JP2849059B2 - Processing method of copper foil for printed circuit - Google Patents

Processing method of copper foil for printed circuit

Info

Publication number
JP2849059B2
JP2849059B2 JP7273715A JP27371595A JP2849059B2 JP 2849059 B2 JP2849059 B2 JP 2849059B2 JP 7273715 A JP7273715 A JP 7273715A JP 27371595 A JP27371595 A JP 27371595A JP 2849059 B2 JP2849059 B2 JP 2849059B2
Authority
JP
Japan
Prior art keywords
cobalt
copper foil
nickel
alloy plating
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7273715A
Other languages
Japanese (ja)
Other versions
JPH0987889A (en
Inventor
英太 新井
英治 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO GUURUDO FUOIRU KK
Original Assignee
NITSUKO GUURUDO FUOIRU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO GUURUDO FUOIRU KK filed Critical NITSUKO GUURUDO FUOIRU KK
Priority to JP7273715A priority Critical patent/JP2849059B2/en
Publication of JPH0987889A publication Critical patent/JPH0987889A/en
Application granted granted Critical
Publication of JP2849059B2 publication Critical patent/JP2849059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、印刷回路用銅箔の
処理方法に関するものであり、特には銅箔の表面に銅−
コバルト−ニッケル合金めっきによる粗化処理後、コバ
ルト−ニッケル合金めっき層を形成することにより、ア
ルカリエッチング性を有し、しかも良好な耐熱剥離強度
及び耐熱酸化性等を具備すると共に黒色の表面色調を有
する印刷回路用銅箔を生成する処理方法において、更に
亜鉛−ニッケル合金めっき層を形成することにより耐熱
酸化性を更に一層改善する印刷回路用銅箔の処理方法関
するものである。本発明銅箔は、例えばファインパター
ン印刷回路及び磁気ヘッド用FPC( Flexible Printe
d Circuit )として特に適する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a copper foil for a printed circuit, and more particularly to a method for treating a copper foil on a surface of the copper foil.
After roughening treatment by cobalt-nickel alloy plating, by forming a cobalt-nickel alloy plating layer, it has alkali etching property, and has good heat-resistant peeling strength and heat-resistant oxidation property, and has a black surface tone. The present invention relates to a method for producing a copper foil for a printed circuit, which further improves the heat-resistant oxidation resistance by forming a zinc-nickel alloy plating layer. The copper foil of the present invention can be used, for example, for fine pattern printed circuits and FPCs (Flexible Printe) for magnetic heads.
d Circuit).

【0002】[0002]

【従来の技術】銅及び銅合金箔(以下銅箔と称する)
は、電気・電子関連産業の発展に大きく寄与しており、
特に印刷回路材として不可欠の存在となっている。印刷
回路用銅箔は一般に、合成樹脂ボード、フィルム等の基
材に接着剤を介して或いは接着剤を使用せずに高温高圧
下で積層接着して銅張積層板を製造し、その後目的とす
る回路を形成するべくレジスト塗布及び露光工程を経て
必要な回路を印刷した後、不要部を除去するエッチング
処理が施される。最終的に、所要の素子が半田付けされ
て、エレクトロニクスデバイス用の種々の印刷回路板を
形成する。印刷回路板用銅箔に関する品質要求は、樹脂
基材と接着される面(粗化面)と非接着面(光沢面)と
で異なり、それぞれに多くの方法が提唱されている。
2. Description of the Related Art Copper and copper alloy foil (hereinafter referred to as copper foil)
Has greatly contributed to the development of the electrical and electronic related industries,
In particular, it is indispensable as a printed circuit material. In general, copper foil for printed circuits is laminated and bonded to a base material such as a synthetic resin board and a film under a high temperature and a high pressure with an adhesive or without using an adhesive to produce a copper-clad laminate. After a necessary circuit is printed through a resist coating and exposure process to form a circuit to be formed, an etching process for removing an unnecessary portion is performed. Finally, the required elements are soldered to form various printed circuit boards for electronic devices. The quality requirements for the copper foil for printed circuit boards differ between the surface to be bonded to the resin substrate (roughened surface) and the non-bonded surface (glossy surface), and many methods have been proposed for each.

【0003】例えば、粗化面に対する要求としては、主
として、 保存時における酸化変色のないこと、 基材との引き剥し強さが高温加熱、湿式処理、半田付
け、薬品処理等の後でも充分なこと、 基材との積層、エッチング後に生じる所謂積層汚点の
ないこと 等が挙げられる。
[0003] For example, requirements for a roughened surface include mainly that there is no oxidative discoloration during storage and that the peeling strength with a substrate is sufficient even after high-temperature heating, wet processing, soldering, chemical processing, or the like. And that there is no so-called lamination stain generated after lamination with the base material and etching.

【0004】粗化処理は銅箔と基材との接着性を決定す
るものとして、大きな役割を担っている。粗化処理とし
ては、当初銅を電着する銅粗化処理が採用されていた
が、その後様々の技術が提唱され、特に耐熱剥離強度、
耐塩酸性及び耐酸化性の改善を目的として銅−ニッケル
粗化処理が一つの代表的処理方法として定着するように
なった。本件出願人は、特開昭52−145769号に
おいて銅−ニッケル粗化処理を提唱し、成果を納めてき
た。銅−ニッケル処理表面は黒色を呈し、特にフレキシ
ブル基板用圧延処理箔では、この銅−ニッケル処理の黒
色が商品としてのシンボルとして認められるに至ってい
る。
[0004] Roughening plays a large role in determining the adhesion between the copper foil and the substrate. As the roughening treatment, copper roughening treatment for electrodepositing copper was initially adopted, but various techniques have been subsequently proposed, especially heat-resistant peel strength,
Copper-nickel roughening treatment has come to be established as one typical treatment method for the purpose of improving hydrochloric acid resistance and oxidation resistance. The present applicant has proposed copper-nickel roughening treatment in Japanese Patent Application Laid-Open No. 52-145768 and has achieved results. The copper-nickel-treated surface has a black color, and particularly in rolled foils for flexible substrates, the black color of the copper-nickel treatment has been recognized as a symbol as a commercial product.

【0005】しかしながら、銅−ニッケル粗化処理は、
耐熱剥離強度及び耐酸化性並びに耐塩酸性に優れる反面
で、近時ファインパターン用処理として重要となってき
たアルカリエッチング液でのエッチングが困難であり、
150μmピッチ回路巾以下のファインパターン形成時
に処理層がエッチング残となってしまう。
However, the copper-nickel roughening treatment is
Although excellent in heat-resistant peeling strength, oxidation resistance and hydrochloric acid resistance, it is difficult to etch with an alkaline etchant that has recently become important as a fine pattern treatment.
When a fine pattern having a circuit width of 150 μm or less is formed, the processing layer is left unetched.

【0006】そこで、ファインパターン用処理として、
本件出願人は、先にCu−Co処理(特公昭63−21
58号及び特願平1−112227号)及びCu−Co
−Ni処理(特願平1−112226号)を開発した。
これら粗化処理は、エッチング性、アルカリエッチング
性及び耐塩酸性については良好であったが、アクリル系
接着剤を用いたときの耐熱剥離強度が低下することが改
めて判明し、また耐酸化性も所期程充分ではなくそして
色調も黒色までには至らず、茶〜こげ茶色であった。
Therefore, as a process for fine patterns,
The applicant of the present application has previously conducted Cu-Co treatment (Japanese Patent Publication No. 63-21 / 1988)
No. 58 and Japanese Patent Application No. 1-112227) and Cu-Co
-Ni processing (Japanese Patent Application No. 1-112226) was developed.
These roughening treatments had good etching properties, alkali etching properties and hydrochloric acid resistance, but it was found again that the heat-resistant peel strength when using an acrylic adhesive was reduced, and oxidation resistance was also low. The color was not enough and the color did not reach black, but it was brown to dark brown.

【0007】最近の印刷回路のファインパターン化及び
多様化への趨勢にともない、 Cu−Ni処理の場合に匹敵する耐熱剥離強度(特に
アクリル系接着剤を用いたとき)及び耐塩酸性を有する
こと、 アルカリエッチング液で150μmピッチ回路巾以下
の印刷回路をエッチングできること、 Cu−Ni処理の場合と同様に、耐酸化性(180℃
×30分のオーブン中での耐酸化性)を向上すること、 Cu−Ni処理の場合と同様の黒化処理であること が更に要求されるようになった。即ち、回路が細くなる
と、塩酸エッチング液により回路が剥離し易くなる傾向
が強まり、その防止が必要である。回路が細くなると、
半田付け等の処理時の高温により回路がやはり剥離し易
くなり、その防止もまた必要である。ファインパターン
化が進む現在、例えばCuCl2 エッチング液で150
μmピッチ回路巾以下の印刷回路をエッチングできるこ
とはもはや必須の要件であり、レジスト等の多様化にと
もないアルカリエッチングも必要要件となりつつある。
黒色表面も、位置合わせ精度及び熱吸収を高めることの
点で銅箔の製作及びチップマウントの観点から重要とな
っている。
[0007] With the recent trend toward fine patterning and diversification of printed circuits, the printed circuit boards have heat-resistant peel strength (especially when an acrylic adhesive is used) and hydrochloric acid resistance comparable to those of Cu-Ni treatment. A printed circuit having a circuit width of 150 μm or less can be etched with an alkaline etchant. Oxidation resistance (180 ° C.) as in the case of Cu-Ni treatment.
It has been further required to improve the oxidation resistance in an oven for 30 minutes, and to perform the same blackening treatment as in the case of Cu-Ni treatment. That is, as the circuit becomes thinner, the tendency of the circuit to be easily peeled off by the hydrochloric acid etching solution becomes stronger, and it is necessary to prevent such tendency. When the circuit becomes thin,
The high temperature during the processing such as soldering also makes the circuit easy to peel off, and its prevention is also necessary. Currently fine pattern progresses, for example in CuCl 2 etching solution 150
It is no longer an essential requirement that a printed circuit having a circuit width of μm pitch or less can be etched, and alkali etching is becoming a necessary requirement as resists and the like are diversified.
The black surface is also important from the standpoint of copper foil fabrication and chip mounting in terms of enhancing alignment accuracy and heat absorption.

【0008】こうした要望に答えて、本件出願人は、銅
箔の表面に銅−コバルト−ニッケル合金めっきによる粗
化処理後、コバルトめっき層或いはコバルト−ニッケル
合金めっき層を形成することにより、印刷回路銅箔とし
て上述した多くの一般的特性を具備することはもちろん
のこと、特にCu−Ni処理と匹敵する上述した諸特性
を具備し、しかもアクリル系接着剤を用いたときの耐熱
剥離強度を低下せず、耐酸化性に優れそして表面色調も
黒色である銅箔処理方法を開発することに成功した(特
公平6−54831号)。コバルト−ニッケル合金めっ
き層の方がコバルトめっき層より耐熱劣化性に優れる。
好ましくは、前記コバルトめっき層或いはコバルト−ニ
ッケル合金めっき層を形成した後に、クロム酸化物の単
独皮膜処理或いはクロム酸化物と亜鉛及び(又は)亜鉛
酸化物との混合皮膜処理を代表とする防錆処理が施され
る。
In response to such a demand, the applicant of the present application has proposed a method of forming a printed circuit by forming a cobalt plating layer or a cobalt-nickel alloy plating layer on a surface of a copper foil after roughening treatment by copper-cobalt-nickel alloy plating. As well as having many of the above-mentioned general properties as a copper foil, in particular, it has the above-mentioned properties comparable to Cu-Ni treatment, and furthermore, has a reduced heat-resistant peel strength when an acrylic adhesive is used. Without this, the inventors succeeded in developing a copper foil treatment method having excellent oxidation resistance and a black surface color (Japanese Patent Publication No. 6-54831). The cobalt-nickel alloy plating layer is more excellent in heat deterioration resistance than the cobalt plating layer.
Preferably, after forming the cobalt plating layer or the cobalt-nickel alloy plating layer, rust prevention represented by a single coating treatment of chromium oxide or a mixed coating treatment of chromium oxide and zinc and / or zinc oxide. Processing is performed.

【0009】[0009]

【発明が解決しようとする課題】その後、電子機器の発
展が進む中で、半導体デバイスの小型化、高集積化が更
に進み、これらの印刷回路の製造工程で行われる処理が
一段と高温となりまた製品となった後の機器使用中の熱
発生により、銅箔と樹脂基材との間での接合力の低下が
あらためて問題となるようになった。本発明の課題は、
特公平6−54831号において確立された銅箔の表面
に銅−コバルト−ニッケル合金めっきによる粗化処理
後、コバルトめっき層或いはコバルト−ニッケル合金め
っき層を形成する印刷回路用銅箔の処理方法において、
該粗化処理後コバルトめっき層より耐熱劣化性に優れる
コバルト−ニッケル合金めっき層を形成する場合に、耐
熱剥離性を更に一層改善することである。
Thereafter, as the development of electronic equipment has progressed, the miniaturization and high integration of semiconductor devices have further progressed, and the processing performed in the manufacturing process of these printed circuits has become even higher and products The heat generated during the use of the device after the occurrence of the above has caused a decrease in the bonding strength between the copper foil and the resin base material, which has become a problem. The object of the present invention is to
In a method of treating a copper foil for a printed circuit, a copper plating layer or a cobalt-nickel alloy plating layer is formed after a roughening treatment by copper-cobalt-nickel alloy plating on the surface of the copper foil established in Japanese Patent Publication No. 6-54831. ,
When forming a cobalt-nickel alloy plating layer which is more excellent in heat deterioration resistance than the cobalt plating layer after the roughening treatment, the heat-peelability is further improved.

【0010】[0010]

【課題を解決するための手段】本発明者らの研究の結
果、銅箔の表面に銅−コバルト−ニッケル合金めっきに
よる粗化処理後、コバルト−ニッケル合金めっき層を形
成し、更にその上に亜鉛−ニッケル合金めっき層を形成
することにより、これまでの利点を生かしたまま耐熱剥
離性を一層改善しうることが明らかとなった。この知見
に基づいて、本発明は、印刷回路用銅箔の処理方法にお
いて、銅箔の表面に銅−コバルト−ニッケル合金めっき
による粗化処理後、コバルト−ニッケル合金めっき層を
形成し、更に亜鉛−ニッケル合金めっき層を形成するこ
とを特徴とする印刷回路用銅箔の処理方法を提供するも
のである。好ましくは、前記亜鉛−ニッケル合金めっき
層を形成した後に、クロム酸化物の単独皮膜処理或いは
クロム酸化物と亜鉛及び(又は)亜鉛酸化物との混合皮
膜処理を代表とする防錆処理が施される。
As a result of the study by the present inventors, a surface of a copper foil is roughened by copper-cobalt-nickel alloy plating, and then a cobalt-nickel alloy plating layer is formed. It has been clarified that the formation of a zinc-nickel alloy plating layer can further improve the heat-peeling resistance while keeping the advantages up to now. Based on this finding, the present invention provides a method of treating a copper foil for printed circuits, comprising forming a cobalt-nickel alloy plating layer after roughening treatment by copper-cobalt-nickel alloy plating on the surface of the copper foil, -To provide a method for treating a copper foil for a printed circuit, characterized by forming a nickel alloy plating layer. Preferably, after the formation of the zinc-nickel alloy plating layer, a rust prevention treatment represented by a single coating treatment of chromium oxide or a mixed coating treatment of chromium oxide and zinc and / or zinc oxide is performed. You.

【0011】特定的には、印刷回路用銅箔の処理方法に
おいて、銅箔の表面に付着量が15〜40mg/dm2
銅−100〜3000μg/dm2 、好ましくは200
0〜3000μg/dm2 コバルト−100〜500μ
g/dm2 、好ましくは200〜400μg/dm2
ッケルであるような銅−コバルト−ニッケル合金めっき
による粗化処理後、付着量が200〜3000μg/d
2 、好ましくは500〜3000μg/dm2 コバル
ト−100〜700μg/dm2 、好ましくは300〜
700μg/dm2 ニッケルのコバルト−ニッケル合金
めっき層を形成し、更に付着量が10〜200μg/d
2 、好ましくは40〜180μg/dm2 亜鉛−60
〜200μg/dm2 、好ましくは80〜200μg/
dm2 ニッケルの亜鉛−ニッケル合金めっき層を形成す
る。望ましくは、粗化処理の銅−コバルト−ニッケル合
金めっき層とその上のコバルト−ニッケル合金めっき層
及び亜鉛−ニッケル合金めっき層において、コバルトの
合計付着量が300〜5000μg/dm2 、好ましく
は2500〜5000μg/dm2 そしてニッケルの合
計付着量が260〜1000μg/dm2 、好ましくは
580〜1000μg/dm2 とされる。
Specifically, in the method for treating a copper foil for a printed circuit, the amount of adhesion on the surface of the copper foil is 15 to 40 mg / dm 2.
Copper—100 to 3000 μg / dm 2 , preferably 200
0-3000 μg / dm 2 cobalt-100-500 μ
g / dm 2 , preferably 200-400 μg / dm 2 After roughening treatment by copper-cobalt-nickel alloy plating such as nickel, the adhesion amount is 200-3000 μg / d.
m 2, preferably 500~3000μg / dm 2 of cobalt -100~700μg / dm 2, preferably 300 to
A cobalt-nickel alloy plating layer of 700 μg / dm 2 nickel is formed, and the adhesion amount is 10 to 200 μg / d.
m 2 , preferably 40-180 μg / dm 2 zinc-60
200200 μg / dm 2 , preferably 80-200 μg / dm 2
zinc dm 2 nickel - forming a nickel alloy plating layer. Preferably, in the roughened copper-cobalt-nickel alloy plating layer and the cobalt-nickel alloy plating layer and the zinc-nickel alloy plating layer thereon, the total amount of deposited cobalt is 300 to 5000 μg / dm 2 , preferably 2500. 5,000 μg / dm 2 and the total amount of nickel deposited is 260-1000 μg / dm 2 , preferably 580-1000 μg / dm 2 .

【0012】[0012]

【発明の実施の形態】本発明において使用する銅箔は、
電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔
の、樹脂基材と接着する面即ち粗化面には積層後の銅箔
の引き剥し強さを向上させることを目的として、脱脂後
の銅箔の表面にふしこぶ状の電着を行なう粗化処理が施
される。電解銅箔は製造時点で凹凸を有しているが、粗
化処理により電解銅箔の凸部を増強して凹凸を一層大き
くする。本発明においては、この粗化処理は銅−コバル
ト−ニッケル合金めっきにより行なわれる。粗化前の前
処理として通常の銅めっき等がそして粗化後の仕上げ処
理として電着物の脱落を防止するために通常の銅めっき
等が行なわれることもある。圧延銅箔と電解銅箔とでは
処理の内容を幾分異にすることもある。本発明において
は、こうした前処理及び仕上げ処理をも含め、銅箔粗化
と関連する公知の処理を必要に応じて含め、総称して粗
化処理と云うものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The copper foil used in the present invention is:
Either electrolytic copper foil or rolled copper foil may be used. Usually, the surface of the copper foil that adheres to the resin substrate, that is, the roughened surface, has a bumpy shape on the surface of the degreased copper foil for the purpose of improving the peel strength of the copper foil after lamination. A roughening process for performing the wearing is performed. Although the electrolytic copper foil has irregularities at the time of manufacture, the convexities of the electrolytic copper foil are enhanced by roughening treatment to further increase the irregularities. In the present invention, this roughening treatment is performed by copper-cobalt-nickel alloy plating. Normal copper plating or the like may be performed as a pre-treatment before roughening, and normal copper plating or the like may be performed as a finishing treatment after the roughening to prevent the electrodeposits from falling off. The content of the treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil. In the present invention, known treatments related to copper foil roughening, including such a pretreatment and a finishing treatment, are included as necessary, and are generally referred to as a roughening treatment.

【0013】本発明における粗化処理としての銅−コバ
ルト−ニッケル合金めっきは、電解めっきにより、付着
量が15〜40mg/dm2 銅−100〜3000μg
/dm2 コバルト−100〜500μg/dm2 ニッケ
ルであるような3元系合金層を形成するように実施され
る。Co付着量が100μg/dm2 未満では、耐熱性
が悪化し、エッチング性が悪くなる。Co付着量が30
00μg/dm2 を超えると、磁性の影響を考慮せねば
ならない場合には好ましくなく、エッチングシミが生
じ、また、耐酸性及び耐薬品性の悪化が考慮されうる。
Ni付着量が100μg/dm2 未満であると、耐熱性
が悪くなる。他方、Ni付着量が500μg/dm2
超えると、エッチング性が低下する。すなわち、エッチ
ング残ができたり、エッチングできないというレベルで
はないが、ファインパターン化が難しくなる。好ましい
Co付着量は2000〜3000μg/dm2 でありそ
して好ましいニッケル付着量は200〜400μg/d
2 である。ここで、エッチングシミとは、塩化銅でエ
ッチングした場合、Coが溶解せずに残ってしまうこと
を意味しそしてエッチング残とは塩化アンモニウムでア
ルカリエッチングした場合、Niが溶解せずに残ってし
まうことを意味するものである。
The copper-cobalt-nickel alloy plating as a roughening treatment in the present invention has an adhesion amount of 15 to 40 mg / dm 2 copper-100 to 3000 μg by electrolytic plating.
/ Dm 2 cobalt—implemented to form a ternary alloy layer such as 100-500 μg / dm 2 nickel. If the amount of Co adhesion is less than 100 μg / dm 2 , the heat resistance deteriorates and the etching property deteriorates. Co deposition amount is 30
If it exceeds 00 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into consideration, and etching stains may occur, and deterioration of acid resistance and chemical resistance may be considered.
If the amount of Ni attached is less than 100 μg / dm 2 , the heat resistance becomes poor. On the other hand, when the Ni adhesion amount exceeds 500 μg / dm 2 , the etching property is reduced. That is, it is not at a level that an etching residue can be formed or cannot be etched, but it is difficult to form a fine pattern. The preferred Co coverage is 2000-3000 μg / dm 2 and the preferred nickel coverage is 200-400 μg / d
m 2 . Here, the etching stain means that when etched with copper chloride, Co remains without dissolving, and when the etching residue is alkali-etched with ammonium chloride, Ni remains without dissolving. It means that.

【0014】こうした3元系銅−コバルト−ニッケル合
金めっきを形成するための一般的浴及びめっき条件は次
の通りである: (銅−コバルト−ニッケル合金めっき) Cu:10〜20g/リットル Co:1〜10g/リットル Ni:1〜10g/リットル pH:1〜4 温度:40〜50℃ 電流密度Dk :20〜30A/dm2 時間:1〜5秒
The general bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating are as follows: (copper-cobalt-nickel alloy plating) Cu: 10-20 g / liter Co: 1 to 10 g / liter Ni: 1 to 10 g / liter pH: 1 to 4 Temperature: 40 to 50 ° C. Current density D k : 20 to 30 A / dm 2 hours: 1 to 5 seconds

【0015】本発明は、粗化処理後、粗化面上に付着量
が200〜3000μg/dm2 コバルト−100〜7
00μg/dm2 ニッケルのコバルト−ニッケル合金め
っき層を形成する。この処理は広い意味で一種の防錆処
理とみることができる。このコバルト−ニッケル合金め
っき層は、銅箔と基板の接着強度を実質的に低下させな
い程度に行なう必要がある。コバルト付着量が200μ
g/dm2 未満では、耐熱剥離強度が低下し、耐酸化性
及び耐薬品性が悪化する。また、もう一つの理由とし
て、コバルト量が少ないと処理表面が赤っぽくなってし
まうので好ましくない。コバルト付着量が3000μg
/dm2 を超えると、磁性の影響を考慮せねばならない
場合には好ましくなく、エッチングシミが生じ、また、
耐酸性及び耐薬品性の悪化が考慮される。好ましいコバ
ルト付着量は500〜3000μg/dm2 である。一
方、ニッケル付着量が100μg/dm2 未満では、耐
熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化す
る。ニッケル付着量が700μg/dm2 を超えるとア
ルカリエッチング性が悪くなる。好ましいニッケル付着
量は300〜700μg/dm2 である。
According to the present invention, after the roughening treatment, the adhered amount on the roughened surface is 200 to 3000 μg / dm 2 cobalt-100 to 7
A cobalt-nickel alloy plating layer of 00 μg / dm 2 nickel is formed. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be applied to such an extent that the adhesive strength between the copper foil and the substrate is not substantially reduced. 200μ cobalt deposit
If it is less than g / dm 2 , the heat-resistant peel strength decreases, and the oxidation resistance and chemical resistance deteriorate. Another reason is that if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable. 3000μg of cobalt deposit
If / dm 2 is exceeded, it is not preferable when the influence of magnetism must be considered, and etching stains occur,
Deterioration of acid resistance and chemical resistance is considered. A preferable cobalt deposition amount is 500 to 3000 μg / dm 2 . On the other hand, when the nickel adhesion amount is less than 100 μg / dm 2 , the heat-resistant peel strength decreases, and the oxidation resistance and chemical resistance deteriorate. When the nickel adhesion amount exceeds 700 μg / dm 2 , the alkali etching property is deteriorated. A preferable nickel deposition amount is 300 to 700 μg / dm 2 .

【0016】コバルト−ニッケル合金めっきの条件は次
の通りである: (コバルト−ニッケル合金めっき) Co:1〜20g/リットル Ni:1〜20g/リットル pH:1.5〜3.5 温度:30〜80℃ 電流密度Dk :1.0〜20.0A/dm2 時間:0.5〜4秒
The conditions for cobalt-nickel alloy plating are as follows: (Cobalt-nickel alloy plating) Co: 1 to 20 g / liter Ni: 1 to 20 g / liter pH: 1.5 to 3.5 Temperature: 30 To 80 ° C. Current density D k : 1.0 to 20.0 A / dm 2 hours: 0.5 to 4 seconds

【0017】本発明に従えば、コバルト−ニッケル合金
めっき上に更に、付着量が10〜200μg/dm2
鉛−60〜200μg/dm2 ニッケルの亜鉛−ニッケ
ル合金めっき層を形成する。亜鉛付着量が10μg/d
2 未満では耐熱劣化率改善効果がない。他方、亜鉛付
着量が200μg/dm2 を超えると耐塩酸劣化率が極
端に悪くなる。ニッケル付着量が60μg/dm2 未満
では耐塩酸劣化率が極端に悪くなり、他方、ニッケル付
着量が200μg/dm2 を超えると、エッチング残が
生じる。好ましくは、亜鉛付着量は40〜180μg/
dm2 、特に好ましくは40〜160μg/dm2 とさ
れ、そしてニッケル付着量は好ましくは80〜200μ
g/dm2 とされ、特に好ましくは100〜200μg
/dm2とされる。亜鉛−ニッケル合金めっき条件は次
の通りである: (亜鉛−ニッケル合金めっき) Zn:10〜30g/リットル Ni:1〜10g/リットル pH:3〜4 温度:40〜50℃ 電流密度Dk :0.5〜5A/dm2 時間:1〜3秒
According to the present invention, a zinc-nickel alloy plating layer having a coating amount of 10 to 200 μg / dm 2 zinc—60 to 200 μg / dm 2 nickel is further formed on the cobalt-nickel alloy plating. Zinc adhesion amount is 10μg / d
If it is less than m 2 , there is no effect of improving the heat deterioration rate. On the other hand, when the zinc adhesion amount exceeds 200 μg / dm 2 , the rate of deterioration of hydrochloric acid resistance becomes extremely poor. If the amount of nickel adhered is less than 60 μg / dm 2 , the rate of deterioration of hydrochloric acid resistance becomes extremely poor, while if the amount of nickel adhered exceeds 200 μg / dm 2 , etching residue occurs. Preferably, the zinc coverage is 40-180 μg /
dm 2 , particularly preferably 40 to 160 μg / dm 2 , and the nickel coverage is preferably 80 to 200 μg / dm 2.
g / dm 2 , particularly preferably 100 to 200 μg
/ Dm 2 . The zinc-nickel alloy plating conditions are as follows: (Zinc-nickel alloy plating) Zn: 10 to 30 g / liter Ni: 1 to 10 g / liter pH: 3 to 4 Temperature: 40 to 50 ° C. Current density D k : 0.5-5A / dm 2 hours: 1-3 seconds

【0018】本発明に従えば、粗化処理としての銅−コ
バルト−ニッケル合金めっき層、コバルト−ニッケル合
金めっき層そして亜鉛−ニッケル合金めっき層が順次形
成されるが、これら層における合計量のコバルト付着量
及びニッケル付着量が重要であることが見いだされた。
理由は定かでないが、3層が一体的に挙動する。コバル
トの合計付着量が300〜5000μg/dm2 であり
そしてニッケルの合計付着量が260〜1000μg/
dm2 とされることが望ましい。コバルトの合計付着量
が300μg/dm2 未満では、耐熱性及び耐薬品性が
低下する。他方コバルトの合計付着量が5000μg/
dm2 を超えると、エッチングシミが生じる。ニッケル
の合計付着量が260μg/dm2 未満では、耐熱性及
び耐薬品性が低下する。ニッケルの合計付着量が100
0μg/dm2 を超えると、エッチング残が生じる。好
ましくは、コバルトの合計付着量は2500〜5000
μg/dm2 であり、そしてニッケルの合計付着量は5
80〜1000μg/dm2 、特に好ましくは600〜
1000μg/dm2 とされる。
According to the present invention, a copper-cobalt-nickel alloy plating layer, a cobalt-nickel alloy plating layer, and a zinc-nickel alloy plating layer are sequentially formed as a roughening treatment. It has been found that the coating weight and the nickel coating weight are important.
For unknown reasons, the three layers behave together. The total cobalt coverage is 300-5000 μg / dm 2 and the total nickel coverage is 260-1000 μg / dm 2.
dm 2 is desirable. If the total amount of deposited cobalt is less than 300 μg / dm 2 , heat resistance and chemical resistance will be reduced. On the other hand, the total deposited amount of cobalt is 5000 μg /
If it exceeds dm 2 , etching stains will occur. If the total amount of nickel deposited is less than 260 μg / dm 2 , heat resistance and chemical resistance will decrease. The total amount of nickel deposited is 100
If it exceeds 0 μg / dm 2 , an etching residue occurs. Preferably, the total deposit of cobalt is 2500-5000.
μg / dm 2 and the total nickel coverage is 5
80 to 1000 μg / dm 2 , particularly preferably 600 to
It is 1000 μg / dm 2 .

【0019】この後、必要に応じ、防錆処理が実施され
る。本発明において好ましい防錆処理は、クロム酸化物
単独の皮膜処理或いはクロム酸化物と亜鉛/亜鉛酸化物
との混合物皮膜処理である。クロム酸化物と亜鉛/亜鉛
酸化物との混合物皮膜処理とは、亜鉛塩または酸化亜鉛
とクロム酸塩とを含むめっき浴を用いて電気めっきによ
り亜鉛または酸化亜鉛とクロム酸化物とより成る亜鉛−
クロム基混合物の防錆層を被覆する処理である。めっき
浴としては、代表的には、K2Cr2O7 、Na2Cr2O7等の重ク
ロム酸塩やCrO3等の少なくとも一種と、水溶性亜鉛塩、
例えばZnO 、ZnSO4 ・7H2O等少なくとも一種と、水酸化
アルカリとの混合水溶液が用いられる。代表的なめっき
浴組成と電解条件例は次の通りである: (クロム防錆処理) K2Cr2O7 (Na2Cr2O7或いはCrO3):2〜10g/リットル NaOH或いはKOH :10〜50g/リットル ZnO 或いはZnSO4 ・7H2O:0.05〜10g/リットル pH:7〜13 浴温:20〜80℃ 電流密度Dk :0.05〜5A/dm2 時間:5〜30秒 アノード:Pt-Ti 板、ステンレス鋼板等 クロム酸化物はクロム量として15μg/dm2 以上そ
して亜鉛は30μg/dm2 以上の被覆量が要求され
る。
Thereafter, rust prevention treatment is performed as required. In the present invention, a preferable rust preventive treatment is a film treatment of chromium oxide alone or a mixture of chromium oxide and zinc / zinc oxide. The coating treatment of a mixture of chromium oxide and zinc / zinc oxide refers to zinc-containing zinc or zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate.
This treatment covers the rust-preventive layer of the chromium-based mixture. As a plating bath, typically, at least one of dichromates such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt,
For example ZnO, and at least one ZnSO 4 · 7H 2 O, etc., a mixed aqueous solution of alkali hydroxide is used. Typical plating bath compositions and examples of electrolysis conditions are as follows: (Chromium rust preventive treatment) K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter ZnO or ZnSO 4 · 7H 2 O: 0.05~10g / l pH: 7 to 13 bath temperature: 20 to 80 ° C. current density D k: 0.05~5A / dm 2 Time: 5 30 seconds Anode: Pt-Ti plate, stainless steel plate, etc. Chromium oxide requires a coating amount of 15 μg / dm 2 or more in terms of chromium and zinc requires 30 μg / dm 2 or more.

【0020】こうして得られた銅箔は、優れた耐熱性剥
離強度、耐酸化性及び耐塩酸性を有し、しかもCuCl
2 エッチング液で150μmピッチ回路巾以下の印刷回
路をエッチングでき、しかもアルカリエッチングも可能
とする。アルカリエッチング液としては、例えば、NH4O
H:6モル/リットル; NH4Cl:5モル/リットル;CuCl2:
2モル/リットル(温度50℃)等の液が知られてい
る。
The copper foil thus obtained has excellent heat-resistant peel strength, oxidation resistance and hydrochloric acid resistance,
(2) A printed circuit having a pitch of 150 μm or less can be etched with an etching solution, and alkali etching is also possible. Examples of the alkaline etching solution include NH 4 O
H: 6 mol / l; NH 4 Cl: 5 mol / l; CuCl 2 :
Liquids such as 2 mol / liter (temperature 50 ° C.) are known.

【0021】更に重要なことは、得られた銅箔は、Cu
−Ni処理の場合と同じく黒色を有していることであ
る。こうした黒色は、位置合わせ精度及び熱吸収率の高
いことの点から重要である。詳しくは、リジッド基板及
びフレキシブル基板を含め印刷回路基板は、ICや抵
抗、コンデンサ等の部品を自動工程で搭載していくが、
その際センサーにより回路を読み取りながらチップマウ
ントを行なっている。このとき、カプトンなどのフィル
ムを通して銅箔処理面での位置合わせを行なうことがあ
る。また、スルーホール形成時の位置決めも同様であ
る。このとき処理面が黒に近い程、光の吸収が良いた
め、位置決めの精度が高くなる。更には、基板を作製す
る際、銅箔とフィルムとを熱を加えながらキュワリング
して接着させることが多い。このとき、遠赤外線、赤外
線等の長波長波を用いることにより加熱する場合、処理
面の色調が黒い方が加熱効率が良くなる。
More importantly, the obtained copper foil is made of Cu
-Has black color as in the case of the Ni treatment. Such black color is important in terms of high alignment accuracy and high heat absorption. Specifically, printed circuit boards, including rigid boards and flexible boards, are equipped with components such as ICs, resistors, and capacitors in an automated process.
At that time, the chip is mounted while reading the circuit with the sensor. At this time, the alignment on the copper foil treated surface may be performed through a film such as Kapton. The same applies to the positioning at the time of forming the through hole. At this time, the closer the processing surface is to black, the better the light absorption, and thus the higher the positioning accuracy. Further, when producing a substrate, the copper foil and the film are often subjected to curing while being heated and adhered. In this case, when heating is performed by using long-wavelength waves such as far-infrared rays and infrared rays, the black surface tone of the treated surface improves the heating efficiency.

【0022】最後に、必要に応じ、銅箔と樹脂基板との
接着力の改善を主目的として、防錆層上の少なくとも粗
化面にシランカップリング剤を塗布するシラン処理が施
される。塗布方法は、シランカップリング剤溶液のスプ
レーによる吹付け、コーターでの塗布、浸漬、流しかけ
等いずれでもよい。例えば、特公昭60−15654号
は、銅箔の粗面側にクロメート処理を施した後シランカ
ップリング剤処理を行なうことによって銅箔と樹脂基板
との接着力を改善することを記載している。詳細はこれ
を参照されたい。この後、必要なら、銅箔の延性を改善
する目的で焼鈍処理を施すこともある。
Finally, if necessary, a silane treatment for applying a silane coupling agent to at least the roughened surface on the rust-preventing layer is performed mainly for the purpose of improving the adhesive strength between the copper foil and the resin substrate. The application method may be any of spraying of a silane coupling agent solution, application with a coater, immersion, and pouring. For example, Japanese Patent Publication No. 60-15654 describes that the adhesive strength between a copper foil and a resin substrate is improved by performing a silane coupling agent treatment after performing a chromate treatment on a rough surface side of the copper foil. . Please refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving ductility of the copper foil.

【0023】[0023]

【実施例】以下に、実施例及び比較例を呈示する。圧延
銅箔に下記に示す条件範囲で銅−コバルト−ニッケル合
金めっきによる粗化処理を施して、銅を17mg/dm
2、コバルトを2200μg/dm2 そしてニッケルを
300μg/dm2 付着した後に、水洗し、その上にコ
バルト−ニッケル合金めっき層を形成した。コバルト付
着量800〜1400μg/dm2 そしてニッケル付着
量400〜600μg/dm2 とした。水洗後、コバル
ト−ニッケル合金めっき層上に、亜鉛−ニッケル合金め
っき層若しくは亜鉛めっき層若しくはニッケルめっき層
を形成した。亜鉛付着量は0〜250μg/dm2 そし
てニッケル付着量は0〜300μg/dm2 とした。最
後に防錆処理を行ないそして乾燥した。従って3層での
コバルト合計付着量は3000〜3600μg/dm2
でありそしてニッケル合計付着量700〜1000μg
/dm2 であった。上記粗化処理後のコバルト−ニッケ
ル合金めっきに変えてコバルトめっきを施した場合を比
較例サンプルNo.4(800μg/dm2 )、No.
11(1200μg/dm2 )として用意した。上記粗
化処理後のコバルト−ニッケル合金めっき層上に亜鉛−
ニッケルを付着しない比較例サンプルをNo.15(コ
バルト−ニッケル合金めっきのみ)、No.22((コ
バルト−ニッケル合金めっき)+ニッケルめっき)及び
No.16,19((コバルト−ニッケル合金めっき)
+亜鉛めっき)とした。
EXAMPLES Examples and comparative examples will be described below. The rolled copper foil is subjected to a roughening treatment by copper-cobalt-nickel alloy plating under the following condition range, and copper is added at 17 mg / dm.
2, cobalt and 2200μg / dm 2 and nickel after 300 [mu] g / dm 2 deposited, washed with water, cobalt thereon - to form a nickel alloy plating layer. The deposited amount of cobalt was set to 800 to 1400 μg / dm 2 and the deposited amount of nickel was set to 400 to 600 μg / dm 2 . After washing, a zinc-nickel alloy plating layer, a zinc plating layer, or a nickel plating layer was formed on the cobalt-nickel alloy plating layer. The amount of zinc deposited was 0-250 μg / dm 2 and the amount of nickel deposited was 0-300 μg / dm 2 . Finally, a rustproofing treatment was carried out and dried. Therefore, the total deposited amount of cobalt in the three layers is 3000 to 3600 μg / dm 2.
And a total nickel coverage of 700-1000 μg
/ Dm 2 . Comparative Example Sample No. shows the case where cobalt plating was performed instead of the cobalt-nickel alloy plating after the above-described roughening treatment. 4 (800 μg / dm 2 );
11 (1200 μg / dm 2 ). On the cobalt-nickel alloy plating layer after the roughening treatment, zinc-
The comparative sample to which no nickel was attached was designated as No. No. 15 (only cobalt-nickel alloy plating), No. 22 ((cobalt-nickel alloy plating) + nickel plating) and No. 22 16, 19 ((Cobalt-nickel alloy plating)
+ Zinc plating).

【0024】サンプルをガラスクロス基材エポキシ樹脂
板に積層接着し、常態(室温)剥離強度(kg/cm)
を測定し耐熱劣化は180℃×48時間加熱後の剥離強
度の劣化率(%)として示し、そして耐塩酸劣化は18
%塩酸に1時間浸漬した後の剥離強度を0.2mm幅×
10本回路で測定した場合の劣化率(%)として示し
た。アルカリエッチングは下記の液を使用してエッチン
グ状態の目視による観察をした。 (アルカリエッチング液) NH4 OH:6モル/リットル NH4 Cl:5モル/リットル CuCl2 ・2H2 O:2モル/リットル 温度:50℃ エッチングシミは下記の塩化銅−塩酸液を使用してエッ
チング状態の目視による観察をした。 (塩化銅エッチング液) CuCl2 ・2H2 O:200g/リットル HCl:150g/リットル 温度:40℃
The sample was laminated and bonded to a glass cloth substrate epoxy resin plate, and peeled at normal (room temperature) (kg / cm).
Was measured, and the heat resistance deterioration was shown as a deterioration rate (%) of the peel strength after heating at 180 ° C. for 48 hours.
% Immersion in 1% hydrochloric acid for 1 hour
It is shown as a deterioration rate (%) when measured with 10 circuits. In the alkaline etching, the following liquids were used to visually observe the etching state. (Alkali etching solution) NH 4 OH: 6 mol / l NH 4 Cl: 5 mol / l CuCl 2 .2H 2 O: 2 mol / l Temperature: 50 ° C. Etching stains were made using the following copper chloride-hydrochloric acid solution. The etched state was visually observed. (Copper chloride etching solution) CuCl 2 .2H 2 O: 200 g / liter HCl: 150 g / liter Temperature: 40 ° C.

【0025】使用した浴組成及びめっき条件は次の通り
であった: [浴組成及びめっき条件] (A)粗化処理(Cu−Co−Ni合金めっき) Cu:15g/リットル Co:8.5g/リットル Ni:8.6g/リットル pH:2.5 温度:38℃ 電流密度Dk :20A/dm2 時間:2秒 銅付着量:17mg/dm2 コバルト付着量:2200μg/dm2 ニッケル付着量:300μg/dm2 (B)防錆処理(Co−Ni合金めっき) Co:4〜7g/リットル Ni:10g/リットル pH:2.5 温度:50℃ 電流密度Dk :8.9〜13.3A/dm2 時間:0.5秒 コバルト付着量:800〜1400μg/dm2 (No.1〜No.3:800μg/dm2 、 No.5〜No.7:1000μg/dm2 、 No.8〜No.10、No.15〜No.29:12
00μg/dm2 、 No.12〜No.14:1400μg/dm2 ) ニッケル付着量:400〜600μg/dm2 (No.15〜No.22:600μg/dm2 、 No.23〜No.29:400μg/dm2 ) (C)耐熱剥離性改善処理(Zn−Ni) Zn:0〜20g/リットル Ni:0〜5g/リットル pH:3.5 温度:40℃ 電流密度Dk :0〜1.7A/dm2 時間:1秒 Zn付着量:0〜250μg/dm2 (No.1〜14:150μg/dm2 ) Ni付着量:0〜300μg/dm2 (No.1〜14:100μg/dm2 ) (D)防錆処理(クロメート) K2 Cr27 (Na2 Cr27 あるいはCrO
3 ):5g/リットル NaOHあるいはKOH:30g/リットル ZnOあるいはZnSO4 ・7H2 O:5g/リットル pH:10 温度:40℃ 電流密度Dk :2A/dm2 時間:10秒 アノード:Pt−Ti板
The bath composition and plating conditions used were as follows: [Bath composition and plating conditions] (A) Roughening treatment (Cu-Co-Ni alloy plating) Cu: 15 g / liter Co: 8.5 g / Liter Ni: 8.6 g / liter pH: 2.5 Temperature: 38 ° C. Current density D k : 20 A / dm 2 hours: 2 seconds Copper adhesion amount: 17 mg / dm 2 Cobalt adhesion amount: 2200 μg / dm 2 Nickel adhesion amount : 300 μg / dm 2 (B) Rust prevention treatment (Co-Ni alloy plating) Co: 4 to 7 g / liter Ni: 10 g / liter pH: 2.5 Temperature: 50 ° C. Current density D k : 8.9 to 13. 3A / dm 2 Time: 0.5 seconds cobalt deposition amount: 800~1400μg / dm 2 (No.1~No.3: 800μg / dm 2, No.5~No.7: 1000μg / dm 2, No.8 ~ No 10, No.15~No.29: 12
No. 00 μg / dm 2 , 12-No. 14: 1400μg / dm 2) Nickel coating weight: 400~600μg / dm 2 (No.15~No.22: 600μg / dm 2, No.23~No.29: 400μg / dm 2) (C) Heat peelability Improvement treatment (Zn-Ni) Zn: 0 to 20 g / liter Ni: 0 to 5 g / liter pH: 3.5 Temperature: 40 ° C. Current density D k : 0 to 1.7 A / dm 2 hours: 1 second Zn adhesion amount : 0~250μg / dm 2 (No.1~14: 150μg / dm 2) Ni deposition amount: 0~300μg / dm 2 (No.1~14: 100μg / dm 2) (D) rust (chromate) K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO
3): 5 g / l NaOH or KOH: 30 g / liter ZnO or ZnSO 4 · 7H 2 O: 5g / liter pH: 10 Temperature: 40 ° C. Current density D k: 2A / dm 2 Time: 10 seconds anode: Pt-Ti Board

【0026】[0026]

【表1】 [Table 1]

【0027】表1において、Co及びNi付着量は次の
合計量として表してある: (A)粗化処理(Cu−Co−Ni) Co:2200μg/dm2 、 Ni:300μg/dm2 (B)防錆処理(Co−Ni) Co:800〜1400μg/dm2 、 Ni:400〜600μg/dm2 (C)耐熱改善処理(Zn−Ni) Zn:0〜250μg/dm2 Ni:0〜300μg/dm2 エッチング残については、No.22においてのみ認め
られ、それ以外は良好であった。エッチングシミについ
ては、いずれのサンプルにおいても認められなかった。
表1より次のことが判る: (1)亜鉛−ニッケル合金めっき処理における亜鉛及び
ニッケル付着量を一定とした場合、コバルト−ニッケル
合金めっき処理におけるコバルト付着量、ニッケル付着
量の増加と共に耐熱劣化率が減少する。なお、コバルト
−ニッケル合金めっき処理をコバルト処理とした場合に
は、耐熱劣化率及び/又は耐塩酸劣化率が悪化する。
(No.1〜No.14) (2)亜鉛−ニッケル合金めっき処理におけるニッケル
付着量を一定とした場合、亜鉛付着量が200μg/d
2 を超えると、耐塩酸劣化率が急激に悪くなる。又、
亜鉛−ニッケル合金めっき処理をしない場合、並びに亜
鉛−ニッケル合金めっき処理をニッケル処理とした場合
には、耐熱劣化率が悪くなる。(No.15〜No.2
2) (3)亜鉛−ニッケル合金めっき処理におけるニッケル
付着量が60μg/dm2 未満、すなわち50μg/d
2 となると耐塩酸劣化率が悪くなる。(No.23〜
No.29) 以上のことより、本発明により、耐熱劣化性を改善する
ことができると共に耐熱劣化率と耐塩酸劣化率の両者の
バランスのとれた特性を持つ印刷回路用銅箔を得ること
ができることが判る。
[0027] In Table 1, Co and Ni deposition amount are expressed as the following total amount: (A) roughening treatment (Cu-Co-Ni) Co : 2200μg / dm 2, Ni: 300μg / dm 2 (B ) Rust prevention treatment (Co-Ni) Co: 800 to 1400 μg / dm 2 , Ni: 400 to 600 μg / dm 2 (C) Heat resistance improvement treatment (Zn-Ni) Zn: 0 to 250 μg / dm 2 Ni: 0 to 300 μg / Dm 2 etching residue, 22 only, good otherwise. No etching stain was observed in any of the samples.
From Table 1, it can be seen that: (1) When the amount of zinc and nickel deposited in the zinc-nickel alloy plating process is fixed, the amount of cobalt deposited and the amount of nickel deposited in the cobalt-nickel alloy plating process increase, and the heat deterioration rate increases. Decrease. When the cobalt-nickel alloy plating treatment is a cobalt treatment, the heat resistance deterioration rate and / or the hydrochloric acid resistance deterioration rate deteriorate.
(No. 1 to No. 14) (2) When the amount of nickel deposited in the zinc-nickel alloy plating treatment is constant, the amount of zinc deposited is 200 μg / d.
If it exceeds m 2 , the rate of deterioration of hydrochloric acid resistance rapidly deteriorates. or,
When the zinc-nickel alloy plating treatment is not performed, and when the zinc-nickel alloy plating treatment is nickel treatment, the heat deterioration rate is deteriorated. (No. 15 to No. 2
2) (3) The amount of nickel deposited in the zinc-nickel alloy plating treatment is less than 60 μg / dm 2 , that is, 50 μg / d
If m 2 , the rate of deterioration of hydrochloric acid resistance becomes poor. (No. 23-
No. 29) From the above, according to the present invention, it is possible to improve the heat deterioration resistance and to obtain a copper foil for a printed circuit having characteristics in which both the heat deterioration rate and the hydrochloric acid deterioration rate are balanced. I understand.

【0028】[0028]

【発明の効果】本発明は、銅箔の表面に銅−コバルト−
ニッケル合金めっきによる粗化処理後、コバルト−ニッ
ケル合金めっき層を形成する印刷回路用銅箔の処理方法
において、その有益な利点を生かしたまま、耐熱剥離性
を更に一層改善することに成功し、近時の半導体デバイ
スの急激な発展に伴なう処理の高温化並びに印刷回路用
の高密度及び高多層化に対応し得る銅箔の処理方法を提
供する。
According to the present invention, copper-cobalt-
After the roughening treatment by nickel alloy plating, in a method of treating a copper foil for a printed circuit forming a cobalt-nickel alloy plating layer, it succeeded in further improving the heat-peeling resistance while keeping its beneficial advantages, Provided is a method for processing a copper foil capable of coping with a high temperature of a process accompanying recent rapid development of a semiconductor device and a high density and a high multilayer for a printed circuit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−231161(JP,A) 特開 平6−280047(JP,A) 特開 平2−292894(JP,A) 特開 平6−169168(JP,A) 特公 平6−54831(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C25D 5/00 - 7/12 H05K 3/38 H05K 1/09────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-231161 (JP, A) JP-A-6-280047 (JP, A) JP-A-2-292894 (JP, A) 169168 (JP, A) JP 6-54831 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C25D 5/00-7/12 H05K 3/38 H05K 1/09

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 印刷回路用銅箔の処理方法において、銅
箔の表面に銅−コバルト−ニッケル合金めっきによる粗
化処理後、コバルト−ニッケル合金めっき層を形成し、
更に亜鉛−ニッケル合金めっき層を形成することを特徴
とする印刷回路用銅箔の処理方法。
1. A method for treating a copper foil for a printed circuit, comprising: forming a cobalt-nickel alloy plating layer on a surface of the copper foil after roughening treatment by copper-cobalt-nickel alloy plating;
A method for treating a copper foil for a printed circuit, further comprising forming a zinc-nickel alloy plating layer.
【請求項2】 前記亜鉛−ニッケル合金めっき層を形成
した後に防錆処理を施すことを特徴とする請求項1の印
刷回路用銅箔の処理方法。
2. The method for treating a copper foil for a printed circuit according to claim 1, wherein a rust preventive treatment is performed after forming the zinc-nickel alloy plating layer.
【請求項3】 防錆処理がクロム酸化物の単独皮膜処理
或いはクロム酸化物と亜鉛及び(又は)亜鉛酸化物との
混合皮膜処理であることを特徴とする請求項2の印刷回
路用銅箔の処理方法。
3. The copper foil for a printed circuit according to claim 2, wherein the rust preventive treatment is a single film treatment of chromium oxide or a mixed film treatment of chromium oxide and zinc and / or zinc oxide. Processing method.
【請求項4】 印刷回路用銅箔の処理方法において、銅
箔の表面に付着量が15〜40mg/dm2 銅−100
〜3000μg/dm2 コバルト−100〜500μg
/dm2 ニッケルの銅−コバルト−ニッケル合金めっき
による粗化処理後、付着量が200〜3000μg/d
2 コバルト−100〜700μg/dm2 ニッケルの
コバルト−ニッケル合金めっき層を形成し、更に付着量
が10〜200μg/dm2 亜鉛−60〜200μg/
dm2 ニッケルの亜鉛−ニッケル合金めっき層を形成す
ることを特徴とする請求項1〜3いずれか1項の印刷回
路用銅箔の処理方法。
4. A method for treating a copper foil for a printed circuit, wherein the amount of adhesion on the surface of the copper foil is 15 to 40 mg / dm 2 copper-100.
33000 μg / dm 2 cobalt-100-500 μg
/ Dm 2 after roughening treatment by nickel-copper-nickel alloy plating, the adhesion amount is 200 to 3000 μg / d
forming a cobalt-nickel alloy plating layer of m 2 cobalt-100 to 700 μg / dm 2 nickel, and further having an adhesion amount of 10 to 200 μg / dm 2 zinc-60 to 200 μg /
zinc dm 2 nickel - claims 1-3 any one treatment method of the printed circuit copper foil, which comprises forming a nickel alloy plating layer.
【請求項5】 コバルトの合計付着量が300〜500
0μg/dm2 でありそしてニッケルの合計付着量が2
60〜1000μg/dm2 である請求項4の印刷回路
用銅箔の処理方法。
5. The method according to claim 1, wherein the total amount of deposited cobalt is 300 to 500.
0 μg / dm 2 and a total nickel coverage of 2
The method for treating a copper foil for a printed circuit according to claim 4, wherein the amount is 60 to 1000 μg / dm 2 .
【請求項6】 印刷回路用銅箔の処理方法において、銅
箔の表面に付着量が15〜40mg/dm2 銅−200
0〜3000μg/dm2 コバルト−200〜400μ
g/dm2 ニッケルの銅−コバルト−ニッケル合金めっ
きによる粗化処理後、付着量が500〜3000μg/
dm2 コバルト−300〜700μg/dm2 ニッケル
のコバルトーニッケル合金めっき層を形成し、更に付着
量が40〜180μg/dm2 亜鉛−80〜200μg
/dm2 ニッケルの亜鉛−ニッケル合金めっき層を形成
することを特徴とする請求項1〜3いずれか1項の印刷
回路用銅箔の処理方法。
6. A method for treating a copper foil for a printed circuit, wherein the amount of adhesion on the surface of the copper foil is 15 to 40 mg / dm 2 copper-200.
0-3000 μg / dm 2 cobalt -200-400 μ
g / dm 2 nickel after copper-cobalt-nickel alloy plating roughening treatment, the adhesion amount is 500-3000 μg /
dm 2 Cobalt-Copper-nickel alloy plating layer of 300-700 μg / dm 2 nickel is formed, and the coating amount is 40-180 μg / dm 2 Zinc-80-200 μg
/ Dm 2 of nickel zinc - processing method of a copper foil for printed circuit according to claim 1 to 3 any one, characterized by forming a nickel alloy plating layer.
【請求項7】 コバルトの合計付着量が2500〜50
00μg/dm2 でありそしてニッケルの合計付着量が
580〜1000μg/dm2 である請求項6の印刷回
路用銅箔の処理方法。
7. The total deposited amount of cobalt is 2500 to 50.
00μg / dm is 2 and processing method of a printed circuit copper foil according to claim 6 total deposition amount of nickel is 580~1000μg / dm 2.
JP7273715A 1995-09-28 1995-09-28 Processing method of copper foil for printed circuit Expired - Lifetime JP2849059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7273715A JP2849059B2 (en) 1995-09-28 1995-09-28 Processing method of copper foil for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7273715A JP2849059B2 (en) 1995-09-28 1995-09-28 Processing method of copper foil for printed circuit

Publications (2)

Publication Number Publication Date
JPH0987889A JPH0987889A (en) 1997-03-31
JP2849059B2 true JP2849059B2 (en) 1999-01-20

Family

ID=17531556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7273715A Expired - Lifetime JP2849059B2 (en) 1995-09-28 1995-09-28 Processing method of copper foil for printed circuit

Country Status (1)

Country Link
JP (1) JP2849059B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041292A1 (en) 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Copper foil for printed circuit and copper clad laminate
WO2010061736A1 (en) 2008-11-25 2010-06-03 日鉱金属株式会社 Copper foil for printed circuit
WO2011138876A1 (en) 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit
WO2012169249A1 (en) 2011-06-07 2012-12-13 Jx日鉱日石金属株式会社 Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
WO2013187420A1 (en) * 2012-06-11 2013-12-19 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated sheet, printed wiring board, and electronic device using same, as well as method for producing printed wiring board
KR20150008482A (en) 2012-05-11 2015-01-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
KR20150021474A (en) 2013-08-20 2015-03-02 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil, and laminate, printed wiring board and electronic device using the same, and method of maunfacturing printed wiring board
KR20150064140A (en) 2012-11-09 2015-06-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil and laminate using same
KR20150070380A (en) 2012-11-09 2015-06-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil and laminate using same, copper-clad laminate, printed circuit board, and electronic device
US9232650B2 (en) 2012-11-09 2016-01-05 Jx Nippon Mining & Metals Corporation Surface treated copper foil and laminate using the same
KR20160086377A (en) 2013-12-10 2016-07-19 제이엑스금속주식회사 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
KR20160086378A (en) 2013-12-10 2016-07-19 제이엑스금속주식회사 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
KR20160104598A (en) 2013-10-04 2016-09-05 제이엑스금속주식회사 Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member
KR20160129916A (en) 2012-05-31 2016-11-09 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
US9504149B2 (en) 2012-11-09 2016-11-22 Jx Nippon Mining & Metals Corporation Surface treated copper foil and laminate using the same
US9730332B2 (en) 2012-11-09 2017-08-08 Jx Nippon Mining & Metals Corporation Surface treated copper foil and laminate using the same, printed wiring board, and copper clad laminate
KR20180064992A (en) 2016-12-06 2018-06-15 제이엑스금속주식회사 Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
CN109208040A (en) * 2018-11-02 2019-01-15 山东金盛源电子材料有限公司 A kind of compound additive being used to prepare low roughness electrolytic copper foil
WO2019208525A1 (en) 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
KR20210016019A (en) 2017-03-31 2021-02-10 제이엑스금속주식회사 Surface treated copper foil, surface treated copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
KR20210016599A (en) 2017-03-31 2021-02-16 제이엑스금속주식회사 Surface treated copper foil, surface treated copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051673A (en) * 2001-08-06 2003-02-21 Mitsui Mining & Smelting Co Ltd Printed wiring board copper foil and copper-plated laminated board using the same
JP4115293B2 (en) 2003-02-17 2008-07-09 古河サーキットフォイル株式会社 Copper foil for chip-on-film
KR101065758B1 (en) 2003-02-27 2011-09-19 후루카와 덴키 고교 가부시키가이샤 Copper foil for shielding electromagnetic wave, manufacturing method thereof and electromagnetic wave shield structure
JP2005206915A (en) * 2004-01-26 2005-08-04 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuited board, and its production method
US8357307B2 (en) * 2008-12-26 2013-01-22 Jx Nippon Mining & Metals Corporation Method of forming electronic circuit
MY148764A (en) * 2008-12-26 2013-05-31 Jx Nippon Mining & Metals Corp Rolled copper foil or electrolytic copper foil for electronic circuit, and method of forming electronic circuit using same
MY159142A (en) * 2009-06-19 2016-12-15 Jx Nippon Mining & Metals Corp Copper foil and method for producing same
MY164997A (en) 2011-03-25 2018-02-28 Jx Nippon Mining & Metals Corp Rolled copper or copper-alloy foil provided with roughened surface
WO2012132577A1 (en) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Copper foil for printed circuit
JP5497808B2 (en) * 2012-01-18 2014-05-21 Jx日鉱日石金属株式会社 Surface-treated copper foil and copper-clad laminate using the same
KR102066314B1 (en) * 2012-01-18 2020-01-14 제이엑스금속주식회사 Surface-treated copper foil and copper-clad laminate using same
JP5855244B2 (en) * 2012-05-21 2016-02-09 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
JP5362923B1 (en) * 2012-10-12 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
JP5362922B1 (en) * 2012-10-12 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
JP5362899B1 (en) * 2012-09-10 2013-12-11 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same
JP5432357B1 (en) * 2012-09-10 2014-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
WO2014038716A1 (en) * 2012-09-10 2014-03-13 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board using same
WO2014038717A1 (en) * 2012-09-10 2014-03-13 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board using same
KR20150060940A (en) * 2012-09-28 2015-06-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil provided with carrier, and copper-clad laminate using said copper foil provided with carrier
JP5882932B2 (en) * 2012-11-06 2016-03-09 Jx金属株式会社 Rolled copper foil, surface-treated copper foil and laminate
CN104002515B (en) * 2013-02-25 2016-08-03 南亚塑胶工业股份有限公司 Composite type double sided black Copper Foil and manufacture method thereof
JP6273106B2 (en) * 2013-07-24 2018-01-31 Jx金属株式会社 Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041292A1 (en) 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Copper foil for printed circuit and copper clad laminate
CN102224281B (en) * 2008-11-25 2014-03-26 吉坤日矿日石金属株式会社 Copper foil for printed circuit
WO2010061736A1 (en) 2008-11-25 2010-06-03 日鉱金属株式会社 Copper foil for printed circuit
CN102224281A (en) * 2008-11-25 2011-10-19 吉坤日矿日石金属株式会社 Copper foil for printed circuit
WO2011138876A1 (en) 2010-05-07 2011-11-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit
US9580829B2 (en) 2010-05-07 2017-02-28 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
US9060431B2 (en) 2011-06-07 2015-06-16 Jx Nippon Mining & Metals Corporation Liquid crystal polymer copper-clad laminate and copper foil used for said laminate
WO2012169249A1 (en) 2011-06-07 2012-12-13 Jx日鉱日石金属株式会社 Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
KR20150008482A (en) 2012-05-11 2015-01-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
KR20160128467A (en) 2012-05-11 2016-11-07 제이엑스금속주식회사 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
KR20160129916A (en) 2012-05-31 2016-11-09 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
JP5417538B1 (en) * 2012-06-11 2014-02-19 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
CN104364426A (en) * 2012-06-11 2015-02-18 Jx日矿日石金属株式会社 Surface-treated copper foil and laminated sheet, printed wiring board, and electronic device using same, as well as method for producing printed wiring board
WO2013187420A1 (en) * 2012-06-11 2013-12-19 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated sheet, printed wiring board, and electronic device using same, as well as method for producing printed wiring board
KR20150064140A (en) 2012-11-09 2015-06-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil and laminate using same
KR20150070380A (en) 2012-11-09 2015-06-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil and laminate using same, copper-clad laminate, printed circuit board, and electronic device
US9232650B2 (en) 2012-11-09 2016-01-05 Jx Nippon Mining & Metals Corporation Surface treated copper foil and laminate using the same
US9730332B2 (en) 2012-11-09 2017-08-08 Jx Nippon Mining & Metals Corporation Surface treated copper foil and laminate using the same, printed wiring board, and copper clad laminate
US9504149B2 (en) 2012-11-09 2016-11-22 Jx Nippon Mining & Metals Corporation Surface treated copper foil and laminate using the same
KR20150021474A (en) 2013-08-20 2015-03-02 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil, and laminate, printed wiring board and electronic device using the same, and method of maunfacturing printed wiring board
KR20160104598A (en) 2013-10-04 2016-09-05 제이엑스금속주식회사 Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member
KR20160086378A (en) 2013-12-10 2016-07-19 제이엑스금속주식회사 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
KR20160086377A (en) 2013-12-10 2016-07-19 제이엑스금속주식회사 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
US10791631B2 (en) 2016-12-06 2020-09-29 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
KR20180064992A (en) 2016-12-06 2018-06-15 제이엑스금속주식회사 Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
US10925171B2 (en) 2017-03-31 2021-02-16 Jx Nippon Mining & Metals Corporation Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, method for manufacturing printed wiring board, heat dissipation substrate, and method for manufacturing electronic device
US10925170B2 (en) 2017-03-31 2021-02-16 Jx Nippon Mining & Metals Corporation Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
KR20210016599A (en) 2017-03-31 2021-02-16 제이엑스금속주식회사 Surface treated copper foil, surface treated copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
KR20210016019A (en) 2017-03-31 2021-02-10 제이엑스금속주식회사 Surface treated copper foil, surface treated copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
WO2019208525A1 (en) 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
WO2019208521A1 (en) 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
KR20200131868A (en) 2018-04-27 2020-11-24 제이엑스금속주식회사 Surface treatment copper foil, copper clad laminate and printed wiring board
KR20200144135A (en) 2018-04-27 2020-12-28 제이엑스금속주식회사 Surface treatment copper foil, copper clad laminate and printed wiring board
KR20210002559A (en) 2018-04-27 2021-01-08 제이엑스금속주식회사 Surface-treated copper foil, copper clad laminate and printed wiring board
WO2019208522A1 (en) 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
WO2019208520A1 (en) 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
KR20200131864A (en) 2018-04-27 2020-11-24 제이엑스금속주식회사 Surface-treated copper foil, copper clad laminate and printed wiring board
US11382217B2 (en) 2018-04-27 2022-07-05 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
US11375624B2 (en) 2018-04-27 2022-06-28 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
US11337314B2 (en) 2018-04-27 2022-05-17 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
US11337315B2 (en) 2018-04-27 2022-05-17 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper clad laminate, and printed circuit board
CN109208040B (en) * 2018-11-02 2021-03-30 山东金盛源电子材料有限公司 Composite additive for preparing low-roughness electrolytic copper foil
CN109208040A (en) * 2018-11-02 2019-01-15 山东金盛源电子材料有限公司 A kind of compound additive being used to prepare low roughness electrolytic copper foil

Also Published As

Publication number Publication date
JPH0987889A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP2849059B2 (en) Processing method of copper foil for printed circuit
JP6023848B2 (en) Copper foil and copper clad laminate for printed circuit
US5861076A (en) Method for making multi-layer circuit boards
US5389446A (en) Copper foil for printed circuits
EP0396056B1 (en) Treatment of copper foil for printed circuits
TWI540226B (en) Surface treatment of copper foil
JP3295308B2 (en) Electrolytic copper foil
JP5913356B2 (en) Copper foil for printed circuit
JPH0654831B2 (en) Method of treating copper foil for printed circuits
JP2016188436A (en) Copper foil for printed circuit
JPH0650794B2 (en) Method of treating copper foil for printed circuits
JP4941204B2 (en) Copper foil for printed wiring board and surface treatment method thereof
JP2517503B2 (en) Surface treatment method for copper foil for printed circuits
JP3367805B2 (en) Processing method of copper foil for printed circuit
JP2875186B2 (en) Processing method of copper foil for printed circuit
JP2875187B2 (en) Processing method of copper foil for printed circuit
JP5151761B2 (en) Method for producing rolled copper foil for printed wiring board
JPH0654829B2 (en) Method of treating copper foil for printed circuits
JPH05167243A (en) Method of treating surface of copper foil for printed circuit
JP3113445B2 (en) Copper foil for printed circuit and manufacturing method thereof
JPH0654830B2 (en) Method of treating copper foil for printed circuits
JPS6058698A (en) Copper foil for printed circuit and method of producing same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980929

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111106

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 15

EXPY Cancellation because of completion of term