WO2013027437A1 - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
WO2013027437A1
WO2013027437A1 PCT/JP2012/058848 JP2012058848W WO2013027437A1 WO 2013027437 A1 WO2013027437 A1 WO 2013027437A1 JP 2012058848 W JP2012058848 W JP 2012058848W WO 2013027437 A1 WO2013027437 A1 WO 2013027437A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
final rolling
less
rolled copper
ray diffraction
Prior art date
Application number
PCT/JP2012/058848
Other languages
French (fr)
Japanese (ja)
Inventor
嘉一郎 中室
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201280040973.7A priority Critical patent/CN103748251B/en
Priority to KR1020147004385A priority patent/KR101632515B1/en
Publication of WO2013027437A1 publication Critical patent/WO2013027437A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Definitions

  • the present invention relates to a rolled copper foil used for, for example, a flexible printed circuit (FPC) and suitable for a copper-clad laminate.
  • FPC flexible printed circuit
  • a flexible wiring board is formed by laminating a resin layer and a copper foil, and is suitably used for repeated bent portions.
  • a copper foil used for such FPC a rolled copper foil excellent in flexibility is widely used.
  • Patent Document 1 a technique for developing a cubic texture after recrystallization annealing has been reported.
  • Patent Document 2 a technique for developing a cubic texture after recrystallization annealing.
  • Patent Document 3 there are specified final rolling work degree and rolling conditions.
  • the conventional method of developing a cube texture is to adjust the final rolling work degree, so that the thickness of the copper foil material during annealing before final rolling where the cube texture grows is changed according to the thickness of the final product. Further, it is necessary to perform rolling under special conditions, and there is a problem that productivity is lowered. Even if the degree of development of the cube texture (X-ray diffraction intensity in the (200) direction on the copper foil surface) is about the same, the flexibility may be different. It is difficult to stably obtain an excellent rolled copper foil.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rolled copper foil that can stably obtain flexibility.
  • crystal grains having the (420) orientation and the (311) orientation affect the flexibility.
  • the crystal grains having the (420) orientation and the (311) orientation are less likely to cause slip deformation because the stress application direction and the slip direction are close to each other at the time of bending, so that the flexibility tends to be lowered.
  • the rolled copper foil of the present invention has an integrated intensity I (200) of the X-ray diffraction peak of the (200) plane after annealing at 200 ° C for 0.5 hour, and an integrated intensity I (311) of the X-ray diffraction peak of the (311) plane.
  • Ratio I (311) / I (200) is 0.001 or more and 0.01 or less.
  • the rolled copper foil of the present invention has an integrated intensity I (200) of the X-ray diffraction peak of the wrinkle (200) plane after annealing at 200 ° C. for 0.5 hour and an integrated intensity I (420) of the X-ray diffraction peak of the wrinkle (420) plane.
  • Ratio I (420) / I (200) is 0.005 or more and 0.02 or less.
  • the rolled copper foil of the present invention has an integrated intensity I (200) of the (200) plane X-ray diffraction peak after annealing at 200 ° C. for 0.5 hour and an integrated intensity I (311 of the X-ray diffraction peak of the ridge (311) plane. ) And I (311) / I (200) is 0.001 or more and 0.01 or less, and the integrated intensity I (200) of the X-ray diffraction peak of the (200) plane after annealing at 200 ° C. for 0.5 hour and (420) The ratio I (420) / I (200) of the X-ray diffraction peak of the surface with the integrated intensity I (420) is 0.005 or more and 0.02 or less.
  • the rolled copper foil according to claim 1 or 3 is a ratio I (311) b between I (200) b and I (311) b which is an integrated intensity of an X-ray diffraction peak before final rolling and after recrystallization annealing. It is preferable that the copper foil material having b / I (200) b of 0.01 or more and 0.02 or less is finally rolled.
  • I (311) b / I (200) b / ⁇ is preferably 0.1 or more and 0.7 or less.
  • the copper foil material having b / I (200) b of 0.02 or more and 0.04 or less is finally rolled.
  • I (420) b / I (200) b / ⁇ is preferably 0.5 or more and 1.2 or less.
  • the rolled copper foil according to claim 3 has a ratio I (311) b / I (200) b / I (311) b which is an integrated intensity of an X-ray diffraction peak before final rolling and after recrystallization annealing.
  • I (200) b is 0.01 or more and 0.02 or less
  • the ratio I of I (200) b and I (420) b is the integrated intensity of the X-ray diffraction peak before final rolling and after recrystallization annealing I It is preferable that the (420) b / I (200) b is finally rolled from a copper foil material having 0.02 or more and 0.04 or less.
  • b / I (200) b / ⁇ is 0.1 or more and 0.7 or less and I (420) b / I (200) b / ⁇ is 0.5 or more and 1.2 or less.
  • a rolled copper foil having excellent flexibility can be obtained stably.
  • TPC tough pitch copper
  • C1100 JIS-H3100
  • C1020 JIS-H3100
  • OFC oxygen-free copper
  • the additive element may contain 10 to 500 ppm by mass of Sn and / or 10 to 500 ppm by mass of Ag, and the remainder may be tough pitch copper or oxygen-free copper. Further, it contains 20 to 500 mass ppm in total of one or more elements consisting of Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V as additive elements, and the balance May be tough pitch copper or oxygen-free copper.
  • the thickness of the rolled copper foil is preferably 20 ⁇ m or less.
  • the rolled copper foil according to the first aspect of the present invention has an integrated intensity I (200) of the (200) plane X-ray diffraction peak and an integration of the (311) plane X-ray diffraction peak after annealing at 200 ° C. for 0.5 hour.
  • the ratio I (311) / I (200) with the intensity I (311) is 0.001 or more and 0.01 or less.
  • the ratio I (311) / I (200) is set to 0.01 or less.
  • the ratio I (311) / I (200) exceeds 0.01, the ratio of the (311) orientation increases and the flexibility is lowered. The lower the ratio I (311) / I (200), the higher the flexibility and the better.
  • the (420) orientation and (311) orientation after recrystallization annealing of the copper foil originate from the crystal grains having the (420) orientation and (311) orientation present in the rolled structure before recrystallization annealing. It is thought that it will develop as. Further, the (420) orientation and (311) orientation in the rolled structure are considered to be derived from the structure before rolling.
  • the ratio I (311) b / I (200) b is less than 0.01, the crystal grains are coarsened by annealing, so that sufficient strain cannot be applied in the final rolling, and the foil after the final rolling In some cases, sufficient flexibility cannot be obtained after recrystallization annealing.
  • I (311) b / I (200) b / ⁇ is preferably 0.1 or more and 0.7 or less. Further, I (311) b / I (200) b / ⁇ is more preferably 0.1 or more and 0.5 or less.
  • the degree of work of the final rolling process is high, even if the structure before the final rolling is controlled, the effect tends not to remain sufficiently until after the rolling. Thus, by managing both the structure before final rolling and the degree of processing of final rolling, further sufficient flexibility can be obtained.
  • the rolled copper foil according to the second aspect of the present invention has an integrated intensity I (200) of the (200) plane X-ray diffraction peak and an integration of the (420) plane X-ray diffraction peak after annealing at 200 ° C. for 0.5 hour.
  • the ratio I (420) / I (200) with the strength I (420) is 0.005 or more and 0.02 or less.
  • crystal grains having the (420) orientation and the (311) orientation after recrystallization are less likely to cause slip deformation because the stress application direction and the slip direction are close to each other during bending, and thus tend to lower the flexibility.
  • the ratio of the (420) azimuth is smaller than the (200) azimuth, the flexibility is improved, so the ratio I (420) / I (200) is set to 0.02 or less.
  • the ratio I (420) / I (200) exceeds 0.02, the ratio of the (420) orientation increases and the flexibility is lowered.
  • the ratio I (420) / I (200) is less than 0.005, the ratio of the (200) orientation will be too large and sufficient flexibility will be obtained, but the copper foil will be too soft and handling will be reduced. To do.
  • the ratio I (420) b / I (200) b is less than 0.02, the crystal grains become coarse due to annealing, so that sufficient strain cannot be applied in the final rolling, and the foil after the final rolling In some cases, sufficient flexibility cannot be obtained after recrystallization annealing.
  • I (420) b / I (200) b / ⁇ is preferably 0.5 or more and 1.2 or less. Further, I (420) b / I (200) b / ⁇ is more preferably 0.5 or more and 1.0 or less.
  • the crystal grains having the (420) orientation which is a recrystallized structure, are rotated by rolling to become crystal grains having a different orientation. Therefore, when the rolling degree is high, the ratio of the (420) plane decreases and I (420) decreases. On the other hand, when the degree of processing is low, crystal grains having the (420) orientation tend to remain, and I (420) tends to increase.
  • the rolled copper foil according to the first and second embodiments can be manufactured by hot rolling an ingot, pre-annealing rolling, recrystallization annealing, and final rolling.
  • the stability of the recrystallization orientation is in the order of (200)>(311)> (420), and the higher the rate of temperature rise during recrystallization annealing, the more unstable (420) orientation and (311 ) The direction tends to increase. Accordingly, it is preferable to set the rate of temperature increase during recrystallization annealing to 5 to 50 ° C./s and to make the rate slower than before.
  • the crystal grain size before final rolling exceeds 30 ⁇ m, sufficient strain cannot be applied in final rolling, and sufficient flexibility cannot be obtained after recrystallization annealing of the foil after final rolling. is there.
  • the crystal grain size is measured by the cutting method of JIS H0501.
  • a copper ingot having the composition shown in Table 1 was manufactured and hot-rolled to a thickness of 10 mm. Then, annealing and rolling were repeated, and after rolling to a predetermined thickness, it was passed through a continuous annealing furnace at 750 ° C. and recrystallized and annealed. Furthermore, the final cold rolling was carried out at the workability shown in Table 1 to obtain a copper foil having the thickness shown in Table 1. Table 1 shows the rate of temperature increase during recrystallization annealing.
  • the bending fatigue life was measured with the bending test apparatus shown in FIG.
  • This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and a copper foil 1 to be tested is fixed to the apparatus at a total of four points including a screw 2 part indicated by an arrow and a tip part of 3. Is done.
  • the vibration part 3 is driven up and down, the intermediate part of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
  • the test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, curvature radius r : 1.5 mm, vibration stroke: 20 mm, vibration speed: 1000 times / min. Further, the flexibility was evaluated according to the following criteria. If evaluation is (double-circle), (circle), or (triangle
  • TPC tough pitch copper
  • OF oxygen-free copper
  • C1020 JIS-H3100
  • 190 ppm Ag-TPC in the composition column of Table 1 means a composition in which 190 mass ppm of Ag is added to tough pitch copper (TPC) specified in JIS-H3100 (C1100).
  • 100 ppm Sn—OFC in the composition column of Table 1 means a composition in which 100 mass ppm of Sn is added to oxygen-free copper (OFC) specified in JIS-H3100 (C1020).
  • I (311) b / I (200) b is 0.01 or more and 0.02 or less, or I (311) b / I (200) b / ⁇ is 0.1. Above 0.7.
  • I (420) b / I (200) b was 0.02 or more and 0.04 or less, or I (420) b / I (200) b / ⁇ was 0.5 or more and 1.2 or less.
  • I (311) / I (200) is 0.001 or more and 0.01 or less and I (420) / I (200) is 0.005 or more and 0.02 or less. outstanding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

This rolled copper foil exhibits an I(311)/I(200) ratio of 0.001 to 0.01 after annealing at 200°C for 0.5 hour, wherein I(311) is the integrated intensity of an X-ray diffraction peak attributed to the (311) plane, and I(200) is the integrated intensity of an X-ray diffraction peak attributed to the (200) plane. The rolled copper foil ensures stable flexibility.

Description

圧延銅箔Rolled copper foil
 本発明は、例えばフレキシブル配線板(FPC:Flexible Printed Circuit)に使用され、銅張積層板に適した圧延銅箔に関する。 The present invention relates to a rolled copper foil used for, for example, a flexible printed circuit (FPC) and suitable for a copper-clad laminate.
 フレキシブル配線板(FPC)は樹脂層と銅箔を積層してなり、繰り返し屈曲部に好適に用いられる。このようなFPCに用いられる銅箔としては、屈曲性に優れた圧延銅箔が広く用いられている。圧延銅箔の屈曲性を向上させる方法として、再結晶焼鈍後の立方体集合組織を発達させる技術が報告されている(特許文献1)。又、再結晶焼鈍後の立方体集合組織を発達させる方法として、最終圧延加工度や圧延条件を規定することや(特許文献2)、圧延後に立方体方位を残すこと(特許文献3)が挙げられている。 A flexible wiring board (FPC) is formed by laminating a resin layer and a copper foil, and is suitably used for repeated bent portions. As a copper foil used for such FPC, a rolled copper foil excellent in flexibility is widely used. As a method for improving the flexibility of the rolled copper foil, a technique for developing a cubic texture after recrystallization annealing has been reported (Patent Document 1). In addition, as a method of developing a cube texture after recrystallization annealing, there are specified final rolling work degree and rolling conditions (Patent Document 2), and leaving a cube orientation after rolling (Patent Document 3). Yes.
特許第3009383号公報Japanese Patent No. 3009383 特開2009-185376号公報JP 2009-185376 A 特開2010-150597号公報JP 2010-150597 Gazette
 しかしながら、従来の立方体集合組織を発達させる方法は、最終圧延加工度を調整するため、立方体集合組織が成長する最終圧延前焼鈍時の銅箔素材の厚みを最終製品の厚みに応じて変更したり、特殊な条件で圧延を行うなどの必要があり、生産性が低下するという問題がある。
 また、立方体集合組織の発達度(銅箔表面の(200)方位のX線回折強度)が同程度であっても、屈曲性が異なる場合があり、(200)方位の制御だけでは屈曲性に優れる圧延銅箔を安定して得ることが難しい。
However, the conventional method of developing a cube texture is to adjust the final rolling work degree, so that the thickness of the copper foil material during annealing before final rolling where the cube texture grows is changed according to the thickness of the final product. Further, it is necessary to perform rolling under special conditions, and there is a problem that productivity is lowered.
Even if the degree of development of the cube texture (X-ray diffraction intensity in the (200) direction on the copper foil surface) is about the same, the flexibility may be different. It is difficult to stably obtain an excellent rolled copper foil.
 すなわち、本発明は上記の課題を解決するためになされたものであり、屈曲性を安定して得られる圧延銅箔の提供を目的とする。 That is, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rolled copper foil that can stably obtain flexibility.
 本発明者らは種々検討した結果、銅箔の(200)方位だけでなく、(420)方位および(311)方位を持つ結晶粒が屈曲性に影響を与えることを見出した。(420)方位および(311)方位を持つ結晶粒は、屈曲時に応力印加方向とすべり方向が近いためにすべり変形を起こしにくく、そのために屈曲性を低下させやすい。 As a result of various studies, the present inventors have found that not only the (200) orientation of the copper foil but also crystal grains having the (420) orientation and the (311) orientation affect the flexibility. The crystal grains having the (420) orientation and the (311) orientation are less likely to cause slip deformation because the stress application direction and the slip direction are close to each other at the time of bending, so that the flexibility tends to be lowered.
 すなわち本発明の圧延銅箔は、200℃0.5時間焼鈍後の (200)面のX線回折ピークの積分強度I(200)と、 (311)面のX線回折ピークの積分強度I(311)との比I(311)/I(200)が0.001以上0.01以下である。 That is, the rolled copper foil of the present invention has an integrated intensity I (200) of the X-ray diffraction peak of the (200) plane after annealing at 200 ° C for 0.5 hour, and an integrated intensity I (311) of the X-ray diffraction peak of the (311) plane. Ratio I (311) / I (200) is 0.001 or more and 0.01 or less.
 又、本発明の圧延銅箔は、200℃0.5時間焼鈍後の (200)面のX線回折ピークの積分強度I(200)と、 (420)面のX線回折ピークの積分強度I(420)との比I(420)/I(200)が0.005以上0.02以下である。 Further, the rolled copper foil of the present invention has an integrated intensity I (200) of the X-ray diffraction peak of the wrinkle (200) plane after annealing at 200 ° C. for 0.5 hour and an integrated intensity I (420) of the X-ray diffraction peak of the wrinkle (420) plane. ) Ratio I (420) / I (200) is 0.005 or more and 0.02 or less.
 又、本発明の圧延銅箔は、200℃0.5時間焼鈍後の(200)面のX線回折ピークの積分強度I(200)と、 (311)面のX線回折ピークの積分強度I(311)との比I(311)/I(200)が0.001以上0.01以下であり、かつ200℃0.5時間焼鈍後の (200)面のX線回折ピークの積分強度I(200)と、 (420)面のX線回折ピークの積分強度I(420)との比I(420)/I(200)が0.005以上0.02以下である。 Further, the rolled copper foil of the present invention has an integrated intensity I (200) of the (200) plane X-ray diffraction peak after annealing at 200 ° C. for 0.5 hour and an integrated intensity I (311 of the X-ray diffraction peak of the ridge (311) plane. ) And I (311) / I (200) is 0.001 or more and 0.01 or less, and the integrated intensity I (200) of the X-ray diffraction peak of the (200) plane after annealing at 200 ° C. for 0.5 hour and (420) The ratio I (420) / I (200) of the X-ray diffraction peak of the surface with the integrated intensity I (420) is 0.005 or more and 0.02 or less.
 請求項1又は3に記載の圧延銅箔は、最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(311)bとの比I(311)b/I(200)bが0.01以上0.02以下である銅箔素材を最終圧延してなることが好ましい。 The rolled copper foil according to claim 1 or 3 is a ratio I (311) b between I (200) b and I (311) b which is an integrated intensity of an X-ray diffraction peak before final rolling and after recrystallization annealing. It is preferable that the copper foil material having b / I (200) b of 0.01 or more and 0.02 or less is finally rolled.
 請求項4記載の圧延銅箔において、最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、η≧2.3であることが好ましい。
 請求項4又は5に記載の圧延銅箔において、I(311)b/I(200)b/ηが0.1以上0.7以下であることが好ましい。
 請求項2又は3に記載の圧延銅箔において、最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(420)bとの比I(420)b/I(200)bが0.02以上0.04以下である銅箔素材を最終圧延してなることが好ましい。
 請求項7記載の圧延銅箔において、最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、η≧2.3であることが好ましい。
In the rolled copper foil according to claim 4, when the final rolling work degree is η and η = Ln {(thickness before final rolling) / (thickness after final rolling)}, η ≧ 2.3. preferable.
In the rolled copper foil according to claim 4 or 5, I (311) b / I (200) b / η is preferably 0.1 or more and 0.7 or less.
The rolled copper foil according to claim 2 or 3, wherein the ratio I (200) b and I (420) b, which is the integrated intensity of the X-ray diffraction peak before final rolling and after recrystallization annealing, is calculated as I (420 ) Preferably, the copper foil material having b / I (200) b of 0.02 or more and 0.04 or less is finally rolled.
In the rolled copper foil according to claim 7, when the degree of final rolling work is η and η = Ln {(thickness before final rolling) / (thickness after final rolling)}, η ≧ 2.3. preferable.
 請求項7又は8に記載の圧延銅箔において、最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、I(420)b/I(200)b/ηが0.5以上1.2以下であることが好ましい。
 請求項3記載の圧延銅箔は、最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(311)bとの比I(311)b/I(200)bが0.01以上0.02以下であり、かつ、最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(420)bとの比I(420)b/I(200)bが0.02以上0.04以下である銅箔素材を最終圧延してなることが好ましい。
In the rolled copper foil according to claim 7 or 8, when the final rolling degree is η and represented by η = Ln {(thickness before final rolling) / (thickness after final rolling)}, I (420) b / I (200) b / η is preferably 0.5 or more and 1.2 or less.
The rolled copper foil according to claim 3 has a ratio I (311) b / I (200) b / I (311) b which is an integrated intensity of an X-ray diffraction peak before final rolling and after recrystallization annealing. I (200) b is 0.01 or more and 0.02 or less, and the ratio I of I (200) b and I (420) b is the integrated intensity of the X-ray diffraction peak before final rolling and after recrystallization annealing I It is preferable that the (420) b / I (200) b is finally rolled from a copper foil material having 0.02 or more and 0.04 or less.
 請求項10に記載の圧延銅箔において、最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、η≧2.3であることが好ましい。
 請求項10又は11に記載の圧延銅箔において、最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、I(311)b/I(200)b/ηが0.1以上0.7以下であり、かつ、I(420)b/I(200)b/ηが0.5以上1.2以下であることが好ましい。
The rolled copper foil according to claim 10, wherein the final rolling degree is η, and η ≧ Ln {(thickness before final rolling) / (thickness after final rolling)}}. Is preferred.
In the rolled copper foil according to claim 10 or 11, when the final rolling work degree is η, and expressed by η = Ln {(thickness before final rolling) / (thickness after final rolling)}, I (311) It is preferable that b / I (200) b / η is 0.1 or more and 0.7 or less and I (420) b / I (200) b / η is 0.5 or more and 1.2 or less.
 本発明によれば、屈曲性に優れる圧延銅箔を安定して得ることができる。 According to the present invention, a rolled copper foil having excellent flexibility can be obtained stably.
屈曲試験装置により屈曲疲労寿命の測定を行う方法を示す図である。It is a figure which shows the method of measuring a bending fatigue life with a bending test apparatus.
 以下、本発明の実施形態に係る圧延銅箔について説明する。 Hereinafter, the rolled copper foil according to the embodiment of the present invention will be described.
<成分組成>
 銅箔の成分組成としては、JIS-H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS-H3100(C1020)無酸素銅(OFC)を好適に用いることができる。又、添加元素としてSnを10~500質量ppm含有し、及び/又はAgを10~500質量ppm含有し、残部をタフピッチ銅又は無酸素銅としてもよい。
 又、添加元素としてAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、Vからなる元素の一種以上を合計で20~500質量ppm含有し、残部をタフピッチ銅又は無酸素銅としてもよい。
 なお、FPCに用いられる圧延銅箔は屈曲性を要求されることから、圧延銅箔の厚みは20μm以下が好ましい。
<Ingredient composition>
As the component composition of the copper foil, tough pitch copper (TPC) standardized to JIS-H3100 (C1100) or JIS-H3100 (C1020) oxygen-free copper (OFC) can be suitably used. The additive element may contain 10 to 500 ppm by mass of Sn and / or 10 to 500 ppm by mass of Ag, and the remainder may be tough pitch copper or oxygen-free copper.
Further, it contains 20 to 500 mass ppm in total of one or more elements consisting of Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V as additive elements, and the balance May be tough pitch copper or oxygen-free copper.
In addition, since the rolled copper foil used for FPC is required to be flexible, the thickness of the rolled copper foil is preferably 20 μm or less.
<第1の態様に係る圧延銅箔>
 本発明の第1の態様に係る圧延銅箔は、200℃で0.5時間焼鈍後に(200)面のX線回折ピークの積分強度I(200)と、(311)面のX線回折ピークの積分強度I(311)との比I(311)/I(200)が0.001以上0.01以下である。圧延銅箔に200℃で0.5時間の焼鈍を行うと再結晶組織が生じ、立方体集合組織が発達して圧延銅箔の屈曲性を向上させる。一方、再結晶後に(420)方位および(311)方位を持つ結晶粒は、屈曲時に応力印加方向とすべり方向が近いためにすべり変形を起こしにくく、そのために屈曲性を低下させやすい。
<Rolled copper foil according to the first aspect>
The rolled copper foil according to the first aspect of the present invention has an integrated intensity I (200) of the (200) plane X-ray diffraction peak and an integration of the (311) plane X-ray diffraction peak after annealing at 200 ° C. for 0.5 hour. The ratio I (311) / I (200) with the intensity I (311) is 0.001 or more and 0.01 or less. When the rolled copper foil is annealed at 200 ° C. for 0.5 hour, a recrystallized structure is generated, and a cubic texture is developed to improve the flexibility of the rolled copper foil. On the other hand, crystal grains having the (420) orientation and the (311) orientation after recrystallization are unlikely to cause slip deformation because the stress application direction and the slip direction are close at the time of bending, so that the flexibility tends to be lowered.
 このようなことから、(200)方位に比べて(311)方位の割合が少ないと屈曲性を向上させるので、比I(311)/I(200)を0.01以下とする。比I(311)/I(200)が0.01を超えると(311)方位の割合が多くなって屈曲性を低下させる。比I(311)/I(200)は低いほど屈曲性が高く好ましいが、実用上は0.001以上の値となる。 For this reason, if the ratio of the (311) orientation is small compared to the (200) orientation, the flexibility is improved, so the ratio I (311) / I (200) is set to 0.01 or less. When the ratio I (311) / I (200) exceeds 0.01, the ratio of the (311) orientation increases and the flexibility is lowered. The lower the ratio I (311) / I (200), the higher the flexibility and the better.
 又、第1の態様に係る圧延銅箔は、最終圧延前で、かつ再結晶焼鈍後の比I(311)b/I(200)bが0.01以上0.02以下である銅箔素材を、η=2.3以上の加工度で最終圧延して製造することができる。
 ここで、銅箔を再結晶焼鈍した後の(420)方位および(311)方位は、再結晶焼鈍前の圧延組織中に存在する(420)方位および(311)方位を持った結晶粒を起点として発達すると考えられる。また圧延組織中の(420)方位および(311)方位は、圧延前の組織に由来するものと考えられる。つまり、最終圧延前でかつ再結晶焼鈍後において、(420)方位および(311)方位の発達程度を制御することで、最終圧延後の箔を再結晶焼鈍した後の(420)方位および(311)方位を制御できる。
 このようなことから、最終圧延前で、かつ再結晶焼鈍後の比I(311)b/I(200)bが0.02を超えると、最終圧延後も(311)方位をもつ結晶粒が多く残留し、(311)方位をもつ結晶粒の割合が増えるので、充分な屈曲性が得られない場合がある。一方、比I(311)b/I(200)bが0.01未満の場合、焼鈍によって結晶粒が粗大化してしまうため、最終圧延で充分なひずみを加えることができず、最終圧延後の箔を再結晶焼鈍した後に充分な屈曲性が得られない場合がある。
 最終圧延加工度がη=2.3未満である場合には、最終圧延で充分なひずみを加えることができず、最終圧延後の箔を再結晶焼鈍した後に充分な屈曲性を得られないことがある。
Further, the rolled copper foil according to the first aspect is a copper foil material having a ratio I (311) b / I (200) b of 0.01 or more and 0.02 or less before final rolling and after recrystallization annealing, η = It can be manufactured by final rolling at a working degree of 2.3 or more.
Here, the (420) orientation and (311) orientation after recrystallization annealing of the copper foil originate from the crystal grains having the (420) orientation and (311) orientation present in the rolled structure before recrystallization annealing. It is thought that it will develop as. Further, the (420) orientation and (311) orientation in the rolled structure are considered to be derived from the structure before rolling. That is, before the final rolling and after recrystallization annealing, by controlling the degree of development of the (420) orientation and (311) orientation, the (420) orientation and (311) after recrystallization annealing of the foil after final rolling. ) Direction can be controlled.
For this reason, if the ratio I (311) b / I (200) b after recrystallization annealing exceeds 0.02 before final rolling, many grains with (311) orientation remain after final rolling. However, since the proportion of crystal grains having the (311) orientation increases, sufficient flexibility may not be obtained. On the other hand, if the ratio I (311) b / I (200) b is less than 0.01, the crystal grains are coarsened by annealing, so that sufficient strain cannot be applied in the final rolling, and the foil after the final rolling In some cases, sufficient flexibility cannot be obtained after recrystallization annealing.
When the final rolling degree is less than η = 2.3, sufficient strain cannot be applied in final rolling, and sufficient flexibility may not be obtained after recrystallization annealing of the foil after final rolling. .
 第1の態様に係る圧延銅箔において、I(311)b/I(200)b/ηが0.1以上0.7以下であることが好ましい。また、I(311)b/I(200)b/ ηが0.1以上0.5以下であることがより好ましい。
 一般に銅箔の製造工程においては最終圧延加工の加工度が高いため、最終圧延前の組織を制御しても、その影響が圧延後まで充分に残りにくい傾向にある。そこで、最終圧延前の組織と最終圧延の加工度とを共に管理することで、さらに充分な屈曲性が得られる。
 I(311)b/I(200)b/ηが0.5を超えると、最終圧延後も(311)方位をもつ結晶粒が多く残留し、(311)方位をもつ結晶粒の割合が増えるので、充分な屈曲性が得られない場合がある。比I(311)b/I(200)b/ ηは低いほど屈曲性が高く好ましいが、実用上は0.05以上の値となる。
In the rolled copper foil according to the first aspect, I (311) b / I (200) b / η is preferably 0.1 or more and 0.7 or less. Further, I (311) b / I (200) b / η is more preferably 0.1 or more and 0.5 or less.
In general, in the copper foil manufacturing process, since the degree of work of the final rolling process is high, even if the structure before the final rolling is controlled, the effect tends not to remain sufficiently until after the rolling. Thus, by managing both the structure before final rolling and the degree of processing of final rolling, further sufficient flexibility can be obtained.
When I (311) b / I (200) b / η exceeds 0.5, many grains with (311) orientation remain after the final rolling, and the proportion of crystal grains with (311) orientation increases. In some cases, sufficient flexibility cannot be obtained. The lower the ratio I (311) b / I (200) b / η, the higher the flexibility and the better, but practically a value of 0.05 or more.
<第2の態様に係る圧延銅箔>
 本発明の第2の態様に係る圧延銅箔は、200℃で0.5時間焼鈍後に(200)面のX線回折ピークの積分強度I(200)と、(420)面のX線回折ピークの積分強度I(420)との比I(420)/I(200)が0.005以上0.02以下である。
 上記したように、再結晶後に(420)方位および(311)方位を持つ結晶粒は、屈曲時に応力印加方向とすべり方向が近いためにすべり変形を起こしにくく、そのために屈曲性を低下させやすい。つまり、(200)方位に比べて(420)方位の割合が少ないと屈曲性を向上させるので、比I(420)/I(200)を0.02以下とする。比I(420)/I(200)が0.02を超えると(420)方位の割合が多くなって屈曲性を低下させる。但し、比I(420)/I(200)が0.005未満であると、(200)方位の割合が多くなり過ぎ、充分な屈曲性は得られるが、銅箔が軟らかすぎるためにハンドリング性が低下する。
<Rolled copper foil according to the second aspect>
The rolled copper foil according to the second aspect of the present invention has an integrated intensity I (200) of the (200) plane X-ray diffraction peak and an integration of the (420) plane X-ray diffraction peak after annealing at 200 ° C. for 0.5 hour. The ratio I (420) / I (200) with the strength I (420) is 0.005 or more and 0.02 or less.
As described above, crystal grains having the (420) orientation and the (311) orientation after recrystallization are less likely to cause slip deformation because the stress application direction and the slip direction are close to each other during bending, and thus tend to lower the flexibility. That is, if the ratio of the (420) azimuth is smaller than the (200) azimuth, the flexibility is improved, so the ratio I (420) / I (200) is set to 0.02 or less. When the ratio I (420) / I (200) exceeds 0.02, the ratio of the (420) orientation increases and the flexibility is lowered. However, if the ratio I (420) / I (200) is less than 0.005, the ratio of the (200) orientation will be too large and sufficient flexibility will be obtained, but the copper foil will be too soft and handling will be reduced. To do.
 又、第2の態様に係る圧延銅箔は、最終圧延前で、かつ再結晶焼鈍後の比I(420)b/I(200)bが0.02以上0.04以下である銅箔素材を、好ましくはη=2.3以上の加工度で最終圧延して製造することができる。
 最終圧延前で、かつ再結晶焼鈍後の比I(420)b/I(200)bが0.04を超えると、最終圧延後も (420)方位をもつ結晶粒が多く残留し、 (420)方位をもつ結晶粒の割合が増えるので、充分な屈曲性が得られない場合がある。一方、比I(420)b/I(200)bが0.02未満の場合、焼鈍によって結晶粒が粗大化してしまうため、最終圧延で充分なひずみを加えることができず、最終圧延後の箔を再結晶焼鈍した後に充分な屈曲性が得られない場合がある。
The rolled copper foil according to the second aspect is preferably a copper foil material having a ratio I (420) b / I (200) b of 0.02 or more and 0.04 or less before final rolling and after recrystallization annealing. It can be manufactured by final rolling at a workability of η = 2.3 or more.
If the ratio I (420) b / I (200) b after final rolling and after recrystallization annealing exceeds 0.04, many grains with (420) orientation remain even after final rolling, and (420) orientation Since the ratio of crystal grains having a large number is increased, sufficient flexibility may not be obtained. On the other hand, if the ratio I (420) b / I (200) b is less than 0.02, the crystal grains become coarse due to annealing, so that sufficient strain cannot be applied in the final rolling, and the foil after the final rolling In some cases, sufficient flexibility cannot be obtained after recrystallization annealing.
 第2の態様に係る圧延銅箔において、I(420)b/I(200)b/ηが0.5以上1.2以下であることが好ましい。また、I(420)b/I(200)b/ ηが0.5以上1.0以下であることがさらに好ましい。
 ここで、再結晶組織である(420)方位をもつ結晶粒は圧延加工によって回転し、別の方位を持った結晶粒になる。そのため、圧延加工度が高い場合には(420)面の割合は減少し、I(420)は低下する。一方で加工度が低い場合には(420)方位をもつ結晶粒が残存しやすく、I(420)は高くなりやすい。
 このようなことから、I(420)b/I(200)b/ηが1.0を超えると、最終圧延後も (420)方位をもつ結晶粒が多く残留し、(420)方位をもつ結晶粒の割合が増えるので、充分な屈曲性が得られない場合がある。また、I(420)b/I(200)b/ηが0.5未満であると、充分な屈曲性は得られるが、銅箔が軟らかすぎるためにハンドリング性が低下する場合がある。
In the rolled copper foil according to the second aspect, I (420) b / I (200) b / η is preferably 0.5 or more and 1.2 or less. Further, I (420) b / I (200) b / η is more preferably 0.5 or more and 1.0 or less.
Here, the crystal grains having the (420) orientation, which is a recrystallized structure, are rotated by rolling to become crystal grains having a different orientation. Therefore, when the rolling degree is high, the ratio of the (420) plane decreases and I (420) decreases. On the other hand, when the degree of processing is low, crystal grains having the (420) orientation tend to remain, and I (420) tends to increase.
For this reason, when I (420) b / I (200) b / η exceeds 1.0, many grains with (420) orientation remain after the final rolling, and grains with (420) orientation remain. In some cases, sufficient flexibility cannot be obtained. Further, if I (420) b / I (200) b / η is less than 0.5, sufficient flexibility can be obtained, but the handling property may be deteriorated because the copper foil is too soft.
<圧延銅箔の製造>
 第1及び第2の態様に係る圧延銅箔は、いずれもインゴットを熱間圧延後、焼鈍前圧延、再結晶焼鈍、及び最終圧延して製造することができる。ここで、再結晶方位の安定度は、(200)>(311)>(420)の順であり、再結晶焼鈍の際の昇温速度が高いほど、不安定な(420)方位及び(311)方位が増える傾向にある。従って、再結晶焼鈍の際の昇温速度を5~50℃/sとして従来よりも速度を遅くすると好ましい。
 又、焼鈍前圧延のη=1.6以上の加工度とし、かつ再結晶焼鈍後で最終圧延前の結晶粒径を10μm以上30μm以下とすると好ましい。最終圧延前の結晶粒径が10μm以下となるような焼鈍条件の場合、未再結晶組織が残留する可能性が高くなる。又、最終圧延前の結晶粒径が30μmを超える場合には最終圧延で充分なひずみを加えることができず、最終圧延後の箔を再結晶焼鈍した後に充分な屈曲性が得られないことがある。
 又、上記したように、η=2.3以上の加工度で最終圧延するとよい。
 なお、結晶粒径は、JIS H0501の切断法により測定する。
<Manufacture of rolled copper foil>
The rolled copper foil according to the first and second embodiments can be manufactured by hot rolling an ingot, pre-annealing rolling, recrystallization annealing, and final rolling. Here, the stability of the recrystallization orientation is in the order of (200)>(311)> (420), and the higher the rate of temperature rise during recrystallization annealing, the more unstable (420) orientation and (311 ) The direction tends to increase. Accordingly, it is preferable to set the rate of temperature increase during recrystallization annealing to 5 to 50 ° C./s and to make the rate slower than before.
Further, it is preferable that the degree of processing is η = 1.6 or more of rolling before annealing, and the crystal grain size after recrystallization annealing and before final rolling is 10 μm or more and 30 μm or less. In the case of an annealing condition in which the crystal grain size before final rolling is 10 μm or less, there is a high possibility that an unrecrystallized structure remains. Also, if the crystal grain size before final rolling exceeds 30 μm, sufficient strain cannot be applied in final rolling, and sufficient flexibility cannot be obtained after recrystallization annealing of the foil after final rolling. is there.
Further, as described above, the final rolling may be performed with a workability of η = 2.3 or more.
The crystal grain size is measured by the cutting method of JIS H0501.
 まず、表1に記載の組成の銅インゴットを製造し、厚み10mmまで熱間圧延を行った。その後、焼鈍と圧延を繰り返し、所定の厚みまで圧延した後に750℃の連続焼鈍炉に通板し再結晶焼鈍した。さらに、表1に示す加工度で最終冷間圧延し、表1に示す厚みの銅箔を得た。なお、再結晶焼鈍の際の昇温速度を表1に示す。 First, a copper ingot having the composition shown in Table 1 was manufactured and hot-rolled to a thickness of 10 mm. Then, annealing and rolling were repeated, and after rolling to a predetermined thickness, it was passed through a continuous annealing furnace at 750 ° C. and recrystallized and annealed. Furthermore, the final cold rolling was carried out at the workability shown in Table 1 to obtain a copper foil having the thickness shown in Table 1. Table 1 shows the rate of temperature increase during recrystallization annealing.
<配向度>
 最終圧延して得られた銅箔を200℃で0.5時間焼鈍して再結晶させた後、圧延面のX線回折で求めた(200)面、(311)面、(420)面の強度の積分値(I)をそれぞれ求めた。
 又、最終圧延前で、かつ再結晶焼鈍後の(200)面、(311)面、(420)面のX線回折ピークの積分強度をそれぞれ求めた。この値については、I(200)bのように添え字「b」で表した。
<Orientation degree>
After the copper foil obtained by final rolling was recrystallized by annealing at 200 ° C. for 0.5 hour, the strengths of the (200) plane, (311) plane, and (420) plane were determined by X-ray diffraction of the rolled plane. Each integral value (I) was determined.
Further, the integrated intensities of the X-ray diffraction peaks of the (200) plane, (311) plane, and (420) plane before final rolling and after recrystallization annealing were determined, respectively. This value is represented by the subscript “b” as in I (200) b.
<屈曲性>
 最終圧延して得られた銅箔試料を200℃で30分間加熱して再結晶させた後、図1に示す屈曲試験装置により、屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、被試験銅箔1は、矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、銅箔1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
 なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:1.5mm、振動ストローク:20mm、振動速度:1000回/分。
 又、以下の基準で、屈曲性を評価した。評価が◎、○、又は△であれば屈曲性が良好である。
  ◎:屈曲回数が20万回以上、屈曲性が最も良好である
  ○:屈曲回数が10万回以上20万回未満、屈曲性が良好である
  △:屈曲回数が5万回以上10万回未満、屈曲性に優れる
  ×:屈曲回数が5万回未満、屈曲性が劣る
<Flexibility>
After the copper foil sample obtained by final rolling was recrystallized by heating at 200 ° C. for 30 minutes, the bending fatigue life was measured with the bending test apparatus shown in FIG. This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and a copper foil 1 to be tested is fixed to the apparatus at a total of four points including a screw 2 part indicated by an arrow and a tip part of 3. Is done. When the vibration part 3 is driven up and down, the intermediate part of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
The test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, curvature radius r : 1.5 mm, vibration stroke: 20 mm, vibration speed: 1000 times / min.
Further, the flexibility was evaluated according to the following criteria. If evaluation is (double-circle), (circle), or (triangle | delta), flexibility is favorable.
◎: The number of bendings is 200,000 times or more and the flexibility is the best. ○: The number of bendings is 100,000 or more and less than 200,000 times, and the flexibility is good. △: The number of bendings is 50,000 or more and less than 100,000. , Excellent flexibility ×: less than 50,000 times of bending, poor flexibility
 得られた結果を表1、表2に示す。
 ここで、表1中の組成欄の「TPC」はJIS-H3100(C1100)に規格するタフピッチ銅(TPC)を表し、「OFC」はJIS-H3100(C1020)に規格する無酸素銅(OFC)を表す。従って、例えば、表1中の組成欄の「190ppmAg-TPC」はJIS-H3100(C1100)に規格するタフピッチ銅(TPC)に190質量ppmのAgを添加した組成であることを意味する。また、表1中の組成欄の「100ppmSn-OFC」はJIS-H3100(C1020)に規格する無酸素銅(OFC)に100質量ppmのSnを添加した組成であることを意味する。
The obtained results are shown in Tables 1 and 2.
Here, “TPC” in the composition column of Table 1 represents tough pitch copper (TPC) standardized to JIS-H3100 (C1100), and “OFC” represents oxygen-free copper (OFC) standardized to JIS-H3100 (C1020). Represents. Therefore, for example, “190 ppm Ag-TPC” in the composition column of Table 1 means a composition in which 190 mass ppm of Ag is added to tough pitch copper (TPC) specified in JIS-H3100 (C1100). In addition, “100 ppm Sn—OFC” in the composition column of Table 1 means a composition in which 100 mass ppm of Sn is added to oxygen-free copper (OFC) specified in JIS-H3100 (C1020).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、I(311)/I(200)が0.001以上0.01以下、又は(420)/I(200)が0.005以上0.02以下である各実施例の場合、屈曲性が優れたものとなった。特に、I(311)/I(200)が0.001以上0.01以下で、かつI(420)/I(200)が0.005以上0.02以下である実施例1~12、15~21の場合、実施例13、14に比べて屈曲性がさらに優れたものとなった。 As is clear from Table 1, in each example where I (311) / I (200) is 0.001 or more and 0.01 or less, or (420) / I (200) is 0.005 or more and 0.02 or less, the flexibility is excellent. It became a thing. In particular, in the case of Examples 1 to 12 and 15 to 21 in which I (311) / I (200) is 0.001 or more and 0.01 or less and I (420) / I (200) is 0.005 or more and 0.02 or less, Example 13 , 14, the flexibility was further improved.
 一方、I(311)/I(200)が0.01を超え、かつI(420)/I(200)が0.02を超えた比較例1~3の場合、屈曲性が劣った。 On the other hand, in Comparative Examples 1 to 3 in which I (311) / I (200) exceeded 0.01 and I (420) / I (200) exceeded 0.02, the flexibility was inferior.
 なお、表2から明らかなように、各実施例の場合、I(311)b/I(200)bが0.01以上0.02以下で、又はI(311)b/I(200)b/ηが0.1以上0.7以下となった。又、各実施例の場合、I(420)b/I(200)bが0.02以上0.04以下、又はI(420)b/I(200)b/ηが0.5以上1.2以下となった。特に、実施例1~12、15~21の場合、I(311)/I(200)が0.001以上0.01以下かつI(420)/I(200)が0.005以上0.02以下であり、特に屈曲性に優れた。
 一方、比較例1~3の場合、I(311)b/I(200)bが0.02を超え、かつI(311)b/I(200)b/ηが0.7を超えた。同様に、比較例1~3の場合、I(420)b/I(200)bが0.04を超え、かつI(420)b/I(200)b/ηが1.2を超えた。
As is clear from Table 2, in each example, I (311) b / I (200) b is 0.01 or more and 0.02 or less, or I (311) b / I (200) b / η is 0.1. Above 0.7. In each example, I (420) b / I (200) b was 0.02 or more and 0.04 or less, or I (420) b / I (200) b / η was 0.5 or more and 1.2 or less. In particular, in Examples 1 to 12 and 15 to 21, I (311) / I (200) is 0.001 or more and 0.01 or less and I (420) / I (200) is 0.005 or more and 0.02 or less. outstanding.
On the other hand, in Comparative Examples 1 to 3, I (311) b / I (200) b exceeded 0.02 and I (311) b / I (200) b / η exceeded 0.7. Similarly, in Comparative Examples 1 to 3, I (420) b / I (200) b exceeded 0.04 and I (420) b / I (200) b / η exceeded 1.2.

Claims (12)

  1. 200℃0.5時間焼鈍後の(200)面のX線回折ピークの積分強度I(200)と、 (311)面のX線回折ピークの積分強度I(311)との比I(311)/I(200)が0.001以上0.01以下である圧延銅箔。 Ratio I (311) / I of the integrated intensity I (200) of the (200) plane X-ray diffraction peak after annealing at 200 ° C for 0.5 hour and the integrated intensity I (311) of the X-ray diffraction peak of the (311) plane A rolled copper foil having (200) of 0.001 or more and 0.01 or less.
  2. 200℃0.5時間焼鈍後の(200)面のX線回折ピークの積分強度I(200)と、 (420)面のX線回折ピークの積分強度I(420)との比I(420)/I(200)が0.005以上0.02以下である圧延銅箔。 Ratio I (420) / I of the integrated intensity I (200) of the (200) plane X-ray diffraction peak after annealing at 200 ° C for 0.5 hour and the integrated intensity I (420) of the X-ray diffraction peak of the (420) plane A rolled copper foil having (200) of 0.005 or more and 0.02 or less.
  3. 200℃0.5時間焼鈍後の(200)面のX線回折ピークの積分強度I(200)と、 (311)面のX線回折ピークの積分強度I(311)との比I(311)/I(200)が0.001以上0.01以下であり、かつ200℃0.5時間焼鈍後の (200)面のX線回折ピークの積分強度I(200)と、 (420)面のX線回折ピークの積分強度I(420)との比I(420)/I(200)が0.005以上0.02以下である圧延銅箔。 Ratio I (311) / I of integrated intensity I (200) of X-ray diffraction peak of (200) plane after annealing at 200 ° C for 0.5 hour and integrated intensity I (311) of X-ray diffraction peak of ピ ー ク (311) plane (200) is 0.001 or more and 0.01 or less, and the integrated intensity I (200) of the X-ray diffraction peak of the (200) plane after annealing at 200 ° C. for 0.5 hour, and the integrated intensity I of the X-ray diffraction peak of the (420) plane A rolled copper foil having a ratio I (420) / I (200) to (420) of 0.005 or more and 0.02 or less.
  4. 最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(311)bとの比I(311)b/I(200)bが0.01以上0.02以下である銅箔素材を最終圧延してなる請求項1又は3に記載の圧延銅箔。 The ratio I (311) b / I (200) b of the integrated intensity of the X-ray diffraction peak before re-rolling and after recrystallization annealing is between 0.01 and 0.02 The rolled copper foil according to claim 1 or 3, wherein the rolled copper foil material is finally rolled.
  5. 最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、η≧2.3である請求項4記載の圧延銅箔。 The rolled copper foil according to claim 4, wherein η ≧ 2.3 when represented by η = Ln {(thickness before final rolling) / (thickness after final rolling)} where η is the final rolling degree.
  6. I(311)b/I(200)b/ηが0.1以上0.7以下である請求項4又は5に記載の圧延銅箔。 The rolled copper foil according to claim 4 or 5, wherein I (311) b / I (200) b / η is 0.1 or more and 0.7 or less.
  7. 最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(420)bとの比I(420)b/I(200)bが0.02以上0.04以下である銅箔素材を最終圧延してなる請求項2又は3に記載の圧延銅箔。 The ratio of I (200) b and I (420) b, which is the integrated intensity of the X-ray diffraction peak before final rolling and after recrystallization annealing, is I2 (420) b / I (200) b 0.02 or more and 0.04 or less The rolled copper foil according to claim 2 or 3, wherein the rolled copper foil material is finally rolled.
  8. 最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、η≧2.3である請求項7記載の圧延銅箔。 The rolled copper foil according to claim 7, wherein η ≧ 2.3 when represented by η = Ln {(thickness before final rolling) / (thickness after final rolling)} where η is a final rolling degree.
  9. 最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、
     I(420)b/I(200)b/ηが0.5以上1.2以下である請求項7又は請求項8に記載の圧延銅箔。
    When the final rolling degree is η, and represented by η = Ln {(thickness before final rolling) / (thickness after final rolling)},
    The rolled copper foil according to claim 7 or 8, wherein I (420) b / I (200) b / η is 0.5 or more and 1.2 or less.
  10. 最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(311)bとの比I(311)b/I(200)bが0.01以上0.02以下であり、かつ、最終圧延前で、かつ再結晶焼鈍後のX線回折ピークの積分強度であるI(200)bとI(420)bとの比I(420)b/I(200)bが0.02以上0.04以下である銅箔素材を最終圧延してなる請求項3に記載の圧延銅箔。 The ratio I (311) b / I (200) b of the integrated intensity of the X-ray diffraction peak before re-rolling and after recrystallization annealing is between 0.01 and 0.02 The ratio of I (200) b and I (420) b, which is the integrated intensity of the X-ray diffraction peak before final rolling and after recrystallization annealing, is I (420) b / I (200) b The rolled copper foil according to claim 3, obtained by final rolling a copper foil material having a thickness of 0.02 to 0.04.
  11. 最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、η≧2.3である請求項10に記載の圧延銅箔。 11. The rolled copper foil according to claim 10, wherein η ≧ 2.3 when represented by η = Ln {(thickness before final rolling) / (thickness after final rolling)} where η is a final rolling work degree.
  12. 最終圧延加工度をηとし、η=Ln{(最終圧延前の厚み)/(最終圧延後の厚み)}で表したとき、
     I(311)b/I(200)b/ηが0.1以上0.7以下であり、かつ、I(420)b/I(200)b/ηが0.5以上1.2以下である請求項10又は11に記載の圧延銅箔。
    When the final rolling degree is η, and represented by η = Ln {(thickness before final rolling) / (thickness after final rolling)},
    The I (311) b / I (200) b / η is 0.1 or more and 0.7 or less, and the I (420) b / I (200) b / η is 0.5 or more and 1.2 or less. Rolled copper foil.
PCT/JP2012/058848 2011-08-23 2012-04-02 Rolled copper foil WO2013027437A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280040973.7A CN103748251B (en) 2011-08-23 2012-04-02 Rolled copper foil
KR1020147004385A KR101632515B1 (en) 2011-08-23 2012-04-02 Rolled copper foil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011181228 2011-08-23
JP2011-181228 2011-08-23
JP2011201838A JP5752536B2 (en) 2011-08-23 2011-09-15 Rolled copper foil
JP2011-201838 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013027437A1 true WO2013027437A1 (en) 2013-02-28

Family

ID=47746195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058848 WO2013027437A1 (en) 2011-08-23 2012-04-02 Rolled copper foil

Country Status (5)

Country Link
JP (1) JP5752536B2 (en)
KR (1) KR101632515B1 (en)
CN (1) CN103748251B (en)
TW (1) TWI453290B (en)
WO (1) WO2013027437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116450A4 (en) * 2020-03-06 2024-03-27 Mitsubishi Materials Corp Pure copper plate, copper/ceramic bonded body, and insulated circuit board

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058704A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate
JP6104200B2 (en) * 2014-03-13 2017-03-29 Jx金属株式会社 Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device
KR101721314B1 (en) * 2015-05-21 2017-03-29 제이엑스금속주식회사 Rolled copper foil, copper clad laminate, and flexible printed board and electronic device
CN111526674A (en) * 2015-06-05 2020-08-11 Jx日矿日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device
JP6294376B2 (en) * 2016-02-05 2018-03-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046768B (en) * 2016-02-05 2019-12-31 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP6781562B2 (en) * 2016-03-28 2020-11-04 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP2019194360A (en) * 2019-06-26 2019-11-07 Jx金属株式会社 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP7186141B2 (en) * 2019-07-10 2022-12-08 Jx金属株式会社 Copper foil for flexible printed circuit boards
KR20220068985A (en) * 2019-09-27 2022-05-26 미쓰비시 마테리알 가부시키가이샤 pure copper plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063431A (en) * 2004-08-30 2006-03-09 Dowa Mining Co Ltd Copper alloy and its production method
JP2009019232A (en) * 2007-07-11 2009-01-29 Hitachi Cable Ltd Rolled copper foil
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150748A (en) * 1987-12-08 1989-06-13 Rinnai Corp Surplus heat discharging mechanism for heating device
JP2782790B2 (en) 1989-06-07 1998-08-06 富士ゼロックス株式会社 Image reading device
JP3009383B2 (en) * 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP5261122B2 (en) * 2008-10-03 2013-08-14 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5390852B2 (en) * 2008-12-24 2014-01-15 株式会社Shカッパープロダクツ Rolled copper foil
JP2010150597A (en) 2008-12-25 2010-07-08 Hitachi Cable Ltd Rolled copper foil
JP5094834B2 (en) * 2009-12-28 2012-12-12 Jx日鉱日石金属株式会社 Copper foil manufacturing method, copper foil and copper clad laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063431A (en) * 2004-08-30 2006-03-09 Dowa Mining Co Ltd Copper alloy and its production method
JP2009019232A (en) * 2007-07-11 2009-01-29 Hitachi Cable Ltd Rolled copper foil
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116450A4 (en) * 2020-03-06 2024-03-27 Mitsubishi Materials Corp Pure copper plate, copper/ceramic bonded body, and insulated circuit board

Also Published As

Publication number Publication date
KR101632515B1 (en) 2016-06-21
JP5752536B2 (en) 2015-07-22
JP2013060651A (en) 2013-04-04
CN103748251A (en) 2014-04-23
TW201309818A (en) 2013-03-01
TWI453290B (en) 2014-09-21
CN103748251B (en) 2016-02-10
KR20140037962A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5752536B2 (en) Rolled copper foil
JP5320638B2 (en) Rolled copper foil and method for producing the same
JP3856582B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
US7563408B2 (en) Copper alloy and method of manufacturing the same
JP4716520B2 (en) Rolled copper foil
JP5124039B2 (en) Copper foil and copper-clad laminate using the same
JP5245813B2 (en) Rolled copper foil
KR101540508B1 (en) Rolled copper foil
JP2009111203A (en) Rolled copper foil, and flexible printed wiring board
JPWO2015152261A1 (en) Rolled copper foil, rolled copper foil manufacturing method, flexible flat cable, flexible flat cable manufacturing method
JP2009097075A (en) Copper alloy foil, and flexible printed wiring board using it
JP2012062499A (en) Copper or copper alloy rolled foil for electronic component, and method for producing the same
JP5390852B2 (en) Rolled copper foil
WO2015099098A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
TWI480397B (en) Rolled copper foil
JP5126434B1 (en) Rolled copper foil
JP5126435B1 (en) Rolled copper foil
WO2015068420A1 (en) Copper alloy plate, and electronic part for heat dissipation use which is equipped with same
JP5631847B2 (en) Rolled copper foil
JP3986707B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP2014058705A (en) Rolled copper foil and copper-clad laminate
JP2002167632A (en) Rolled copper foil for flexible printed circuit board and its production method
CN103255312A (en) Rolled copper foil
JP5683432B2 (en) Rolled copper foil
JP2013189702A (en) Rolled copper foil and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147004385

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824952

Country of ref document: EP

Kind code of ref document: A1