JP5185066B2 - Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate - Google Patents

Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate Download PDF

Info

Publication number
JP5185066B2
JP5185066B2 JP2008272702A JP2008272702A JP5185066B2 JP 5185066 B2 JP5185066 B2 JP 5185066B2 JP 2008272702 A JP2008272702 A JP 2008272702A JP 2008272702 A JP2008272702 A JP 2008272702A JP 5185066 B2 JP5185066 B2 JP 5185066B2
Authority
JP
Japan
Prior art keywords
copper
copper foil
annealing
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008272702A
Other languages
Japanese (ja)
Other versions
JP2010100887A (en
Inventor
嘉一郎 中室
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2008272702A priority Critical patent/JP5185066B2/en
Publication of JP2010100887A publication Critical patent/JP2010100887A/en
Application granted granted Critical
Publication of JP5185066B2 publication Critical patent/JP5185066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、電気回路の屈曲部分に好適に用いられるフレキシブルプリント基板(FPC:Flexible Printed Circuit)に使用される銅箔、及びそれを用いたフレキシブル銅貼積層板に関するものである。   The present invention relates to a copper foil used for a flexible printed circuit (FPC) that is suitably used for a bent portion of an electric circuit, and a flexible copper-clad laminate using the copper foil.

現在、携帯電話等の配線のうち、屈曲部分に使用されるFPCは、銅箔にポリイミドのワニスを塗布し、熱を加えて乾燥、硬化させ積層板とするキャスト法と呼ばれる方法や、予め接着力のある熱可塑性ポリイミドを塗布したポリイミドフィルムと銅箔とを重ねて加熱ロールなどを通して圧着するラミネート法と呼ばれる方法によって製造されている。これらの方法で得られたフレキシブル銅貼積層板は二層フレキシブル銅貼積層板と呼ばれている。
又、エポキシ系などの接着剤で銅箔とポリイミドフィルムを接着した三層フレキシブル銅貼積層板も知られている。
これらのFPC用銅箔として、再結晶焼鈍させ、屈曲性を与える200面のI/I0を40以上とした技術が知られている(特許文献1,2)。
Currently, FPCs used for bent parts of mobile phones, etc. are coated with a polyimide varnish on copper foil, dried and cured by heating, and a method called the cast method, which is bonded in advance. It is manufactured by a method called a laminating method in which a polyimide film coated with a strong thermoplastic polyimide and a copper foil are stacked and pressure-bonded through a heating roll or the like. The flexible copper-clad laminate obtained by these methods is called a two-layer flexible copper-clad laminate.
A three-layer flexible copper-clad laminate in which a copper foil and a polyimide film are bonded with an epoxy-based adhesive is also known.
As these FPC copper foils, a technique is known in which the I / I0 of the 200 plane that gives reflex annealing and gives flexibility is 40 or more (Patent Documents 1 and 2).

特開2001-323354号公報(段落0014)JP 2001-323354 A (paragraph 0014) 特開平11-286760JP 11-286760

しかしながら、上記特許文献1、2に記載されている銅箔は、(200)方位への配向度を高めて屈曲性を向上させているものの、再結晶した銅箔は非常に柔らかいため、折れやシワが発生しやすく、樹脂との積層前に再結晶焼鈍を行うとフレキシブル銅貼積層板に積層する際の銅箔のハンドリングが困難になるという問題がある。そのため樹脂と積層した後に、ポリイミドワニスや熱可塑性ポリイミドを硬化させるための熱処理を利用して、銅箔を再結晶させる方法が一般的である。
しかし、ラミネート法で作製したCCLで、銅箔の(200)方位への配向度が高くならず、屈曲性が低下するという問題が発生している。発明者らは種々の検討の結果、銅箔の再結晶焼鈍における昇温速度が高いほど、銅箔の(200)方位への配向度が低下することを見出した。つまりCCL製造方法による配向度の差は、CCL製造工程での銅箔の再結晶焼鈍における昇温速度の違いに起因するものであると考えられる。
例えば、上記したキャスト法の場合、ワニスを乾燥、硬化させるため、銅箔が加熱炉で比較的ゆっくりと加熱され、(200)方位に十分に配向した再結晶集合組織が得られ、屈曲性も向上する。ところが、上記したラミネート法の場合、フィルムと銅箔とをヒートロールで圧着するため、銅箔がヒートロールにより急速に加熱され、(200)方位への配向度が高くならない。
However, although the copper foils described in the above-mentioned Patent Documents 1 and 2 increase the degree of orientation in the (200) orientation and improve the flexibility, the recrystallized copper foil is very soft, so Wrinkles are likely to occur, and if recrystallization annealing is performed before lamination with a resin, there is a problem that it becomes difficult to handle the copper foil when laminated on the flexible copper-clad laminate. Therefore, a method of recrystallizing a copper foil using a heat treatment for curing a polyimide varnish or a thermoplastic polyimide after laminating with a resin is common.
However, the CCL produced by the laminating method has a problem that the degree of orientation of the copper foil in the (200) direction is not high and the flexibility is lowered. As a result of various studies, the inventors have found that the degree of orientation of the copper foil in the (200) direction decreases as the rate of temperature increase in the recrystallization annealing of the copper foil increases. In other words, the difference in the degree of orientation due to the CCL manufacturing method is considered to be due to the difference in the heating rate in the recrystallization annealing of the copper foil in the CCL manufacturing process.
For example, in the case of the casting method described above, the varnish is dried and cured, so that the copper foil is heated relatively slowly in a heating furnace, and a recrystallized texture that is sufficiently oriented in the (200) direction is obtained, and the flexibility is also high. improves. However, in the case of the laminating method described above, the film and the copper foil are pressure-bonded with a heat roll, so the copper foil is rapidly heated with the heat roll, and the degree of orientation in the (200) direction does not increase.

ここで、昇温速度によって銅箔の(200)配向度が異なる理由は以下のように推定される。まず、昇温速度が遅いと、銅箔が低温にさらされる時間が長いため、再結晶核生成エネルギーが低い結晶方位のみが再結晶し、他の方位の再結晶核が生成しない。そして、加熱温度が上昇するにつれ、生成された優先方位の再結晶核が成長し、銅箔全体が優先方位の結晶粒で占められる。一方、昇温速度が速いと、銅箔が短期間に高温になるので、再結晶核が生成しにくい結晶方位であっても核生成が生じ、ランダムな方位を持った再結晶組織が生成される。   Here, the reason why the degree of (200) orientation of the copper foil differs depending on the rate of temperature rise is estimated as follows. First, when the rate of temperature rise is slow, the copper foil is exposed to a low temperature for a long time, so that only crystal orientations with low recrystallization nucleation energy are recrystallized, and recrystallization nuclei in other orientations are not generated. And as the heating temperature rises, the recrystallized nuclei with the preferred orientation are grown, and the entire copper foil is occupied with crystal grains with the preferred orientation. On the other hand, if the heating rate is high, the copper foil becomes hot in a short period of time, so nucleation occurs even in crystal orientations where recrystallization nuclei are difficult to form, and a recrystallized structure with random orientation is generated. The

従って、本発明の目的は、屈曲性に優れると共に強度を確保した銅箔及びそれを用いたフレキシブル銅貼積層板を提供することにある。   Therefore, the objective of this invention is providing the copper foil which was excellent in the flexibility, and ensured intensity | strength, and the flexible copper-clad laminated board using the same.

本発明者らは、優先方位の再結晶核を銅箔中に作っておくことで、フレキシブル銅貼積層板に積層する際の昇温速度が急速であっても、(200)に優先方位をもった結晶粒を成長させることができることを見出した。
すなわち、本発明の銅箔は、タフピッチ銅、無酸素銅、又はタフピッチ銅若しくは無酸素銅に対し、Ag,Sn及びInの群から選ばれる1種以上を合計0.05質量%以下添加した組成からなり、厚み20μm以下の圧延銅箔であって、引張強度400MPa以上であり、かつ(200)面のX線回折強度比I/I0(200)が15以下であり、かつX線回折測定による(200)ピークの半値幅が0.15以下であり、かつ50℃/秒を超える昇温速度で300℃まで昇温し、5秒保持する熱処理を加えた時の(200)面のX線回折強度比I/I0(200)が40以上である。
The inventors of the present invention have made a preferred orientation in (200) even if the temperature rise rate when laminating the flexible copper-clad laminate is rapid by making recrystallized nuclei in the preferred orientation in the copper foil. It has been found that it is possible to grow crystal grains.
That is, the copper foil of the present invention comprises tough pitch copper, oxygen-free copper, or a composition in which one or more selected from the group of Ag, Sn, and In is added to 0.05 mass% or less in total to tough pitch copper or oxygen-free copper. A rolled copper foil having a thickness of 20 μm or less, a tensile strength of 400 MPa or more, an X-ray diffraction intensity ratio I / I0 (200) of (200) plane of 15 or less, and an X-ray diffraction measurement (200 ) X-ray diffraction intensity ratio I of the (200) plane when the peak half-value width is 0.15 or less and the temperature is increased to 300 ° C. at a temperature increase rate exceeding 50 ° C./second and heat treatment is held for 5 seconds. / I0 (200) is 40 or more.

本発明の銅箔の製造方法は、タフピッチ銅、無酸素銅、又はタフピッチ銅若しくは無酸素銅に対し、Ag,Sn及びInの群から選ばれる1種以上を合計0.05質量%以下添加した組成からなるインゴットを、熱間圧延、及び冷間圧延と焼鈍とを繰り返して製造し、最終冷間圧延後に、焼鈍温度T(℃)、焼鈍時間t(h)とした時、式1; P=(T+273)×(14+log(t))で求められるPが、焼鈍時間0.5hでの半軟化温度Thに対して前記式1で求められるPhに対し、0.96Ph≦P≦Phの範囲内で焼鈍され、かつ前記焼鈍の昇温過程において半軟化温度Thに対して0.4Th〜1.2Thとなる温度範囲に3秒を超えて曝す予備焼鈍を行う。

The method for producing a copper foil of the present invention comprises a composition in which one or more selected from the group of Ag, Sn, and In are added to a total of 0.05% by mass or less to tough pitch copper, oxygen free copper, or tough pitch copper or oxygen free copper. When an ingot is manufactured by repeating hot rolling and cold rolling and annealing, and after the final cold rolling, an annealing temperature T (° C.) and an annealing time t (h) are obtained, Equation 1; P = ( P obtained by (T + 273) × (14 + log (t)) is 0.96P h ≦ P ≦ P h with respect to P h obtained by the above formula 1 with respect to the semi-softening temperature T h at an annealing time of 0.5 h. annealed in the range of, and preliminary annealing exposing for more than three seconds to a temperature range where the 0.4T h ~1.2T h relative half-softening temperature T h in the temperature rising process of the annealing.

本発明のフレキシブル銅貼積層板は、前記銅箔と、基体樹脂とを積層してなる。   The flexible copper-clad laminate of the present invention is formed by laminating the copper foil and a base resin.

本発明によれば、屈曲性に優れると共に強度を確保した銅箔及びそれを用いたフレキシブル銅貼積層板を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil which was excellent in the flexibility and ensured intensity | strength, and a flexible copper-clad laminated board using the same can be obtained.

高屈曲性を発揮するフレキシブル銅貼積層板を得るために重要な点は、積層板になった時点で、銅箔の金属組織を屈曲性にとって好ましい状態に再結晶させることである。屈曲性に最も好ましい金属組織は、立方体方位が非常に発達し、かつ結晶粒界が少ない、言い換えれば結晶粒が大きな組織である。ここで立方体方位の発達の程度は、200面のX線回折強度比I/I0(I:銅箔の200面の回折強度、I0:銅粉末の200面の回折強度)の大きさで表すことができ、この値が大きいほど立方体方位が発達していることを示す。
一方、フレキシブル銅貼積層板に積層する前の銅箔材料を、予め(200)方位の再結晶に適した温度範囲で充分に焼鈍しておき、(200)方位への配向度を高めておけば屈曲性はよくなるが、再結晶した銅箔は非常に柔らかいため、取り扱い時にオレやシワが発生しやすい。そのため、積層前の銅箔にはある程度の強度が必要である。この強度の目安として、一般的な圧延タフピッチ銅箔の強度である400MPaが相当する。
An important point for obtaining a flexible copper-clad laminate exhibiting high flexibility is to recrystallize the metal structure of the copper foil into a state favorable for flexibility when it becomes a laminate. The most preferable metal structure for flexibility is a structure in which the cubic orientation is very developed and the crystal grain boundary is small, in other words, the crystal grain is large. Here, the degree of development of the cube orientation is expressed by the magnitude of the 200 plane X-ray diffraction intensity ratio I / I0 (I: 200 plane diffraction intensity of copper foil, I0: 200 plane diffraction intensity of copper powder). The larger this value, the more the cube orientation is developed.
On the other hand, the copper foil material before being laminated on the flexible copper-clad laminate can be sufficiently annealed in advance in a temperature range suitable for recrystallization in the (200) orientation to increase the degree of orientation in the (200) orientation. Flexibility is improved, but the recrystallized copper foil is very soft, so it tends to cause creases and wrinkles during handling. Therefore, a certain level of strength is required for the copper foil before lamination. As a measure of this strength, 400 MPa, which is the strength of a general rolled tough pitch copper foil, corresponds.

つまり、完全な再結晶組織とならない程度まで(200)方位の再結晶に適した温度範囲で焼鈍しておけば、所定の強度を保ちつつ、フレキシブル銅貼積層板に積層時の加熱により、(200)方位への配向度を向上させて屈曲性を付与することができる。
図1は、本発明の実施形態に係る銅箔を製造するための熱処理を示す概念図である。本発明の好適な実施形態においては、銅箔基材に後述する所定の条件で焼鈍を施すことで、(200)方位が適度に発達し、その後の積層時の加熱(又は、これを模した昇温速度50℃/秒を超える昇温速度で300℃まで昇温した後に5秒保持する熱処理)により、(200)方位が増加する。又、焼鈍が過度にならないことで、銅箔の強度を維持し、積層時のハンドリング性を維持できるだけの強度を有する。
In other words, if it is annealed in a temperature range suitable for recrystallization in the (200) orientation to the extent that it does not become a complete recrystallized structure, while maintaining a predetermined strength, by heating at the time of lamination to the flexible copper-clad laminate, ( It is possible to impart flexibility by improving the degree of orientation in the (200) direction.
FIG. 1 is a conceptual diagram showing heat treatment for producing a copper foil according to an embodiment of the present invention. In a preferred embodiment of the present invention, the copper foil base material is annealed under predetermined conditions to be described later, so that the (200) orientation is appropriately developed, and the heating during the subsequent lamination (or imitating this) The (200) orientation is increased by a heat treatment in which the temperature is increased to 300 ° C. at a temperature increase rate exceeding 50 ° C./second and held for 5 seconds. In addition, since the annealing is not excessive, the strength of the copper foil is maintained, and the strength is sufficient to maintain the handleability during lamination.

このようなことから、本発明の銅箔は、引張強度400MPa以上であり、かつ(200)面のX線回折強度比I/I0(200)が15以下であり、かつX線回折測定による(200)ピークの半値幅が0.15以下であり、かつ50℃/秒を超える昇温速度で300℃まで昇温し、5秒保持する熱処理を加えた時の(200)面のX線回折強度比I/I0(200)が40以上である。
引張強度400MPa以上とした理由は、一般的な圧延タフピッチ銅箔の強度が400MPaであり、これより高強度であれば、フレキシブル銅貼積層板に積層する際のハンドリングが困難とならないためである。
ここで、本発明の銅箔は、上記した比I/I0が40以上になる特性を有するものであるが、上記した熱処理をした銅箔を積層して銅貼積層板を製造するという意味ではなく、本発明の銅箔を、積層前に取り出して別途、上記した熱処理を加えると比I/I0が40以上になる性質があるという意味である。
Therefore, the copper foil of the present invention has a tensile strength of 400 MPa or more and an (200) plane X-ray diffraction intensity ratio I / I0 (200) of 15 or less, and X-ray diffraction measurement ( (200) X-ray diffraction intensity ratio of (200) plane when the half-value width of the peak is 0.15 or less and the temperature is increased to 300 ° C at a temperature increase rate exceeding 50 ° C / second and heat treatment is held for 5 seconds. I / I0 (200) is 40 or more.
The reason why the tensile strength is 400 MPa or more is that the strength of a general rolled tough pitch copper foil is 400 MPa, and if the strength is higher than this, handling at the time of stacking on a flexible copper-clad laminate is not difficult.
Here, the copper foil of the present invention has the characteristic that the ratio I / I0 is 40 or more, but in the sense that a copper-clad laminate is produced by laminating the above-mentioned heat-treated copper foil. In other words, when the copper foil of the present invention is taken out before lamination and subjected to the above-described heat treatment, the ratio I / I0 becomes 40 or more.

又、熱処理条件を、50℃/秒を超える昇温速度で300℃まで昇温するとした理由は、この条件は、ラミネート法でフレキシブル銅貼積層板を製造する際、ポリイミドフィルムと銅箔とを重ねて加熱ロールで圧着するための加熱条件(通箔速度3m/分程度)に近似するからである。一般的なラミネート法では、ロール温度が250〜300℃であり、ロールと銅箔との接触時間は数秒である。つまり、銅箔の昇温速度は70〜150℃/秒程度と推定される。また、50℃/秒を超える昇温速度で300℃まで昇温し、5秒保持する熱処理でI/I0(200)が40以上となれば、ラミネート法より昇温速度が遅い他の方法でフレキシブル銅貼積層板を製造しても、確実にI/I0(200)が40以上となる。積層板になった時点で、I/I0(200)が40以上であれば銅箔の屈曲性が優れていることになる。なお、積層板になった後は、銅箔が基体樹脂と積層されるので、銅箔自体の強度が400MPa未満に低下しても問題とならない。   In addition, the reason for the heat treatment condition that the temperature is increased to 300 ° C. at a temperature increase rate exceeding 50 ° C./second is that when the flexible copper-clad laminate is produced by the laminating method, the polyimide film and the copper foil are used. This is because it approximates the heating conditions (foil passing speed of about 3 m / min) for repeated pressure bonding with a heating roll. In a general laminating method, the roll temperature is 250 to 300 ° C., and the contact time between the roll and the copper foil is several seconds. That is, the temperature rising rate of the copper foil is estimated to be about 70 to 150 ° C./second. In addition, if I / I0 (200) is 40 or more in the heat treatment that is heated to 300 ° C at a heating rate exceeding 50 ° C / second and held for 5 seconds, the heating rate can be reduced by another method that is slower than the laminating method. Even when a flexible copper-clad laminate is manufactured, I / I0 (200) is certainly 40 or more. When I / I0 (200) is 40 or more at the time of becoming a laminate, the flexibility of the copper foil is excellent. Since the copper foil is laminated with the base resin after becoming a laminated plate, there is no problem even if the strength of the copper foil itself is reduced to less than 400 MPa.

銅箔の引張強度を400MPa以上とし、かつ(200)面のX線回折強度比I/I0(200)が15以下であり、かつX線回折測定による(200)ピークの半値幅が0.15以下であり、かつ50℃/秒を超える昇温速度で300℃まで昇温し、5秒保持する熱処理を加えた時の(200)面のX線回折強度比I/I0(200)を40以上とするような特性を銅箔に付与する方法としては、銅箔基材を焼きなまし過ぎない程度に焼鈍し、適度に強度を保つようにすることが挙げられる。
具体的には、例えば焼鈍温度T(℃)、焼鈍時間t(h)とした時、式1;
P=(T+273)×(14+log(t))で求められるPが、焼鈍時間0.5hでの半軟化温度Thに対して前記式1で求められるPhに対し、0.96Ph≦P≦Phの範囲内で焼鈍され、かつ該焼鈍の昇温過程において半軟化温度Thに対して0.4Th〜1.2Thとなる温度範囲に銅箔が3秒を超えて曝されることが好ましい。この条件で焼鈍することにより、上記した強度と方位を持つ銅箔を製造することができる。ここで、0.4Th〜1.2Thとなる温度範囲に3秒を超えて銅箔基材が曝される必要がある理由は、上記温度範囲への銅箔基材の暴露時間(保持時間)が3秒以下となるような急速な焼鈍の場合、この温度範囲を超える最高焼鈍温度で充分な時間銅箔基材を暴露(保持)したとしても、銅箔が短時間のうちに高温になるためである。そして、このような急速な焼鈍では、再結晶核が生成しにくい結晶方位であっても核生成が生じ、ランダムな方位を持った再結晶組織が生成され、再結晶集合組織が発達しないためである。
上記した条件で焼鈍を行うためには、熱風循環式または輻射熱式の焼鈍炉を用いることが望ましい。低温から高温までの温度の異なる多数の加熱ロールに順次接触させる方法でも昇温速度を制御することはできるが、設備が複雑になるために実用的ではない。
The tensile strength of the copper foil is 400 MPa or more, the (200) plane X-ray diffraction intensity ratio I / I0 (200) is 15 or less, and the (200) peak half-value width by X-ray diffraction measurement is 0.15 or less. Yes, the X-ray diffraction intensity ratio I / I0 (200) of the (200) plane when heated to 300 ° C at a heating rate exceeding 50 ° C / second and maintained for 5 seconds is 40 or more As a method for imparting such characteristics to the copper foil, it is possible to anneal the copper foil base material to such an extent that the copper foil base material is not excessively annealed, and to keep the strength moderately.
Specifically, for example, when the annealing temperature T (° C.) and the annealing time t (h) are set, the formula 1;
P obtained by P = (T + 273) × (14 + log (t)) is 0.96P h ≦ P with respect to P h obtained by the above formula 1 with respect to the semi-softening temperature T h at an annealing time of 0.5 h . ≦ P h is annealed in the range of, and the copper foil to a temperature range where the 0.4T h ~1.2T h relative half-softening temperature T h in the course of temperature elevation該焼blunt is exposed beyond 3 seconds Is preferred. By annealing under these conditions, a copper foil having the above-described strength and orientation can be produced. Here, the reason that the copper foil base material needs to be exposed to the temperature range of 0.4 T h to 1.2 Th h for more than 3 seconds is the exposure time (holding time) of the copper foil base material to the above temperature range In the case of rapid annealing, such as 3 seconds or less, even if the copper foil base material is exposed (held) for a sufficient time at the maximum annealing temperature that exceeds this temperature range, the copper foil becomes hot within a short time Because. In such rapid annealing, nucleation occurs even in crystal orientations where recrystallization nuclei are difficult to form, and recrystallized structures with random orientations are generated, and recrystallized texture does not develop. is there.
In order to perform the annealing under the above-described conditions, it is desirable to use a hot air circulation type or a radiant heat type annealing furnace. Although the heating rate can be controlled by a method of sequentially contacting a large number of heating rolls having different temperatures from low temperature to high temperature, it is not practical because the equipment becomes complicated.

ここで、Pは応力緩和試験で用いられるラーソンミラーパラメータのことであり、式1に示すとおり、熱処理時間と熱処理温度の両方を含む値である。応力緩和と熱処理による回復再結晶はいずれも転位および結晶粒界の移動による現象であることから、ラーソンミラーパラメータが回復の程度を一般に評価するのに適当であると考えられる。又、Pは本発明者らが行った実験結果をよく再現した。   Here, P is a Larson mirror parameter used in the stress relaxation test, and is a value including both the heat treatment time and the heat treatment temperature as shown in Equation 1. Since both stress relaxation and recovery recrystallization by heat treatment are phenomena due to dislocations and movement of grain boundaries, it is considered that the Larson Miller parameter is generally suitable for evaluating the degree of recovery. Moreover, P reproduced well the experimental results conducted by the present inventors.

又、焼鈍時間0.5hでの半軟化温度Thに対して前記式1でPhを求めるのは、以下の理由による。つまり、軟化挙動の異なる種々の組成の銅合金について、熱処理条件に対する軟化の程度を表すのに半軟化温度Thが好適であるため、ThにおけるPhを前記式1から求め、このPhを基準として、銅箔のPを管理することが有効であるからである。
なお、Thは、焼鈍温度を0.5hとしたときの強度が、焼鈍前の強度と完全に焼き鈍った状態の強度の和の1/2となる焼き鈍し温度である。
そして、Phを超える熱処理では再結晶組織が発達するが、柔らかくなり過ぎて強度が400MPa未満に低下するため、銅箔のハンドリング性が低下してしまう場合がある。又、0.96Ph未満となる熱処理では、転位が充分に動かないため熱処理による(200)方位の発達効果が得られない場合がある。
Also, determine the P h by the formula 1 for half-softening temperature T h at the annealing time 0.5h for the following reason. In other words, different for copper alloys of various compositions softening behavior due to represent the degree of softening for the heat treatment conditions half-softening temperature T h is preferred to obtain the P h at T h from the equation 1, this P h This is because it is effective to manage P of the copper foil on the basis of the above.
Note that Th is an annealing temperature at which the strength when the annealing temperature is 0.5 h is ½ of the sum of the strength before annealing and the strength in the completely annealed state.
A heat treatment exceeding Ph develops a recrystallized structure, but it becomes too soft and the strength is reduced to less than 400 MPa, so that the handleability of the copper foil may be lowered. Further, in the heat treatment at less than 0.96Ph, the dislocation does not move sufficiently, so that the effect of developing the (200) orientation by heat treatment may not be obtained.

銅箔の具体的な焼鈍温度や焼鈍時間は、上記式1で規定されるPの範囲内であれば問題ない。例えば焼鈍温度が100℃であれば焼鈍時間は5時間程度、焼鈍温度が250℃であれば焼鈍時間は10秒程度となる。
以上からバッチ焼鈍、連続ライン等のいずれにも好ましい焼鈍の条件は、焼鈍温度100〜200℃、焼鈍時間10秒〜5時間の範囲であり、さらに好ましくは焼鈍温度100〜140℃、焼鈍時間5分〜5時間の範囲である。
なお、本発明において、「焼鈍温度」とは、所定の焼鈍時間内での最高到達温度である。又、焼鈍は、銅箔の製造時に行ってもよく、銅箔に粗化処理を行った後に行ってもよい。
There is no problem as long as the specific annealing temperature and annealing time of the copper foil are within the range of P defined by the above formula 1. For example, if the annealing temperature is 100 ° C., the annealing time is about 5 hours, and if the annealing temperature is 250 ° C., the annealing time is about 10 seconds.
From the above, preferable annealing conditions for batch annealing, continuous line, etc. are in the range of annealing temperature of 100 to 200 ° C. and annealing time of 10 seconds to 5 hours, more preferably annealing temperature of 100 to 140 ° C. and annealing time of 5 It is in the range of minutes to 5 hours.
In the present invention, the “annealing temperature” is the highest temperature reached within a predetermined annealing time. Moreover, annealing may be performed at the time of manufacture of copper foil, and may be performed after performing a roughening process to copper foil.

なお、上記式1の値14は、応力緩和の進みやすさ(原子の拡散、転位の移動のしやすさ)を反映した材料固有の材料定数Cである。通常、焼鈍条件に対する特性(強度)を実測し、最小自乗法によって求めるが、本発明では純銅系銅合金で一般に用いられる14を値として採用している。   Note that the value 14 in the above equation 1 is a material constant C inherent to the material reflecting the ease of stress relaxation (atomic diffusion and ease of dislocation movement). Usually, the characteristic (strength) with respect to the annealing condition is measured and obtained by the least square method, but in the present invention, 14 generally used in pure copper-based copper alloys is adopted as a value.

上記した焼鈍であれば、優先方位の(200)再結晶核を優先的に銅箔材料中に生じさせることができる。そのため、フレキシブル銅貼積層板に積層する際の昇温速度が急速であっても、(200)に優先方位をもった結晶粒を成長させることができる。
又、焼鈍が過度になることが無いので、銅箔の強度を保つことができる。
With the annealing described above, (200) recrystallization nuclei with a preferential orientation can be preferentially generated in the copper foil material. Therefore, even if the rate of temperature rise when laminating the flexible copper-clad laminate is rapid, crystal grains having a preferred orientation in (200) can be grown.
Moreover, since the annealing does not become excessive, the strength of the copper foil can be maintained.

銅箔の(200)面のX線回折強度比I/I0(200)が15以下であり、かつX線回折測定による(200)ピークの半値幅が0.15以下であることは、以下の理由による。
通常、高屈曲用途で用いられる銅箔は完全に再結晶するまで焼鈍した場合に銅箔のI/I0(200)が40以上となるものであるから、銅箔のI/I0(200)が15以下であるとは、完全には再結晶していないことを示す。つまり、I/I0(200)が15以下であるとは、焼鈍が過度でないことの指標となる。一方、I/I0(200)が15を超えてI/I0(200)が40を超えない場合には、その後にラミネート工程で加熱をしてもI/I0(200)が40を超えることはない。
The X-ray diffraction intensity ratio I / I0 (200) of the (200) plane of the copper foil is 15 or less, and the half width of the (200) peak by X-ray diffraction measurement is 0.15 or less for the following reason. .
Usually, copper foil used in high bending applications has a copper foil I / I0 (200) of 40 or more when annealed until it is completely recrystallized. When it is 15 or less, it means that it is not completely recrystallized. That is, I / I0 (200) of 15 or less is an indicator that annealing is not excessive. On the other hand, if I / I0 (200) exceeds 15 and I / I0 (200) does not exceed 40, then I / I0 (200) will not exceed 40 even if heating is performed in the laminating process. Absent.

又、X線回折における(200)ピークの半値幅は結晶のひずみの程度を反映し、結晶がひずんでいるほど、局所的な原子間距離にばらつきがあるためピーク幅が太く、半値幅は大きくなる。つまり、圧延ままの銅箔では半値幅が大きい。
従って、半値幅が0.15以下とは、銅箔が熱処理を受け、圧延時の加工ひずみが解放された状態を示し、圧延後に焼鈍をしていない銅箔が除かれる。これは、仮に圧延ままであって、引張強度400MPa以上を有する銅箔があっても、このように圧延後に焼鈍をしていない銅箔は、50℃/秒を超える昇温速度で300℃まで昇温した後に5秒保持する熱処理を加えてもI/I0(200)が40以上に増加しないからである。
In addition, the half width of the (200) peak in X-ray diffraction reflects the degree of strain of the crystal, and the more the crystal is distorted, the wider the peak width is because the local interatomic distance varies. Become. That is, the full width at half maximum is large in an as-rolled copper foil.
Therefore, a half width of 0.15 or less indicates a state in which the copper foil has been subjected to a heat treatment and the processing strain during rolling is released, and the copper foil that has not been annealed after rolling is excluded. Even if there is a copper foil that is still rolled and has a tensile strength of 400 MPa or more, the copper foil that has not been annealed after rolling in this way is up to 300 ° C at a temperature rising rate exceeding 50 ° C / second. This is because I / I0 (200) does not increase to 40 or more even when heat treatment is held for 5 seconds after the temperature is raised.

本発明の銅箔としては、タフピッチ銅自体、無酸素銅自体の他、タフピッチ銅や無酸素銅に微量の元素添加を行った銅合金箔等を用いることができる。又、本発明の銅箔として、通常、片面に化学処理(銅系粗化めっき)を施したものも用いることができる。銅箔の加工度や厚みも限定されないが、厚み20μm以下のものが好ましい。特に、タフピッチ銅または無酸素銅に対し、Ag,Sn及びInの群から選ばれる1種以上を合計0.05質量%以下添加した組成からなり、厚み20μm以下の圧延銅箔が好ましい。   As the copper foil of the present invention, not only tough pitch copper itself and oxygen-free copper itself, but also copper alloy foil or the like obtained by adding a trace amount of elements to tough pitch copper or oxygen-free copper can be used. Further, as the copper foil of the present invention, one having a chemical treatment (copper-based rough plating) on one side can be usually used. The degree of processing and thickness of the copper foil are not limited, but those having a thickness of 20 μm or less are preferable. In particular, a rolled copper foil with a thickness of 20 μm or less is preferred, comprising a composition in which one or more selected from the group of Ag, Sn, and In is added in total to 0.05% by mass or less to tough pitch copper or oxygen-free copper.

本発明のフレキシブル銅貼積層板は、銅箔と基体樹脂とを積層したものであればよい。特に、エポキシ系等の接着剤を使用せずに銅箔と基体樹脂とを積層した二層フレキシブル銅貼積層板が好ましい。二層フレキシブル銅貼積層板としては、例えば銅箔にポリイミドのワニスを塗布し、熱を加えて乾燥、硬化させ積層板とするキャスト法と呼ばれる方法や、予め接着力のある熱可塑性ポリイミドを塗布したポリイミドフィルムと銅箔とを重ねて加熱ロールなどを通して圧着するラミネート法と呼ばれる方法によって製造されるものが一般的である。
基体樹脂としては例えばポリイミドが挙げられるが、ラミネート法の場合は積層前にフィルム状であり、キャスト法の場合は積層前に液体の(未硬化の)ポリイミドであり、これを銅箔に塗布して加熱すると硬化して基体樹脂(層)になる。
The flexible copper-clad laminate of the present invention only needs to be a laminate of a copper foil and a base resin. In particular, a two-layer flexible copper-clad laminate in which a copper foil and a base resin are laminated without using an epoxy-based adhesive is preferred. As a two-layer flexible copper-clad laminate, for example, a polyimide varnish is applied to a copper foil, dried and cured by applying heat, and a method called a cast method to form a laminate, or a thermoplastic polyimide with adhesive in advance is applied In general, the polyimide film and the copper foil are manufactured by a method called a laminating method in which the polyimide film and the copper foil are stacked and pressure-bonded through a heating roll or the like.
For example, polyimide is used as the base resin, but in the case of the laminate method, it is a film before lamination, and in the case of the cast method, it is a liquid (uncured) polyimide before lamination, which is applied to a copper foil. When heated, it hardens and becomes a base resin (layer).

以下の実施例では、ラミネート法で二層フレキシブル銅貼積層板を作製した。
<銅箔>
二層フレキシブル銅貼積層板用の銅箔は、溶解鋳造で厚み200mm程度の直方体のインゴットを製造し、熱間圧延で10mm前後まで加工し、冷間圧延と焼鈍とを繰り返して製造し、冷間圧延後に、以下の各表に示す(予備)焼鈍を行ったものを用いた。銅箔の組成は各表に示すとおりである。銅箔は99%の最終加工度で圧延し、厚み12μmとした。焼鈍後の箔の片面に化学処理(銅系粗化めっき)を施し、積層に供した。
なお、タフピッチ銅については、各実施例及び比較例に応じて、最終圧延加工度を変えた。
室温で、銅箔の200面のX線回折強度比I/I0及び引張強度を測定した。半値幅は、JIS K0131に基づいて得られ、X線回折強度のピーク高さの半分の値におけるピーク幅である。
In the following examples, a two-layer flexible copper-clad laminate was produced by a laminating method.
<Copper foil>
Copper foil for two-layer flexible copper-clad laminates is manufactured by manufacturing a rectangular parallelepiped ingot with a thickness of about 200 mm by melt casting, processing to around 10 mm by hot rolling, and repeating cold rolling and annealing. After the cold rolling, those subjected to (preliminary) annealing shown in the following tables were used. The composition of the copper foil is as shown in each table. The copper foil was rolled to a final working degree of 99% to a thickness of 12 μm. One surface of the annealed foil was subjected to chemical treatment (copper-based roughening plating) and subjected to lamination.
In addition, about tough pitch copper, the final rolling work degree was changed according to each Example and the comparative example.
At room temperature, the X-ray diffraction intensity ratio I / I0 and tensile strength of 200 surfaces of the copper foil were measured. The full width at half maximum is obtained based on JIS K0131 and is a peak width at a value half the peak height of the X-ray diffraction intensity.

<ラミネート法>
ラミネート法で二層フレキシブル銅貼積層板を製造するためのポリイミドフィルムとして、両面に熱可塑性ポリイミドを接着剤として塗布した厚み25μmのフィルム(宇部興産社製のユーピレックスVT)を用いた。表面の熱可塑性ポリイミド接着剤は、コア部のポリイミドフィルムと異種の樹脂ではなく、銅箔と積層した後は、全体として基体樹脂となって二層フレキシブル銅貼積層板になる。
図2に示すように、接着剤4aを両面に有する上記ポリイミドフィルム4の両面に、上記した化学処理面がそれぞれ対向するように2枚の銅箔(符号2)を重ね、フィルム4を各銅箔で挟み込んで積層し、約300℃の加熱ロールで通箔速度3m/分として加熱した。
<Lamination method>
As a polyimide film for producing a two-layer flexible copper-clad laminate by a laminating method, a 25 μm-thick film (Upilex VT manufactured by Ube Industries Co., Ltd.) coated with thermoplastic polyimide on both sides was used. The thermoplastic polyimide adhesive on the surface is not a resin different from the polyimide film of the core part, but after being laminated with a copper foil, it becomes a base resin as a whole and becomes a two-layer flexible copper-clad laminate.
As shown in FIG. 2, two copper foils (reference numeral 2) are stacked on both sides of the polyimide film 4 having the adhesive 4a on both sides so that the above-described chemically treated surfaces face each other. The foil was sandwiched and laminated, and heated with a heating roll of about 300 ° C. at a foil passing speed of 3 m / min.

<屈曲性の評価>
ラミネート法で得た二層フレキシブル銅貼積層板のうち、片方の銅箔を塩化第ニ鉄水溶液でエッチングして除去した。この後、既知のフォトリソグラフイ技術を用い、残った銅箔に回路幅200μmの配線を形成し、エポキシ系の接着剤が塗布されたポリイミドフィルムをカバーレイとして熱圧着して屈曲試験用のFPCを作製した。
IPC摺動屈曲試験機を使用し、曲げ半径1mmで毎分100回の繰り返し摺動を上記FPC片に負荷し、配線の電気抵抗が初期から10%上昇した屈曲回数を終点とした。屈曲回数が10万回を超える場合を良い(○)、10万回未満を悪い(×)と判定した。
<Evaluation of flexibility>
Of the two-layer flexible copper-clad laminate obtained by the laminating method, one copper foil was removed by etching with a ferric chloride aqueous solution. After this, using a known photolithographic technique, a wiring with a circuit width of 200 μm is formed on the remaining copper foil, and a polyimide film coated with an epoxy adhesive is thermocompression-bonded as a coverlay for FPC for bending tests Was made.
Using an IPC sliding bending tester, 100 times per minute repeated sliding with a bending radius of 1 mm was applied to the FPC piece, and the end point was the number of bendings where the electrical resistance of the wiring increased by 10% from the initial stage. The case where the number of bendings exceeded 100,000 was judged as good (◯), and the number of bendings less than 100,000 was judged as bad (×).

得られた結果を表1、2に示す。   The obtained results are shown in Tables 1 and 2.

Figure 0005185066
Figure 0005185066

Figure 0005185066
Figure 0005185066

表1から明らかなように、各実施例の場合、積層前の銅箔の引張強度が400MPa以上であると共に、ラミネート時の加熱を模した、昇温速度70℃/秒で300℃まで昇温し、5秒保持した熱処理後の200面のX線回折強度比(I/I0)が40以上であり、銅箔の予備焼鈍時の強度(取り扱い性)と銅貼積層後の屈曲性がいずれも良好であった。又、各実施例の場合、冷間圧延後の予備焼鈍において、0.4Th〜1.2Thとなる温度範囲に3秒を超えて銅箔が曝されていた。 As is clear from Table 1, in each example, the tensile strength of the copper foil before lamination was 400 MPa or more, and the temperature was increased to 300 ° C. at a temperature increase rate of 70 ° C./sec. However, the X-ray diffraction intensity ratio (I / I0) of 200 surfaces after heat treatment held for 5 seconds is 40 or more, and the strength (handling property) of copper foil when pre-annealed and the flexibility after lamination with copper Was also good. In the case of the embodiment, in the preliminary annealing after cold rolling, the copper foil was exposed for more than three seconds to a temperature range where the 0.4T h ~1.2T h.

一方、予備焼鈍時のP/Phが1を超えた比較例1、3、4、9、10、11、14、16、17の場合、いずれも銅箔の引張強度が400MPa未満に低下した。これは、予備焼鈍が過度になって銅箔がなまり過ぎたためと考えられる。
又、予備焼鈍を行わなかった比較例12、15、及び予備焼鈍時のP/Phが0.96未満である比較例2、7、8,13,18の場合、ラミネート時の加熱を模した昇温速度70℃/秒で300℃まで昇温し5秒保持した熱処理後での200面のX線回折強度比(I/I0)が40未満に低下し、銅貼積層後の屈曲性が劣った。これは、予備焼鈍の効果が不足し、(200)に優先方位をもった結晶粒を銅箔中に十分に導入させることができなかったためと考えられる。
On the other hand, in Comparative Examples 1, 3, 4, 9, 10, 11, 14, 16, and 17 in which P / Ph during pre-annealing exceeded 1, the tensile strength of the copper foil decreased to less than 400 MPa. This is thought to be because the pre-annealing was excessive and the copper foil was too slack.
In the case of Comparative Examples 12 and 15 where pre-annealing was not performed, and Comparative Examples 2, 7, 8, 13 and 18 where P / Ph during pre-annealing was less than 0.96, the temperature rise imitating heating during lamination The X-ray diffraction intensity ratio (I / I0) of the 200 surface after heat treatment was raised to 300 ° C. at a rate of 70 ° C./second and held for 5 seconds decreased to less than 40, and the flexibility after copper lamination was inferior . This is presumably because the effect of pre-annealing was insufficient and the crystal grains having the preferred orientation at (200) could not be sufficiently introduced into the copper foil.

冷間圧延後の予備焼鈍時の昇温速度が速く、昇温過程において銅箔が0.4Th〜1.2Thの温度範囲にさらされる時間が3秒以下となった比較例5、6、11の場合、銅貼積層後の屈曲性が劣った。
なお、比較例5の場合、予備焼鈍温度を200℃としたため、P/Phは0.96〜1.0の間の値となったが、比較例6の場合、予備焼鈍温度が300℃と高くなったためP/Phが1を超えた。
Comparative Examples 5, 6, and 11 in which the rate of temperature increase during pre-annealing after cold rolling was high, and the time during which the copper foil was exposed to the temperature range of 0.4 T h to 1.2 T h in the temperature increasing process was 3 seconds or less. In the case of, the flexibility after copper lamination was inferior.
In the case of Comparative Example 5, since the pre-annealing temperature was 200 ° C., P / Ph was a value between 0.96 and 1.0. However, in Comparative Example 6, the pre-annealing temperature was as high as 300 ° C. / Ph exceeded 1.

本発明の実施形態に係る銅箔を製造するための熱処理を示す概念図である。It is a conceptual diagram which shows the heat processing for manufacturing the copper foil which concerns on embodiment of this invention. 本発明の実施形態に係る二層フレキシブル銅貼積層板の構成を示す断面図である。It is sectional drawing which shows the structure of the two-layer flexible copper bonding laminated board which concerns on embodiment of this invention.

符号の説明Explanation of symbols

2 銅箔
4 基体樹脂(ポリイミドフィルム)
4a 接着剤
2 Copper foil 4 Base resin (polyimide film)
4a Adhesive

Claims (3)

タフピッチ銅、無酸素銅、又はタフピッチ銅若しくは無酸素銅に対し、Ag,Sn及びInの群から選ばれる1種以上を合計0.05質量%以下添加した組成からなり、厚み20μm以下の圧延銅箔であって、引張強度400MPa以上であり、かつ(200)面のX線回折強度比I/I0(200)が15以下であり、かつX線回折測定による(200)ピークの半値幅が0.15以下であり、かつ50℃/秒を超える昇温速度で300℃まで昇温して5秒保持する熱処理を加えた時の(200)面のX線回折強度比I/I0(200)が40以上である銅箔。 Made of tough pitch copper, oxygen-free copper, or tough pitch copper or oxygen-free copper, a composition in which one or more selected from the group of Ag, Sn, and In is added in a total amount of 0.05% by mass or less. The tensile strength is 400 MPa or more, the (200) plane X-ray diffraction intensity ratio I / I0 (200) is 15 or less, and the (200) peak half-value width by X-ray diffraction measurement is 0.15 or less. Yes, the X-ray diffraction intensity ratio I / I0 (200) of the (200) plane is 40 or more when heat treatment is performed at a rate of temperature exceeding 50 ° C / sec. A certain copper foil. タフピッチ銅、無酸素銅、又はタフピッチ銅若しくは無酸素銅に対し、Ag,Sn及びInの群から選ばれる1種以上を合計0.05質量%以下添加した組成からなるインゴットを、熱間圧延、及び冷間圧延と焼鈍とを繰り返して製造し、最終冷間圧延後に、  An ingot composed of tough pitch copper, oxygen-free copper, or tough pitch copper or oxygen-free copper added with one or more selected from the group of Ag, Sn and In, in total of 0.05% by mass or less, hot-rolled and cooled Hot rolling and annealing are repeated and after the final cold rolling,
焼鈍温度T(℃)、焼鈍時間t(h)とした時、式1;  When the annealing temperature T (° C.) and the annealing time t (h) are set, Formula 1;
P=(T+273)×(14+log(t))で求められるPが、焼鈍時間0.5hでの半軟化温度T  P calculated by P = (T + 273) × (14 + log (t)) is semi-softening temperature T at annealing time 0.5h. hh に対して前記式1で求められるPP obtained from Equation 1 above hh に対し、0.96PAgainst 0.96P hh ≦P≦P≦ P ≦ P hh の範囲内で焼鈍され、かつ前記焼鈍の昇温過程において半軟化温度TAnd a semi-softening temperature T in the temperature raising process of the annealing. hh に対して0.4T0.4T against hh 〜1.2T~ 1.2T hh となる温度範囲に3秒を超えて曝す予備焼鈍を行う、銅箔の製造方法。A method for producing a copper foil, in which pre-annealing is performed by exposing to a temperature range exceeding 3 seconds.
請求項記載の銅箔と、基体樹脂とを積層してなるフレキシブル銅貼積層板。 A flexible copper-clad laminate obtained by laminating the copper foil according to claim 1 and a base resin.
JP2008272702A 2008-10-23 2008-10-23 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate Active JP5185066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272702A JP5185066B2 (en) 2008-10-23 2008-10-23 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272702A JP5185066B2 (en) 2008-10-23 2008-10-23 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2010100887A JP2010100887A (en) 2010-05-06
JP5185066B2 true JP5185066B2 (en) 2013-04-17

Family

ID=42291776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272702A Active JP5185066B2 (en) 2008-10-23 2008-10-23 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate

Country Status (1)

Country Link
JP (1) JP5185066B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369794B (en) 2009-03-31 2016-05-25 Jx日矿日石金属株式会社 The manufacture method of electromagnetic shielding material and electromagnetic shielding material
JP5463205B2 (en) 2010-05-27 2014-04-09 日本メクトロン株式会社 Flexible circuit board
JP5625188B2 (en) * 2010-06-29 2014-11-19 三井住友金属鉱山伸銅株式会社 Rolled copper foil and method for producing the same
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
JP5705311B2 (en) 2011-05-13 2015-04-22 Jx日鉱日石金属株式会社 Copper foil composite, copper foil used therefor, molded body and method for producing the same
KR20130057674A (en) * 2011-11-24 2013-06-03 삼성전자주식회사 Mccl and method manufacturing the same
JP5822838B2 (en) 2012-01-13 2015-11-24 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
JP5475196B2 (en) 2012-01-13 2014-04-16 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
JP5822842B2 (en) 2012-01-13 2015-11-24 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
JP5770113B2 (en) 2012-01-13 2015-08-26 Jx日鉱日石金属株式会社 Metal foil composite, molded body and method for producing the same
JP5774505B2 (en) * 2012-01-17 2015-09-09 Jx日鉱日石金属株式会社 Copper-polyimide laminate, three-dimensional molded body, and method for producing three-dimensional molded body
JP5753115B2 (en) * 2012-03-12 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil for printed wiring boards
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate
JP2014058704A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil
JP6883449B2 (en) * 2017-03-13 2021-06-09 Jx金属株式会社 Electromagnetic wave shield material
JP6617313B2 (en) 2017-08-03 2019-12-11 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6643287B2 (en) * 2017-08-03 2020-02-12 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6944963B2 (en) * 2019-03-05 2021-10-06 Jx金属株式会社 Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856616B2 (en) * 2000-03-06 2006-12-13 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP2004060018A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Copper foil for electronic part
JP4756194B2 (en) * 2005-02-22 2011-08-24 新日鐵化学株式会社 Method for producing copper clad laminate
JP4522972B2 (en) * 2005-04-28 2010-08-11 日鉱金属株式会社 High gloss rolled copper foil for copper-clad laminates
WO2008050584A1 (en) * 2006-10-24 2008-05-02 Nippon Mining & Metals Co., Ltd. Rolled copper foil excellent in bending resistance
JP4215093B2 (en) * 2006-10-26 2009-01-28 日立電線株式会社 Rolled copper foil and method for producing the same
JP2009292090A (en) * 2008-06-06 2009-12-17 Nippon Mining & Metals Co Ltd Two-layer flexible copper-clad laminated sheet excellent in flexibility and method for manufacturing it

Also Published As

Publication number Publication date
JP2010100887A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5185066B2 (en) Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate
WO2012128099A1 (en) Copper foil and copper-clad laminate obtained using same
JP5826160B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP4672515B2 (en) Rolled copper alloy foil for bending
JP2009292090A (en) Two-layer flexible copper-clad laminated sheet excellent in flexibility and method for manufacturing it
JP4716520B2 (en) Rolled copper foil
WO2011089930A1 (en) Method for producing copper clad laminate, copper foil used therein, and laminating apparatus for copper clad laminate
TWI426995B (en) Copper or copper alloy foil, and a method of manufacturing both sides of a copper-clad laminate using the copper or copper alloy foil
JP2014077182A (en) Rolled copper foil
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2009280855A (en) Rolled copper foil and method for producing the same
JP2013044005A (en) Rolled copper alloy foil for double-sided copper-clad laminate, and method of manufacturing the double-sided copper-clad laminate using the same
JP2011153360A (en) Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP2008038170A (en) Rolled copper foil
JP6774457B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
JP6069023B2 (en) Rolled copper foil
KR101375991B1 (en) Method of manufacturing double-sided copper-clad laminate, and pair of copper or copper alloy foil sheets used thereupon
JP6944963B2 (en) Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards
JP2013216970A (en) Rolled copper foil
JP2011174156A (en) Rolled copper alloy foil for double-sided copper clad laminated plate and method for manufacturing double-sided copper clad laminated plate using the same
JP2013189702A (en) Rolled copper foil and method of manufacturing the same
JP2010121154A (en) Method for producing rolled copper foil and rolled copper foil
JP2009194163A (en) Copper foil for circuit board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5185066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250