JP2009111203A - Rolled copper foil, and flexible printed wiring board - Google Patents

Rolled copper foil, and flexible printed wiring board Download PDF

Info

Publication number
JP2009111203A
JP2009111203A JP2007282691A JP2007282691A JP2009111203A JP 2009111203 A JP2009111203 A JP 2009111203A JP 2007282691 A JP2007282691 A JP 2007282691A JP 2007282691 A JP2007282691 A JP 2007282691A JP 2009111203 A JP2009111203 A JP 2009111203A
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
flexible printed
thickness
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007282691A
Other languages
Japanese (ja)
Other versions
JP5057932B2 (en
Inventor
Toshiyuki Ono
俊之 小野
Kaichiro Nakamuro
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2007282691A priority Critical patent/JP5057932B2/en
Publication of JP2009111203A publication Critical patent/JP2009111203A/en
Application granted granted Critical
Publication of JP5057932B2 publication Critical patent/JP5057932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolled copper foil for flexible printed wiring boards which suppresses crack growth even under its strict bending conditions to obtain its high bendable quality. <P>SOLUTION: The rolled copper for flexible printed wiring boards has conductivity not smaller than 80% IACS after heat-treating at 300°C for 30 minutes. Also, it has a crystal grain boundary in the cross section viewed in a direction parallel to its rolling direction. Further, it satisfies such a relation of N/t≥1 that N is the number of grain boundaries each of which intersects the straight line connecting one grain surface with the other grain surface in a shortest distance, at an angle not smaller than 45°when it has a foil thickness of t(μm). Moreover, when its grain size is D and its thickness is t0 after final annealing, it is manufactured by final rolling with workability satisfying the relation of 0.13×D+0.75≤ln(t0/t)≤0.085×D+2.95, after final annealing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は繰り返し屈曲が行われるフレキシブルプリント基板(以下FPC)に用いられる圧延銅箔、及びフレキシブルプリント配線板に関し、特に、スライド式携帯電話のスライド部のFPCのように高い屈曲性を要求されるFPC用銅箔及びフレキシブルプリント配線板に関する。   The present invention relates to a rolled copper foil used for a flexible printed circuit board (hereinafter referred to as FPC) that is repeatedly bent, and a flexible printed wiring board, and in particular, high flexibility is required like the FPC of a sliding portion of a sliding mobile phone. The present invention relates to FPC copper foil and flexible printed wiring boards.

FPCは、曲げ、ねじり、巻き付け及び重ね等が可能な軟かいプリント基板であり、又、狭空間に実装可能であるため、携帯電話、コンピュータ関連製品、オーディオ・ビジュアル製品、カメラ及び自動車等の配線に使用されている。
FPCは一般に、基材フィルムに回路となる銅箔を張り合わせて加熱することにより製造され、銅箔としては、電解銅箔より屈曲性に優れたタフピッチ銅や無酸素銅の圧延銅箔が使用される。又、屈曲性を向上させるため、圧延銅箔は焼鈍した状態でFPCに使用される。
FPC is a flexible printed circuit board that can be bent, twisted, wound and stacked, and can be mounted in a narrow space, so it can be used for wiring in mobile phones, computer-related products, audio / visual products, cameras, automobiles, etc. Is used.
FPC is generally manufactured by laminating and heating a copper foil that becomes a circuit on a base film, and as the copper foil, rolled copper foil of tough pitch copper or oxygen-free copper having superior flexibility than electrolytic copper foil is used. The In order to improve flexibility, the rolled copper foil is used for FPC in an annealed state.

特に、例えば携帯電話の本体(メイン操作部)と表示部(液晶等)との可動部を接続するFPCの場合、さらに高い屈曲性が要求されている。又、携帯電話等の薄型化が進展し、それに応じてFPCの屈曲半径は小さくなる傾向にあり、耐屈曲性の要求が厳しくなっている。
そこで、無酸素銅にSnを0.05mass%未満添加し、樹脂の硬化温度で軟化する特性を有するFPC用銅合金が報告されている(特許文献1参照)。
又、最終圧延後に焼鈍された銅箔の板厚方向に貫通した結晶粒の割合を多くし(結晶粒径を大きくし)、屈曲による変形を単結晶の変形とさせて屈曲性を向上させた圧延銅箔が報告されている(特許文献2参照)。
さらに、クラックが銅箔の裏面まで貫通するのを抑制し高い耐屈曲性を得るFPCとして、平均結晶粒径10μm以下で、表面から裏面まで結晶粒界をなぞったときに4個以上の分岐点を経由する金属箔が報告されている(特許文献3参照)。
In particular, for example, in the case of an FPC that connects movable parts of a mobile phone main body (main operation unit) and a display unit (liquid crystal or the like), higher flexibility is required. In addition, as mobile phones and the like are becoming thinner, the bending radius of FPC tends to be reduced accordingly, and the demand for bending resistance is becoming stricter.
Therefore, a copper alloy for FPC has been reported which has the property of adding Sn less than 0.05 mass% to oxygen-free copper and softening at the curing temperature of the resin (see Patent Document 1).
In addition, the ratio of crystal grains penetrating in the thickness direction of the copper foil annealed after the final rolling was increased (the crystal grain size was increased), and the deformation due to bending was changed to single crystal deformation to improve the flexibility. A rolled copper foil has been reported (see Patent Document 2).
Furthermore, as an FPC that suppresses the penetration of cracks to the back surface of copper foil and obtains high bending resistance, when the crystal grain boundary is traced from the front surface to the back surface with an average crystal grain size of 10 μm or less, 4 or more branch points Has been reported (see Patent Document 3).

特開2005-313380号公報JP 2005-313380 A 特開2006-117977号公報JP 2006-117977 A 特開2007-189261号公報JP 2007-189261 A

しかしながら、上記した特許文献2記載の技術の場合、曲げ半径が小さく厳しい条件下で屈曲させると、クラックが一旦発生すると銅箔の裏面まで短時間で貫通することが多く、屈曲性が低下する。又、特許文献3記載の技術の場合も、曲げ半径が小さくなるとクラックの進展を抑制できず屈曲性が低下する。
本発明は上記の課題を解決するためになされたものであり、厳しい屈曲条件下においてもクラックの進展を抑制し、高い屈曲性を得ることができるフレキシブルプリント配線板用圧延銅箔を提供することを目的とする。
However, in the case of the technique described in Patent Document 2 described above, if the bending radius is small and bending is performed under severe conditions, once cracking occurs, the back surface of the copper foil is often penetrated in a short time, and flexibility is deteriorated. Also, in the case of the technique described in Patent Document 3, if the bending radius is reduced, the progress of cracks cannot be suppressed and the flexibility is lowered.
The present invention has been made to solve the above problems, and provides a rolled copper foil for a flexible printed wiring board that can suppress the progress of cracks even under severe bending conditions and can obtain high flexibility. With the goal.

本発明者らは種々検討した結果、一方の表面から他方の表面に最短距離で結んだ直線と交差する結晶粒界の数を多くすることで、屈曲性を向上できることを見出した。このようにすると、屈曲の初期段階では一定の抵抗増加をするものの、抵抗増加が徐々に緩やかになるため、屈曲回数が従来の銅箔よりも大幅に多くなるためと考えられる。
すなわち本発明の圧延銅箔は、フレキシブルプリント配線板用の銅箔であって、300℃で30分の熱処理後に、導電率が80%IACS以上であり、圧延平行方向の断面に結晶粒界が存在し、箔の厚みをt(μm)としたとき、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが、N/t≧1を満足することを特徴とする。
As a result of various studies, the present inventors have found that the flexibility can be improved by increasing the number of crystal grain boundaries intersecting with a straight line connected from one surface to the other surface at the shortest distance. In this way, although the resistance increase is constant at the initial stage of bending, the increase in resistance gradually becomes gentle, so the number of bendings is considered to be significantly greater than that of the conventional copper foil.
That is, the rolled copper foil of the present invention is a copper foil for flexible printed wiring boards, and after heat treatment at 300 ° C. for 30 minutes, the conductivity is 80% IACS or more, and there are crystal grain boundaries in the cross section in the rolling parallel direction. When the thickness of the foil is t (μm), the number N of grain boundaries intersecting at a 45 ° or more angle with the straight line connected from one surface to the other surface at the shortest distance is N / t ≧ It is characterized by satisfying 1.

JIS-B0601で規定される輪郭曲線の最大高さをRzとしたとき、(t-2×Rz)/t≧0.8を満足することが好ましい。
これは、銅箔表面の凹凸の状態(Rz)が同じであっても、厚みが薄くなると屈曲性が悪くなるためであり、銅箔厚みに対して銅箔表面の凹凸の割合を小さくすると屈曲性が向上するからである。
When the maximum height of the contour curve defined by JIS-B0601 is Rz, it is preferable that (t−2 × Rz) /t≧0.8 is satisfied.
This is because even if the unevenness state (Rz) on the copper foil surface is the same, the flexibility becomes worse when the thickness is reduced, and bending is reduced when the ratio of the unevenness on the copper foil surface is reduced with respect to the copper foil thickness. This is because the property is improved.

Ti、Zr、Mg、Cr、Ca、Sn、In及びAgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むことが好ましい。
最終焼鈍後の平均結晶粒径をD、最終焼鈍後の厚みをt0としたとき、0.13×D+0.75≦ln(t0/t)≦0.085×D+2.95を満足する加工度で前記最終焼鈍後に最終圧延して製造されていることが好ましい。
屈曲された場合に銅箔にかかるひずみを小さくする観点からtが20μm以下であることが好ましい。
It is preferable that a total of 1000 to 3000 ppm of one or more elements selected from the group consisting of Ti, Zr, Mg, Cr, Ca, Sn, In, and Ag is included.
When the average grain size after final annealing is D and the thickness after final annealing is t0, after the final annealing at a working degree satisfying 0.13 × D + 0.75 ≦ ln (t0 / t) ≦ 0.085 × D + 2.95 It is preferably manufactured by final rolling.
From the viewpoint of reducing the strain applied to the copper foil when bent, t is preferably 20 μm or less.

本発明のフレキシブルプリント配線板は、樹脂層と圧延銅箔が積層されてなり、前記圧延銅箔の導電率が80%IACS以上であり、圧延平行方向の断面に結晶粒界が存在し、箔の厚みをt(μm)としたとき、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが、N/t≧1を満足することを特徴とする。   The flexible printed wiring board of the present invention is formed by laminating a resin layer and a rolled copper foil, the conductivity of the rolled copper foil is 80% IACS or more, and there are crystal grain boundaries in the cross section in the rolling parallel direction. The number N of crystal grain boundaries that intersect at an angle of 45 degrees or more with the straight line connected from one surface to the other surface at the shortest distance satisfies N / t ≧ 1, where t is the thickness of (μm) It is characterized by that.

本発明によれば、厳しい屈曲条件下においてもクラックの進展を抑制し、高い屈曲性を得ることができるフレキシブルプリント配線板用圧延銅箔が得られる。   According to the present invention, it is possible to obtain a rolled copper foil for a flexible printed wiring board that can suppress the progress of cracks even under severe bending conditions and can obtain high flexibility.

以下、本発明の実施形態に係るフレキシブルプリント配線板用圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
又、本発明の実施の形態に係る銅合金箔は導電性を要求されるため、導電率が80%IACS以上である。
Hereinafter, the rolled copper foil for flexible printed wiring boards which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.
Further, since the copper alloy foil according to the embodiment of the present invention is required to have conductivity, the conductivity is 80% IACS or more.

[結晶粒界の数N]
本発明の実施形態に係る圧延銅箔は、300℃で30分の熱処理後に、圧延平行方向の断面に結晶粒界が存在し、箔の厚みをt(μm)としたとき、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが、N/t≧1を満足する。
300℃で30分の熱処理は、圧延銅箔を基材フィルムと張り合わせて加熱し、フレキシブルプリント配線板を製造する際の加熱処理を模したものである。
屈曲によって生じたクラックは結晶粒界に沿って進行しやすいが、結晶粒界を横切る方向には進行しにくい。例えば、結晶粒界を複雑な経路(例えばジグザグ)で配置すればクラックの進行もジグザグとなり、クラック(疲労)の進行を遅らせて屈曲性を向上させることができる。本発明者らがこのような着想で検討した結果、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが多いほど、厳しい屈曲条件でも高い屈曲性を示すことを見出した。つまり、従来の技術のように、単に結晶粒界の交点の数では不十分であり、箔の板厚方向での結晶粒界の数が重要である。
[Number of grain boundaries N]
The rolled copper foil according to the embodiment of the present invention has a grain boundary in the cross section in the rolling parallel direction after heat treatment at 300 ° C. for 30 minutes, and the thickness of the foil is t (μm). The number N of grain boundaries that intersect the straight line connected to the other surface at the shortest distance at an angle of 45 ° or more satisfies N / t ≧ 1.
The heat treatment at 300 ° C. for 30 minutes imitates the heat treatment in producing a flexible printed wiring board by heating the rolled copper foil together with the base film.
A crack generated by bending is likely to proceed along the crystal grain boundary, but is difficult to proceed in a direction crossing the crystal grain boundary. For example, if the crystal grain boundaries are arranged in a complicated path (for example, zigzag), the progress of the crack becomes zigzag, and the progress of the crack (fatigue) can be delayed to improve the flexibility. As a result of the study by the present inventors, as the number N of crystal grain boundaries intersecting at a 45 ° angle or more with a straight line connected from one surface to the other surface at the shortest distance, the more severe the bending condition However, it has been found that it exhibits high flexibility. That is, as in the prior art, the number of intersections of crystal grain boundaries is not sufficient, and the number of crystal grain boundaries in the foil thickness direction is important.

ここで、一方の表面から他方の表面に最短距離で結んだ直線とは、通常は箔の板厚方向に平行な(かつ、箔表面に垂直な)直線である。又、結晶粒界がこの直線と45度以上の角度で交差する必要がある理由は、45度未満の角度で交差する場合、結晶粒界が板厚方向に沿うため、クラックが板厚方向に沿って表裏を貫通し、破断し易くなるからである。
又、箔の厚みが厚くなるほど、結晶粒界の数Nも多くなる必要がある。例えば、箔の厚みが10μmの場合、結晶粒界の数は10個以上であればよいが、箔の厚みが15μmの場合、結晶粒界の数は15個以上必要である。
Here, the straight line connected from one surface to the other surface at the shortest distance is usually a straight line parallel to the thickness direction of the foil (and perpendicular to the foil surface). In addition, the reason why the crystal grain boundary needs to intersect this straight line at an angle of 45 degrees or more is that when the crystal grain boundary intersects at an angle of less than 45 degrees, the crystal grain boundary is along the plate thickness direction, so that the crack is in the plate thickness direction. It is because it penetrates the front and back along and becomes easy to fracture.
Further, as the thickness of the foil increases, the number N of crystal grain boundaries needs to increase. For example, when the thickness of the foil is 10 μm, the number of crystal grain boundaries may be 10 or more, but when the thickness of the foil is 15 μm, the number of crystal grain boundaries needs to be 15 or more.

図1は後述する本発明の実施例に係る圧延銅箔の組織写真を示す。図の上下方向の線(一方の表面から他方の表面に最短距離で結んだ直線)と45度以上の角度で交差する結晶粒界をこの線上の点で示す。図1の例はN/t≧1を満足し、屈曲性の評価も優れていた。
一方、図3〜図5は、後述する比較例に係る圧延銅箔の組織写真を示す。図3〜図5の例はいずれもN/t<1となり、屈曲性の評価も劣っていた。
FIG. 1 shows a structure photograph of a rolled copper foil according to an example of the present invention described later. A crystal grain boundary that intersects with a vertical line (straight line from one surface to the other surface at the shortest distance) at an angle of 45 degrees or more is indicated by a point on this line. The example of FIG. 1 satisfied N / t ≧ 1, and the evaluation of flexibility was excellent.
On the other hand, FIGS. 3-5 shows the structure | tissue photograph of the rolled copper foil which concerns on the comparative example mentioned later. The examples of FIGS. 3 to 5 all had N / t <1, and the evaluation of flexibility was inferior.

[箔表面の凹凸(Rz)]
本発明の実施形態に係る圧延銅箔は、JIS-B0601で規定される輪郭曲線の最大高さをRzとしたとき、(t-2×Rz)/t≧0.8を満足することが好ましい。
屈曲条件が緩い場合、箔表面の凹凸は屈曲性に大きな影響を及ぼさない。しかし、箔表面にかかるひずみが大きい場合、すなわち曲げ半径が非常に小さい場合、表面凹凸が応力集中点となり、破断の原因となって屈曲性を低下させる。又、箔表面の凹凸(Rz)が同じ状態であっても、板厚が薄いほど屈曲性を低下させるが、これは、薄い箔ほど箔の厚みに対する凹凸の割合が大きくなるためである。
そして、(t-2×Rz)/t≧0.8とする、つまり箔厚みtに対し、表面の凹凸を差引いた実態厚み(t-2×Rz)を8割以上とする(銅箔表面の凹凸の割合を小さくする)と、屈曲性が向上することが判明した。
[Foil surface irregularities (Rz)]
The rolled copper foil according to the embodiment of the present invention preferably satisfies (t−2 × Rz) /t≧0.8, where Rz is the maximum height of the contour curve defined by JIS-B0601.
When the bending condition is loose, the unevenness on the foil surface does not have a great influence on the flexibility. However, when the strain applied to the foil surface is large, that is, when the bending radius is very small, the surface unevenness becomes a stress concentration point, causing breakage and lowering the flexibility. Further, even when the unevenness (Rz) on the foil surface is the same, the flexibility decreases as the plate thickness decreases. This is because the ratio of the unevenness to the foil thickness increases as the foil becomes thinner.
And (t-2 × Rz) /t≧0.8, that is, the actual thickness (t-2 × Rz) obtained by subtracting the surface unevenness from the foil thickness t is set to 80% or more (the unevenness of the copper foil surface It has been found that the flexibility is improved when the ratio is reduced.

[組成]
本発明の実施形態に係る圧延銅箔は、Ti、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むことが好ましい。
上記したようにN/t≧1とする、つまり結晶粒界の数Nを多くするためには、添加元素を加えて結晶粒を小さくすることが有効である。このような元素として、耐熱性向上に有効な元素を添加する。これは、耐熱性を向上させる元素は、FPC加工工程(フィルム張り合わせ、又はフィルム形成用溶液塗布後の加熱工程)での銅箔の再結晶による結晶粒の粗大化を抑制することができるからである。但し、添加元素を多量に含有すると導電率が低下し、FPC用銅箔として好ましくない。
[composition]
The rolled copper foil according to the embodiment of the present invention preferably contains a total of 1000 to 3000 ppm of one or more elements selected from the group of Ti, Zr, Mg, Cr, Sn, In, and Ag.
As described above, in order to satisfy N / t ≧ 1, that is, to increase the number N of crystal grain boundaries, it is effective to reduce the crystal grains by adding an additive element. As such an element, an element effective for improving heat resistance is added. This is because the element that improves the heat resistance can suppress the coarsening of crystal grains due to recrystallization of the copper foil in the FPC processing process (film bonding or heating process after application of the film-forming solution). is there. However, if the additive element is contained in a large amount, the electrical conductivity is lowered, which is not preferable as a copper foil for FPC.

そこで、導電率への影響が少なく、かつ少量でも耐熱性向上に有効な元素を選択する。
図6は、銅箔の添加元素としてよく用いられるCu,Sn,Mg,Ag,In,Fe,Cr,Zn,Ti,Be,Cd,Zrをそれぞれ純度99.96%以上の電気銅に所定量添加し溶解し、得られた鋳塊を熱間圧延で厚さ10mmにした後、冷間圧延と焼鈍を繰り返して、厚さ0.1mmとしたときの、半軟化温度を示す。
半軟化温度は、試料を焼鈍してゆきビッカース硬さを測定した際の、焼鈍前のビッカース硬さと、完全に軟化したとき(30分焼鈍後にそれ以上焼鈍温度を上げても強度(ビッカース硬さ)が変化しない状態を、完全に軟化したとみなす)ときの中間のビッカース硬さを示す焼鈍温度を示す。
Therefore, an element that has little influence on conductivity and is effective in improving heat resistance even in a small amount is selected.
Fig. 6 shows that Cu, Sn, Mg, Ag, In, Fe, Cr, Zn, Ti, Be, Cd, and Zr, which are often used as additive elements for copper foil, are added in predetermined amounts to copper having a purity of 99.96% or more. The semi-softening temperature is shown when the ingot obtained is melted and hot rolled to a thickness of 10 mm, and then cold rolling and annealing are repeated to a thickness of 0.1 mm.
The semi-softening temperature is the Vickers hardness before annealing when the sample is annealed and the Vickers hardness is measured, and when fully softened (even if the annealing temperature is further increased after 30-minute annealing, the strength (Vickers hardness ) Shows an annealing temperature indicating intermediate Vickers hardness when it is considered that the state in which no change occurs) is completely softened.

図6から、添加元素によって半軟化温度が異なることがわかる。純銅の半軟化温度は160℃であるので、この温度を基準とし、各元素の半軟化温度が160℃から上昇した分(ΔT)を求めて表1に比較した。   FIG. 6 shows that the semi-softening temperature varies depending on the additive element. Since the semi-softening temperature of pure copper is 160 ° C., the amount (ΔT) of the increase in the semi-softening temperature of each element from 160 ° C. was obtained and compared with Table 1 based on this temperature.

Snは耐熱性を向上させる元素として有効であることが知られており、本発明ではSnを添加元素を選択する際の基準におく。従って、表1より、SnのΔTSnを1としたとき、各元素(0.05%添加時)のΔTの比(ΔT/ΔTSn)を求めた。この比がSnに対して各元素が耐熱性を向上させる度合(効き具合)を示す。この比より、Snと同等(上記比が0.7以上)の元素は、Mg,Ag,In,Cr,Ti,Cd,Zrである。但し、Cdは添加元素として不適である。
これらの元素の合計添加量が1000ppm(0.1質量%)未満の場合、耐熱性向上に有効でなく、合計添加量が3000ppmを超えると導電率が低下する傾向にある。
なお、合金の導電率はマティーセン(Matthiessen)の式によって計算することができ、この式に上記元素のΔρiを代入すると、およそ合計添加量が3000ppmを超えると導電率が80IACS未満となる。Δρiは文献値(著者:村上陽太郎・亀井清 著、「朝倉金属工学シリーズ 非鉄金属材料学」、初版第1刷、朝倉書店、1978年4月発行、p13)による。
Sn is known to be effective as an element for improving heat resistance. In the present invention, Sn is used as a reference when selecting an additive element. Therefore, from Table 1, when ΔTSn of Sn is 1, the ratio of ΔT (ΔT / ΔTSn) of each element (at the time of adding 0.05%) was obtained. This ratio indicates the degree (effectiveness) that each element improves the heat resistance with respect to Sn. From this ratio, elements equivalent to Sn (the above ratio is 0.7 or more) are Mg, Ag, In, Cr, Ti, Cd, and Zr. However, Cd is not suitable as an additive element.
When the total addition amount of these elements is less than 1000 ppm (0.1% by mass), it is not effective for improving the heat resistance, and when the total addition amount exceeds 3000 ppm, the conductivity tends to decrease.
It should be noted that the electrical conductivity of the alloy can be calculated by the Matthiessen equation. If Δρi of the above elements is substituted into this equation, the electrical conductivity becomes less than 80 IACS when the total addition amount exceeds 3000 ppm. Δρi is based on literature values (author: Yotaro Murakami and Kiyoshi Kamei, “Asakura Metal Engineering Series Nonferrous Metallology”, first edition, first edition, Asakura Shoten, published in April 1978, p13).

本発明の実施形態に係る圧延銅箔において、最終焼鈍後の平均結晶粒径をD、最終焼鈍後の厚みをt0としたとき、0.13×D+0.75≦ln(t0/t)≦0.085×D+2.95を満足する加工度で前記最終焼鈍後に最終圧延して製造されていることが好ましい。
上記したようにN/t≧1とする、つまり結晶粒界の数Nを多くするためには、圧延加工度を大きくして結晶粒を小さくすることが有効である。但し、圧延加工度を大きくし過ぎるとせん断帯が発生し、せん断帯でクラックが進行するので屈曲性が低下する。
In the rolled copper foil according to the embodiment of the present invention, when the average crystal grain size after final annealing is D and the thickness after final annealing is t0, 0.13 × D + 0.75 ≦ ln (t0 / t) ≦ 0.085 × D + 2 It is preferably manufactured by final rolling after the final annealing at a working degree satisfying .95.
As described above, in order to satisfy N / t ≧ 1, that is, to increase the number N of crystal grain boundaries, it is effective to increase the rolling degree and reduce the crystal grains. However, if the degree of rolling is increased too much, a shear band is generated, and cracks progress in the shear band, so that the flexibility is lowered.

本発明者らは、このようなことから、最適な圧延条件を検討した結果、最終焼鈍後の平均結晶粒径Dと、最終焼鈍後から最終圧延までの加工度(ln(t0/t))との間に一定の関係があることを実験的に見出した。つまり、最終焼鈍後の結晶粒径Dを小さくすると、最終圧延加工度が小さくても最終圧延後の結晶粒径が小さくなる傾向にあることを見出した。ここで、加工度を対数表示した理由は、箔の製造では加工度が高くて(通常、約90%以上)加工度の変化が少なく、加工度をパラメータとするとDとの関係が明確にならないためである。
従って、箔の厚みが薄い場合、最終圧延加工度が必然的に大きくなるため、最終焼鈍後の結晶粒径Dを大きくしてせん断帯形の発生を抑えると屈曲性が向上する。一方、箔の厚みが厚い場合(およそ厚み20μm)では、最終焼鈍後の結晶粒径Dを小さくし、せん断帯変形が生じる加工度に達する前に箔に仕上げればよい。このようにして、厳しい屈曲条件でも屈曲性に優れる銅箔を製造できる。
As a result of examining the optimum rolling conditions from the above, the present inventors have determined that the average grain size D after the final annealing and the workability from the final annealing to the final rolling (ln (t0 / t)) It was found experimentally that there is a certain relationship between. That is, it has been found that when the crystal grain size D after the final annealing is reduced, the crystal grain size after the final rolling tends to be reduced even if the final rolling degree is small. Here, the reason for the logarithm of the degree of work is that the degree of work is high in the manufacture of the foil (usually about 90% or more), and the change in the degree of work is small. Because.
Therefore, when the foil is thin, the final rolling degree is inevitably increased. Therefore, if the crystal grain size D after the final annealing is increased to suppress the occurrence of the shear band shape, the flexibility is improved. On the other hand, when the thickness of the foil is thick (approximately 20 μm in thickness), the crystal grain size D after the final annealing is reduced, and the foil may be finished before reaching the degree of processing that causes shear band deformation. In this way, it is possible to produce a copper foil having excellent flexibility even under severe bending conditions.

なお、本発明の実施形態に係る圧延銅箔は、熱間圧延後に冷間圧延と連続焼鈍とを繰り返し、最終焼鈍を行った後の冷間圧延を最終圧延とし、最終圧延によって製品仕上がり厚みとする。最終焼鈍前の冷間圧延加工度は80%以上とすることが好ましいが、最終焼鈍後の結晶粒径Dを10μm以上にする場合には、最終焼鈍前の冷間圧延加工度が85%を超えるとより好ましい。   In addition, the rolled copper foil according to the embodiment of the present invention repeats cold rolling and continuous annealing after hot rolling, the cold rolling after performing the final annealing is the final rolling, and the finished product thickness by the final rolling. To do. The cold rolling degree before final annealing is preferably 80% or more, but when the crystal grain size D after final annealing is 10 μm or more, the cold rolling degree before final annealing is 85%. It is more preferable to exceed.

図7は、後述する実施例及び比較例の試料の結晶粒径Dと加工度(ln(t0/t))とをプロットした図を示す。図7において、実施例(符号○)と比較例(符号×)との間を分離する直線を最小二乗法で求めると、ln(t0/t)=0.13×D+0.75という関係式となった。つまり、0.13×D+0.75≦ln(t0/t)の範囲であれば、本発明の実施例となる。なお、実施例はいずれもN/t≧1であり、比較例はN/t<1である。
同様に、図8は、後述する実施例の結晶粒径Dと加工度(ln(t0/t))とをプロットした図を示す。図8において、最適実施例(符号○)と通常実施例(符号×)との間を分離する直線を最小二乗法で求めると、ln(t0/t)=0.085×D+2.95という関係式となった。つまり、ln(t0/t) ≦ 0.085×D+2.95の範囲であれば、本発明の最適実施例となる。なお、最適実施例はいずれも(t-2×Rz)/t≧0.8であり、通常実施例は(t-2×Rz)/t<0.8である。
以上のことから、0.13×D+0.75≦ln(t0/t)≦0.085×D+2.95を満足する加工度で製造することが好ましい。
FIG. 7 shows a plot of the crystal grain size D and the degree of processing (ln (t0 / t)) of samples of Examples and Comparative Examples described later. In FIG. 7, when a straight line separating the example (symbol ◯) and the comparative example (symbol ×) is obtained by the least square method, a relational expression of ln (t0 / t) = 0.13 × D + 0.75 is obtained. . That is, if it is the range of 0.13 * D + 0.75 <= ln (t0 / t), it will become an Example of this invention. In all of the examples, N / t ≧ 1, and in the comparative example, N / t <1.
Similarly, FIG. 8 shows a graph plotting the crystal grain size D and the degree of processing (ln (t0 / t)) of Examples described later. In FIG. 8, when a straight line separating the optimum embodiment (symbol ◯) and the normal embodiment (symbol ×) is obtained by the least square method, the relational expression ln (t0 / t) = 0.085 × D + 2.95 is obtained. became. In other words, the range of ln (t0 / t) ≦ 0.085 × D + 2.95 is the optimum embodiment of the present invention. Note that all of the optimal examples are (t−2 × Rz) /t≧0.8, and the normal example is (t−2 × Rz) / t <0.8.
From the above, it is preferable to manufacture with a degree of processing satisfying 0.13 × D + 0.75 ≦ ln (t0 / t) ≦ 0.085 × D + 2.95.

本発明のフレキシブルプリント配線板は、樹脂層と圧延銅箔が積層されてなり、前記圧延銅箔の導電率が80%IACS以上であり、圧延平行方向の断面に結晶粒界が存在し、箔の厚みをt(μm)としたとき、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが、N/t≧1を満足する。
上記したように、本発明の圧延銅箔は、フレキシブルプリント配線板を製造する際の加熱処理を模した(300℃で30分)場合の特性を規定するが、本発明のフレキシブルプリント配線板は、フレキシブルプリント配線板を製造する際の加熱処理後の圧延銅箔の特性を規定しており、規定の内容は本発明の圧延銅箔と同一である。
なお、本発明のフレキシブルプリント配線板は、樹脂層と圧延銅箔が積層されていれば、樹脂層として予めフィルム状のものを接着剤を用いて、又は接着剤を用いずに圧延銅箔と積層させたものであってよく、又、樹脂層としてフィルムでなく樹脂材料を圧延銅箔に塗工後に成膜したものであってもよい。樹脂層としてはポリイミドが好適に使用できる。
The flexible printed wiring board of the present invention is formed by laminating a resin layer and a rolled copper foil, the conductivity of the rolled copper foil is 80% IACS or more, and there are crystal grain boundaries in the cross section in the rolling parallel direction. The number N of crystal grain boundaries that intersect at an angle of 45 degrees or more with the straight line connected from one surface to the other surface at the shortest distance satisfies N / t ≧ 1, where t is the thickness of (μm) .
As described above, the rolled copper foil of the present invention defines the characteristics when imitating the heat treatment when producing a flexible printed wiring board (at 300 ° C. for 30 minutes), but the flexible printed wiring board of the present invention is The characteristics of the rolled copper foil after the heat treatment when manufacturing the flexible printed wiring board are defined, and the contents of the regulation are the same as those of the rolled copper foil of the present invention.
In addition, if the flexible printed wiring board of this invention has laminated | stacked the resin layer and the rolled copper foil, it uses a film-like thing beforehand as a resin layer, and uses a rolled copper foil without using an adhesive agent. It may be laminated, or a resin layer may be formed by coating a resin material on a rolled copper foil instead of a film. Polyimide can be suitably used as the resin layer.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.試料の作製
電気炉で電気銅を溶解してベースとなる無酸素銅を溶製し、タンディッシュへの溶湯の供給量に合わせて表2に示す元素のショットを所定量添加することで合金組成を調整し、タンディッシュ下部のノズルから連続鋳造することで銅合金インゴットを製造した。このインゴットを熱間圧延し、その後に酸化スケールを除去し、冷間圧延と連続焼鈍とを繰り返し、最終焼鈍を実施する厚みまで冷間圧延で仕上げた。ここで、最終焼鈍前の冷間圧延加工度は80%以上とした。最終焼鈍は、材料温度が500℃以上になるように炉温を調整し、厚みに応じて通板速度を変えることで結晶粒径を調整した。その後最終冷間圧延を行い、所定の厚みの圧延銅箔に仕上げた。最終冷間圧延では圧延速度と1パス当たりの圧下量、及び使用するワークロールの表面粗さによって銅箔の表面粗さ(Rz)を調整した。
1. Preparation of sample Alloy copper composition by melting electrolytic copper in an electric furnace to melt the base oxygen-free copper and adding a predetermined amount of element shots according to the amount of molten metal supplied to the tundish The copper alloy ingot was manufactured by continuously casting from the nozzle at the bottom of the tundish. This ingot was hot-rolled, the oxide scale was removed thereafter, cold rolling and continuous annealing were repeated, and finished by cold rolling to a thickness at which final annealing was performed. Here, the cold rolling degree before final annealing was set to 80% or more. In the final annealing, the furnace temperature was adjusted so that the material temperature was 500 ° C. or higher, and the crystal grain size was adjusted by changing the plate passing speed according to the thickness. Thereafter, final cold rolling was performed to finish a rolled copper foil having a predetermined thickness. In the final cold rolling, the surface roughness (Rz) of the copper foil was adjusted according to the rolling speed, the amount of reduction per pass, and the surface roughness of the work roll used.

圧延後さらに脱脂した後にポリアミック酸を主とするポリイミド前駆体を銅箔の片面に塗布し、乾燥および硬化を行い25μm厚みのポリイミドと銅箔との銅貼り積層板に加工し、さらにフォトリソグラフィーによって所定の回路を形成してFPC試験片(幅12.7mmの長尺状で、回路幅1mm)とした。
なお、表2の添加元素の割合(組成の添字)は質量%である。
After degreasing after rolling, a polyimide precursor mainly composed of polyamic acid is applied to one side of the copper foil, dried and cured, processed into a copper-clad laminate of 25 μm thick polyimide and copper foil, and further by photolithography A predetermined circuit was formed to obtain an FPC test piece (a length of 12.7 mm and a circuit width of 1 mm).
In addition, the ratio (subscript of composition) of the additional element of Table 2 is mass%.

2.試料の評価
2−1.導電率
各銅箔のFPC加工後の試料の25℃の導電率を4端子法により測定した。
2−2.結晶粒界の数N
各銅箔のFPC加工後の試料について、圧延平行方向の断面組織像を撮影し、この像の板厚方向に平行な直線を引き、この直線と45度以上の角度で交差する結晶粒界の数を目視で数えた。試料の測定は、FIB(Focused Ion Beam)で切断した回路(銅箔)部分の圧延平行断面の3箇所について行った。なお、試料の厚みtは単位大きさ当たりの質量と密度とから算出した。
2−3.銅箔の表面粗さ(Rz)
各銅箔の輪郭曲線の最大高さRzをJIS-B0601に従って測定した。
2−4.結晶粒径D
各銅箔の最終焼鈍後の結晶粒径Dは、圧延平行方向の断面の反射電子像を撮影し、JISに規定する切断法によって平均結晶粒径を求めた。。
2. 2. Evaluation of sample 2-1. Electrical conductivity The electrical conductivity at 25 ° C. of the sample after FPC processing of each copper foil was measured by the 4-terminal method.
2-2. Number of grain boundaries N
For each specimen after FPC processing of each copper foil, take a cross-sectional structure image in the rolling parallel direction, draw a straight line parallel to the plate thickness direction of this image, and the grain boundary intersecting this straight line at an angle of 45 degrees or more Numbers were counted visually. The measurement of the sample was performed at three locations on the rolling parallel cross section of the circuit (copper foil) portion cut by FIB (Focused Ion Beam). The thickness t of the sample was calculated from the mass per unit size and the density.
2-3. Copper foil surface roughness (Rz)
The maximum height Rz of the contour curve of each copper foil was measured according to JIS-B0601.
2-4. Crystal grain size D
The crystal grain size D of each copper foil after final annealing was obtained by taking a reflection electron image of a cross section in the rolling parallel direction and obtaining the average crystal grain size by a cutting method specified in JIS. .

3.屈曲性(屈曲寿命)の評価
各FPC試験片に対し、銅箔表面にかかるひずみが0.006〜0.010になるように曲げ半径を調整し、以下の摺動屈曲試験により屈曲性を評価した。ここで、銅箔にかかるひずみは、表裏いずれかの箔表面で最大となり、FPCの構成によっても変化するが、銅箔、樹脂、接着剤(使用しない場合もある)の厚みと、それぞれの材料のヤング率および曲げ半径とによって計算できる。
摺動屈曲試験(ICP)は、各FPC試験片を長手方向にU字に曲げ、一端を可動板に固定し、他端を固定板に固定し、可動板を各FPC試験片の長辺方向に往復振動させて行った。試験条件は、U字の曲率半径は、9μm箔の場合は0.6mm〜1.1mm、12μm箔の場合は0.7mm〜1.2mm、18μm箔の場合は1.0mm〜1.7mmとし、振動ストローク20mm、振動周波数1200回/分とした。また、屈曲試験中の試料の電気抵抗を測定し、初期抵抗から10%抵抗が増加した屈曲回数を終点とし、屈曲回数が10万回以上のものを評価○とした。
摺動屈曲試験装置は、特開2001-323354号公報の図1に記載されているものと同様なものとした。
3. Evaluation of Flexibility (Bending Life) For each FPC test piece, the bending radius was adjusted so that the strain applied to the copper foil surface was 0.006 to 0.010, and the flexibility was evaluated by the following sliding flex test. Here, the strain applied to the copper foil is maximum on either the front or back foil surface, and varies depending on the FPC configuration, but the thickness of the copper foil, resin, adhesive (may not be used) and the respective materials The Young's modulus and the bending radius can be calculated.
In the sliding bending test (ICP), each FPC test piece is bent in a U shape in the longitudinal direction, one end is fixed to the movable plate, the other end is fixed to the fixed plate, and the movable plate is fixed to the long side direction of each FPC test piece. And reciprocally vibrated. Test conditions are U-shaped radius of curvature 0.6mm to 1.1mm for 9μm foil, 0.7mm to 1.2mm for 12μm foil, 1.0mm to 1.7mm for 18μm foil, vibration stroke 20mm, vibration The frequency was 1200 times / min. In addition, the electrical resistance of the sample during the bending test was measured, and the number of bendings where the resistance increased by 10% from the initial resistance was set as the end point.
The sliding bending test apparatus was the same as that described in FIG. 1 of JP-A-2001-323354.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

表2から明らかなように、各実施例1〜11の場合、ひずみが0.009、0.010と高い屈曲条件(より厳しい屈曲条件)においても、高い屈曲性を得ることができた。
一方、N/t<1である比較例12〜17の場合、ひずみが0.009、0.010と高い屈曲条件の場合、屈曲性が劣った。
参考例18は、公知の黄銅(7/3黄銅)であり、N/t≧1となり、ひずみが0.009、0.010と高い屈曲条件でも屈曲性に優れていたが、導電率が27%IACSと低く、FPC用としては適さない。但し、この黄銅が有する組織は本発明の範囲と同じであり、組成が公知でなく本発明の規定範囲内の組織を有する材料は本発明に含まれる。
なお、図1〜図5は、それぞれ実施例2、参考例18、比較例12、比較例16、比較例17の銅箔の断面組織写真を示し、各図の上下方向が板厚方向である。
As is apparent from Table 2, in each of Examples 1 to 11, high flexibility was obtained even under high bending conditions (stricter bending conditions) with strains of 0.009 and 0.010.
On the other hand, in the case of Comparative Examples 12 to 17 where N / t <1, the bending property was inferior when the bending conditions were as high as 0.009 and 0.010.
Reference Example 18 is a well-known brass (7/3 brass) with N / t ≧ 1 and excellent bendability even under high bending conditions of 0.009 and 0.010, but the conductivity is as low as 27% IACS. Not suitable for FPC. However, the structure of the brass is the same as the scope of the present invention, and the material whose composition is not known and has the structure within the specified range of the present invention is included in the present invention.
In addition, FIGS. 1-5 shows the cross-sectional structure | tissue photograph of the copper foil of Example 2, Reference Example 18, Comparative Example 12, Comparative Example 16, Comparative Example 17, respectively, and the up-down direction of each figure is a plate | board thickness direction. .

実施例1は実施例2より最終圧延加工度が大きいが、最終焼鈍後の結晶粒径Dを大きくすることでN/t≧1を満足し、高い屈曲性を得ることができた。
析出物が析出せず、強度が低下した。
又、実施例8〜11の場合、実施例1〜7に比べ、ひずみが0.010と最も高い屈曲条件では屈曲性が劣ったものとなった。これは、実施例9〜11の場合、最終圧延加工度が実施例1〜7より大きく、せん断帯変形が生じ易くなってRzが高くなり、又、実施例8の場合、最終冷間圧延における最終パスで表面粗さの大きいワークロールで圧延したためにRzが大きくなったためである。つまり、実施例8〜11の場合、(t-2×Rz)/t<0.8となったために屈曲性が若干低下した。又、実施例9〜11の場合、ln(t0/t)>0.085×D+2.95となり、他の実施例に比べて加工度が大き過ぎるものとなった。
但し、実施例8〜11の場合も、ひずみが0.009の屈曲条件では屈曲性に優れており、実用上は問題ないレベルである。
Example 1 had a higher degree of final rolling than Example 2, but N / t ≧ 1 was satisfied by increasing the crystal grain size D after the final annealing, and high flexibility could be obtained.
Precipitates did not precipitate and the strength decreased.
In the case of Examples 8 to 11, compared to Examples 1 to 7, the bending property was inferior under the highest bending condition of 0.010. In the case of Examples 9 to 11, the final rolling work degree is larger than those in Examples 1 to 7, the shear band deformation easily occurs and Rz becomes high. In the case of Example 8, in the final cold rolling. This is because Rz increased due to rolling with a work roll having a large surface roughness in the final pass. That is, in Examples 8 to 11, since (t−2 × Rz) / t <0.8, the flexibility was slightly lowered. In Examples 9 to 11, ln (t0 / t)> 0.085 × D + 2.95, and the degree of processing was too large as compared with the other examples.
However, in the case of Examples 8 to 11, the bending property with a strain of 0.009 is excellent in the bending property, and there is no problem in practical use.

本発明の実施例2に係る圧延銅箔の断面組織写真を示す図である。It is a figure which shows the cross-sectional structure | tissue photograph of the rolled copper foil which concerns on Example 2 of this invention. 参考例の銅箔の断面組織写真を示す図である。It is a figure which shows the cross-sectional structure | tissue photograph of the copper foil of a reference example. 比較例12の銅箔の断面組織写真を示す図である。It is a figure which shows the cross-sectional structure | tissue photograph of the copper foil of the comparative example 12. 比較例16の銅箔の断面組織写真を示す図である。It is a figure which shows the cross-sectional structure | tissue photograph of the copper foil of the comparative example 16. 比較例17の銅箔の断面組織写真を示す図である。It is a figure which shows the cross-sectional structure | tissue photograph of the copper foil of the comparative example 17. FIG. 添加元素を加えた銅の半軟化温度を示す図である。It is a figure which shows the semi-softening temperature of copper which added the additive element. 銅箔試料の結晶粒径Dと加工度(ln(t0/t))との関係を示す図である。FIG. 4 is a diagram showing the relationship between the crystal grain size D of a copper foil sample and the degree of processing (ln (t0 / t)). 銅箔試料の結晶粒径Dと加工度(ln(t0/t))との関係を示す別の図である。FIG. 6 is another diagram showing the relationship between the crystal grain size D and the degree of processing (ln (t0 / t)) of a copper foil sample.

Claims (6)

フレキシブルプリント配線板用の銅箔であって、300℃で30分の熱処理後に、導電率が80%IACS以上であり、圧延平行方向の断面に結晶粒界が存在し、箔の厚みをt(μm)としたとき、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが、N/t≧1を満足することを特徴とする圧延銅箔。 Copper foil for flexible printed circuit board, after heat treatment at 300 ° C for 30 minutes, conductivity is 80% IACS or more, there is a grain boundary in the cross section in the rolling parallel direction, and the thickness of the foil is t ( μm), the number N of crystal grain boundaries that intersect at a 45 ° angle or more with the straight line connecting from one surface to the other surface satisfies N / t ≧ 1 Rolled copper foil. JIS-B0601で規定される輪郭曲線の最大高さをRzとしたとき、(t-2×Rz)/t≧0.8を満足することを特徴とする請求項1に記載の圧延銅箔。 The rolled copper foil according to claim 1, wherein (t−2 × Rz) /t≧0.8 is satisfied, where Rz is the maximum height of the contour curve defined by JIS-B0601. Ti、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むことを特徴とする請求項1又は2に記載の圧延銅箔。 The rolled copper foil according to claim 1 or 2, comprising a total of 1000 to 3000 ppm of one or more elements selected from the group consisting of Ti, Zr, Mg, Cr, Sn, In, and Ag. 最終焼鈍後の平均結晶粒径をD、最終焼鈍後の厚みをt0としたとき、0.13×D+0.75≦ln(t0/t)≦0.085×D+2.95を満足する加工度で前記最終焼鈍後に最終圧延して製造されていることを特徴とする請求項1ないし3のいずれかに記載の圧延銅箔。 When the average grain size after final annealing is D and the thickness after final annealing is t0, after the final annealing at a working degree satisfying 0.13 × D + 0.75 ≦ ln (t0 / t) ≦ 0.085 × D + 2.95 The rolled copper foil according to any one of claims 1 to 3, wherein the rolled copper foil is manufactured by final rolling. tが20μm以下である請求項1ないし4のいずれかに記載の圧延銅箔。 The rolled copper foil according to any one of claims 1 to 4, wherein t is 20 µm or less. 樹脂層と圧延銅箔が積層されてなるフレキシブルプリント配線板であって、前記圧延銅箔の導電率が80%IACS以上であり、圧延平行方向の断面に結晶粒界が存在し、箔の厚みをt(μm)としたとき、一方の表面から他方の表面に最短距離で結んだ直線と45度以上の角度で交差する結晶粒界の数Nが、N/t≧1を満足することを特徴とするフレキシブルプリント配線板。 A flexible printed wiring board in which a resin layer and a rolled copper foil are laminated, wherein the rolled copper foil has an electrical conductivity of 80% IACS or more, a grain boundary exists in a cross section in the rolling parallel direction, and the thickness of the foil T (μm), the number N of crystal grain boundaries that intersect at a 45 ° angle or more with the straight line connected from one surface to the other surface satisfies N / t ≧ 1 A flexible printed wiring board.
JP2007282691A 2007-10-31 2007-10-31 Rolled copper foil and flexible printed wiring board Active JP5057932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282691A JP5057932B2 (en) 2007-10-31 2007-10-31 Rolled copper foil and flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282691A JP5057932B2 (en) 2007-10-31 2007-10-31 Rolled copper foil and flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2009111203A true JP2009111203A (en) 2009-05-21
JP5057932B2 JP5057932B2 (en) 2012-10-24

Family

ID=40779367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282691A Active JP5057932B2 (en) 2007-10-31 2007-10-31 Rolled copper foil and flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP5057932B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078259A1 (en) * 2009-12-25 2011-06-30 新日鐵化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
WO2012008260A1 (en) 2010-07-15 2012-01-19 Jx日鉱日石金属株式会社 Copper foil complex
JP2013074147A (en) * 2011-09-28 2013-04-22 Kyocera Corp Photoelectric conversion device
WO2013105266A1 (en) 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
WO2013105265A1 (en) 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
JP2013234383A (en) * 2012-04-10 2013-11-21 Jx Nippon Mining & Metals Corp Hot rolled copper foil, coppered laminated plate, flexible printed wiring plate and its manufacturing method
KR20140099531A (en) 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Metal-foil composite, copper foil, formed body, and manufacturing method therefor
KR20140099518A (en) 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper-foil composite, formed body, and manufacturing method therefor
US9079378B2 (en) 2009-03-31 2015-07-14 Jx Nippon Mining & Metals Corporation Electromagnetic shielding material and method of producing electromagnetic shielding material
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
KR20190015102A (en) 2017-08-03 2019-02-13 제이엑스금속주식회사 Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2019029606A (en) * 2017-08-03 2019-02-21 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device
KR20200135288A (en) * 2018-03-23 2020-12-02 후루카와 덴키 고교 가부시키가이샤 Lead frame material and manufacturing method thereof, and semiconductor package using the same
CN112601828A (en) * 2018-08-30 2021-04-02 Jx金属株式会社 Titanium copper plate, press-formed article, and method for producing press-formed article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456842A (en) * 1987-08-27 1989-03-03 Nippon Mining Co Copper alloy foil for flexible circuit board
JP2003096526A (en) * 2001-07-17 2003-04-03 Nippon Mining & Metals Co Ltd Rolled copper foil for copper laminated board, and production method therefor
JP2005068484A (en) * 2003-08-22 2005-03-17 Nikko Metal Manufacturing Co Ltd High flexibility rolled copper foil
JP2005211948A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Rolled copper foil and method for manufacturing the same and laminated substrate
JP2005279660A (en) * 2004-03-26 2005-10-13 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil and method for manufacturing it
JP2006281249A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same
JP2006289959A (en) * 2005-03-14 2006-10-26 Nippon Steel Chem Co Ltd Copper-clad laminate
JP2007107036A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Rolled copper alloy foil to be bent
JP4172704B2 (en) * 2003-07-31 2008-10-29 日鉱金属株式会社 Surface-treated copper foil and substrate using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456842A (en) * 1987-08-27 1989-03-03 Nippon Mining Co Copper alloy foil for flexible circuit board
JP2003096526A (en) * 2001-07-17 2003-04-03 Nippon Mining & Metals Co Ltd Rolled copper foil for copper laminated board, and production method therefor
JP4172704B2 (en) * 2003-07-31 2008-10-29 日鉱金属株式会社 Surface-treated copper foil and substrate using the same
JP2005068484A (en) * 2003-08-22 2005-03-17 Nikko Metal Manufacturing Co Ltd High flexibility rolled copper foil
JP2005211948A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Rolled copper foil and method for manufacturing the same and laminated substrate
JP2005279660A (en) * 2004-03-26 2005-10-13 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil and method for manufacturing it
JP2006289959A (en) * 2005-03-14 2006-10-26 Nippon Steel Chem Co Ltd Copper-clad laminate
JP2006281249A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same
JP2007107036A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Rolled copper alloy foil to be bent

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079378B2 (en) 2009-03-31 2015-07-14 Jx Nippon Mining & Metals Corporation Electromagnetic shielding material and method of producing electromagnetic shielding material
WO2011078259A1 (en) * 2009-12-25 2011-06-30 新日鐵化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
JP5732406B2 (en) * 2009-12-25 2015-06-10 新日鉄住金化学株式会社 Flexible circuit board and bent portion structure of flexible circuit board
KR20120108032A (en) * 2009-12-25 2012-10-04 신닛테츠가가쿠 가부시키가이샤 Flexible circuit board and structure of bend section of flexible circuit board
CN102782174A (en) * 2009-12-25 2012-11-14 新日铁化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
KR101690491B1 (en) 2009-12-25 2016-12-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible circuit board and structure of bend section of flexible circuit board
TWI571183B (en) * 2009-12-25 2017-02-11 新日鐵住金化學股份有限公司 A flexible circuit board, and a flexible circuit board
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
CN102985252B (en) * 2010-07-15 2014-12-10 Jx日矿日石金属株式会社 Copper foil complex
CN102985252A (en) * 2010-07-15 2013-03-20 Jx日矿日石金属株式会社 Copper foil complex
WO2012008260A1 (en) 2010-07-15 2012-01-19 Jx日鉱日石金属株式会社 Copper foil complex
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP2013074147A (en) * 2011-09-28 2013-04-22 Kyocera Corp Photoelectric conversion device
WO2013105265A1 (en) 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
WO2013105266A1 (en) 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
KR20140099532A (en) 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil composite, molded body, and method for producing same
KR20140099518A (en) 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper-foil composite, formed body, and manufacturing method therefor
KR20140099530A (en) 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil composite, molded body, and method for producing same
KR20140099531A (en) 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Metal-foil composite, copper foil, formed body, and manufacturing method therefor
CN104080604A (en) * 2012-01-13 2014-10-01 Jx日矿日石金属株式会社 Copper foil composite, molded body, and method for producing same
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
JP2013234383A (en) * 2012-04-10 2013-11-21 Jx Nippon Mining & Metals Corp Hot rolled copper foil, coppered laminated plate, flexible printed wiring plate and its manufacturing method
JP2015061950A (en) * 2012-04-10 2015-04-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper clad laminate, flexible printed wiring board, and method of producing the same
KR20190015102A (en) 2017-08-03 2019-02-13 제이엑스금속주식회사 Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2019029606A (en) * 2017-08-03 2019-02-21 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device
KR20200135288A (en) * 2018-03-23 2020-12-02 후루카와 덴키 고교 가부시키가이샤 Lead frame material and manufacturing method thereof, and semiconductor package using the same
KR102589528B1 (en) * 2018-03-23 2023-10-13 후루카와 덴키 고교 가부시키가이샤 Lead frame material and manufacturing method thereof, and semiconductor package using the same
CN112601828A (en) * 2018-08-30 2021-04-02 Jx金属株式会社 Titanium copper plate, press-formed article, and method for producing press-formed article
CN112601828B (en) * 2018-08-30 2022-04-19 Jx金属株式会社 Titanium copper plate, press-formed article, and method for producing press-formed article

Also Published As

Publication number Publication date
JP5057932B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5057932B2 (en) Rolled copper foil and flexible printed wiring board
KR101632515B1 (en) Rolled copper foil
JP4285526B2 (en) Rolled copper foil and method for producing the same
JP5055088B2 (en) Copper foil and flexible printed circuit board using the same
JP4672515B2 (en) Rolled copper alloy foil for bending
JP4916154B2 (en) Copper or copper alloy foil for circuit
JP4716520B2 (en) Rolled copper foil
JP5245813B2 (en) Rolled copper foil
JP3859384B2 (en) Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof
JP5235080B2 (en) Copper alloy foil and flexible printed circuit board using the same
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2007107038A (en) Copper or copper alloy foil for circuit
KR101586594B1 (en) Rolled copper foil
JP5356714B2 (en) Copper alloy foil for flexible printed circuit board excellent in etching property and flexible printed circuit board using the same
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP5411357B2 (en) Rolled copper foil
JP5390852B2 (en) Rolled copper foil
JP2001262296A (en) Rolled copper foil and its manufacturing process
US20090173414A1 (en) Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil
JP2014098179A (en) Copper plating layer-fitted rolled copper foil
KR20130095204A (en) Rolled copper foil
JP2008038170A (en) Rolled copper foil
KR101460931B1 (en) Rolled copper foil
JP5273236B2 (en) Rolled copper foil
JP5631847B2 (en) Rolled copper foil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250