〜4.0
Dk:0.5〜2.0A/dm2
処理時間:2〜5秒
ニッケル−コバルト合金めっき層13を施した後、亜鉛めっき層13を施す。
Nickel sulfate hexahydrate (NiSO 4 .6H 2 O): 150 to 200 g / L
Cobalt sulfate heptahydrate (CoSO 4 .7H 2 O): 20-30 g / L
Citric acid monohydrate (C 6 H 8 O 7 .H 2 O): 10 to 20 g / L
Liquid temperature: 35-45 degreeC
pH: 3.0-4.0
Dk: 0.5 to 2.0 A / dm 2
Treatment time: 2 to 5 seconds After the nickel-cobalt alloy plating layer 13 is applied, the zinc plating layer 13 is applied.

亜鉛めっきを行うためのめっき浴組成及び処理条件例を次に示す。   An example of the plating bath composition and processing conditions for galvanizing is shown below.

硫酸亜鉛七水和物(ZnSO4・7H2O):80〜100g/L
クエン酸三ナトリウム(C65Na37):15〜25g/L
液温:15〜25℃
pH:3.0〜4.0
Dk:0.3〜2.0A/dm2
処理時間:2〜5秒
亜鉛の付着量は0.5μg/cm2以上〜2.0μg/cm2以下であることが望ましい。亜鉛付着量が0.5μg/cm2未満では防錆層としての役割を果たさず、さらにクロム付着量を制御することが困難となり、2.0μg/cm2を超えると、プリント配線板を形成する際にエッチングにより回路面に露出した亜鉛が製造工程中に塩酸や無電解スズめっき液によって溶出しやすくなるためである。
Zinc sulfate heptahydrate (ZnSO 4 .7H 2 O): 80 to 100 g / L
Trisodium citrate (C 6 H 5 Na 3 O 7): 15~25g / L
Liquid temperature: 15-25 ° C
pH: 3.0-4.0
Dk: 0.3 to 2.0 A / dm 2
Processing time: adhesion amount of 2-5 seconds zinc is desirably 0.5 [mu] g / cm 2 or more ~2.0μg / cm 2 or less. If the zinc adhesion amount is less than 0.5 μg / cm 2, it does not serve as a rust prevention layer, and it becomes difficult to control the chromium adhesion amount, and if it exceeds 2.0 μg / cm 2 , a printed wiring board is formed. This is because zinc exposed to the circuit surface by etching tends to be eluted by hydrochloric acid or electroless tin plating solution during the manufacturing process.

亜鉛めっき層14を施した後、3価のクロメート処理を浸漬により行ってクロメート層15を形成する。   After the galvanized layer 14 is applied, a trivalent chromate treatment is performed by dipping to form the chromate layer 15.

クロメート処理を行うための浴組成及び処理条件例を示す。   An example of the bath composition and treatment conditions for chromate treatment is shown.

硫酸クロム九水和物(Cr(SO43・9H2O):0.05〜0.25g/L
硝酸(HNO3):2〜20g/L
液温:20〜30℃
pH:3.0〜4.0
処理時間:2〜10秒
クロム付着量は0.3μg/cm2以上〜1.2μg/cm2以下の範囲が望ましい。クロム付着量が0.3μg/cm2未満であると防錆能力が不足し、1.2μg/cm2を超えるとクロメート層15が厚く脆弱になり、剥離しやすくなる。
Chromium sulfate nonahydrate (Cr (SO 4 ) 3 · 9H 2 O): 0.05 to 0.25 g / L
Nitric acid (HNO 3 ): 2 to 20 g / L
Liquid temperature: 20-30 degreeC
pH: 3.0-4.0
Treatment time: 2-10 seconds Chromium coating weight 0.3 [mu] g / cm 2 or more ~1.2μg / cm 2 or less in the range is desirable. Chromium coating weight is insufficient anticorrosive ability is less than 0.3 [mu] g / cm 2, becomes 1.2 ug / cm 2 by weight, the chromate layer 15 is thick brittle, consisting apt to be removed.

また、粗化面11rは、圧延銅箔素材10の裏面に粗化めっき層16を形成した後、ニッケルとコバルトからなる合金層17、亜鉛層18及びクロメート層19を順次めっきにより形成して粗化面11rを形成する。   Further, the roughened surface 11r is formed by forming a rough plated layer 16 on the back surface of the rolled copper foil material 10, and subsequently forming an alloy layer 17, a zinc layer 18 and a chromate layer 19 made of nickel and cobalt by plating. The chemical surface 11r is formed.

この粗化めっき層16は、プリント配線板用銅箔Aと基材とを接着する際に接着性を高めるために形成される。   The rough plating layer 16 is formed in order to enhance the adhesiveness when bonding the copper foil A for printed wiring board and the substrate.

更に、上述のように粗化面11rには、クロメート層19の上に、シランカップリング剤を塗布し、これを乾燥させてシランカップリング層20を形成する。シランカップリング剤としては、基材にポリイミドを用いる場合、アミノシランなどを用いるとよい。   Further, as described above, the silane coupling layer 20 is formed on the roughened surface 11r by applying a silane coupling agent on the chromate layer 19 and drying it. As the silane coupling agent, aminosilane or the like is preferably used when polyimide is used for the base material.

実施例1
材料には厚さ18μmの圧延銅箔を用いた。圧延銅箔表面を清浄化するために水酸化ナトリウム40g/L、炭酸ナトリウム20g/L、温度40℃のアルカリ溶液で電流密度5A/dm2、処理時間30秒にて陰極電解脱脂した後、硫酸10%、室温の溶液で30秒酸処理による前処理を施した。この銅箔に硫酸銅五水和物200g/L、硫酸100g/L、温度40℃に調整しためっき浴を用いて電流密度10A/dm2で90秒電解処理し銅めっき層を施した。銅めっき付着量は重量法により定量し、3μmであることが確認された。
Example 1
The material used was a rolled copper foil having a thickness of 18 μm. In order to clean the rolled copper foil surface, sodium hydroxide 40 g / L, sodium carbonate 20 g / L, cathodic electrolytic degreasing with an alkaline solution at a temperature of 40 ° C. with a current density of 5 A / dm 2 and a treatment time of 30 seconds, and then sulfuric acid A pretreatment was carried out with a 10%, room temperature solution by acid treatment for 30 seconds. This copper foil was subjected to electrolytic treatment for 90 seconds at a current density of 10 A / dm 2 using a plating bath adjusted to 200 g / L of copper sulfate pentahydrate, 100 g / L of sulfuric acid, and a temperature of 40 ° C. to give a copper plating layer. The amount of copper plating adhered was determined by a gravimetric method and confirmed to be 3 μm.

次いでこの銅箔に硫酸ニッケル六水和物175g/L、硫酸コバルト七水和物25g/L、クエン酸一水和物15g/L、温度40℃、pH3.3に調整しためっき浴(A)を用いて電流密度0.8A/dm2で3秒間電解処理してニッケルとコバルトからなる合金層を施した。 Next, a plating bath (A) prepared by adjusting the copper foil to 175 g / L of nickel sulfate hexahydrate, 25 g / L of cobalt sulfate heptahydrate, 15 g / L of citric acid monohydrate, temperature of 40 ° C. and pH 3.3. Was used for electrolytic treatment at a current density of 0.8 A / dm 2 for 3 seconds to give an alloy layer made of nickel and cobalt.

次いでこの銅箔に硫酸亜鉛七水和物95g/L、クエン酸三ナトリウム20g/L、温度25℃、pH3.2に調整しためっき浴を用いて電流密度0.5A/dm2で3秒間電解処理して亜鉛めっき層を施した。 Next, this copper foil was electrolyzed for 3 seconds at a current density of 0.5 A / dm 2 using a plating bath adjusted to 95 g / L of zinc sulfate heptahydrate, 20 g / L of trisodium citrate, temperature of 25 ° C. and pH of 3.2. Treated to give a galvanized layer.

次いでこの銅箔に硫酸クロム九水和物0.2g/L、硝酸10g/L、温度25℃、pH3.7に調整した浴を用いて5秒間浸漬処理して3価クロメート処理を施した。   Next, this copper foil was subjected to a trivalent chromate treatment by dipping for 5 seconds using a bath adjusted to 0.2 g / L of chromium sulfate nonahydrate, 10 g / L of nitric acid, a temperature of 25 ° C., and a pH of 3.7.

めっき付着量は、皮膜を酸に溶解した後、誘導プラズマ発光分光分析装置(ICP−AES)により測定を行った。その結果、ニッケル付着量が1.2μg/cm2コバルト付着量が2.2μg/cm2、亜鉛付着量が1.2μg/cm2、クロム付着量が0.8μg/cm2であることが確認された。 The plating adhesion amount was measured with an induction plasma emission spectroscopic analyzer (ICP-AES) after dissolving the film in acid. As a result, confirmed that the amount of nickel deposited is 1.2 ug / cm 2 of cobalt adhesion amount 2.2μg / cm 2, the zinc coating weight is 1.2 ug / cm 2, the amount of chromium deposited is 0.8 [mu] g / cm 2 It was done.

実施例2〜8
実施例2〜8では、銅箔素材表面上へ、実施例1と同様に付着厚3.0μmの銅めっきを施し、ニッケルとコバルトの合金層を電流密度と浴組成を調整することでニッケル付着量とコバルト付着量とコバルト重量比を変えて作製した。
Examples 2-8
In Examples 2-8, copper plating with an adhesion thickness of 3.0 μm was performed on the surface of the copper foil material in the same manner as in Example 1, and nickel adhesion was achieved by adjusting the current density and bath composition of the nickel-cobalt alloy layer. The amount, the amount of cobalt adhesion, and the cobalt weight ratio were changed.

実施例9〜14
実施例9〜14では、銅箔素材表面上へ付着厚0.5μm、7.0μm、1.0μm、5.0μm、0.1μm及び0.3μmの銅めっきをそれぞれ施し、ニッケル付着量とコバルト付着量とコバルト重量比を実施例8と同様にして作製した。
Examples 9-14
In Examples 9 to 14, copper plating with an adhesion thickness of 0.5 μm, 7.0 μm, 1.0 μm, 5.0 μm, 0.1 μm and 0.3 μm was performed on the surface of the copper foil material, respectively, and the nickel adhesion amount and cobalt The amount of adhesion and the weight ratio of cobalt were prepared in the same manner as in Example 8.

比較例1〜6
比較例として銅箔素材表面上の銅めっきを施さない場合(比較例1)、ニッケルとコバルトの合金層においてニッケル付着量が0.5μg/cm2未満の場合(比較例2)、亜鉛めっき付着量が0.5μg/cm2未満、クロメート層のクロム付着量が0.3μg/cm2未満の場合(比較例3)、ニッケルとコバルトの合金層が無い、亜鉛めっきとクロメート処理のみを施した場合(比較例4)、ニッケルとコバルトの合金層にかえてニッケル単体層にした場合(比較例5)、銅箔単体(比較例6)の場合の試料を作製した。
Comparative Examples 1-6
As a comparative example, when the copper plating on the copper foil material surface is not performed (Comparative Example 1), when the nickel adhesion amount is less than 0.5 μg / cm 2 in the alloy layer of nickel and cobalt (Comparative Example 2), the zinc plating adhesion When the amount was less than 0.5 μg / cm 2 and the chromium adhesion amount of the chromate layer was less than 0.3 μg / cm 2 (Comparative Example 3), there was no nickel-cobalt alloy layer, and only zinc plating and chromate treatment were performed. In the case (Comparative Example 4), in the case of a nickel simple substance layer (Comparative Example 5) instead of the nickel-cobalt alloy layer, a sample in the case of a copper foil simple substance (Comparative Example 6) was prepared.

得られた銅箔の光沢面の特性について下記の耐加熱変色性と酸溶解性の項目についてそれぞれ評価した。   The properties of the glossy surface of the obtained copper foil were evaluated for the following items of heat discoloration resistance and acid solubility.

(1)ソフトエッチング後の局部的な凹みの発生評価
ソフトエッチング後の局部的な凹みの発生評価は、ソフトエッチング液として過酸化水素と硫酸を主成分とした市販のエッチング液(CPE700、三菱瓦斯化学製)で銅めっき付着厚相当のエッチング処理を行い、処理後の外観をSEMを用いて観察した。
ソフトエッチング後の局部的な凹みを図2(a)、図2(b)に示す。図2(a)は100倍、図2(b)は500倍のSEM外観を示したものであり、3μm相当のエッチング処理を行うと大きさが50〜100μm、深さが1〜2μm程度の侵食凹みの不具合部の有無を観察した。
(1) Evaluation of local dent occurrence after soft etching The evaluation of local dent occurrence after soft etching is based on a commercially available etchant (CPE700, Mitsubishi Gas, which mainly contains hydrogen peroxide and sulfuric acid as a soft etchant. (Chemical) was subjected to an etching treatment corresponding to the thickness of the copper plating, and the appearance after the treatment was observed using an SEM.
Local recesses after the soft etching are shown in FIGS. 2 (a) shows the SEM appearance of 100 times and FIG. 2 (b) shows the appearance of SEM of 500 times. When an etching process equivalent to 3 μm is performed, the size is 50 to 100 μm and the depth is about 1 to 2 μm. The presence or absence of a defective part of the erosion dent was observed.

(2)耐加熱変色性
耐加熱変色性は、恒温槽を用いて300℃、30分加熱処理し、変色の評価は色彩色差計を用いて、L*、a*、b*を測定し(JIS Z 8729)に基づいて(1)式に示す色差(△E*ab)により評価した。
(2) Heat discoloration resistance Heat discoloration resistance was measured by heat treatment at 300 ° C. for 30 minutes using a thermostatic bath, and color change was evaluated by measuring L * , a * , b * using a color difference meter ( The color difference (ΔE * ab) shown in the formula (1) was evaluated based on JIS Z 8729).

△E*ab=[(△L*2+(△a*2+(△b*21/2 (1)
JIS Z 8729 より△E*ab値により色差が表1のように評価される。
ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2 (1)
According to JIS Z 8729, the color difference is evaluated as shown in Table 1 based on the ΔE * ab value.

(3)酸溶解性
酸溶解性は銅箔を過酸化水素と硫酸を主成分とした市販のエッチング液(CPE700、三菱瓦斯化学製)で溶解し、溶解前後の重量測定より溶解速度を測定した。銅単体での溶解速度を基準にして評価した。
(3) Acid solubility The acid solubility was determined by dissolving copper foil with a commercially available etching solution (CPE700, manufactured by Mitsubishi Gas Chemical Co., Ltd.) mainly composed of hydrogen peroxide and sulfuric acid, and measuring the dissolution rate by weight measurement before and after dissolution. . Evaluation was based on the dissolution rate of copper alone.

実施例1〜14、比較例1〜6と各評価を表2に示した。   Examples 1 to 14 and Comparative Examples 1 to 6 and evaluations are shown in Table 2.

表2の試験結果より、本発明による実施例1〜14では、ソフトエッチング後の局部的に侵食した凹みむらがなく、耐加熱変色性、酸溶解性がともに良好であることがわかる。   From the test results of Table 2, it can be seen that in Examples 1 to 14 according to the present invention, there is no uneven erosion locally eroded after soft etching, and both heat discoloration resistance and acid solubility are good.

これに対して、圧延銅箔表面に銅めっきを施さない場合(比較例1)は、ソフトエッチング後に局部的に侵食した凹みむらが確認され、ニッケル付着量が0.5μg/cm2未満(比較例2)、亜鉛付着量が0.5μg/cm2未満およびクロム付着量が0.3μg/cm2未満(比較例3)、亜鉛めっきとクロメート処理のみの場合(比較例4)耐加熱変色性が悪く、ニッケル単体層のみでコバルトが含まれない場合(比較例5)酸溶解速度が悪くなっている。 On the other hand, when copper plating is not performed on the surface of the rolled copper foil (Comparative Example 1), dent unevenness that was locally eroded after soft etching was confirmed, and the nickel adhesion amount was less than 0.5 μg / cm 2 (Comparison Example 2), zinc adhesion less than 0.5 μg / cm 2 and chromium adhesion less than 0.3 μg / cm 2 (Comparative Example 3), only with zinc plating and chromate treatment (Comparative Example 4) heat discoloration resistance However, when only nickel simple substance layer does not contain cobalt (Comparative Example 5), the acid dissolution rate is poor.

更に実施例1〜14では、銅箔単体である比較例6とほぼ同等の酸溶解速度であることが分かった。   Furthermore, in Examples 1-14, it turned out that it is an acid dissolution rate substantially equivalent to the comparative example 6 which is copper foil single-piece | unit.

以上の結果より、圧延銅箔素材表面にソフトエッチングする深さに相当する厚み分の銅めっき層を施しその上にニッケルとコバルトよりなる合金層をニッケル付着量が0.5μg/cm2以上〜2.0μg/cm2以下、コバルト付着量がニッケル付着量とコバルト付着量の合計に対して40〜80%の重量比で形成し、その上の亜鉛層の亜鉛付着量が0.5μg/cm2以上〜2.0μg/cm2以下で更にその上のクロメート層のクロム付着量が0.3μg/cm2以上〜1.2μg/cm2以下よりなる銅箔光沢面の構成により、ソフトエッチング後の外観において局部的に侵食された凹み部がなく、300℃、30分の高温処理に対して変色せず、また酸溶解性においてはバリヤー金属として一般に知られるニッケル皮膜よりも優れた酸溶解性を示し、更に銅と同等の良好な酸溶解性が得られプリント配線板用銅箔を提供することができる。 From the above results, a copper plating layer having a thickness corresponding to the depth of soft etching is applied to the surface of the rolled copper foil material, and an alloy layer made of nickel and cobalt is formed thereon with a nickel adhesion amount of 0.5 μg / cm 2 or more to 2.0 μg / cm 2 or less, the amount of cobalt deposited is 40 to 80% of the total amount of nickel deposited and cobalt deposited, and the amount of zinc deposited on the zinc layer is 0.5 μg / cm further the configuration of the copper foil shiny side of chromium coating weight is made of 0.3 [mu] g / cm 2 or more ~1.2μg / cm 2 or less of the chromate layer thereon at least two ~2.0μg / cm 2 or less, after the soft etching In the appearance of the material, there is no locally eroded dent, it is not discolored by high-temperature treatment at 300 ° C. for 30 minutes, and the acid solubility is superior to the nickel coating generally known as a barrier metal. Are shown, it is possible to provide a copper foil for printed wiring boards obtained good acid solubility equivalent to copper.

本発明のプリント配線板用銅箔の一実施の形態を示す横断面図である。It is a cross-sectional view which shows one Embodiment of the copper foil for printed wiring boards of this invention. ソフトエッチング処理後の局部的な凹みSEM外観図である。It is a local dent SEM external view after a soft etching process.

符号の説明Explanation of symbols

10 圧延銅箔素材
11g 光沢面
11r 粗化面
12 銅めっき層
13 ニッケルとコバルトからなる合金層
14 亜鉛層
15 クロメート層
10 Rolled copper foil material 11g Glossy surface 11r Roughened surface 12 Copper plating layer 13 Alloy layer made of nickel and cobalt 14 Zinc layer 15 Chromate layer

Claims (2)

後の製造工程において表面処理として所望のソフトエッチングを行うことが必須となっているプリント配線板用圧延銅箔の製造方法であって、
素材となる圧延銅箔素材の光沢面側に、上記ソフトエッチング時にエッチングされる深さと同等若しくはそれ以上の厚さを有し、かつ、電解めっき浴を用いためっきによって形成される銅めっき層を形成し、粗化面側には粗化めっき層を形成し、次いで光沢面側と粗化面側との両側において、それらの上にニッケルとコバルトからなる合金層、亜鉛層及びクロメート層を順次形成し、
上記銅めっき層の厚さが0.1μm以上、7μm以下であり、上記ニッケルとコバルトからなる合金層におけるニッケル付着量を0.5μg/cm 2 以上、2.0μg/cm 2 以下とし、コバルト付着量をニッケル付着量とコバルト付着量の合計に対して40%以上、80%以下の重量比とし、上記亜鉛層の亜鉛付着量を0.5μg/cm 2 以上、2.0μg/cm 2 以下とし、上記クロメート層のクロム付着量を0.3μg/cm 2 以上、1.2μg/cm 2 以下とすることを特徴とするプリント配線板用圧延銅箔の製造方法。
It is a manufacturing method of a rolled copper foil for printed wiring boards that is required to perform a desired soft etching as a surface treatment in a subsequent manufacturing process,
A copper plating layer having a thickness equal to or greater than the depth etched during the soft etching on the glossy surface side of the rolled copper foil material that is the material and formed by plating using an electrolytic plating bath Then, a rough plating layer is formed on the rough surface side, and then an alloy layer made of nickel and cobalt, a zinc layer, and a chromate layer are sequentially formed on both sides of the gloss surface and the rough surface. Forming ,
The thickness of the copper plating layer is 0.1 μm or more and 7 μm or less, and the nickel adhesion amount in the alloy layer made of nickel and cobalt is 0.5 μg / cm 2 or more and 2.0 μg / cm 2 or less. The amount is 40% or more and 80% or less with respect to the total of nickel adhesion and cobalt adhesion, and the zinc adhesion amount of the zinc layer is 0.5 μg / cm 2 or more and 2.0 μg / cm 2 or less. the chromium add-on amount of the chromate layer 0.3 [mu] g / cm 2 or more, 1.2 ug / cm 2 or less and a manufacturing method of the printed wiring board rolled copper foil, characterized by.
上記銅めっき層の厚さが0.3μm以上、7μm以下である請求項1に記載のプリント配線板用圧延銅箔の製造方法。 The thickness of the copper plating layer is 0.3 [mu] m or more, a method for manufacturing a printed wiring board for rolled copper foil according to Der Ru請 Motomeko 1 below 7 [mu] m.
JP2008188255A 2008-01-10 2008-07-22 Method for producing rolled copper foil for printed wiring board Active JP5151761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188255A JP5151761B2 (en) 2008-01-10 2008-07-22 Method for producing rolled copper foil for printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008003367 2008-01-10
JP2008003367 2008-01-10
JP2008188255A JP5151761B2 (en) 2008-01-10 2008-07-22 Method for producing rolled copper foil for printed wiring board

Publications (2)

Publication Number Publication Date
JP2009188369A JP2009188369A (en) 2009-08-20
JP5151761B2 true JP5151761B2 (en) 2013-02-27

Family

ID=41071280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188255A Active JP5151761B2 (en) 2008-01-10 2008-07-22 Method for producing rolled copper foil for printed wiring board

Country Status (1)

Country Link
JP (1) JP5151761B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983682B1 (en) * 2008-03-31 2010-09-24 엘에스엠트론 주식회사 Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof
JP2011162860A (en) * 2010-02-12 2011-08-25 Furukawa Electric Co Ltd:The Surface-roughened copper foil, method of producing the same and copper-clad laminate plate
JP2013082962A (en) * 2011-10-07 2013-05-09 Hitachi Cable Ltd Roughened foil and method for manufacturing the same
JP7434656B1 (en) 2023-08-31 2024-02-20 Jx金属株式会社 Method for manufacturing surface-treated copper foil, copper-clad laminate, and printed wiring board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113445B2 (en) * 1993-03-29 2000-11-27 株式会社ジャパンエナジー Copper foil for printed circuit and manufacturing method thereof
JP2004238647A (en) * 2003-02-04 2004-08-26 Furukawa Techno Research Kk Smoothened copper foil, and production method therefor
JP2005203621A (en) * 2004-01-16 2005-07-28 Nippon Foil Mfg Co Ltd Metal composite sheet for printed wiring board and printed wiring board using it
JP4744938B2 (en) * 2004-06-04 2011-08-10 Jx日鉱日石金属株式会社 Metal materials for printed wiring boards
JP4492434B2 (en) * 2005-05-16 2010-06-30 日立電線株式会社 Copper foil for printed wiring board, method for producing the same, and trivalent chromium chemical conversion treatment solution used for the production
JP4626390B2 (en) * 2005-05-16 2011-02-09 日立電線株式会社 Copper foil for printed wiring boards in consideration of environmental protection
JP4492806B2 (en) * 2005-07-08 2010-06-30 日本製箔株式会社 Flexible printed wiring board

Also Published As

Publication number Publication date
JP2009188369A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP6023848B2 (en) Copper foil and copper clad laminate for printed circuit
JP2849059B2 (en) Processing method of copper foil for printed circuit
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
JPWO2011138876A1 (en) Copper foil for printed circuit
JP5913356B2 (en) Copper foil for printed circuit
WO2011078077A1 (en) Surface-treated copper foil
JP2005048269A (en) Surface treated copper foil, and board obtained by using the same
JP6205269B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, printed circuit board, and electronic equipment
JP5136383B2 (en) Rolled copper foil for printed wiring boards
JP5151761B2 (en) Method for producing rolled copper foil for printed wiring board
JPH0496395A (en) Processing method for copper foil for printed circuit
JP4941204B2 (en) Copper foil for printed wiring board and surface treatment method thereof
KR100654737B1 (en) Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
JP2011174132A (en) Copper foil for printed circuit board
JP5913355B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
JP5254491B2 (en) Copper foil for printed circuit board and copper clad laminate for printed circuit board
JP5728118B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
JP5814168B2 (en) Copper foil with carrier
JP3367805B2 (en) Processing method of copper foil for printed circuit
JP2875186B2 (en) Processing method of copper foil for printed circuit
JP2875187B2 (en) Processing method of copper foil for printed circuit
JP6329731B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JPH0496394A (en) Processing method for copper foil for printed circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250