JP5432357B1 - Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same - Google Patents

Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same Download PDF

Info

Publication number
JP5432357B1
JP5432357B1 JP2012247890A JP2012247890A JP5432357B1 JP 5432357 B1 JP5432357 B1 JP 5432357B1 JP 2012247890 A JP2012247890 A JP 2012247890A JP 2012247890 A JP2012247890 A JP 2012247890A JP 5432357 B1 JP5432357 B1 JP 5432357B1
Authority
JP
Japan
Prior art keywords
copper foil
printed wiring
treated copper
wiring board
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012247890A
Other languages
Japanese (ja)
Other versions
JP2014065965A (en
Inventor
英太 新井
敦史 三木
康修 新井
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012247890A priority Critical patent/JP5432357B1/en
Priority to PCT/JP2013/074440 priority patent/WO2014038718A1/en
Priority to TW102132726A priority patent/TWI489014B/en
Priority to CN201380058515.0A priority patent/CN104769165B/en
Priority to KR1020157013115A priority patent/KR101660663B1/en
Priority to TW102141160A priority patent/TWI484073B/en
Priority to PCT/JP2013/080479 priority patent/WO2014073694A1/en
Application granted granted Critical
Publication of JP5432357B1 publication Critical patent/JP5432357B1/en
Publication of JP2014065965A publication Critical patent/JP2014065965A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Abstract

【課題】樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器を提供する。
【解決手段】少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、前記銅箔を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である表面処理銅箔。
【選択図】図1
A surface-treated copper foil that is well bonded to a resin and has excellent transparency after the copper foil is removed by etching, a laminate using the same, a copper-clad laminate, a printed wiring board, and an electronic device Provide equipment.
A surface-treated copper foil in which roughened particles are formed on at least one surface by roughening treatment, and the copper foil is bonded to both surfaces of a polyimide resin substrate, and then etched on both surfaces. When removing the foil and laying the printed matter on which the line-shaped mark is printed under the exposed polyimide substrate, and photographing the printed matter with the CCD camera through the polyimide substrate, the image obtained by the photographing, In the observation point-lightness graph prepared by measuring the lightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends, it occurs from the end of the mark to the portion where the mark is not present. The surface-treated copper foil whose difference (DELTA) B ((DELTA) B = Bt-Bb) of the top average value Bt and bottom average value Bb of a brightness curve is 40 or more.
[Selection] Figure 1

Description

本発明は、表面処理銅箔及びそれを用いた積層板に関し、特に、銅箔をエッチングした後の残部の樹脂の透明性が要求される分野に好適な表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器に関する。   The present invention relates to a surface-treated copper foil and a laminate using the surface-treated copper foil, and in particular, a surface-treated copper foil suitable for a field where transparency of the remaining resin after etching the copper foil is required, and a laminate using the same. The present invention relates to a board, a copper clad laminate, a printed wiring board, and an electronic device.

スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。また配線の高密度化要求によりFPCの多層化がより一層進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。   In a small electronic device such as a smartphone or a tablet PC, a flexible printed wiring board (hereinafter referred to as FPC) is adopted because of easy wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. In addition, the demand for higher wiring density has further increased the number of FPC layers. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.

また、銅箔と樹脂絶縁層との積層板である銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100〜500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。   Moreover, the copper clad laminated board which is a laminated board of copper foil and a resin insulating layer can also be manufactured even if it uses the rolled copper foil by which roughening plating was given to the surface. This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen-free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.

このような技術として、例えば、特許文献1には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅箔エッチング後のフィルムの波長600nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500N/m以上である銅張積層板に係る発明が開示されている。
また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル−亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05〜1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅−コバルト−ニッケル合金めっきによる粗化処理後、コバルト−ニッケル合金めっき層を形成し、更に亜鉛−ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
As such a technique, for example, in Patent Document 1, a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value. An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
Further, Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more. In a flexible printed wiring board for chip-on-flex (COF), the electrolytic copper foil has a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 μm, and the specular gloss at an incident angle of 60 ° is 250 or more, and an invention relating to a flexible printed wiring board for COF is disclosed.
Moreover, in patent document 3, in the processing method of the copper foil for printed circuits, after the roughening process by copper-cobalt-nickel alloy plating on the surface of copper foil, a cobalt-nickel alloy plating layer is formed, and also zinc-nickel An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.

特開2004−98659号公報JP 2004-98659 A WO2003/096776WO2003 / 096776 特許第2849059号公報Japanese Patent No. 2849059

特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。
また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
さらに、特許文献3に記載の処理方法では、銅箔へのCu−Co−Niによる微細処理は可能であったが、当該銅箔を樹脂と接着させてエッチングで除去した後の樹脂について、優れた透明性を実現できていない。
本発明は、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器を提供する。
In Patent Document 1, a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency.
Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF.
Furthermore, in the processing method described in Patent Document 3, Cu-Co-Ni fine processing on the copper foil was possible, but the resin after bonding the copper foil with the resin and removing it by etching was excellent. Transparency is not realized.
The present invention provides a surface-treated copper foil that adheres well to a resin and is excellent in resin transparency after removing the copper foil by etching, a laminate using the same, a copper-clad laminate, a printed wiring board, and Provide electronic equipment.

本発明者らは鋭意研究を重ねた結果、銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、当該印刷物をポリイミド基板越しにCCDカメラで撮影した当該マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線に着目し、当該明度曲線を制御することが、基板樹脂フィルムの種類や基板樹脂フィルムの厚さの影響を受けずに、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすことを見出した。   As a result of intensive studies, the inventors have placed a printed matter with a mark on the polyimide substrate from which the copper foil has been bonded and removed, and the mark portion taken by the CCD camera through the polyimide substrate. Paying attention to the lightness curve near the mark end drawn in the observation point-lightness graph obtained from the image of the above, controlling the lightness curve is not affected by the type of substrate resin film or the thickness of the substrate resin film Furthermore, it has been found that the resin transparency after the copper foil is removed by etching is affected.

以上の知見を基礎として完成された本発明は一側面において、少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、前記銅箔を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である表面処理銅箔である。   The present invention completed on the basis of the above knowledge, in one aspect, is a surface-treated copper foil in which roughened particles are formed on at least one surface by a roughening treatment, and the copper foil is disposed on both sides of a polyimide resin substrate. Then, the copper foils on both sides are removed by etching, and a printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate, and the printed matter is photographed with a CCD camera through the polyimide substrate. In the observation point-brightness graph, the image obtained by the photographing was prepared by measuring the lightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the mark to the portion without the mark is 40 or more. It is the surface-treated copper foil which is the top.

本発明に係る表面処理銅箔の別の実施形態においては、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が50以上である。   In another embodiment of the surface-treated copper foil according to the present invention, a difference ΔB (ΔB = Bt−) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. Bb) is 50 or more.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が60以上である。   In still another embodiment of the surface-treated copper foil according to the present invention, a difference ΔB (ΔB = Bt) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark. -Bb) is 60 or more.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.5以上となる。
In still another embodiment of the surface-treated copper foil according to the present invention, in the observation point-lightness graph, a value indicating a position of an intersection closest to the line-shaped mark among the intersections of the lightness curve and Bt is set. t1 indicates the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. When the value is t2, Sv defined by the following formula (1) is 3.5 or more.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線における(1)式で定義されるSvが3.9以上となる。     In still another embodiment of the surface-treated copper foil according to the present invention, Sv defined by the formula (1) in the brightness curve is 3.9 or more.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線における(1)式で定義されるSvが5.0以上となる。   In still another embodiment of the surface-treated copper foil according to the present invention, Sv defined by the formula (1) in the brightness curve is 5.0 or more.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記粗化処理表面のTDの平均粗さRzが0.30〜0.80μmであり、粗化処理表面のMDの60度光沢度が80〜350%であり、前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90〜2.40である。   In yet another embodiment of the surface-treated copper foil according to the present invention, the TD average roughness Rz of the roughened surface is 0.30 to 0.80 μm, and the roughened surface MD has a 60 ° gloss. The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side is 1.90-2. .40.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記MDの60度光沢度が90〜250%である。   In still another embodiment of the surface-treated copper foil according to the present invention, the 60-degree glossiness of the MD is 90 to 250%.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記TDの平均粗さRzが0.35〜0.60μmである。   In still another embodiment of the surface-treated copper foil according to the present invention, the average roughness Rz of the TD is 0.35 to 0.60 μm.

本発明に係る表面処理銅箔の更に別の実施形態においては、前記A/Bが2.00〜2.20である。   In another embodiment of the surface-treated copper foil which concerns on this invention, said A / B is 2.00-2.20.

本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80〜1.40である。   In still another embodiment of the surface-treated copper foil according to the present invention, the ratio C of 60 ° gloss of MD and 60 ° gloss of TD on the roughened surface (C = (60 ° gloss of MD)) / (60 degree gloss of TD)) is 0.80 to 1.40.

本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90〜1.35である。   In still another embodiment of the surface-treated copper foil according to the present invention, the ratio C of 60 ° gloss of MD and 60 ° gloss of TD on the roughened surface (C = (60 ° gloss of MD)) / (60 degree gloss of TD)) is 0.90 to 1.35.

本発明は更に別の側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。   In still another aspect, the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.

本発明は更に別の側面において、本発明の表面処理銅箔を用いたプリント配線板である。   In still another aspect, the present invention is a printed wiring board using the surface-treated copper foil of the present invention.

本発明は更に別の側面において、本発明のプリント配線板を用いた電子機器である。   In still another aspect, the present invention is an electronic device using the printed wiring board of the present invention.

本発明は更に別の側面において、絶縁樹脂基板と、表面処理が行われている表面側から前記絶縁基板に積層され、銅回路が形成された表面処理銅箔とで構成されたプリント配線板であって、前記銅回路を、表面処理が行われている表面側から積層させた前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であるプリント配線板である。   In yet another aspect, the present invention provides a printed wiring board including an insulating resin substrate and a surface-treated copper foil that is laminated on the insulating substrate from the surface side where the surface treatment is performed and a copper circuit is formed. Then, when the copper circuit is photographed with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment is performed, the copper circuit observed for the image obtained by the photographing is In the observation point-lightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the extending direction, the top average value Bt of the lightness curve generated from the end of the copper circuit to the portion without the copper circuit And the bottom average value Bb is a printed wiring board having a difference ΔB (ΔB = Bt−Bb) of 40 or more.

本発明は更に別の側面において、絶縁樹脂基板と、表面処理が行われている表面側から前記絶縁基板に積層された表面処理銅箔とで構成された銅張積層板であって、前記銅張積層板の前記表面処理銅箔を、エッチングによりライン状の表面処理銅箔とした後に、表面処理が行われている表面側から積層させた前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の表面処理銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、前記ライン状の表面処理銅箔の端部から前記ライン状の表面処理銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である銅張積層板である。   In still another aspect, the present invention provides a copper-clad laminate including an insulating resin substrate and a surface-treated copper foil laminated on the insulating substrate from the surface side on which the surface treatment is performed. When the surface-treated copper foil of the tension laminate is made into a line-shaped surface-treated copper foil by etching, and taken with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment is performed, In the observation point-brightness graph, which was prepared by measuring the brightness for each observation point along the direction perpendicular to the direction in which the line-shaped surface-treated copper foil was stretched, for the image obtained by the photographing, A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped surface-treated copper foil to a portion where the line-shaped surface-treated copper foil is not present is 40 or more. It is the copper clad laminated board which is the top.

本発明は更に別の側面において、本発明のプリント配線板を用いた電子機器である。   In still another aspect, the present invention is an electronic device using the printed wiring board of the present invention.

本発明は更に別の側面において、本発明の銅張積層板を用いたプリント配線板である。   In still another aspect, the present invention is a printed wiring board using the copper clad laminate of the present invention.

本発明は更に別の側面において、本発明の銅張積層板を用いた電子機器である。   In still another aspect, the present invention is an electronic device using the copper clad laminate of the present invention.

本発明は更に別の側面において、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。   In still another aspect, the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.

本発明は更に別の側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。   In yet another aspect, the present invention includes a step of connecting at least one printed wiring board of the present invention and another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, This is a method for manufacturing a printed wiring board in which two or more printed wiring boards are connected.

本発明は更に別の側面において、本発明のプリント配線板が少なくとも1つ接続したプ   In still another aspect of the present invention, a plug in which at least one printed wiring board of the present invention is connected is provided.

本発明によれば、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器を提供することができる。   According to the present invention, a surface-treated copper foil that adheres well to a resin and is excellent in transparency of a resin after the copper foil is removed by etching, a laminate using the same, a copper-clad laminate, and a printed wiring A board and an electronic device can be provided.

Bt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb. t1及びt2及びSvを定義する模式図である。It is a schematic diagram which defines t1, t2, and Sv. 明度曲線の傾き評価の際の、撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging device and the measuring method of the inclination of a lightness curve in the case of evaluation of the lightness curve inclination. Rz評価の際の、(a)比較例1の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (a) comparative example 1 in the case of Rz evaluation. Rz評価の際の、(b)比較例3の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (b) comparative example 3 in the case of Rz evaluation. Rz評価の際の、(c)比較例5の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (c) comparative example 5 in the case of Rz evaluation. Rz評価の際の、(d)比較例6の銅箔表面のSEM観察写真である。It is a SEM observation photograph on the surface of copper foil of (d) comparative example 6 in the case of Rz evaluation. Rz評価の際の、(e)実施例1の銅箔表面のSEM観察写真である。(E) It is a SEM observation photograph of the copper foil surface of Example 1 in the case of Rz evaluation. Rz評価の際の、(f)実施例2の銅箔表面のSEM観察写真である。(F) It is a SEM observation photograph of the copper foil surface of Example 2 in the case of Rz evaluation.

〔表面処理銅箔の形態及び製造方法〕
本発明において使用する銅箔は、樹脂基板と接着させて積層体を作製し、エッチングにより除去することで使用される銅箔に有用である。
本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂基板と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施される。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。本発明においては、この粗化処理は銅−コバルト−ニッケル合金めっきや銅−ニッケル−りん合金めっき等により行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある
お、本願発明に係る圧延銅箔にはAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、V、B等の元素を一種以上含む銅合金箔も含まれる。上記元素の濃度が高くなる(例えば合計で10質量%以上)と、導電率が低下する場合がある。圧延銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。
[Form and manufacturing method of surface-treated copper foil]
The copper foil used in the present invention is useful for a copper foil used by making a laminate by bonding to a resin substrate and removing it by etching.
The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Usually, the surface of the copper foil that adheres to the resin substrate, that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination. A roughening process is carried out to wear. Although the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment. In the present invention, this roughening treatment can be performed by copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or the like. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off. The content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil .
Contact name the rolled copper foil according to the present invention Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, V, copper alloys containing elements one or more of such B Foil is also included. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease. The conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.

また、本願発明に用いる電解銅箔の製造条件を以下に示す
<電解液組成>
銅:90〜110g/L
硫酸:90〜110g/L
塩素:50〜100ppm
レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10〜30ppm
レベリング剤2(アミン化合物):10〜30ppm
上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
Also shows the production conditions of Ru electrodeposition Kaidohaku for use in the present invention are shown below.
<Electrolyte composition>
Copper: 90-110 g / L
Sulfuric acid: 90-110 g / L
Chlorine: 50-100ppm
Leveling agent 1 (bis (3sulfopropyl) disulfide): 10 to 30 ppm
Leveling agent 2 (amine compound): 10 to 30 ppm
As the amine compound, an amine compound having the following chemical formula can be used.

(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。) (In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.)

<製造条件>
電流密度:70〜100A/dm2
電解液温度:50〜60℃
電解液線速:3〜5m/sec
電解時間:0.5〜10分間
<Production conditions>
Current density: 70 to 100 A / dm 2
Electrolyte temperature: 50-60 ° C
Electrolyte linear velocity: 3-5 m / sec
Electrolysis time: 0.5 to 10 minutes

粗化処理としての銅−コバルト−ニッケル合金めっきは、電解めっきにより、付着量が15〜40mg/dm2の銅−100〜3000μg/dm2のコバルト−100〜1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000〜2500μg/dm2であり、好ましいニッケル付着量は500〜1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。 Copper as roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, coating weight is to be the 15~40mg / dm 2 of copper -100~3000μg / dm 2 of cobalt -100~1500μg / dm 2 of nickel It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.

このような3元系銅−コバルト−ニッケル合金めっきを形成するための一般的浴及びめっき条件は次の通りである:
めっき浴組成:Cu10〜20g/L、Co1〜10g/L、Ni1〜10g/L
pH:1〜4
温度:30〜50℃
電流密度Dk25〜45A/dm2
めっき時間:0.2〜3.0
また、粗化処理として、以下の銅−ニッケル−リン合金めっき浴を用いためっき処理を行うことができる。
めっき浴組成:Cu20g/L、Ni5g/L、P1g/L
pH:2
温度:30℃
電流密度D k :35A/dm 2
めっき時間:1秒
また、粗化処理として、以下の銅−ニッケル−コバルト−タングステン合金めっき浴を用いためっき処理を行うことができる。
めっき浴組成:Cu5g/L、Ni16g/L、Co16g/L、W1g/L
pH:3
温度:35℃
電流密度D k :35A/dm 2
めっき時間:0.8秒
また、粗化処理として、以下の銅−ニッケル−モリブデン−リン合金めっき浴を用いためっき処理を行うことができる。
めっき浴組成:Cu10g/L、Ni10g/L、Mo2g/L、P1g/L
pH:3
温度:35℃
電流密度D k :40A/dm 2
めっき時間:0.5秒
Such ternary copper - cobalt - general bath and plating conditions for forming the nickel alloy plating are as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1-4
Temperature: 30-50 ° C
Current density D k : 25 to 45 A / dm 2
Plating time: 0.2 to 3.0 seconds
Further, as the roughening treatment, plating treatment using the following copper-nickel-phosphorus alloy plating bath can be performed.
Plating bath composition: Cu 20 g / L, Ni 5 g / L, P 1 g / L
pH: 2
Temperature: 30 ° C
Current density D k : 35 A / dm 2
Plating time: 1 second
Moreover, as a roughening process, the following plating process using the copper-nickel-cobalt-tungsten alloy plating bath can be performed.
Plating bath composition: Cu 5 g / L, Ni 16 g / L, Co 16 g / L, W 1 g / L
pH: 3
Temperature: 35 ° C
Current density D k : 35 A / dm 2
Plating time: 0.8 seconds
Further, as the roughening treatment, plating treatment using the following copper-nickel-molybdenum-phosphorus alloy plating bath can be performed.
Plating bath composition: Cu 10 g / L, Ni 10 g / L, Mo 2 g / L, P 1 g / L
pH: 3
Temperature: 35 ° C
Current density D k : 40 A / dm 2
Plating time: 0.5 seconds

粗化処理後、粗化面上に付着量が200〜3000μg/dm2のコバルト−100〜700μg/dm2のニッケルのコバルト−ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト−ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。コバルト付着量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じる場合があり、また、耐酸性及び耐薬品性の悪化することがある。好ましいコバルト付着量は500〜2500μg/dm2である。一方、ニッケル付着量が100μg/dm2未満では耐熱剥離強度が低下し耐酸化性及び耐薬品性が悪化することがある。ニッケルが1300μg/dm2を超えると、アルカリエッチング性が悪くなる。好ましいニッケル付着量は200〜1200μg/dm2である。 After the roughening treatment, a cobalt-nickel alloy plating layer of nickel having an adhesion amount of 200 to 3000 μg / dm 2 and cobalt-100 to 700 μg / dm 2 can be formed on the roughened surface. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially reduced. If the amount of cobalt adhesion is less than 200 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable. When the amount of cobalt deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate. A preferable cobalt adhesion amount is 500 to 2500 μg / dm 2 . On the other hand, if the nickel adhesion amount is less than 100 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. When nickel exceeds 1300 microgram / dm < 2 >, alkali etching property will worsen. A preferable nickel adhesion amount is 200 to 1200 μg / dm 2 .

また、コバルト−ニッケル合金めっきの条件は次の通りである:
めっき浴組成:Co1〜20g/L、Ni1〜20g/L
pH:1.5〜3.5
温度:30〜80℃
電流密度Dk:1.0〜20.0A/dm2
めっき時間:0.5〜4秒
In addition, cobalt - conditions of the nickel alloy plating are as follows:
Plating bath composition: Co 1-20 g / L, Ni 1-20 g / L
pH: 1.5-3.5
Temperature: 30-80 ° C
Current density D k : 1.0 to 20.0 A / dm 2
Plating time: 0.5-4 seconds

本発明に従えば、コバルト−ニッケル合金めっき上に更に付着量の30〜250μg/dm2の亜鉛めっき層が形成される。亜鉛付着量が30μg/dm2未満では耐熱劣化率改善効果が無くなることがある。他方、亜鉛付着量が250μg/dm2を超えると耐塩酸劣化率が極端に悪くなることがある。好ましくは、亜鉛付着量は30〜240μg/dm2であり、より好ましくは80〜220μg/dm2である。 According to the present invention, a zinc plating layer having an adhesion amount of 30 to 250 μg / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 μg / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 μg / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated. Preferably, the zinc adhesion amount is 30 to 240 μg / dm 2 , more preferably 80 to 220 μg / dm 2 .

上記亜鉛めっきの条件は次の通りである:
めっき浴組成:Zn100〜300g/L
pH:3〜4
温度:50〜60℃
電流密度Dk:0.1〜0.5A/dm2
めっき時間:1〜3秒
Conditions of the zinc plating is as follows:
Plating bath composition: Zn 100 to 300 g / L
pH: 3-4
Temperature: 50-60 ° C
Current density D k : 0.1 to 0.5 A / dm 2
Plating time: 1-3 seconds

なお、亜鉛めっき層の代わりに亜鉛−ニッケル合金めっき等の亜鉛合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布等によって防錆層を形成してもよい。   A zinc alloy plating layer such as zinc-nickel alloy plating may be formed instead of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.

〔表面粗さRz〕
本発明の表面処理銅箔は、銅箔表面に粗化処理により粗化粒子が形成され、且つ、粗化処理表面のTDの平均粗さRzが0.30〜0.80μmであるのが好ましい。このような構成により、ピール強度が高くなって樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性が高くなる。この結果、当該樹脂を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等がより容易となる。TDの平均粗さRzが0.30μm未満であると、銅箔表面の粗化処理が不十分であるおそれがあり、樹脂と十分に接着できないという問題が生じるおそれがある。一方、TDの平均粗さRzが0.80μm超であると、銅箔をエッチングで除去した後の樹脂表面の凹凸が大きくなるおそれがあり、その結果樹脂の透明性が不良となる問題が生じるおそれがある。粗化処理表面のTDの平均粗さRzは、0.30〜0.70μmがより好ましく、0.35〜0.60μmが更により好ましく、0.35〜0.55μmが更により好ましく、0.35〜0.50μmが更により好ましい。
[Surface roughness Rz]
In the surface-treated copper foil of the present invention, it is preferable that roughened particles are formed on the surface of the copper foil by the roughening treatment, and that the average roughness Rz of TD on the roughened surface is 0.30 to 0.80 μm. . With such a configuration, the peel strength is increased and the resin is satisfactorily bonded to the resin, and the transparency of the resin after the copper foil is removed by etching is increased. As a result, alignment and the like when mounting an IC chip through a positioning pattern that is visible through the resin can be made easier. When the average roughness Rz of TD is less than 0.30 μm, the roughening treatment on the surface of the copper foil may be insufficient, and there may be a problem that the resin cannot be sufficiently adhered. On the other hand, if the average roughness Rz of TD is more than 0.80 μm, the unevenness of the resin surface after the copper foil is removed by etching may increase, resulting in a problem that the transparency of the resin becomes poor. There is a fear. The average TD roughness Rz of the roughened surface is more preferably 0.30 to 0.70 μm, still more preferably 0.35 to 0.60 μm, still more preferably 0.35 to 0.55 μm, and Even more preferred is 35 to 0.50 μm.

〔光沢度〕
表面処理銅箔の粗化面の圧延方向(MD)の入射角60度での光沢度は、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、粗化面の光沢度が大きい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、粗化面の光沢度が80〜350%であるのが好ましく、90〜300%であるのがより好ましく、90〜250%であるのが更により好ましく、100〜250%であるのが更により好ましい。
[Glossiness]
The glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the roughened surface of the surface-treated copper foil greatly affects the transparency of the resin. That is, the greater the glossiness of the roughened surface, the better the transparency of the resin. For this reason, the surface-treated copper foil of the present invention preferably has a roughened surface with a glossiness of 80 to 350%, more preferably 90 to 300%, and even more preferably 90 to 250%. Preferably, it is 100 to 250%, and still more preferable.

ここで、本発明の視認性の効果を向上させるために、表面処理前の銅箔の処理側の表面のTDの粗さ(Rz)及び光沢度を制御する。具体的には、表面処理前の銅箔のTDの表面粗さ(Rz)が0.30〜0.80μm、好ましくは0.30〜0.50μmであり、圧延方向(MD)の入射角60度での光沢度が350〜800%、好ましくは500〜800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮すれば、表面処理を行った後の、表面処理銅箔の圧延方向(MD)の入射角60度での光沢度が90〜350%となる。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨により作製することができる。このように、処理前の銅箔のTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の表面粗さ(Rz)及び表面積を制御しやすくすることができる。
また、粗化処理前の銅箔は、MDの60度光沢度が500〜800%であるのが好ましく、501〜800%であるのがより好ましく、510〜750%であるのが更により好ましい。粗化処理前の銅箔のMDの60度光沢度が500%未満であると500%以上の場合よりも上述の樹脂の透明性が不良となるおそれがあり、800%を超えると、製造することが難しくなるという問題が生じるおそれがある。
なお、高光沢圧延は以下の式で規定される油膜当量を13000〜24000以下とすることで行うことが出来る。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
圧延油粘度[cSt]は40℃での動粘度である。
油膜当量を13000〜24000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
化学研磨は硫酸−過酸化水素−水系またはアンモニア−過酸化水素−水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。


Here, in order to on improvement effect of visibility of the invention, to control the roughness (Rz) and gloss of the TD process side of the surface of the copper foil before surface treatment. Specifically, the TD surface roughness (Rz) of the copper foil before the surface treatment is 0 . 30~0.80Myuemu, good Mashiku is 0.30~0.50Myuemu, gloss 3 50 to 800% at an incident angle of 60 degrees in the rolling direction (MD), good Mashiku at 500-800% If the current density is made higher than the conventional roughening treatment and the roughening treatment time is shortened, the incident angle in the rolling direction (MD) of the surface-treated copper foil after the surface treatment is 60 degrees. The glossiness is 90 to 350%. Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution. Thus, it is easy to control the surface roughness (Rz) and the surface area of the copper foil after the treatment by setting the TD surface roughness (Rz) and the glossiness of the copper foil before the treatment within the above range. Can do.
Further, the copper foil before the roughening treatment preferably has an MD 60 degree gloss of 500 to 800%, more preferably 501 to 800%, and even more preferably 510 to 750%. . If the 60 degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the transparency of the resin may be poorer than the case of 500% or more. The problem that it becomes difficult may arise.
High gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13,000 to 24000 or less.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to set the oil film equivalent to 13,000 to 24,000, a known method such as using a low-viscosity rolling oil or slowing a sheet passing speed may be used.
Chemical polishing is performed over a long period of time using an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a concentration lower than usual.


粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80〜1.40であるのが好ましい。粗化処理表面のMDの60度光沢度とTDの60度光沢度との比Cが0.80未満であると、0.80以上である場合よりも樹脂の透明性が低下するおそれがある。また、当該比Cが1.40超であると、1.40以下である場合よりも樹脂の透明性が低下するおそれがある。当該比Cは、0.90〜1.35であるのがより好ましく、1.00〜1.30であるのが更により好ましい。   The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and 60 degree gloss of TD on the roughened surface is 0.80 to 1. 40 is preferred. If the ratio C between the 60 ° glossiness of MD and the 60 ° glossiness of TD on the roughened surface is less than 0.80, the transparency of the resin may be lower than when the ratio C is 0.80 or more. . Further, if the ratio C is more than 1.40, the transparency of the resin may be lower than when the ratio C is 1.40 or less. The ratio C is more preferably 0.90 to 1.35, and even more preferably 1.00 to 1.30.

〔明度曲線〕
本発明の表面処理銅箔は、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である。
また、本発明の表面処理銅箔は、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、ライン状のマークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.5以上となるのが好ましい。
なお、前記観察位置−明度グラフにおいて、横軸は位置情報(ピクセル×0.1)、縦軸は明度(階調)の値を示す。
ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、及び、後述の「t1」、「t2」、「Sv」について、図を用いて説明する。
図1(a)及び図1(b)に、マークの幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。マークの幅を約0.3mmとした場合、図1(a)に示すようにV型の明度曲線となる場合と、図1(b)に示すように底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図1(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図1(b)の底部を有する場合は、約0.3mmの中心部の値を示す。
図2に、t1及びt2及びSvを定義する模式図を示す。「t1(ピクセル×0.1)」は、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。「t2(ピクセル×0.1)」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。このとき、t1およびt2を結ぶ線で示される明度曲線の傾きについては、y軸方向に0.1ΔB、x軸方向に(t1−t2)で計算されるSv(階調/ピクセル×0.1)で定義される。なお、横軸の1ピクセルは10μm長さに相当する。また、Svは、マークの両側を測定し、小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。
CCDカメラで撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。ポリイミド基板の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、ポリイミド基板の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
本発明はこのような知見に基づき、本発明の表面処理銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、ポリイミド基板越しにCCDカメラで撮影した上記マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線を制御している。より詳細には、マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上となる。このような構成によれば、基板樹脂の種類や厚みの影響を受けずに、CCDカメラによるポリイミド越しのマークの識別力が向上する。このため、視認性に優れるポリイミド基板を作製することができ、電子基板製造工程等でポリイミド基板に所定の処理を行う場合のマーキングによる位置決め精度が向上し、これによって歩留まりが向上する等の効果が得られる。
上記ΔB(ΔB=Bt−Bb)は、50以上とするのが好ましく、60以上とするのがより好ましい。Svは、より好ましくは3.9以上、より好ましくは4.5以上、より好ましくは5.0以上である。ΔBの上限については特に限定する必要は無いが、例えば100以下、あるいは80以下、あるいは70以下である。また、Svの上限は特に限定する必要はないが、例えば15以下、10以下である。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。
[Brightness curve]
The surface-treated copper foil of the present invention is bonded to both sides of a polyimide resin substrate, and then the copper foil on both sides is removed by etching, and a printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate. Then, when the printed matter is photographed with a CCD camera through the polyimide substrate, the brightness at each observation point is measured along the direction perpendicular to the direction in which the observed line-shaped mark extends with respect to the image obtained by photographing. In the observation point-brightness graph produced in this way, the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion where the mark is not present is 40 or more. is there.
Further, the surface-treated copper foil of the present invention has a lightness curve, Bt, and a value indicating the position of the intersection closest to the line-shaped mark among the intersections of the brightness curve and Bt in the observation point-lightness graph. In the depth range from the intersection of Bt to 0.1ΔB, the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1ΔB is t2. Sv defined by the following formula (1) is preferably 3.5 or more.
In the observation position-lightness graph, the horizontal axis represents position information (pixel × 0.1), and the vertical axis represents the value of brightness (gradation).
Here, “top average value Bt of the lightness curve”, “bottom average value Bb of the lightness curve”, and “t1”, “t2”, and “Sv” described later will be described with reference to the drawings.
FIGS. 1A and 1B are schematic views for defining Bt and Bb when the mark width is about 0.3 mm. When the mark width is about 0.3 mm, a V-shaped brightness curve may be obtained as shown in FIG. 1A, or a brightness curve having a bottom as shown in FIG. 1B. . In any case, the “top average value Bt of the lightness curve” indicates the average value of lightness when measured at 5 locations (a total of 10 locations on both sides) at 30 μm intervals from the positions 50 μm away from the end positions on both sides of the mark. . On the other hand, the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown.
FIG. 2 is a schematic diagram that defines t1, t2, and Sv. “T1 (pixel × 0.1)” is a value indicating an intersection point closest to the line-shaped mark among intersection points of the lightness curve and Bt and a position of the intersection point (value on the horizontal axis of the observation point-lightness graph) ). “T2 (pixel × 0.1)” is the line-shaped mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. And the value (the value on the horizontal axis of the observation point-brightness graph) indicating the position of the intersection closest to. At this time, regarding the slope of the brightness curve indicated by the line connecting t1 and t2, Sv (gradation / pixel × 0.1) calculated by 0.1 ΔB in the y-axis direction and (t1−t2) in the x-axis direction. ). One pixel on the horizontal axis corresponds to a length of 10 μm. Further, Sv is measured on both sides of the mark, and a small value is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.
In the image taken by the CCD camera, the brightness is high at the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the polyimide substrate is poor, the lightness does not suddenly drop from “high” to “low” in the vicinity of the mark end, but the state of decline is slow and the state of lightness decline is unclear. End up.
Based on such knowledge, the present invention is based on such a polyimide substrate from which the surface-treated copper foil of the present invention is bonded and removed, and a mark printed matter is placed under the polyimide substrate and photographed with a CCD camera over the polyimide substrate. The brightness curve in the vicinity of the mark end drawn in the observation point-brightness graph obtained from the image is controlled. More specifically, the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the mark to the portion without the mark is 40 or more. According to such a configuration, the discrimination power of the mark over the polyimide by the CCD camera is improved without being affected by the type and thickness of the substrate resin. For this reason, it is possible to produce a polyimide substrate with excellent visibility, and the positioning accuracy by marking when performing a predetermined treatment on the polyimide substrate in an electronic substrate manufacturing process or the like is improved, thereby improving the yield. can get.
The ΔB (ΔB = Bt−Bb) is preferably 50 or more, and more preferably 60 or more. Sv is more preferably 3.9 or more, more preferably 4.5 or more, and more preferably 5.0 or more. The upper limit of ΔB is not particularly limited, but is, for example, 100 or less, 80 or less, or 70 or less. Further, the upper limit of Sv is not particularly limited, but is, for example, 15 or less and 10 or less. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.

〔粒子の表面積〕
粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bは、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、当該比A/Bが1.90〜2.40であるのが好ましく、2.00〜2.20であるのがより好ましい。
[Particle surface area]
The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, as for the surface-treated copper foil of this invention, it is preferable that the said ratio A / B is 1.90-2.40, and it is more preferable that it is 2.00-2.20.

粒子形成時の電流密度とメッキ時間とを制御することで、粒子の形態や形成密度が決まり、上記表面粗さRz、光沢度及び粒子の面積比A/Bを制御することができる。   By controlling the current density and the plating time during particle formation, the particle morphology and formation density are determined, and the surface roughness Rz, glossiness, and particle area ratio A / B can be controlled.

上述のように、粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bを1.90〜2.40に制御して表面の凹凸を大きくし、粗化処理表面のTDの平均粗さRzを0.30〜0.80μmに制御して表面に極端に粗い部分を無くし、その一方で、粗化処理表面の光沢度を80〜350%と高くすることができる。このような制御を行うことで、本発明の表面処理銅箔において、粗化処理表面における粗化粒子の粒径を小さくすることができる。この粗化粒子の粒径は、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすが、このような制御することは、粗化粒子の粒径を適切な範囲で小さくすることを意味しており、このため銅箔をエッチング除去した後の樹脂透明性がより良好となると共に、ピール強度もより良好となる。   As described above, the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan view from the copper foil surface side is controlled to 1.90 to 2.40. The roughness of the roughened surface is controlled to 0.30 to 0.80 μm to eliminate extremely rough portions, while the glossiness of the roughened surface is increased. It can be as high as 80 to 350%. By performing such control, in the surface-treated copper foil of the present invention, the particle size of the roughened particles on the roughened surface can be reduced. The particle size of the roughened particles affects the resin transparency after the copper foil is removed by etching, but such control means that the particle size of the roughened particles is reduced within an appropriate range. Therefore, the resin transparency after removing the copper foil by etching becomes better, and the peel strength becomes better.

本発明の表面処理銅箔を、粗化処理面側から樹脂基板に貼り合わせて積層体を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、テフロン(登録商標)フィルム等を使用する事ができる。   The surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like. For example, a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film, Teflon for FPC (Registered trademark) film or the like can be used.

貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。
ポリイミド基材樹脂の厚みは特に制限を受けるものではないが、一般的に25μmや50μmが挙げられる。
In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing. In the case of FPC, it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc. A laminated board can be manufactured by performing.
The thickness of the polyimide base resin is not particularly limited, but generally 25 μm or 50 μm can be mentioned.

本発明の積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。本発明の電子機器は、このようなプリント配線板を用いて作製することができる。
また、本発明のプリント配線板は、絶縁樹脂基板と、表面処理が行われている表面側から絶縁基板に積層され、銅回路が形成された表面処理銅箔とで構成されたプリント配線板であって、銅回路を、表面処理が行われている表面側から積層させた絶縁樹脂基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、銅回路の端部から銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である。このようなプリント配線板を用いると、プリント配線板の位置決めをより正確に行うことが出来る。そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。
また、本発明の銅張積層板は、絶縁樹脂基板と、表面処理が行われている表面側から絶縁基板に積層された表面処理銅箔とで構成された銅張積層板であって、銅張積層板の表面処理銅箔を、エッチングによりライン状の表面処理銅箔とした後に、表面処理が行われている表面側から積層させた絶縁樹脂基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された前記ライン状の表面処理銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、ライン状の表面処理銅箔の端部から前記ライン状の表面処理銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である。このような銅張積層板を用いてプリント配線板を製造すると、プリント配線板の位置決めをより正確に行うことが出来る。そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。
なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント基板も含まれることとする。
The laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayer PWB (3 It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material. The electronic device of the present invention can be manufactured using such a printed wiring board.
The printed wiring board of the present invention is a printed wiring board composed of an insulating resin substrate and a surface-treated copper foil on which a copper circuit is formed by being laminated on the insulating substrate from the surface side where the surface treatment is performed. When a copper circuit is photographed with a CCD camera through an insulating resin substrate laminated from the surface side where the surface treatment is performed, the image obtained by photographing is perpendicular to the direction in which the observed copper circuit extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along a certain direction, the top average value Bt and the bottom average value Bb of the lightness curve generated from the end of the copper circuit to the portion without the copper circuit The difference ΔB (ΔB = Bt−Bb) is 40 or more. When such a printed wiring board is used, the printed wiring board can be positioned more accurately. Therefore, when one printed wiring board and another printed wiring board are connected, it is considered that the connection failure is reduced and the yield is improved. In addition, as a method of connecting one printed wiring board and another printed wiring board, connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
The copper clad laminate of the present invention is a copper clad laminate comprising an insulating resin substrate and a surface-treated copper foil laminated on the insulating substrate from the surface side where the surface treatment is performed, When the surface-treated copper foil of the tension laminate is made into a line-shaped surface-treated copper foil by etching, and taken with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment is performed, In the observation point-brightness graph prepared for the obtained image, the brightness at each observation point was measured along a direction perpendicular to the direction in which the line-shaped surface-treated copper foil was observed. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the treated copper foil to the portion where the line-shaped surface-treated copper foil is not present is 40 or more. When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately. Therefore, when one printed wiring board and another printed wiring board are connected, it is considered that the connection failure is reduced and the yield is improved. In addition, as a method of connecting one printed wiring board and another printed wiring board, connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
In the present invention, the “printed wiring board” includes a printed wiring board and a printed board on which components are mounted.

実施例1〜30及び比較例1〜14として、各種銅箔を準備し、一方の表面に、粗化処理として表1に記載の条件にてめっき処理を行った。
上述の粗化めっき処理を行った後、実施例1〜10、12〜27、比較例3、4、6、9〜14について次の耐熱層および防錆層形成のためのめっき処理を行った。
耐熱層1の形成条件を以下に示す。
液組成 :ニッケル5〜20g/L、コバルト1〜8g/L
pH :2〜3
液温 :40〜60℃
電流密度 :5〜20A/dm2
クーロン量:10〜20As/dm2
上記耐熱層1を施した銅箔上に、耐熱層2を形成した。比較例5、7、8については、粗化めっき処理は行わず、準備した銅箔に、この耐熱層2を直接形成した。耐熱層2の形成条件を以下に示す。
液組成 :ニッケル2〜30g/L、亜鉛2〜30g/L
pH :3〜4
液温 :30〜50℃
電流密度 :1〜2A/dm2
クーロン量:1〜2As/dm2
上記耐熱層1及び2を施した銅箔上に、さらに防錆層を形成した。防錆層の形成条件を以下に示す。
液組成 :重クロム酸カリウム1〜10g/L、亜鉛0〜5g/L
pH :3〜4
液温 :50〜60℃
電流密度 :0〜2A/dm2(浸漬クロメート処理のため)
クーロン量:0〜2As/dm2(浸漬クロメート処理のため)
上記耐熱層1、2及び防錆層を施した銅箔上に、さらに耐候性層を形成した。形成条件を以下に示す。
アミノ基を有するシランカップリング剤として、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン(実施例17、24〜27)、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン(実施例1〜16)、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン(実施例18、28、29、30)、3−アミノプロピルトリメトキシシラン(実施例19)、3−アミノプロピルトリエトキシシラン(実施例20、21)、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン(実施例22)、N−フェニル−3−アミノプロピルトリメトキシシラン(実施例23)で、塗布・乾燥を行い、耐候性層を形成した。これらのシランカップリング剤を2種以上の組み合わせで用いることもできる。同様に比較例1〜14においては、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシランで塗布・乾燥を行い、耐候性層を形成した。
As Examples 1 to 30 and Comparative Examples 1 to 14, various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Table 1 as a roughening treatment.
After performing the roughening plating process described above, Examples 1 to 10, 12 to 27, and Comparative Examples 3, 4, 6, and 9 to 14 were subjected to the following plating process for forming a heat-resistant layer and a rust-proof layer. .
The conditions for forming the heat-resistant layer 1 are shown below.
Liquid composition: Nickel 5-20 g / L, cobalt 1-8 g / L
pH: 2-3
Liquid temperature: 40-60 degreeC
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
A heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1. For Comparative Examples 5, 7, and 8, the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil. The conditions for forming the heat-resistant layer 2 are shown below.
Liquid composition: nickel 2-30 g / L, zinc 2-30 g / L
pH: 3-4
Liquid temperature: 30-50 degreeC
Current density: 1 to 2 A / dm 2
Coulomb amount: 1-2 As / dm 2
On the copper foil which gave the said heat-resistant layers 1 and 2, the antirust layer was further formed. The conditions for forming the rust preventive layer are shown below.
Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 degreeC
Current density: 0 to 2 A / dm 2 (for immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
On the copper foil which gave the said heat-resistant layers 1 and 2 and a rust prevention layer, the weathering layer was further formed. The formation conditions are shown below.
As a silane coupling agent having an amino group, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Examples 17, 24-27), N-2- (aminoethyl) -3-aminopropyltri Ethoxysilane (Examples 1 to 16), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Examples 18, 28, 29, 30), 3-aminopropyltrimethoxysilane (Example 19) 3-aminopropyltriethoxysilane (Examples 20 and 21), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example 22), N-phenyl-3-aminopropyltri Coating and drying were performed with methoxysilane (Example 23) to form a weather resistant layer. These silane coupling agents can be used in combination of two or more. Similarly, in Comparative Examples 1 to 14, coating and drying were performed with N-2- (aminoethyl) -3-aminopropyltrimethoxysilane to form a weather resistant layer.

なお、圧延銅箔は以下のように製造した。表2に示す組成の銅インゴットを製造し、熱間圧延を行った後、300〜800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1〜2mm厚の圧延板を得た。この圧延板を300〜800℃の連続焼鈍ラインで焼鈍して再結晶させ、表2の厚みまで最終冷間圧延し、銅箔を得た。表2の「種類」の欄の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を、「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。また、「タフピッチ銅+Ag:100ppm」はタフピッチ銅にAgを100質量ppm添加したことを意味する。
電解銅箔はJX日鉱日石金属社製電解銅箔HLP箔を用いた。電解研磨又は化学研磨を行った場合には、電解研磨又は化学研磨後の板厚を記載した。
なお、表2に表面処理前の銅箔作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「通常圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「化学研磨」、「電解研磨」は、以下の条件で行ったことを意味する。
「化学研磨」はH2SO4が1〜3質量%、H22が0.05〜0.15質量%、残部水のエッチング液を用い、研磨時間を1時間とした。
「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm2、表2に記載の時間(10秒間の電解研磨を行うと、研磨量は1〜2μmとなる。)で行った。
In addition, the rolled copper foil was manufactured as follows. After manufacturing the copper ingot of the composition shown in Table 2 and performing hot rolling, annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 2 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 2 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020. “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper.
The electrolytic copper foil used was an electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals. When electrolytic polishing or chemical polishing was performed, the plate thickness after electrolytic polishing or chemical polishing was described.
Table 2 lists the points of the copper foil preparation process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent. “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described. “Chemical polishing” and “electropolishing” mean the following conditions.
“Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour.
“Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 2 (when electropolishing for 10 seconds, the polishing amount is 1 to 2 μm. ).

上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。
(1)表面粗さ(Rz)の測定;
株式会社小阪研究所製接触粗さ計Surfcorder SE−3Cを使用してJIS B0601−1994に準拠して十点平均粗さを粗化面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で圧延方向と垂直に(TDに、電解銅箔の場合は通箔方向に垂直に)測定位置を変えて10回行い、10回の測定での値を求めた。
なお、表面処理前の銅箔についても、同様にして表面粗さ(Rz)を求めておいた。
Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.
(1) Measurement of surface roughness (Rz);
Ten-point average roughness was measured on the roughened surface using a contact roughness meter Surfcorder SE-3C manufactured by Kosaka Laboratory Co., Ltd. in accordance with JIS B0601-1994. Measurement standard length 0.8mm, evaluation length 4mm, cut-off value 0.25mm, feed rate 0.1mm / sec. Perpendicular to rolling direction (in TD, in case of electrolytic copper foil, in foil passing direction) The measurement position was changed 10 times (perpendicularly), and the values for 10 measurements were obtained.
In addition, the surface roughness (Rz) was calculated | required similarly about the copper foil before surface treatment.

(2)粒子の面積比(A/B);
粗化粒子の表面積はレーザー顕微鏡による測定法を使用した。株式会社キーエンス製レーザーマイクロスコープVK8500を用いて粗化処理面の倍率2000倍における100×100μm相当面積B(実データでは9982.52μm2)における三次元表面積Aを測定して、三次元表面積A÷二次元表面積B=面積比(A/B)とする手法により設定を行った。
(2) Particle area ratio (A / B);
The surface area of the roughened particles was measured by a laser microscope. Using a laser microscope VK8500 manufactured by Keyence Co., Ltd., measuring the three-dimensional surface area A in an area B equivalent to 100 × 100 μm at a magnification of 2000 times the roughened surface (actual data: 9982.52 μm 2 ), the three-dimensional surface area A ÷ Setting was performed by a method of setting a two-dimensional surface area B = area ratio (A / B).

(3)光沢度;
JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG−1を使用し、圧延方向(MD、電解銅箔の場合は通箔方向)及び圧延方向に直角な方向(TD、電解銅箔の場合は通箔方向に直角な方向)のそれぞれの入射角60度で粗化面について測定した。
なお、表面処理前の銅箔についても、同様にして光沢度を求めておいた。
(3) Glossiness;
Using Nippon Denshoku Industries Co., Ltd. gloss meter handy gloss meter PG-1 in accordance with JIS Z8741, rolling direction (MD, foil direction in the case of electrolytic copper foil) and direction perpendicular to the rolling direction (TD, In the case of an electrolytic copper foil, the roughened surface was measured at an incident angle of 60 degrees in a direction perpendicular to the direction of threading.
In addition, the glossiness was calculated | required similarly about the copper foil before surface treatment.

(4)明度曲線の傾き
銅箔をポリイミドフィルム(カネカ製厚み25μm、及び50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせて前述のサンプルフィルムを作製した。続いて、ライン状の黒色マークを印刷した印刷物を、サンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影し、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、明度曲線からΔB及びt1、t2、Svを測定した。このとき用いた撮影装置の構成及び明度曲線の測定方法を表す模式図を図3に示す。
また、ΔB及びt1、t2、Svは、図2で示すように下記撮影装置で測定した。
撮影装置は、CCDカメラ、マークを付した紙を下に置いたポリイミド基板を置くステージ(白色)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミド基板をステージ上に搬送する搬送機(不図示)を備えている。当該撮影装置の主な仕様を以下に示す:
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調ディジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W)
なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
(4) Inclination of brightness curve Copper foil was bonded to both sides of polyimide film (Kaneka thickness 25 μm and 50 μm, Toray DuPont thickness 50 μm), and the copper foil was removed by etching (ferric chloride aqueous solution). Was made. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film, and the above-mentioned sample film was produced. Subsequently, a printed material on which a line-shaped black mark is printed is laid under the sample film, and the printed material is photographed with a CCD camera through the sample film. In an observation point-lightness graph prepared by measuring the lightness at each observation point along a direction perpendicular to the extending direction, ΔB, t1, t2, and Sv were measured from the lightness curve. FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the measurement method of the brightness curve.
Further, ΔB, t1, t2, and Sv were measured by the following photographing apparatus as shown in FIG.
The photographing device has a CCD camera, a stage (white) on which a polyimide substrate is placed with a marked paper underneath, an illumination power source that irradiates light onto the photographing portion of the polyimide substrate, and a paper with a mark to be photographed. A transporter (not shown) for transporting the evaluation polyimide substrate placed below onto the stage is provided. The main specifications of the camera are as follows:
・ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation
CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High-frequency lighting power supply (power supply unit x 2)
・ Lighting: Fluorescent lamp (30W)
For the lightness shown in FIG. 3, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.

(5)視認性(樹脂透明性);
銅箔をポリイミドフィルム(カネカ製厚み25μm、及び50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせて前述のサンプルフィルムを作製した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0〜80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
(5) Visibility (resin transparency);
The copper foil was bonded to both surfaces of a polyimide film (Kaneka thickness 25 μm and 50 μm, Toray DuPont thickness 50 μm), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film, and the above-mentioned sample film was produced. A printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer. “◎” indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference, and “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference. “O” (passed above), a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).

(6)ピール強度(接着強度);
PC−TM−650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7N/mm以上を積層基板用途に使用できるものとした。
(6) Peel strength (adhesive strength);
Based on PC-TM-650, the normal peel strength was measured with a tensile tester Autograph 100, and a normal peel strength of 0.7 N / mm or more could be used for laminated substrate applications.

(7)はんだ耐熱評価;
銅箔をポリイミドフィルム(カネカ製厚み25μm、及び50μm、東レデュポン製厚み50μm)の両面に貼り合わせた。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせた。得られた両面積層板について、JIS C6471に準拠したテストクーポンを作成した。作成したテストクーポンを85℃、85%RHの高温高湿下で48時間暴露した後に、300℃のはんだ槽に浮かべて、はんだ耐熱特性を評価した。はんだ耐熱試験後に、銅箔粗化処理面とポリイミド樹脂接着面の界面において、テストクーポン中の銅箔面積の5%以上の面積において、膨れにより界面が変色したものを×(不合格)、面積が5%未満の膨れ変色の場合を○、全く膨れ変色が発生しなかったものを◎として評価した。
(7) Solder heat resistance evaluation;
Copper foil was bonded to both surfaces of a polyimide film (Kaneka thickness 25 μm and 50 μm, Toray DuPont thickness 50 μm). In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film. About the obtained double-sided laminated board, the test coupon based on JISC6471 was created. The prepared test coupon was exposed to high temperature and high humidity of 85 ° C. and 85% RH for 48 hours, and then floated in a solder bath at 300 ° C. to evaluate solder heat resistance. After the solder heat resistance test, at the interface between the copper foil roughening surface and the polyimide resin adhesion surface, the area where the interface discolored due to blistering in an area of 5% or more of the copper foil area in the test coupon is x (failed), area When the color change was less than 5%, the case was evaluated as ◯, and the case where no color change occurred was evaluated as ◎.

(8)歩留まり
銅箔をポリイミドフィルム(カネカ製厚み25μm、及び50μm、東レデュポン製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。なお、粗化処理を行った銅箔については、銅箔の粗化処理した面を前述のポリイミドフィルムに貼り合わせた。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7〜8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
上記各試験の条件及び評価を表1〜5に示す。
(8) Yield Bond copper foil on both sides of polyimide film (Kaneka thickness 25 μm and 50 μm, Toray DuPont thickness 50 μm), etch copper foil (ferric chloride aqueous solution), L / S is 30 μm / An FPC having a circuit width of 30 μm was prepared. In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film. After that, an attempt was made to detect a 20 μm × 20 μm square mark with a CCD camera through polyimide. “◎” when 9 times or more out of 10 times can be detected, “◯” when 7 to 8 times can be detected, “△” when 6 times can be detected, and when 5 times or less can be detected. Is “×”.
The conditions and evaluation of each test are shown in Tables 1-5.

(評価結果)
実施例1〜30は、いずれも視認性、ピール強度、はんだ耐熱評価及び歩留まりが良好であった。
比較例1〜4、6、9〜14は、ΔBの値が40未満であったため、視認性が不良であった。
比較例5、7、8は、視認性は優れていたが、基板密着性が不良であった。また、比較例1〜14ははんだ耐熱評価が不良であった。
図4に、上記Rz評価の際の、(a)比較例1、(b)比較例3、(c)比較例5、(d)比較例6、(e)実施例1、(f)実施例2の銅箔表面のSEM観察写真をそれぞれ示す。
(Evaluation results)
Examples 1 to 30 all had good visibility, peel strength, solder heat resistance evaluation and yield.
Since Comparative Examples 1-4, 6, and 9-14 had a ΔB value of less than 40, the visibility was poor.
In Comparative Examples 5, 7, and 8, the visibility was excellent, but the substrate adhesion was poor. In Comparative Examples 1 to 14, the solder heat resistance evaluation was poor.
FIG. 4 shows (a) Comparative Example 1, (b) Comparative Example 3, (c) Comparative Example 5, (d) Comparative Example 6, (e) Example 1, and (f) Implementation in the above Rz evaluation. The SEM observation photograph of the copper foil surface of Example 2 is shown, respectively.

Claims (23)

少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、
前記銅箔を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、
ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である表面処理銅箔。
A surface-treated copper foil in which roughened particles are formed by roughening treatment on at least one surface,
After laminating the copper foil on both sides of the polyimide resin substrate, the copper foil on both sides is removed by etching,
When a printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate, and the printed matter is photographed with a CCD camera through the polyimide substrate,
For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness of each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends,
A surface-treated copper foil in which a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is 40 or more.
前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が50以上である請求項1に記載の表面処理銅箔。   2. The surface-treated copper according to claim 1, wherein a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is 50 or more. Foil. 前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が60以上である請求項2に記載の表面処理銅箔。   3. The surface-treated copper according to claim 2, wherein a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the mark to a portion without the mark is 60 or more. Foil. 前記観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.5以上となる請求項1〜3のいずれかに記載の表面処理銅箔。
In the observation point-lightness graph, a value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and Bt is defined as t1, and the value of 0. 0 based on Bt from the intersection of the lightness curve and Bt. In the depth range up to 1ΔB, the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1ΔB is defined by the following equation (1). The surface-treated copper foil according to any one of claims 1 to 3, wherein Sv is 3.5 or more.
前記明度曲線における(1)式で定義されるSvが3.9以上となる請求項4に記載の表面処理銅箔。   The surface-treated copper foil of Claim 4 from which Sv defined by (1) Formula in the said brightness curve becomes 3.9 or more. 前記明度曲線における(1)式で定義されるSvが5.0以上となる請求項5に記載の表面処理銅箔。   The surface-treated copper foil according to claim 5, wherein Sv defined by the formula (1) in the brightness curve is 5.0 or more. 前記粗化処理表面のTDの平均粗さRzが0.30〜0.80μmであり、粗化処理表面のMDの60度光沢度が80〜350%であり、
前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90〜2.40である請求項1〜6のいずれかに記載の表面処理銅箔。
Average roughness Rz of TD of the roughened surface is 0.30 to 0.80 μm, and 60 degree gloss of MD of the roughened surface is 80 to 350%,
The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side is 1.90 to 2.40. The surface-treated copper foil in any one of.
前記MDの60度光沢度が90〜250%である請求項7に記載の表面処理銅箔。   The surface-treated copper foil according to claim 7, wherein the MD has a 60-degree glossiness of 90 to 250%. 前記TDの平均粗さRzが0.35〜0.60μmである請求項7又は8に記載の表面処理銅箔。   The surface-treated copper foil according to claim 7 or 8, wherein the average roughness Rz of the TD is 0.35 to 0.60 µm. 前記A/Bが2.00〜2.20である請求項7〜9のいずれかに記載の表面処理銅箔。   Said A / B is 2.00-2.20, The surface-treated copper foil in any one of Claims 7-9. 粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80〜1.40である請求項7〜10のいずれかに記載の表面処理銅箔。   The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and 60 degree gloss of TD on the roughened surface is 0.80 to 1. It is 40, The surface-treated copper foil in any one of Claims 7-10. 粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90〜1.35である請求項11に記載の表面処理銅箔。   The ratio C (C = (60 ° gloss of MD) / (60 ° gloss of TD)) of the 60 ° gloss of MD and 60 ° gloss of TD on the roughened surface is 0.90 to 1. The surface-treated copper foil according to claim 11, which is 35. 請求項1〜12のいずれかに記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。   The laminated board comprised by laminating | stacking the surface-treated copper foil and resin substrate in any one of Claims 1-12. 請求項1〜12のいずれかに記載の表面処理銅箔を用いたプリント配線板。   The printed wiring board using the surface-treated copper foil in any one of Claims 1-12. 請求項14に記載のプリント配線板を用いた電子機器。   An electronic device using the printed wiring board according to claim 14. 絶縁樹脂基板と、表面処理が行われている表面側から前記絶縁基板に積層され、銅回路が形成された表面処理銅箔とで構成されたプリント配線板であって、
前記銅回路を、表面処理が行われている表面側から積層させた前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、
前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であるプリント配線板。
A printed wiring board composed of an insulating resin substrate and a surface-treated copper foil on which a copper circuit is formed, which is laminated on the insulating substrate from the surface side where surface treatment is performed,
When the copper circuit is photographed with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment is performed,
For the image obtained by the photographing, in the observation point-lightness graph prepared by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
A printed wiring board in which a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the copper circuit to a portion without the copper circuit is 40 or more.
絶縁樹脂基板と、表面処理が行われている表面側から前記絶縁基板に積層された表面処理銅箔とで構成された銅張積層板であって、
前記銅張積層板の前記表面処理銅箔を、エッチングによりライン状の表面処理銅箔とした後に、表面処理が行われている表面側から積層させた前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
前記撮影によって得られた画像について、観察された前記ライン状の表面処理銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、
前記ライン状の表面処理銅箔の端部から前記ライン状の表面処理銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上である銅張積層板。
A copper-clad laminate composed of an insulating resin substrate and a surface-treated copper foil laminated on the insulating substrate from the surface side where surface treatment is performed,
The surface-treated copper foil of the copper-clad laminate was photographed with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment was performed after making the surface-treated copper foil into a line-like surface by etching. When
For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed surface-treated copper foil extends,
A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped surface-treated copper foil to a portion where the line-shaped surface-treated copper foil is not present is 40. This is the copper-clad laminate.
請求項16に記載のプリント配線板を用いた電子機器。   The electronic device using the printed wiring board of Claim 16. 請求項17に記載の銅張積層板を用いたプリント配線板。   A printed wiring board using the copper clad laminate according to claim 17. 請求項17に記載の銅張積層板を用いた電子機器。   An electronic device using the copper-clad laminate according to claim 17. 請求項16に記載のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法。   A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to claim 16. 請求項16に記載のプリント配線板を少なくとも1つと、もう一つの請求項16に記載のプリント配線板又は請求項16に記載のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。   Connecting at least one printed wiring board according to claim 16 and another printed wiring board according to claim 16 or a printed wiring board not corresponding to the printed wiring board according to claim 16; A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected. 請求項21又は22に記載のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器。   An electronic apparatus using one or more printed wiring boards to which at least one printed wiring board according to claim 21 is connected.
JP2012247890A 2012-09-10 2012-11-09 Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same Active JP5432357B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012247890A JP5432357B1 (en) 2012-09-10 2012-11-09 Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
TW102132726A TWI489014B (en) 2012-09-10 2013-09-10 Surface treatment of copper foil and the use of its laminated board, copper laminated board, printed wiring board, and electronic equipment
PCT/JP2013/074440 WO2014038718A1 (en) 2012-09-10 2013-09-10 Surface-treated copper foil and laminate using same, copper-clad laminated board, printed circuit board, and electronic device
KR1020157013115A KR101660663B1 (en) 2012-11-09 2013-11-11 Surface-treated copper foil and laminate using same, copper-clad laminate, printed circuit board, and electronic device
CN201380058515.0A CN104769165B (en) 2012-11-09 2013-11-11 Surface treatment copper foil and use its laminated plates, copper-cover laminated plate, printing distributing board and e-machine
TW102141160A TWI484073B (en) 2012-11-09 2013-11-11 Surface treatment of copper foil and the use of its laminated board, copper laminated board, printed wiring board and electronic equipment
PCT/JP2013/080479 WO2014073694A1 (en) 2012-11-09 2013-11-11 Surface-treated copper foil and laminate using same, copper-clad laminate, printed circuit board, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012198852 2012-09-10
JP2012198852 2012-09-10
JP2012247890A JP5432357B1 (en) 2012-09-10 2012-11-09 Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013250418A Division JP2014065974A (en) 2012-09-10 2013-12-03 Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same

Publications (2)

Publication Number Publication Date
JP5432357B1 true JP5432357B1 (en) 2014-03-05
JP2014065965A JP2014065965A (en) 2014-04-17

Family

ID=50237321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247890A Active JP5432357B1 (en) 2012-09-10 2012-11-09 Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same

Country Status (3)

Country Link
JP (1) JP5432357B1 (en)
TW (1) TWI489014B (en)
WO (1) WO2014038718A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758034B2 (en) * 2013-08-20 2015-08-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5758035B2 (en) * 2013-08-20 2015-08-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5758033B2 (en) * 2013-08-20 2015-08-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5695253B1 (en) * 2014-06-23 2015-04-01 株式会社Shカッパープロダクツ Copper-clad laminate and flexible printed wiring board using the copper-clad laminate
JP6640567B2 (en) * 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board
JP5732181B1 (en) * 2015-02-05 2015-06-10 株式会社Shカッパープロダクツ Copper-clad laminate and flexible printed wiring board using the copper-clad laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849059B2 (en) * 1995-09-28 1999-01-20 日鉱グールド・フォイル株式会社 Processing method of copper foil for printed circuit
JP2004098659A (en) * 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
JP5467930B2 (en) * 2010-05-19 2014-04-09 Jx日鉱日石金属株式会社 Copper clad laminate
JP5074611B2 (en) * 2011-03-30 2012-11-14 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery negative electrode current collector and method for producing the same
JP5148726B2 (en) * 2011-03-30 2013-02-20 Jx日鉱日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil

Also Published As

Publication number Publication date
WO2014038718A1 (en) 2014-03-13
JP2014065965A (en) 2014-04-17
TWI489014B (en) 2015-06-21
TW201432098A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
JP5362898B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, and copper-clad laminate
JP5819569B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362924B1 (en) Surface-treated copper foil and laminate using the same
JP5362921B1 (en) Surface-treated copper foil and laminate using the same
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP6393126B2 (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP2014148692A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
WO2014038716A1 (en) Surface-treated copper foil and laminated board using same
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP5855244B2 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
WO2014073696A1 (en) Surface-treated copper foil and laminate using same
JP5819571B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP2014148747A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Ref document number: 5432357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250