JP2013216970A - Rolled copper foil - Google Patents
Rolled copper foil Download PDFInfo
- Publication number
- JP2013216970A JP2013216970A JP2013033386A JP2013033386A JP2013216970A JP 2013216970 A JP2013216970 A JP 2013216970A JP 2013033386 A JP2013033386 A JP 2013033386A JP 2013033386 A JP2013033386 A JP 2013033386A JP 2013216970 A JP2013216970 A JP 2013216970A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled
- plane
- rolled copper
- ray diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 239000011889 copper foil Substances 0.000 title claims abstract description 74
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 26
- 239000010949 copper Substances 0.000 claims abstract description 23
- 229910052802 copper Inorganic materials 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000005530 etching Methods 0.000 abstract description 23
- 238000000137 annealing Methods 0.000 description 30
- 238000001953 recrystallisation Methods 0.000 description 24
- 238000005096 rolling process Methods 0.000 description 14
- 238000005097 cold rolling Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012787 coverlay film Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
本発明は、FPC(フレキシブルプリント基板)等に好適に用いられる圧延銅箔に関する。 The present invention relates to a rolled copper foil suitably used for FPC (flexible printed circuit board) and the like.
FPC(フレキシブルプリント基板)としては銅箔と樹脂層とを積層してなる銅箔複合体が用いられ、この銅箔には、回路を形成する際のエッチング性、及びFPCの使用を考慮した屈曲性が要求されている。
ところで、FPCは銅箔が再結晶した状態で使用されるのが一般的である。銅箔を圧延加工すると結晶が回転し、圧延集合組織が形成され、純銅の圧延集合組織はCopper方位と呼ばれる{112}〈111〉が主方位になるといわれている。そして、圧延銅箔を圧延後に焼鈍したり、最終製品に加工されるまでの工程、つまりFPCになるまでの工程で熱が加えられると再結晶する。この圧延銅箔となった後の再結晶組織を、以下では単に「再結晶組織」と称し、熱がかかる前の圧延組織を単に「圧延組織」と称する。なお、再結晶組織は圧延組織によって大きく左右され、圧延組織を制御することで再結晶組織も制御することができる。
このようなことから、圧延銅箔の再結晶後に{001}〈100〉のCube方位を発達させて屈曲性を向上させる技術が提案されている(例えば、特許文献1、2)。
The FPC (Flexible Printed Circuit Board) uses a copper foil composite made by laminating a copper foil and a resin layer, and this copper foil is bent in consideration of the etching property when forming a circuit and the use of FPC. Sex is required.
By the way, FPC is generally used in a state where a copper foil is recrystallized. When a copper foil is rolled, the crystal rotates to form a rolling texture, and the rolling texture of pure copper is said to have {112} <111> called the Copper orientation as the main orientation. And it recrystallizes when heat is applied in the process until it anneals after rolling a rolled copper foil, or is processed into a final product, ie, the process until it becomes FPC. The recrystallized structure after forming the rolled copper foil is hereinafter simply referred to as “recrystallized structure”, and the rolled structure before being heated is simply referred to as “rolled structure”. The recrystallized structure greatly depends on the rolled structure, and the recrystallized structure can also be controlled by controlling the rolled structure.
For this reason, techniques for improving the flexibility by developing the Cube orientation of {001} <100> after recrystallization of the rolled copper foil have been proposed (for example, Patent Documents 1 and 2).
しかしながら、銅箔のCube方位が発達し過ぎるとエッチング性が低下するという問題がある。これは、Cube集合組織が発達したとしても単結晶ではなく、Cube方位の大きな結晶粒の中に他の方位の小さな結晶粒が存在する混粒状態となっており、各方位の粒でエッチング速度が変化するためと考えられる。特に、回路のL/S幅が狭くなる(ファインピッチ)ほど、エッチング性が問題となる。又、Cube方位が発達し過ぎると、銅箔が柔らかくなり過ぎ、ハンドリング性に劣ることがある。
なお、Cube方位の発達度を調整するため、最終圧延で再結晶後に圧延組織を制御する方法があるが、Cube方位が発達しなかったり、発達し過ぎたりしてCube方位の発達度を調整が十分に行えないという問題がある。
従って、本発明の目的は、エッチング性と屈曲性に共に優れた圧延銅箔を提供することにある。
However, when the Cube orientation of the copper foil is developed too much, there is a problem that the etching property is lowered. This is not a single crystal even if the Cube texture develops, but it is a mixed grain state in which grains with large Cube orientation have small grains with other orientations. Is considered to change. Particularly, as the L / S width of the circuit becomes narrower (fine pitch), the etching property becomes a problem. If the Cube orientation is developed too much, the copper foil becomes too soft and the handling property may be inferior.
In order to adjust the degree of development of the Cube orientation, there is a method of controlling the rolling structure after recrystallization in the final rolling, but the degree of Cube orientation is not developed or developed too much, and the degree of development of the Cube orientation can be adjusted. There is a problem of not being able to do enough.
Accordingly, an object of the present invention is to provide a rolled copper foil that is excellent in both etching property and flexibility.
本発明者らは、圧延組織における圧延面にて、{112}面が存在する割合よりも{110}面が存在する割合が多いほど、銅箔の圧延集合組織が発達しており、再結晶焼鈍時にCube方位が発達することを見出した。これにより、屈曲性を向上させるがエッチング性を低下させるCube方位の発達度を適切に調整するため、銅箔の圧延面に{112}面と{110}面の発達する割合を制御し、圧延銅箔のエッチング性と屈曲性を共に向上させることに成功した。
すなわち、本発明の圧延銅箔は、質量率で99.9%以上の銅を含み、圧延面における{112}面からの算出X線回折強度をI{112}とし、{110}面からの算出X線回折強度をI{110}としたとき、2.5≦I{110}/I{112}≦6.0を満たす。
The inventors of the present invention have developed a rolling texture of the copper foil as the ratio of the presence of the {110} plane is larger than the ratio of the {112} plane in the rolling plane in the rolling structure, and the recrystallization We found that the Cube orientation developed during annealing. As a result, in order to appropriately adjust the degree of development of the Cube orientation that improves the flexibility but decreases the etching property, the ratio of the {112} and {110} planes to be developed on the rolled surface of the copper foil is controlled, and the rolling We succeeded in improving both the etching and bending properties of copper foil.
That is, the rolled copper foil of the present invention contains 99.9% or more of copper by mass, the calculated X-ray diffraction intensity from the {112} plane on the rolled surface is I {112}, and the calculated X from the {110} plane is X When the line diffraction intensity is I {110}, 2.5 ≦ I {110} / I {112} ≦ 6.0 is satisfied.
本発明の圧延銅箔は、Ag、Sn、Mg、In、B、Ti、Zr及びAuの群から選ばれる1種又は2種以上を合計で10〜300質量ppm含有し、残部Cuおよび不可避的不純物からなることが好ましい。
本発明の圧延銅箔は、酸素を2〜50質量ppm含有することが好ましい。
本発明の圧延銅箔は、200℃で30分の加熱後に、圧延面において、I{112}≦1.0を満たすことが好ましい。
本発明の圧延銅箔は、350℃で1秒加熱後において、前記圧延銅箔の圧延面の{200}面のX線回折強度をI{200}とし、純銅粉末試料の{200}面のX線回折強度をI0{200}としたとき、5.0≦I{200}/I0{200}≦27.0を満たすことが好ましく、13.0≦I{200}/I0{200}≦27.0を満たすことが好ましい。
本発明の圧延銅箔は、厚みが4〜70μmであることが好ましい。
The rolled copper foil of the present invention contains 10 to 300 mass ppm in total of one or more selected from the group consisting of Ag, Sn, Mg, In, B, Ti, Zr and Au, with the remainder being Cu and inevitable It is preferable to consist of impurities.
The rolled copper foil of the present invention preferably contains 2 to 50 ppm by mass of oxygen.
The rolled copper foil of the present invention preferably satisfies I {112} ≦ 1.0 on the rolled surface after heating at 200 ° C. for 30 minutes.
The rolled copper foil of the present invention has an X-ray diffraction intensity of {200} plane of the rolled surface of the rolled copper foil of I {200} after heating at 350 ° C. for 1 second, and the {200} plane of the pure copper powder sample. When the X-ray diffraction intensity is I 0 {200}, it is preferable that 5.0 ≦ I {200} / I 0 {200} ≦ 27.0 is satisfied, and 13.0 ≦ I {200} / I 0 {200} ≦ 27.0 is satisfied. It is preferable.
The rolled copper foil of the present invention preferably has a thickness of 4 to 70 μm.
本発明によれば、エッチング性と屈曲性に共に優れ、FPC(フレキシブルプリント基板)等に好適に用いることができる圧延銅箔を得ることができる。 According to the present invention, it is possible to obtain a rolled copper foil that is excellent in both etching property and flexibility and can be suitably used for an FPC (flexible printed circuit board) or the like.
以下、本発明の実施形態に係る圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, the rolled copper foil which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.
<組成>
圧延銅箔は質量率で99.9%以上の銅を含む。このような組成としては、JIS-H3510(C1011)またはJIS- H3100 (C1020)に規格される無酸素銅、又は、JIS-H3100(C1100)に規格されるタフピッチ銅が挙げられる。又、圧延銅箔の酸素含有量を2〜50質量ppmとすることが好ましい。圧延銅箔中の酸素含有量が2〜50質量ppmと少ない場合、圧延銅箔中に亜酸化銅がほとんど存在しない。そのため、圧延銅箔を屈曲した際、亜酸化銅が原因となるひずみの蓄積がほとんど無いため、クラックが入り難く、屈曲性が向上する。なお、銅に含まれる酸素含有量の上限は特に限定はされないが、一般的には500質量ppm以下、さらに一般的には320質量ppm以下である。
さらに、Ag、Sn、Mg、In、B、Ti、Zr及びAuの群から選ばれる1種又は2種以上を合計で10〜300質量ppm含有してもよい。これらの元素を添加すると、圧延面に{110}面が多くなる傾向にあるので、後述するI{110}/I{112}の値を調整し易くなる。上記元素の合計量が10質量ppm未満であると、圧延面に{110}面を発達させる効果が少なく、300質量ppmを超えると導電率が低下するとともに再結晶温度が上昇し、最終圧延後の焼鈍において銅箔の表面酸化を抑えつつ再結晶させることが困難になる場合がある。
<Composition>
The rolled copper foil contains 99.9% or more of copper by mass ratio. Examples of such a composition include oxygen-free copper standardized by JIS-H3510 (C1011) or JIS-H3100 (C1020) or tough pitch copper standardized by JIS-H3100 (C1100). Moreover, it is preferable that the oxygen content of rolled copper foil shall be 2-50 mass ppm. When the oxygen content in the rolled copper foil is as low as 2 to 50 mass ppm, cuprous oxide is hardly present in the rolled copper foil. For this reason, when the rolled copper foil is bent, there is almost no accumulation of strain caused by cuprous oxide, so that cracks hardly occur and the flexibility is improved. The upper limit of the oxygen content contained in copper is not particularly limited, but is generally 500 ppm by mass or less, and more generally 320 ppm by mass or less.
Furthermore, you may contain 10-300 mass ppm in total of 1 type, or 2 or more types chosen from the group of Ag, Sn, Mg, In, B, Ti, Zr, and Au. When these elements are added, the {110} plane tends to increase on the rolled plane, and it becomes easy to adjust the value of I {110} / I {112} described later. If the total amount of the above elements is less than 10 ppm by mass, the effect of developing the {110} plane is small, and if it exceeds 300 ppm by mass, the conductivity decreases and the recrystallization temperature rises, after the final rolling. In the annealing, it may be difficult to recrystallize while suppressing the surface oxidation of the copper foil.
<厚み>
銅箔の厚みは、4〜100μmであることが好ましく、5〜70μmであることがさらに好ましい。厚みが4μm未満であると銅箔のハンドリング性が劣る場合があり、厚みが100μmを超えると銅箔の屈曲性が劣る場合がある。
<Thickness>
The thickness of the copper foil is preferably 4 to 100 μm, and more preferably 5 to 70 μm. When the thickness is less than 4 μm, the handleability of the copper foil may be inferior, and when the thickness exceeds 100 μm, the flexibility of the copper foil may be inferior.
<銅箔圧延面の{112}面及び{110}面>
{200}、{220}、{111}面のX線回折強度から算出した銅箔圧延面における各面の存在強度を算出X線回折強度と定義する。そして、{112}面の算出X線回折強度をI{112}とし、{110}面からの算出X線回折強度をI{110}としたとき、2.5≦I{110}/I{112}≦6.0を満たす。より好ましい範囲は4.0≦I{110}/I{112}≦5.6である。
<{112} surface and {110} surface of the copper foil rolled surface>
The presence intensity of each surface in the rolled copper foil surface calculated from the X-ray diffraction intensity of the {200}, {220}, {111} planes is defined as the calculated X-ray diffraction intensity. When the calculated X-ray diffraction intensity of the {112} plane is I {112} and the calculated X-ray diffraction intensity from the {110} plane is I {110}, 2.5 ≦ I {110} / I {112} Satisfies ≦ 6.0. A more preferable range is 4.0 ≦ I {110} / I {112} ≦ 5.6.
なお、X線回折はその波長が長いため、銅箔の{200}、{220}、{111}面の回折強度は測定できるが、{422}面(つまり、{112}面)の回折ピークが得られない。そこで、正極点測定法による{200}、{220}、{111}のX線回折結果から、結晶方位の幾何学的関係を利用して{110}面及び{112}面の算出X線回折強度を求める。なお、{110}面の回折強度は{220}面の回折強度と等しいとして直接測定することもできるが、本発明では{200}、{220}、{111}面の回折強度から算出した算出X線回折強度を適用する。 Since the X-ray diffraction has a long wavelength, the diffraction intensity of the {200}, {220}, and {111} planes of copper foil can be measured, but the diffraction peak on the {422} plane (that is, the {112} plane) Cannot be obtained. Therefore, from the X-ray diffraction results of {200}, {220}, and {111} by the positive electrode point measurement method, the calculated X-ray diffraction of {110} plane and {112} plane using the geometrical relationship of crystal orientation Find strength. Note that the diffraction intensity of the {110} plane can be directly measured assuming that it is equal to the diffraction intensity of the {220} plane, but in the present invention, the calculation calculated from the diffraction intensity of the {200}, {220}, {111} plane X-ray diffraction intensity is applied.
具体的には、{110}面及び{112}面の算出X線回折強度の値を次のようにして得た。
まず、銅箔の{200}、{220}、{111}面の正極点図測定を行う。正極点図測定法は、試料をセットするゴニオメーターに2軸(α、β)の回転機構が付いており、これら角度を変えながらX線回折を測定する方法である。そして、X線回折正極点測定結果(銅箔の{200}、{220}、{111}面の正極点図)から、幾何学関係を利用し、{110}面及び{112}面の集合度を計算で求めることができる。この計算は、市販のソフトウェア(例えば、StandardODF(株式会社ノルム工学製)を用いて逆極点表現に変換して行うことができる。
なお、{110}面及び{112}面の集合度は、まず{200}、{220}、{111}面の正極点測定を行い、次に同様にして純銅粉末標準試料の{200}、{220}、{111}面の正極点測定を行う。そして、{200}、{220}、{111}面の集合度を、それぞれ純銅粉末標準試料の{200}、{220}、{111}面の集合度で規格化する。そして、このように規格化した{200}、{220}、{111}面の正極点図から、上記ソフトウェアにより逆極点に変換して{110}面及び{112}面の集合度(算出X線回折強度)を計算する。
Specifically, the calculated X-ray diffraction intensity values of the {110} plane and {112} plane were obtained as follows.
First, positive point map measurement of {200}, {220}, {111} planes of copper foil is performed. The positive dot diagram measurement method is a method for measuring X-ray diffraction while changing the angle of a biaxial (α, β) rotation mechanism attached to a goniometer for setting a sample. Then, from the X-ray diffraction positive electrode point measurement results (positive electrode point diagrams of {200}, {220}, {111} planes of copper foil), a set of {110} planes and {112} planes using geometric relationships The degree can be calculated. This calculation can be performed by converting into an inverted pole expression using commercially available software (for example, StandardODF (manufactured by Norm Engineering Co., Ltd.)).
The degree of assembly of the {110} plane and {112} plane is first measured for the positive electrode points on the {200}, {220}, {111} planes, and then the {200}, Measure the positive point of {220} and {111} planes. Then, the degree of aggregation of the {200}, {220}, and {111} planes is normalized by the degree of aggregation of the {200}, {220}, and {111} planes of the pure copper powder standard sample, respectively. Then, the normalized dot maps of the {200}, {220}, and {111} planes converted in this way are converted into reverse pole points by the above software, and the degree of aggregation of the {110} plane and {112} plane (calculation X (Line diffraction intensity) is calculated.
本発明の圧延銅箔は、通常、熱間圧延及び面削後、冷間圧延と焼鈍を数回(通常、2回程度)繰り返し、次いで最終再結晶焼鈍した後、最終冷間圧延して製造することができる。
ここで、「最終再結晶焼鈍」とは、最終冷間圧延の前の焼鈍のうち、最後のものをいう。又、最終再結晶焼鈍後の再結晶組織を、上述の「再結晶組織」(圧延銅箔となった後の再結晶組織)と区別するために「中間再結晶組織」と称する。まず、中間再結晶組織を簡単に調整する方法としては焼鈍温度を変えることが挙げられる。しかしながら、単に最終再結晶焼鈍温度を高くした場合、ランダムな方位の再結晶粒が成長し、再結晶粒が混粒(結晶粒径の大きさの分布の幅が大きくなる)となると最終圧延後のスジなどの表面欠陥の原因となり好ましくないので、I{110}/I{112}の値を適切に制御することが難しい。
一方、最終再結晶焼鈍にて銅箔に掛かる張力を高くすると、この張力が駆動力となって中間再結晶組織における結晶粒径が大きくなり、圧延面に{112}面を多く存在させることができる。但し張力が高くなり過ぎると最終圧延後の圧延面に{110}面が減少するので、I{110}/I{112}の値が上記範囲内になるよう、張力の範囲を調整すればよい。又、張力の値は、最終再結晶焼鈍温度、及び上述の添加元素の量によっても変化するので、これらに応じて張力の値を調整すればよい。なお、張力とは、最終再結晶焼鈍を行う雰囲気中に銅ストリップを装入した際の、最終再結晶焼鈍雰囲気の入側と出側の各ロール間の張力である。張力の適切な値(絶対値)は焼鈍温度と銅ストリップの成分によって変化することから、張力を焼鈍温度における材料の耐力で除した無次元の値を管理することが好ましい。
なお、従来は、搬送ロールの劣化防止等の目的のため、連続焼鈍炉における張力の値は通常0.1〜0.15の範囲に設定される。
The rolled copper foil of the present invention is usually manufactured by repeating cold rolling and annealing several times (usually about 2 times) after hot rolling and chamfering, and then final recrystallization annealing and then final cold rolling. can do.
Here, “final recrystallization annealing” refers to the last of the annealing before the final cold rolling. The recrystallized structure after the final recrystallization annealing is referred to as “intermediate recrystallized structure” in order to distinguish it from the above-mentioned “recrystallized structure” (recrystallized structure after becoming a rolled copper foil). First, a method for easily adjusting the intermediate recrystallized structure includes changing the annealing temperature. However, when the final recrystallization annealing temperature is simply increased, recrystallized grains with random orientations grow, and when the recrystallized grains become mixed grains (the width of the distribution of crystal grain size increases), after the final rolling As a result, it is difficult to control the value of I {110} / I {112}.
On the other hand, when the tension applied to the copper foil in the final recrystallization annealing is increased, the tension becomes the driving force, the crystal grain size in the intermediate recrystallized structure increases, and there are many {112} faces on the rolled surface. it can. However, if the tension becomes too high, the {110} plane will decrease on the rolled surface after the final rolling, so the tension range should be adjusted so that the value of I {110} / I {112} is within the above range. . Moreover, since the tension value also varies depending on the final recrystallization annealing temperature and the amount of the above-described additive elements, the tension value may be adjusted accordingly. In addition, tension | tensile_strength is the tension | tensile_strength between each roll of the entrance side of the final recrystallization annealing atmosphere at the time of charging a copper strip in the atmosphere which performs final recrystallization annealing. Since the appropriate value (absolute value) of the tension varies depending on the annealing temperature and the copper strip component, it is preferable to manage a dimensionless value obtained by dividing the tension by the material yield strength at the annealing temperature.
Conventionally, the tension value in the continuous annealing furnace is usually set in the range of 0.1 to 0.15 for the purpose of preventing deterioration of the transport roll.
図1は、銅箔の圧延面に{112}面を増やすための、最終再結晶焼鈍にて銅箔に掛かる張力を調整する一例を示す。上述のように、張力を高くすると圧延面に{112}面が多くなるが、添加元素(上述のAg等)の量が増えると圧延面に{110}面が多くなるので、より高い張力を掛けないと圧延面に{112}面の割合が多くならない。従って、図1の2本の線で囲まれる領域が好ましい範囲となる。
圧延銅箔を200℃で30分の加熱後に、圧延面において、I{112}/I{100}≦1.0を満たすと好ましい。200℃で30分の加熱は、いわゆるキャスト法でFPCを製造する際の銅箔の加熱条件を模擬したものである。そして、この加熱で銅箔が完全に再結晶し未再結晶領域が残存しない状態であるとI{112}≦1.0となる。I{112}/I{100}>1.0である場合、未再結晶が残存し,FPCの屈曲性が劣ることがある。
圧延銅箔を350℃で1秒加熱後において、5.0≦I{200}/I0{200}≦27.0を満たすと好ましい。再結晶後に{001}〈100〉方位(Cube方位)が発達すると良い屈曲性が得られるので、I{200}/I0{200}が高いほどよい。5.0>I{200}/I0{200}であると、屈曲性が低下することがある。特に、13.0≦I{200}/I0{200}≦27.0であるとより好ましい。なお、他の特性とのバランスで、I{200}/I0{200}>27.0を実現するのは工業的には困難であるので、上限を27.0とした。
FIG. 1 shows an example of adjusting the tension applied to the copper foil in the final recrystallization annealing for increasing the {112} plane on the rolled surface of the copper foil. As described above, when the tension is increased, the {112} surface increases on the rolled surface, but when the amount of the additive element (such as Ag described above) increases, the {110} surface increases on the rolled surface. If it is not hung, the ratio of {112} face does not increase on the rolled face. Therefore, a region surrounded by the two lines in FIG. 1 is a preferable range.
It is preferable that I {112} / I {100} ≦ 1.0 is satisfied on the rolled surface after heating the rolled copper foil at 200 ° C. for 30 minutes. The heating at 200 ° C. for 30 minutes simulates the heating condition of the copper foil when FPC is produced by the so-called casting method. When the copper foil is completely recrystallized by this heating and no unrecrystallized region remains, I {112} ≦ 1.0. When I {112} / I {100}> 1.0, unrecrystallized remains and the flexibility of FPC may be inferior.
It is preferable to satisfy 5.0 ≦ I {200} / I 0 {200} ≦ 27.0 after heating the rolled copper foil at 350 ° C. for 1 second. If the {001} <100> orientation (Cube orientation) develops after recrystallization, good flexibility is obtained, so the higher I {200} / I 0 {200} is better. If 5.0> I {200} / I 0 {200}, the flexibility may be lowered. In particular, 13.0 ≦ I {200} / I 0 {200} ≦ 27.0 is more preferable. It is industrially difficult to achieve I {200} / I 0 {200}> 27.0 in balance with other characteristics, so the upper limit was set to 27.0.
<圧延銅箔の製造>
表1に示す組成の元素を添加したタフピッチ銅又は無酸素銅を原料として厚さ100mmのインゴットを鋳造し、800℃以上で厚さ10mmまで熱間圧延を行い、表面の酸化スケールを面削した。その後、冷間圧延と焼鈍とを繰り返して0.5mmの厚みの圧延板コイルを得た。その最後の冷間圧延の後に、この銅ストリップを700℃でかつ表1に示す張力下で連続焼鈍炉に通板して最終再結晶焼鈍を行った。なお、張力の値は、その試料の再結晶焼鈍温度下での耐力で除して規格化した({張力(N/mm2)/ 再結晶焼鈍温度下での耐力(N/mm2)})。また、再結晶焼鈍における銅ストリップの加熱時間は100〜200秒とした。最後に最終冷間圧延で表1に記載の厚みに仕上げた。最終冷間圧延での圧延加工度を86〜99%とした。
なお、表1の組成の欄の「Ag190ppm OFC」は、JIS-H3510(C1011)(実施例10)またはJIS- H3100 (C1020)(実施例10以外)の無酸素銅OFC)に190質量ppmのAgを添加したことを意味する。又、「Ag190ppm TPC」は、JIS-H3100(C1100)のタフピッチ銅(TPC)に190質量ppmのAgを添加したことを意味する。他の添加量の場合も同様である。
<Manufacture of rolled copper foil>
A 100 mm thick ingot was cast from tough pitch copper or oxygen-free copper added with the elements shown in Table 1 and hot rolled to a thickness of 10 mm at 800 ° C. or higher to chamfer the oxide scale on the surface. . Thereafter, cold rolling and annealing were repeated to obtain a rolled plate coil having a thickness of 0.5 mm. After the final cold rolling, the copper strip was passed through a continuous annealing furnace at 700 ° C. and under the tension shown in Table 1 for final recrystallization annealing. The tension value was standardized by dividing by the yield strength under the recrystallization annealing temperature of the sample ({Tension (N / mm 2 ) / proof strength under the recrystallization annealing temperature (N / mm 2 )}). ). Moreover, the heating time of the copper strip in recrystallization annealing was 100 to 200 seconds. Finally, it was finished to the thickness shown in Table 1 by final cold rolling. The degree of rolling in the final cold rolling was 86 to 99%.
In addition, “Ag190ppm OFC” in the column of the composition of Table 1 is 190 mass ppm in oxygen-free copper OFC of JIS-H3510 (C1011) (Example 10) or JIS-H3100 (C1020) (other than Example 10). It means that Ag is added. “Ag 190 ppm TPC” means that 190 mass ppm of Ag was added to tough pitch copper (TPC) of JIS-H3100 (C1100). The same applies to other addition amounts.
<結晶方位>
最終冷間圧延後の銅箔の表面(圧延面)について、X線回折装置(RINT-2500:理学電機製)を用い、それぞれ{200}、{220}、{111}面の正極点測定(X線反射平均強度)を行った。得られた測定結果から、StandardODF(株式会社ノルム工学製)を用いて逆極点に変換し、{110}面及び{112}面の算出X線回折強度を計算した。
X線回折の測定条件は、入射X線源:Cu、加速電圧:30kV、管電流:100mA、発散スリット:0.5度、散乱スリット:4mm、受光スリット:4mm、発散縦制限スリット:1.2mmとした。又、同一条件で各面につきX線回折を行った純銅粉末の値(X線反射平均強度)を用いて{200}、{220}、{111}面の集合度を規格化した後、逆極点に変換した。純銅粉末は、微粉末銅(325mesh)を用いた。
<Crystal orientation>
Using the X-ray diffractometer (RINT-2500: manufactured by Rigaku Corporation) for the surface (rolled surface) of the copper foil after the final cold rolling, positive point measurement on the {200}, {220}, and {111} planes, respectively ( X-ray reflection average intensity). From the obtained measurement results, Standard ODF (manufactured by Norm Engineering Co., Ltd.) was used to convert to inverted poles, and the calculated X-ray diffraction intensities of the {110} plane and {112} plane were calculated.
The measurement conditions of X-ray diffraction were incident X-ray source: Cu, acceleration voltage: 30 kV, tube current: 100 mA, divergence slit: 0.5 degree, scattering slit: 4 mm, light receiving slit: 4 mm, and divergence longitudinal limiting slit: 1.2 mm . Also, after standardizing the degree of aggregation of {200}, {220}, {111} surfaces using the value of pure copper powder (X-ray reflection average intensity) obtained by X-ray diffraction on each surface under the same conditions, Converted to a pole. As the pure copper powder, fine powder copper (325 mesh) was used.
<結晶粒径>
最終再結晶焼鈍の直後(最終冷間圧延前)の銅箔の結晶粒径をJIS-H0501の切断法に準じ、圧延面について測定した。
<I{200}/I0{200}>
最終冷間圧延後の銅箔を、それぞれ200℃で0.5時間焼鈍後、及び350℃で1秒焼鈍後に、その表面について{200}面のX線回折強度を測定した。そして、同一条件でX線回折を行った純銅粉末の値(I0{200}:X線反射平均強度)を用いて規格化した。
X線回折の測定条件は、入射X線源:Cu、加速電圧:25kV、管電流:20mA、発散スリット:1度、散乱スリット:1度、受光スリット:0.3mm、発散縦制限スリット:10mm,モノクロ受光スリット0.8mmとした。純銅粉末は、微粉末銅(325mesh)を用いた。
<Crystal grain size>
The crystal grain size of the copper foil immediately after the final recrystallization annealing (before the final cold rolling) was measured on the rolled surface according to the cutting method of JIS-H0501.
<I {200} / I 0 {200}>
The copper foil after the final cold rolling was annealed at 200 ° C. for 0.5 hour and after annealing at 350 ° C. for 1 second, respectively, and the X-ray diffraction intensity of {200} plane was measured on the surface. Then, the value of pure copper powder was subjected to X-ray diffraction under the same conditions (I 0 {200}: X-ray reflection average intensity) normalized with.
The measurement conditions for X-ray diffraction are: incident X-ray source: Cu, acceleration voltage: 25 kV, tube current: 20 mA, divergence slit: 1 degree, scattering slit: 1 degree, receiving slit: 0.3 mm, divergence longitudinal limiting slit: 10 mm, The monochrome light receiving slit was 0.8 mm. As the pure copper powder, fine powder copper (325 mesh) was used.
<屈曲性>
まず、厚み12.5μmの熱硬化性ポリイミドフィルムに熱可塑性ポリイミド接着剤を塗工し乾燥させた。次に、このフィルムの両面に最終冷間圧延後の銅箔をそれぞれ積層した後、熱圧着して両面CCLを作製した。この両面CCLにつき、両面の銅箔にエッチングによりライン/スペースの幅がそれぞれ100μm/100μmの回路パターンを形成した後、厚み25μmのカバーレイフィルムを被覆してFPCに加工した。
このFPCにつき、スライド屈曲試験を行って屈曲性を評価した。具体的には、摺動試験機(応用技研産業株式会社製,TK-107型)を用い、スライド半径r(mm)は実施例9についてはr=4mm 、その他の実施例及び比較例についてはr=0.72mmとし、いずれの場合もスライド速度120回/分でFPCを屈曲させた。
試験前に比べて銅箔の回路の電気抵抗が10%増加したときの屈曲回数が、15万回未満を評価×とし、10万回〜15万回未満のものを評価△とし、15万回〜30万回のものを評価○とし、30万回を越えたものを評価◎とした。屈曲性が◎〜△であれば、屈曲性が良好といえる。
<Flexibility>
First, a thermoplastic polyimide adhesive was applied to a 12.5 μm thick thermosetting polyimide film and dried. Next, copper foils after the final cold rolling were laminated on both sides of the film, and then thermocompression bonded to produce double-sided CCL. For this double-sided CCL, a circuit pattern having a line / space width of 100 μm / 100 μm was formed on the copper foils on both sides by etching, and then a coverlay film having a thickness of 25 μm was coated and processed into an FPC.
This FPC was subjected to a slide bending test to evaluate the flexibility. Specifically, using a sliding tester (Applied Giken Sangyo Co., Ltd., TK-107 type), the slide radius r (mm) is r = 4 mm for Example 9, and for other examples and comparative examples r = 0.72 mm, and in all cases, the FPC was bent at a sliding speed of 120 times / minute.
When the electrical resistance of the copper foil circuit increases by 10% compared to before the test, the number of bendings is less than 150,000 times as evaluation x, and 100,000 to less than 150,000 times is evaluated as △, 150,000 times A value of ˜300,000 times was evaluated as ○, and a value exceeding 300,000 times was evaluated as ◎. If the flexibility is ◎ to Δ, it can be said that the flexibility is good.
<エッチング性>
上記した両面CCLを、撹拌した液温30℃のエッチング液(ADEKA社製の製品名:テックCL−8の20質量%溶液)に1分間浸漬してエッチングし、エッチング面を光学顕微鏡で撮影した。
上記画像のうち、暗部はエッチングが均一にされている領域を示すので、エッチング性は撮影した画像と、基準画像とを比較して評価した。図3に、基準画像と、エッチング性の評価の対応を示す。暗部の面積率が高いほど、エッチング性が良好となり、◎が最もエッチング性が良好となる。エッチング性が◎〜△であれば、エッチング性が良好といえる。
<Etching property>
The above-mentioned double-sided CCL was etched by immersion for 1 minute in a stirred etching solution having a liquid temperature of 30 ° C. (product name: ADEKA, product name: 20% by mass solution of Tech CL-8), and the etched surface was photographed with an optical microscope. .
Of the above images, the dark portion indicates a region where the etching is made uniform. Therefore, the etching property was evaluated by comparing the photographed image with the reference image. FIG. 3 shows the correspondence between the reference image and the evaluation of etching property. The higher the area ratio of the dark part, the better the etching property, and the ◎ is the best etching property. If the etching property is A to Δ, it can be said that the etching property is good.
得られた結果を表1、表2に示す。 The obtained results are shown in Tables 1 and 2.
表1、表2から明らかなように、2.5≦I{110}/I{112}≦6.0を満たす各実施例の場合、圧延銅箔のエッチング性と屈曲性が共に優れたものとなった。
なお、厚み、及び最終再結晶焼鈍条件が同一の実施例1,2を比べると、Agの添加量が多い実施例1の方が(110)方位が多くなり、I{110}/I{112}の値も高くなることがわかる。又、13.0>I{200}/I0{200}である実施例20〜23の場合、他の実施例に比べると屈曲性が少し低下したが実用上は問題ない。
As is clear from Tables 1 and 2, in each example satisfying 2.5 ≦ I {110} / I {112} ≦ 6.0, both the etching property and the flexibility of the rolled copper foil were excellent.
When Examples 1 and 2 having the same thickness and the same final recrystallization annealing condition are compared, Example 1 having a larger amount of Ag added has a larger (110) orientation, and I {110} / I {112 } Is also high. Further, in Examples 20 to 23 where 13.0> I {200} / I 0 {200}, the flexibility is slightly lowered as compared with the other examples, but there is no practical problem.
一方、銅箔の組成が同一である実施例6に比べ、最終再結晶焼鈍時の張力を低くした比較例1,4の場合、(112)方位が少なくなり、I{110}/I{112}の値が6.0を超え、エッチング性が劣化した。
銅箔の組成が同一である実施例5に比べて最終再結晶焼鈍時の張力を高くした比較例2の場合、及び銅箔の組成が同一である実施例7に比べて最終再結晶焼鈍時の張力を高くした比較例3の場合、いずれも(110)方位が減少し、I{110}/I{112}の値が2.5未満となり、屈曲性が劣化した。
製造方法が同一である実施例1、6の場合、銅箔の酸素濃度が低い実施例1の方が屈曲性が優れている。
なお、図2(a)、(b)は、それぞれ実施例5、比較例1のエッチング面の光学顕微鏡像である。エッチング性に優れる実施例5の場合、暗部の割合が多いことがわかる。
On the other hand, compared to Example 6 in which the composition of the copper foil is the same, in Comparative Examples 1 and 4 in which the tension during the final recrystallization annealing was lowered, the (112) orientation was reduced, and I {110} / I {112 } Value exceeded 6.0 and the etching property deteriorated.
In the case of Comparative Example 2 in which the tension at the time of final recrystallization annealing is higher than that in Example 5 where the composition of the copper foil is the same, and at the time of final recrystallization annealing as compared with Example 7 where the composition of the copper foil is the same In Comparative Example 3 in which the tension was increased, the (110) orientation decreased, the value of I {110} / I {112} was less than 2.5, and the flexibility deteriorated.
In the case of Examples 1 and 6 in which the manufacturing method is the same, Example 1 in which the oxygen concentration of the copper foil is lower is more flexible.
2A and 2B are optical microscope images of the etched surfaces of Example 5 and Comparative Example 1, respectively. In Example 5 which is excellent in etching property, it turns out that there are many ratios of a dark part.
Claims (6)
圧延面における{112}面からの算出X線回折強度をI{112}とし、{110}面からの算出X線回折強度をI{110}としたとき、
2.5≦I{110}/I{112}≦6.0を満たす圧延銅箔。 It is a rolled copper foil containing 99.9% or more copper by mass,
When the calculated X-ray diffraction intensity from the {112} plane on the rolled surface is I {112} and the calculated X-ray diffraction intensity from the {110} plane is I {110},
Rolled copper foil satisfying 2.5 ≦ I {110} / I {112} ≦ 6.0.
5.0≦I{200}/I0{200}≦27.0を満たす請求項1〜4のいずれかに記載の圧延銅箔。 After heating at 350 ° C. for 1 second, the {200} plane X-ray diffraction intensity of the rolled copper foil is I {200}, and the {200} plane X-ray diffraction intensity of the pure copper powder sample is I 0 { 200}
The rolled copper foil according to claim 1, satisfying 5.0 ≦ I {200} / I 0 {200} ≦ 27.0.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013033386A JP5657043B2 (en) | 2012-02-28 | 2013-02-22 | Rolled copper foil |
TW102106651A TWI509088B (en) | 2012-02-28 | 2013-02-26 | Rolled copper foil |
KR1020130022007A KR101540508B1 (en) | 2012-02-28 | 2013-02-28 | Rolled copper foil |
CN201310139482.4A CN103290345B (en) | 2012-02-28 | 2013-02-28 | Rolled copper foil |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012042550 | 2012-02-28 | ||
JP2012042550 | 2012-02-28 | ||
JP2012059811 | 2012-03-16 | ||
JP2012059811 | 2012-03-16 | ||
JP2013033386A JP5657043B2 (en) | 2012-02-28 | 2013-02-22 | Rolled copper foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013216970A true JP2013216970A (en) | 2013-10-24 |
JP5657043B2 JP5657043B2 (en) | 2015-01-21 |
Family
ID=49589417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013033386A Active JP5657043B2 (en) | 2012-02-28 | 2013-02-22 | Rolled copper foil |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5657043B2 (en) |
TW (1) | TWI509088B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013209744A (en) * | 2012-02-28 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Rolled copper foil |
JP2019143229A (en) * | 2018-02-23 | 2019-08-29 | Jx金属株式会社 | Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board and electronic device using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298931A (en) * | 2004-04-14 | 2005-10-27 | Mitsubishi Shindoh Co Ltd | Copper alloy and its production method |
JP2008106312A (en) * | 2006-10-26 | 2008-05-08 | Hitachi Cable Ltd | Rolled copper foil, and its production method |
JP2013209744A (en) * | 2012-02-28 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Rolled copper foil |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011078259A1 (en) * | 2009-12-25 | 2011-06-30 | 新日鐵化学株式会社 | Flexible circuit board and structure of bend section of flexible circuit board |
-
2013
- 2013-02-22 JP JP2013033386A patent/JP5657043B2/en active Active
- 2013-02-26 TW TW102106651A patent/TWI509088B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298931A (en) * | 2004-04-14 | 2005-10-27 | Mitsubishi Shindoh Co Ltd | Copper alloy and its production method |
JP2008106312A (en) * | 2006-10-26 | 2008-05-08 | Hitachi Cable Ltd | Rolled copper foil, and its production method |
JP2013209744A (en) * | 2012-02-28 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Rolled copper foil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013209744A (en) * | 2012-02-28 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Rolled copper foil |
JP2019143229A (en) * | 2018-02-23 | 2019-08-29 | Jx金属株式会社 | Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board and electronic device using the same |
Also Published As
Publication number | Publication date |
---|---|
TW201402839A (en) | 2014-01-16 |
JP5657043B2 (en) | 2015-01-21 |
TWI509088B (en) | 2015-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101540508B1 (en) | Rolled copper foil | |
JP5185066B2 (en) | Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate | |
JP3856582B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP5826160B2 (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof | |
WO2013027437A1 (en) | Rolled copper foil | |
WO2015099097A1 (en) | Copper alloy sheet material, connector, and production method for copper alloy sheet material | |
JP3824593B2 (en) | Rolled copper foil with high elongation | |
CN106011525B (en) | Flexible printed board copper alloy foil uses copper clad layers stack, flexible printed board and electronic instrument made of it | |
JP2014077182A (en) | Rolled copper foil | |
JP5479002B2 (en) | Copper alloy foil | |
JP5657043B2 (en) | Rolled copper foil | |
JP2006274289A (en) | Titanium-copper alloy having excellent strength and bending workability, and method for producing the same | |
JP6069023B2 (en) | Rolled copper foil | |
JP2015175005A (en) | Rolled copper foil, copper-clad laminate sheet and flexible printed wiring board and electronic equipment | |
KR20190089732A (en) | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil | |
JP6182372B2 (en) | Copper alloy rolled foil for secondary battery current collector and method for producing the same | |
WO2010113749A1 (en) | Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP | |
JP6190646B2 (en) | Copper alloy rolled foil for secondary battery current collector and method for producing the same | |
JP5794817B2 (en) | Copper alloy sheet and method for producing the same | |
JP6162512B2 (en) | Copper alloy rolled foil for secondary battery current collector and method for producing the same | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP3986707B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP2002167632A (en) | Rolled copper foil for flexible printed circuit board and its production method | |
JP2000192172A (en) | Rolled copper foil flexible printed circuit board and its production | |
JP6944963B2 (en) | Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140804 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20140827 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5657043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |