JP5235080B2 - Copper alloy foil and flexible printed circuit board using the same - Google Patents

Copper alloy foil and flexible printed circuit board using the same Download PDF

Info

Publication number
JP5235080B2
JP5235080B2 JP2008035562A JP2008035562A JP5235080B2 JP 5235080 B2 JP5235080 B2 JP 5235080B2 JP 2008035562 A JP2008035562 A JP 2008035562A JP 2008035562 A JP2008035562 A JP 2008035562A JP 5235080 B2 JP5235080 B2 JP 5235080B2
Authority
JP
Japan
Prior art keywords
copper alloy
copper
mass
alloy foil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008035562A
Other languages
Japanese (ja)
Other versions
JP2009097075A (en
Inventor
嘉一郎 中室
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2008035562A priority Critical patent/JP5235080B2/en
Publication of JP2009097075A publication Critical patent/JP2009097075A/en
Application granted granted Critical
Publication of JP5235080B2 publication Critical patent/JP5235080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な圧延銅箔及びそれを用いたフレキシブルプリント基板に関する。   The present invention relates to a rolled copper foil suitable for use in a wiring member such as a flexible printed circuit board and a flexible printed circuit board using the rolled copper foil.

フレキシブルプリント基板(以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。また、最近では電子機器の小型化に伴い、デジタルカメラや携帯電話、HDD、プリンター、液晶パネル周り等の狭い空間に、FPCが折りたたんで実装されている。
このようなことから、FPCには繰り返しの曲げに対する高い耐久性(耐屈曲特性)が要求されている。そのため、FPCの導電材として用いられる銅箔には、電解銅箔よりも高い耐屈曲特性を有する圧延銅箔、特にタフピッチ銅や無酸素銅の圧延銅箔が使用されている。
A flexible printed circuit board (hereinafter referred to as “FPC”) has flexibility, and is therefore widely used for bent portions and movable portions of electronic circuits. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones. Recently, with the downsizing of electronic devices, FPCs are folded and mounted in narrow spaces such as around digital cameras, mobile phones, HDDs, printers, and liquid crystal panels.
For this reason, the FPC is required to have high durability against bending (bending resistance). Therefore, a rolled copper foil having higher bending resistance than that of an electrolytic copper foil, particularly a rolled copper foil of tough pitch copper or oxygen-free copper is used as a copper foil used as a conductive material for FPC.

また、近年、FPCのファインピッチ化の要求から、従来のようなベースフィルム、接着剤及び銅箔からなる3層基板に替えて、ベースフィルムと銅箔からなる2層銅貼り積層板が増加する傾向にある。この2層銅貼り積層板は、銅箔へのベースフィルムの接着が従来より高温(350℃程度)で行われることが多く、また、使用される圧延銅箔の厚みも20μm以下であり従来よりも薄くなっている。
ところで、接着のために純銅系銅箔を長時間加熱すると、耐熱性が低いため軟化するという問題がある。そこで、所定の成分を含有する圧延銅合金箔が開示されている(特許文献1、2参照)。
In recent years, due to the demand for fine pitch of FPC, two-layer copper-clad laminates consisting of a base film and copper foil are increasing instead of the conventional three-layer substrate consisting of base film, adhesive and copper foil. There is a tendency. In this two-layer copper-clad laminate, adhesion of the base film to the copper foil is often performed at a higher temperature (about 350 ° C.) than before, and the thickness of the rolled copper foil used is 20 μm or less. Is also thinner.
By the way, when pure copper-type copper foil is heated for adhesion for a long time, there exists a problem of softening since heat resistance is low. Then, the rolled copper alloy foil containing a predetermined component is disclosed (refer patent documents 1 and 2).

特開昭62-189738号公報JP 62-189738 A 特開昭64-12538号公報JP-A-64-12538

しかしながら、従来の圧延銅合金箔の場合、耐屈曲特性が充分とはいえなかった。
すなわち、本発明は上記の課題を解決するためになされたものであり、耐熱性、導電性、及び屈曲性に優れた銅合金箔及びそれを用いたフレキシブルプリント基板の提供を目的とする。
However, in the case of the conventional rolled copper alloy foil, it cannot be said that the bending resistance is sufficient.
That is, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a copper alloy foil excellent in heat resistance, conductivity, and flexibility and a flexible printed board using the same.

本発明者らは種々検討した結果、Sn,Mg,In及びAgが耐熱性、導電性、及び屈曲性を共に向上させる添加元素であり、これらのうち2種以上を添加すればよいことを見出した。又、これらの元素が耐熱性及び導電性を向上させる度合(効き具合)を実際に調査し、各元素の添加割合を規定することで、耐熱性及び導電性をより一層向上させることに成功した。   As a result of various studies, the present inventors have found that Sn, Mg, In, and Ag are additive elements that improve both heat resistance, conductivity, and flexibility, and two or more of these may be added. It was. In addition, we investigated the extent to which these elements improve heat resistance and conductivity (effectiveness), and succeeded in further improving heat resistance and conductivity by defining the addition ratio of each element. .

すなわち、本発明の銅合金箔は、0.05〜0.25質量%のSn、0.03〜0.1質量%のMg、0.03〜0.7質量%のIn及び0.02〜0.1質量%のAgのうち、少なくとも2種を含み、残部がCu及び不可避的不純物からなる厚み20μm以下の銅合金箔であって、式1:[Snの質量%]+1.9×[Mgの質量%]+1.5×[Inの質量%]+0.9×[Agの質量%]≧0.10、及び式2: 2.88×[Snの原子%]+0.65×[Mgの原子%]+1.06×[Inの原子%]+0.14×[Agの原子%]≦0.42の関係を満たす。   That is, the copper alloy foil of the present invention contains at least two of 0.05 to 0.25% by mass of Sn, 0.03 to 0.1% by mass of Mg, 0.03 to 0.7% by mass of In and 0.02 to 0.1% by mass of Ag, The balance is a copper alloy foil having a thickness of 20 μm or less composed of Cu and unavoidable impurities, and formula 1: [mass% of Sn] + 1.9 × [mass% of Mg] + 1.5 × [mass% of In] +0 .9 × [mass% of Ag] ≧ 0.10 and Formula 2: 2.88 × [Atom% of Sn] + 0.65 × [Atom% of Mg] + 1.06 × [Atom% of In] + 0.14 × [Ag Of atoms%] ≦ 0.42.

焼鈍時間を30分としたときの半軟化温度が350℃以上であることが好ましく、350℃で30分焼鈍後の導電率が80%IACS以上であることが好ましい。   The semi-softening temperature when annealing time is 30 minutes is preferably 350 ° C. or higher, and the conductivity after annealing at 350 ° C. for 30 minutes is preferably 80% IACS or higher.

400℃で30分焼鈍後に平均結晶粒径が2μm以上7μm以下の再結晶粒が形成され、かつ伸びが15%以上であることが好ましい。   It is preferable that recrystallized grains having an average crystal grain size of 2 μm or more and 7 μm or less are formed after annealing at 400 ° C. for 30 minutes, and the elongation is 15% or more.

本発明のフレキシブルプリント基板は、請求項1〜3のいずれかに記載の銅合金箔が未再結晶の状態で樹脂基材と積層された銅貼り積層板を用いたものである。
又、本発明のフレキシブルプリント基板は、前記銅合金箔が再結晶した状態で樹脂基材と積層された銅貼り積層板を用いたものである。
The flexible printed board of the present invention uses a copper-clad laminate in which the copper alloy foil according to any one of claims 1 to 3 is laminated with a resin base material in an unrecrystallized state.
Moreover, the flexible printed circuit board of this invention uses the copper bonding laminated board laminated | stacked with the resin base material in the state which the said copper alloy foil recrystallized.

本発明によれば、耐熱性、導電性、及び屈曲性に優れた銅合金箔が得られる。   According to the present invention, a copper alloy foil excellent in heat resistance, conductivity, and flexibility can be obtained.

以下、本発明に係る銅合金箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of the copper alloy foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

(組成)
本発明に係る銅合金箔は、0.05〜0.25質量%のSn、0.03〜0.1質量%のMg、0.03〜0.7質量%のIn及び0.02〜0.1質量%のAgのうち、少なくとも2種を含み、残部がCu及び不可避的不純物からなる。
まず、Sn,Mg,In及びAgを添加元素に選んだ理由について説明する。図1は、銅箔の添加元素としてよく用いられるCu,Sn,Mg,Ag,In,Fe,Cr,Zn,Ti,Be,Cdをそれぞれ純度99.96%以上の電気銅に所定量添加し溶解し、得られた鋳塊を熱間圧延で厚さ10mmにした後、冷間圧延と焼鈍を繰り返して、厚さ0.1mmとしたときの、半軟化温度を示す図である。
半軟化温度は、試料を焼鈍してゆきビッカース硬さを測定した際の、焼鈍前のビッカース硬さと、完全に軟化したとき(30分焼鈍後にそれ以上焼鈍温度を上げても強度(ビッカース硬さ)が変化しない状態を、完全に軟化したとみなす)ときの中間のビッカース硬さを示す焼鈍温度を示す。
(composition)
The copper alloy foil according to the present invention contains at least two of 0.05 to 0.25% by mass of Sn, 0.03 to 0.1% by mass of Mg, 0.03 to 0.7% by mass of In and 0.02 to 0.1% by mass of Ag, and the balance Consists of Cu and inevitable impurities.
First, the reason why Sn, Mg, In, and Ag are selected as additive elements will be described. Figure 1 shows that Cu, Sn, Mg, Ag, In, Fe, Cr, Zn, Ti, Be, and Cd, which are often used as additive elements for copper foil, are added to a predetermined amount of 99.96% or more of electrolytic copper and dissolved. FIG. 3 is a diagram showing a semi-softening temperature when the obtained ingot is hot rolled to a thickness of 10 mm, and then cold rolling and annealing are repeated to a thickness of 0.1 mm.
The semi-softening temperature is the Vickers hardness before annealing when the sample is annealed and the Vickers hardness is measured. ) Shows an annealing temperature indicating intermediate Vickers hardness when it is considered that the state in which no change occurs) is completely softened.

図1から、添加元素によって半軟化温度が異なることがわかる。純銅の半軟化温度は160℃であるので、この温度を基準とし、各元素の半軟化温度が160℃から上昇した分(ΔT)を求めて表1に比較した。   FIG. 1 shows that the semi-softening temperature varies depending on the additive element. Since the semi-softening temperature of pure copper is 160 ° C., the amount (ΔT) of the increase in the semi-softening temperature of each element from 160 ° C. was obtained and compared with Table 1 based on this temperature.

Snは耐熱性を向上させる元素として有効であることが知られており、本発明ではSnを添加元素を選択する際の基準におく。従って、表1より、SnのΔTSnを1としたとき、各元素(0.05%添加時)のΔTの比(ΔT/ΔTSn)を求めた。この比がSnに対して各元素が耐熱性を向上させる度合(効き具合)を示す。この比より、Snと同等(上記比が0.7以上)の元素は、Mg,Ag,In,Cr,Ti,Cdである。
又、表1には、マティーセン則(Maeehiessen)におけるΔρi(成分Iの比抵抗への寄与率:μΩcm/at.%)を示す。マティーセン則によれば、銅合金の比抵抗ρは、純物質(純Cu)の比抵抗ρCuと、添加元素の比抵抗の和で表される。又、添加元素の比抵抗は、Δρi×Ni(成分Iの合金中の濃度: at.%)で表される。
つまり、マティーセン則は、ρ=ρCu+ΣΔρi×Niで表される。
従って、Δρiは各元素が導電性を低下させる度合(効き具合)を示す。
なお、Δρiは文献値(著者:村上陽太郎・亀井清 著、「朝倉金属工学シリーズ 非鉄金属材料学」、初版第1刷、朝倉書店、1978年4月発行、p13)によった。
Sn is known to be effective as an element for improving heat resistance. In the present invention, Sn is used as a reference when selecting an additive element. Therefore, from Table 1, when ΔTSn of Sn is 1, the ratio of ΔT (ΔT / ΔTSn) of each element (at the time of adding 0.05%) was obtained. This ratio indicates the degree (effectiveness) that each element improves the heat resistance with respect to Sn. From this ratio, elements equivalent to Sn (the above ratio is 0.7 or more) are Mg, Ag, In, Cr, Ti, and Cd.
Table 1 also shows Δρi (contribution ratio of component I to specific resistance: μΩcm / at.%) In the Maeehiessen rule. According to Matthesen's rule, the resistivity ρ of a copper alloy is represented by the sum of the resistivity ρCu of a pure substance (pure Cu) and the resistivity of an additive element. The specific resistance of the additive element is represented by Δρi × Ni (concentration of component I in alloy: at.%).
That is, the Matthewsen rule is expressed by ρ = ρCu + ΣΔρi × Ni.
Therefore, Δρi indicates the degree (effectiveness) at which each element reduces the conductivity.
Δρi was based on literature values (authors: Yotaro Murakami and Kiyoshi Kamei, “Asakura Metal Engineering Series Nonferrous Metal Materials Science”, first edition, first edition, Asakura Shoten, published in April 1978, p13).

Δρiを比較すると、耐熱性の観点から選択した元素のうち、SnよりΔρiが小さい(=導電性を低下させにくい)元素は、Mg,Ag,In,Cdであるが、Cdは毒性があるので除くと、Mg,Ag,Inが選択される。
以上のことから、耐熱性及び導電性を向上させる元素としてSn,Mg,In,Agを選択する。
又、後述する実施例において、Sn,Mg,In,Agのうち、どの元素を添加すると耐熱性、導電性だけでなく屈曲性も向上するかを詳細に調査した結果、Sn,Mg,In,Agのうち2種以上を添加したときにのみ、効果が生じることが判明した。従って、本発明においては、Sn,Mg,In,Agのうち少なくとも2種を含有するよう規定する。
Comparing Δρi, among the elements selected from the viewpoint of heat resistance, elements whose Δρi is smaller than Sn (= it is difficult to reduce the conductivity) are Mg, Ag, In, and Cd, but Cd is toxic. When excluded, Mg, Ag, and In are selected.
From the above, Sn, Mg, In, and Ag are selected as elements that improve heat resistance and conductivity.
In addition, in the examples described later, as a result of detailed investigation of which element among Sn, Mg, In, and Ag improves not only heat resistance and conductivity but also flexibility, Sn, Mg, In, It was found that the effect was produced only when two or more of Ag were added. Therefore, in the present invention, it is defined that at least two of Sn, Mg, In and Ag are contained.

添加元素の添加量を多くするほど耐熱性は向上するが、導電性は低下する傾向にある。そのため、Sn,Mg,In,Agの最適な添加量を規定する必要がある。又、上記したように、Sn,Mg, In,Agはそれぞれ耐熱性、導電性への効き具合が異なる。従って、添加量を求める際には、元素による耐熱性や導電性の効き具合を反映させる必要がある。
しかしながら、上記したように添加元素の添加量を多くすると耐熱性は向上するが、導電性は低下するため、耐熱性を最適化する添加量の規定と、導電性を最適化する添加量の規定とは、両立しない。そこで、本発明においては、耐熱性を最適化する範囲と導電性を最適化する範囲とをそれぞれ別の関係式で規定し、これらの関係式を共に満たす部分を添加元素の最適な添加量として規定する。
The heat resistance improves as the amount of the additive element added increases, but the conductivity tends to decrease. Therefore, it is necessary to define the optimum amount of Sn, Mg, In, and Ag. As described above, Sn, Mg, In, and Ag have different effects on heat resistance and conductivity. Therefore, when determining the amount of addition, it is necessary to reflect the heat resistance and conductivity of the element.
However, as described above, increasing the amount of the additive element increases the heat resistance, but the conductivity decreases. Therefore, the addition amount for optimizing the heat resistance and the addition amount for optimizing the conductivity are specified. Is not compatible. Therefore, in the present invention, the range for optimizing the heat resistance and the range for optimizing the conductivity are defined by different relational expressions, and the portion satisfying both of these relational expressions is defined as the optimum addition amount of the additive element. Stipulate.

まず、耐熱性を最適化する添加量の規定として、Sn,Mg, In,Agの添加量に対して各元素の耐熱性の効き具合として、表1を係数(ΔT/ΔTSn)を重み付けした式1を規定する。
ここで、式1は、
[Snの質量%]+1.9×[Mgの質量%]+1.5×[Inの質量%]+0.9×[Agの質量%]≧0.10
で表され、左辺の添加量が0.10以上であることを必要とする。後述する実施例により、Sn,Mg, In,Agの添加量を変化させた時の式1の左辺の値と半軟化温度との関係について多数のデータを取り、これを図2にプロットした。すると、半軟化温度が約400℃以下では、式1の左辺と半軟化温度との間にほぼ直線関係があり、最小二乗法で求めた直線の傾きから、半軟化温度が350℃となる時の式1の左辺の値が0.10であることが判明した。従って、式1の左辺の値を0.10以上とすることで、耐熱性が向上する。
なお、式1を規定する際、半軟化温度を350℃以上とした理由は、ベースフィルムと銅箔からなる2層銅貼り積層板を製造する工程での一般的な熱処理温度が300〜350℃であるからである。
First, as the regulation of the amount of addition to optimize heat resistance, Table 1 is weighted by the coefficient (ΔT / ΔTSn) as the effect of heat resistance of each element on the amount of addition of Sn, Mg, In, and Ag. 1 is specified.
Where Equation 1 is
[Mass% of Sn] + 1.9 × [mass% of Mg] + 1.5 × [mass% of In] + 0.9 × [mass% of Ag] ≧ 0.10
And the addition amount on the left side needs to be 0.10 or more. According to the examples described later, a lot of data was taken on the relationship between the value on the left side of Equation 1 and the semi-softening temperature when the addition amount of Sn, Mg, In, and Ag was changed, and this was plotted in FIG. Then, when the semi-softening temperature is about 400 ° C. or less, there is a substantially linear relationship between the left side of Equation 1 and the semi-softening temperature, and when the semi-softening temperature becomes 350 ° C. from the slope of the straight line obtained by the least square method. It turned out that the value of the left side of Formula 1 of 0.10 is 0.10. Therefore, heat resistance improves by making the value of the left side of Formula 1 into 0.10 or more.
In addition, when prescribing Formula 1, the reason why the semi-softening temperature is 350 ° C. or higher is that the general heat treatment temperature in the process of manufacturing a two-layer copper-clad laminate comprising a base film and a copper foil is 300 to 350 ° C. Because.

次に、導電性を最適化する添加量の規定として、Sn,Mg, In,Agの添加量に対して各元素の導電性の効き具合を係数として重み付けした式2を規定する。各係数はΔρiをそのまま採用する。
ここで、式2は、
2.88×[Snの原子%]+0.65×[Mgの原子%]+1.06×[Inの原子%]+0.14×[Agの原子%]≦0.42
で表され、左辺の添加量が0.42以下であることを必要とする。この理由は、マティーセン則によれば、銅合金全体の導電率を80%IACS以上とするには、添加元素の比抵抗が0.42以下となる必要があるからである。つまり、マティーセン則において
2.16(導電率80%を比抵抗で表した値)=1.73(純Cuの比抵抗)+ΣΔρi×Ni
で表され、これより、添加元素の比抵抗(ΣΔρi×Ni)は、0.43となるが、誤差を考慮して0.42を上限とする。
なお、導電率80%を基準とした理由は、上記2層銅貼り積層板に要求される導電率が80%IACS以上であるからである。
Next, as the definition of the addition amount for optimizing the conductivity, Formula 2 is defined by weighting the addition amount of Sn, Mg, In, and Ag with the degree of conductivity of each element as a coefficient. Each coefficient adopts Δρi as it is.
Where Equation 2 is
2.88 x [Sn atom%] + 0.65 x [Mg atom%] + 1.06 x [In atom%] + 0.14 x [Ag atom%] ≤ 0.42
It is necessary that the amount of addition on the left side be 0.42 or less. The reason for this is that, according to the Matthesen rule, the resistivity of the additive element needs to be 0.42 or less in order to make the conductivity of the entire copper alloy 80% IACS or more. In other words, in Matthewsen's law
2.16 (value of conductivity 80% in terms of specific resistance) = 1.73 (specific resistance of pure Cu) + ΣΔρi × Ni
From this, the specific resistance (ΣΔρi × Ni) of the additive element is 0.43, but the upper limit is 0.42 in consideration of errors.
The reason why the conductivity is 80% is that the conductivity required for the two-layer copper-clad laminate is 80% IACS or more.

Sn,Mg,In,Agの各元素の添加量はそれぞれ、Sn:0.05〜0.25%、Mg:0.03〜0.1%、In:0.03〜0.1%、Ag :0.02〜0.1%とする。各元素の添加量が上記各範囲の下限未満であると、耐熱性と屈曲性が向上せず、上記各範囲の上限を超えると、導電性が80%未満となる。   The addition amount of each element of Sn, Mg, In, and Ag is Sn: 0.05 to 0.25%, Mg: 0.03 to 0.1%, In: 0.03 to 0.1%, and Ag: 0.02 to 0.1%. When the addition amount of each element is less than the lower limit of each range, heat resistance and flexibility are not improved, and when the upper limit of each range is exceeded, the conductivity is less than 80%.

又、本発明の銅合金箔は、未再結晶の状態でも、又は再結晶した状態でも以下の樹脂基材等と積層した銅貼り積層板を形成することができる。この場合、未結晶の銅合金箔を用いた方が銅貼り積層板を形成後の強度は向上するが、以下の条件を満足すれば、再結晶した銅貼り積層板であっても高屈曲性は得られる。   Moreover, the copper alloy foil of this invention can form the copper bonding laminated board laminated | stacked with the following resin base materials etc. also in the non-recrystallized state or the recrystallized state. In this case, the strength after forming the copper-clad laminate is improved by using an amorphous copper alloy foil. However, if the following conditions are satisfied, even if it is a recrystallized copper-clad laminate, it is highly flexible. Is obtained.

通常、再結晶時の結晶粒径が大きいと、銅箔厚み方向に結晶粒界が存在しない場合や、回路単位長さ当たりの結晶粒界も少なくなる場合がある。このような場合、粒界による強化効果が得られず、曲げによって生じる銅箔表面の引っ張りや圧縮応力に対しての耐性が低い。そこで、結晶粒径を小さくして結晶粒界を増やすことで強化し、屈曲性を低下させないことが必要となる。
そして、本発明者らが屈曲性を低下させないために必要な結晶粒径を実験で調べたところ、再結晶後の結晶粒径が7μmを超えると屈曲性の低下が著しくなることが判明した。一方、再結晶後の結晶粒径を2μm未満にすることは、細かな温度管理が必要で工業的ではなく、又、未再結晶粒と再結晶粒の混粒組織になると微視的に機械的性質の差が大きくなり、微細な回路にした時の屈曲性が低下することから、再結晶時の好ましい平均結晶粒径は2μm以上7μm以下に規定した。
Usually, when the crystal grain size at the time of recrystallization is large, there may be no crystal grain boundary in the thickness direction of the copper foil, or there may be fewer crystal grain boundaries per circuit unit length. In such a case, the strengthening effect due to the grain boundaries cannot be obtained, and the resistance to tensile and compressive stress on the copper foil surface caused by bending is low. Therefore, it is necessary to strengthen by increasing the crystal grain boundary by reducing the crystal grain size, and not to lower the flexibility.
The inventors of the present invention examined the crystal grain size necessary for preventing the flexibility from being lowered, and found that when the crystal grain size after recrystallization exceeds 7 μm, the flexibility is significantly reduced. On the other hand, reducing the crystal grain size after recrystallization to less than 2 μm is not industrial because fine temperature control is required, and if it becomes a mixed grain structure of unrecrystallized grains and recrystallized grains, it is microscopically mechanical. The difference in the mechanical properties becomes large, and the flexibility when the circuit is made fine decreases. Therefore, the preferable average crystal grain size at the time of recrystallization is specified to be 2 μm or more and 7 μm or less.

再結晶粒の粒径を上記した範囲に調整するための方法として、未再結晶の銅合金箔に400℃で30分の熱処理を行うことが挙げられる。この温度条件は、実用の銅貼り積層板およびフレキシブルプリント基板の加工時の熱に適合し、製造も容易である。
なお、再結晶粒の粒径を小さくしても再結晶していない銅箔より強度は低下し、小さい応力で塑性変形する。これに対しては、銅箔に大きな延性を付与することで、塑性変形が起きても屈曲性を伸ばすことができると考えられる
そして、本発明者らが実験したところ、上記した再結晶粒の平均結晶粒径が2μm〜 7μmのフレキシブルプリント基板の場合、屈曲性が良好なものはいずれも伸びが15%以上になったことから、本発明の銅合金箔が再結晶された状態で使用される場合の好ましい伸びは15%以上に規定される。
このように、本発明の銅合金箔において、400℃で30分焼鈍後の伸びが15%以上であることが好ましい。なお、本発明の銅合金箔において、フレキシブルプリント基板に加工したとき、15%以上の伸びが得られるものは、原箔(銅合金箔)の段階で400℃で30分熱処理した際に15%以上の伸びがあるものに相当する。
An example of a method for adjusting the grain size of the recrystallized grains to the above-described range is to heat-treat the non-recrystallized copper alloy foil at 400 ° C. for 30 minutes. This temperature condition is suitable for heat during processing of a practical copper-clad laminate and a flexible printed circuit board, and is easy to manufacture.
Even if the grain size of the recrystallized grains is reduced, the strength is lower than that of the copper foil that has not been recrystallized, and plastic deformation occurs with a small stress. On the other hand, it is thought that by imparting a large ductility to the copper foil, the flexibility can be extended even if plastic deformation occurs. And, when the present inventors experimented, the recrystallized grains described above In the case of flexible printed circuit boards having an average crystal grain size of 2 μm to 7 μm, the ones with good flexibility have an elongation of 15% or more, so the copper alloy foil of the present invention is used in a recrystallized state. In this case, the preferred elongation is specified to be 15% or more.
Thus, in the copper alloy foil of the present invention, the elongation after annealing at 400 ° C. for 30 minutes is preferably 15% or more. In addition, in the copper alloy foil of the present invention, when processed into a flexible printed circuit board, an elongation of 15% or more is obtained when the raw foil (copper alloy foil) is heat treated at 400 ° C. for 30 minutes for 15%. It corresponds to the one with the above growth.

本発明の銅合金箔は、例えば以下のようにして製造することができる。まず、銅インゴットに上記添加物を添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行うことにより箔を製造することができる。 又、本発明の銅合金箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅合金箔にラミネートすること、により、銅合金箔と樹脂基材の2層からなる銅貼り積層板が得られる。又、本発明の銅合金箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅合金箔と樹脂基材とその間の接着層の3層からなる銅貼り積層板が得られる。これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板が得られる。   The copper alloy foil of the present invention can be produced, for example, as follows. First, after adding the said additive to a copper ingot, melt | dissolving and casting, it can hot-roll and can manufacture foil by performing cold rolling and annealing. Also, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast and polymerized by applying heat to the copper alloy foil of the present invention, and (2) the same kind of thermoplastic adhesive as the base film is used. By laminating the base film on the copper alloy foil of the present invention, a copper-clad laminate composed of two layers of the copper alloy foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper alloy foil of the present invention, a copper-clad laminate composed of three layers of a copper alloy foil, a resin base material, and an adhesive layer therebetween can be obtained. A flexible printed circuit board is obtained by forming a circuit on these using a photolithography technique, plating the circuit as necessary, and laminating a coverlay film.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。   In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
純度99.96%以上の電気銅に、表2、3に示す元素をそれぞれ添加し、鋳塊を得た。この鋳塊を熱間圧延して厚さ10mmとした後、表面を面削し、冷間圧延と焼鈍を繰り返し、最終厚さ0.1mmの板状試料とした。
各板状試料について、半軟化温度を測定した。半軟化温度は、板状試料を焼鈍してゆき、焼鈍前のビッカース硬さと、完全に軟化したときのビッカース硬さを求め、これらの中間のビッカース硬さを示すときの焼鈍温度とした。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
The elements shown in Tables 2 and 3 were respectively added to electrolytic copper having a purity of 99.96% or more to obtain ingots. The ingot was hot rolled to a thickness of 10 mm, then the surface was chamfered, and cold rolling and annealing were repeated to obtain a plate sample having a final thickness of 0.1 mm.
The semisoftening temperature was measured for each plate-like sample. The semi-softening temperature was obtained by annealing the plate-like sample, obtaining the Vickers hardness before annealing and the Vickers hardness when completely softened, and setting the annealing temperature at the intermediate Vickers hardness.

又、上記鋳塊を熱間圧延して厚さ10mmとした後、表面を面削し、冷間圧延と焼鈍を繰り返し、最終厚さ0.02mm(20μm)の箔を得た。得られた箔の片面に銅粗化めっきを行い、キャスト法でポリイミド(厚み30μm)と箔を積層した後にエッチング加工を行って所定パターンの回路を形成し、FPCサンプル(幅12.7mmの長尺状で、回路幅1mm)を得た。
各FPCサンプルについて、4端子法により25℃の導電率を測定した。又、以下の方法で屈曲試験を行った。
屈曲試験は、FPCサンプルを長手方向にU字に曲げ、一端を可動板に固定し、他端を固定板に固定し、可動板をFPCサンプルの長辺方向に往復振動させて行った。試験条件は、U字の曲率半径1.3mm、振動ストローク5mm、振動周波数1200回/分とした。また、屈曲試験中の試料の電気抵抗を測定し、初期抵抗から10%抵抗が増加するまでの屈曲回数を求めた。
The ingot was hot rolled to a thickness of 10 mm, then the surface was chamfered, and cold rolling and annealing were repeated to obtain a foil having a final thickness of 0.02 mm (20 μm). Copper roughening plating was performed on one side of the obtained foil, polyimide (thickness 30 μm) and foil were laminated by a cast method, and then etching was performed to form a circuit with a predetermined pattern. FPC sample (long 12.7 mm in width) A circuit width of 1 mm) was obtained.
For each FPC sample, the conductivity at 25 ° C. was measured by the 4-terminal method. Moreover, the bending test was done by the following method.
The bending test was performed by bending the FPC sample into a U shape in the longitudinal direction, fixing one end to the movable plate, fixing the other end to the fixed plate, and reciprocatingly vibrating the movable plate in the long side direction of the FPC sample. The test conditions were a U-shaped radius of curvature of 1.3 mm, a vibration stroke of 5 mm, and a vibration frequency of 1200 times / minute. In addition, the electrical resistance of the sample during the bending test was measured, and the number of bendings until the resistance increased by 10% from the initial resistance was determined.

又、上記箔に対し、FPC加工における熱履歴と同等の熱処理として350℃で15分間の焼鈍を施した後、JIS-Z2241に従って引張強度を測定し、0.2%耐力(YS:yielding strength)を求めた。試料はJIS Z 2241に従って作製した。
さらに、本発明の銅合金箔(未再結晶)に、キャスト法でポリイミド(厚み30μm)と箔を積層した後にエッチング加工を行って所定パターンの回路を形成し、FPCサンプル(幅12.7mmの長尺状で、回路幅1mm)を得た。このものに400℃で30分間の熱処理を施した後、上記と同様にして0.2%耐力、屈曲試験を行ったと共に、平均粒径(JIS H 0501)及び伸び(JIS Z 2241)を測定した。
得られた結果を表2〜表4に示す。
In addition, the foil was annealed at 350 ° C. for 15 minutes as a heat treatment equivalent to the thermal history in FPC processing, and then the tensile strength was measured according to JIS-Z2241, and 0.2% yield strength (YS: yield strength) Asked. The sample was produced according to JIS Z 2241.
Furthermore, a polyimide (thickness 30 μm) and a foil were laminated on the copper alloy foil (non-recrystallized) of the present invention, followed by etching to form a circuit with a predetermined pattern, and an FPC sample (width 12.7 mm long) A circuit width of 1 mm) was obtained. This was heat-treated at 400 ° C. for 30 minutes, and then subjected to 0.2% proof stress and bending test in the same manner as described above, and the average particle diameter (JIS H 0501) and elongation (JIS Z 2241) were measured. did.
The obtained results are shown in Tables 2 to 4.



表2〜表4から明らかなように、Sn、Mg、In及びAgのうち少なくとも2種を含み、かつ式1及び式2の関係を満たす各実施例の場合、半軟化温度が350℃以上であり、導電率が80%以上であると共に屈曲回数が10万回以上となった。また、400℃で30分間の熱処理を行った場合には、伸びが15%以上であるとともに屈曲回数が10万回以上となった。   As is clear from Tables 2 to 4, in each Example including at least two of Sn, Mg, In and Ag and satisfying the relationship of Formula 1 and Formula 2, the semi-softening temperature is 350 ° C. or higher. In addition, the electrical conductivity was 80% or more, and the number of bendings was 100,000 or more. In addition, when heat treatment was performed at 400 ° C. for 30 minutes, the elongation was 15% or more and the number of bendings was 100,000 or more.

一方、添加元素を含まない比較例1の場合、及びSnのみ0.05質量%未満含む比較例2の場合、いずれも式1の値が0.10未満であり、半軟化温度が350℃未満となり、さらに屈曲回数が10万回未満となった。また、400℃で30分間の熱処理を行った場合には、伸びが15%未満となり、屈曲回数が10万回未満となった。
式2の値が0.42を超えた比較例3の場合、導電率が80%未満となった。
Snのみを0.25%を超えて添加した比較例3の場合、式2の値が0.42を超え導電率が80%未満となった。
Agのみを本発明の規定量の範囲内で添加した比較例4、5の場合、式1の値が0.10未満であり、半軟化温度が350℃未満となり、さらに屈曲回数が10万回未満となった。また、400℃で30分間の熱処理を行った場合には、伸びが15%未満となり、屈曲回数が10万回未満となった。
On the other hand, in the case of Comparative Example 1 containing no additive element and in the case of Comparative Example 2 containing only Sn less than 0.05% by mass, the value of Formula 1 is less than 0.10, the semisoftening temperature is less than 350 ° C., and bending The number of times became less than 100,000 times. In addition, when heat treatment was performed at 400 ° C. for 30 minutes, the elongation was less than 15% and the number of bendings was less than 100,000.
In the case of Comparative Example 3 in which the value of Formula 2 exceeded 0.42, the conductivity was less than 80%.
In Comparative Example 3 in which only Sn was added in excess of 0.25%, the value of Formula 2 exceeded 0.42 and the conductivity was less than 80%.
In the case of Comparative Examples 4 and 5 in which only Ag is added within the range of the specified amount of the present invention, the value of Formula 1 is less than 0.10, the semisoftening temperature is less than 350 ° C., and the number of bendings is less than 100,000. became. In addition, when heat treatment was performed at 400 ° C. for 30 minutes, the elongation was less than 15% and the number of bendings was less than 100,000.

Sn、Mg及びAgをそれぞれ規定量の下限未満添加した比較例6の場合、式1の値が0.10未満となり半軟化温度が350℃未満となり、さらに屈曲回数が10万回未満となった。また、400℃で30分間の熱処理を行った場合には、伸びが15%未満となり、屈曲回数が10万回未満となった。
Sn、Mg及びAgをそれぞれ規定量の上限を超えて添加した比較例7の場合、式2の値が0.42を超え導電率が80%未満となった。
Sn、Mg及びInをそれぞれ規定量の下限未満添加した比較例6の場合、式1の値が0.10未満となり半軟化温度が350℃未満となり、さらに屈曲回数が10万回未満となった。また、400℃で30分間の熱処理を行った場合には、伸びが15%未満となり、屈曲回数が10万回未満となった。
In the case of Comparative Example 6 in which Sn, Mg, and Ag were added below the specified lower limit, the value of Formula 1 was less than 0.10, the semisoftening temperature was less than 350 ° C., and the number of flexing was less than 100,000. In addition, when heat treatment was performed at 400 ° C. for 30 minutes, the elongation was less than 15% and the number of bendings was less than 100,000.
In the case of Comparative Example 7 in which Sn, Mg, and Ag were added in excess of the upper limit of the specified amount, the value of Formula 2 exceeded 0.42 and the conductivity was less than 80%.
In the case of Comparative Example 6 in which Sn, Mg and In were added in less than the lower limit of the specified amount, the value of Formula 1 was less than 0.10, the semisoftening temperature was less than 350 ° C., and the number of flexing was less than 100,000. In addition, when heat treatment was performed at 400 ° C. for 30 minutes, the elongation was less than 15% and the number of bendings was less than 100,000.

表2〜表4から、Sn、Mg及びAgのうちSnのみを添加し、さらにFeを添加した比較例9の場合、半軟化温度が350℃未満となり、導電率が80%未満となった。
Sn、Mg及びAgのうちSnのみを添加し、さらにCrを添加した比較例10の場合、導電率が80%未満となった。
Sn、Mg及びAgのうちSnのみを添加し、さらにZnを添加した比較例11の場合、半軟化温度が350℃未満となった。
Sn、Mg及びAgをいずれも添加せず、代わりにFeとZnを添加した比較例12の場合、半軟化温度が350℃未満となり、導電率が80%未満となった。
Sn、Mg及びAgをいずれも添加せず、代わりにCrとZnを添加した比較例12の場合、半軟化温度が350℃未満となった。
From Table 2 to Table 4, in the case of Comparative Example 9 in which only Sn was added out of Sn, Mg and Ag and Fe was further added, the semi-softening temperature was less than 350 ° C. and the conductivity was less than 80%.
In the case of Comparative Example 10 in which only Sn of Sn, Mg and Ag was added and Cr was further added, the conductivity was less than 80%.
In the case of Comparative Example 11 in which only Sn was added out of Sn, Mg and Ag and Zn was further added, the semisoftening temperature was less than 350 ° C.
In the case of Comparative Example 12 in which none of Sn, Mg and Ag was added and Fe and Zn were added instead, the semi-softening temperature was less than 350 ° C. and the conductivity was less than 80%.
In the case of Comparative Example 12 in which none of Sn, Mg and Ag was added and Cr and Zn were added instead, the semi-softening temperature was less than 350 ° C.

なお、表2〜表4の各実施例及び比較例の式1の値に対する半軟化温度の関係、及び式2の値に対する導電率の関係を、それぞれ図2,3に示す。   In addition, the relationship of the semi-softening temperature with respect to the value of Formula 1 of each Example and Table 4 of Tables 2 to 4 and the relationship of the conductivity with respect to the value of Formula 2 are shown in FIGS.

添加元素を加えた銅の半軟化温度を示す図である。It is a figure which shows the semi-softening temperature of copper which added the additive element. Sn,Mg,In,Agの添加量を変化させた時の式1の値と半軟化温度との関係を示す図である。It is a figure which shows the relationship between the value of Formula 1 when changing the addition amount of Sn, Mg, In, and Ag, and a semi-softening temperature. 式2の値に対する導電率の関係を示す図である。FIG. 4 is a diagram showing the relationship of conductivity with respect to the value of Equation 2.

Claims (6)

0.05〜0.25質量%のSn、0.03〜0.1質量%のMg、0.03〜0.1質量%のIn、及び0.02〜0.1質量%のAgのうち、少なくとも2種を含み、残部がCu及び不可避的不純物からなる厚み20μm以下の銅合金箔であって、
式1:[Snの質量%]+1.9×[Mgの質量%]+1.5×[Inの質量%]+0.9×[Agの質量%]≧0.10、及び式2: 2.88×[Snの原子%]+0.65×[Mgの原子%]+1.06×[Inの原子%]+0.14×[Agの原子%]≦0.42の関係を満たす銅合金箔。
It contains at least two of 0.05 to 0.25% by mass of Sn, 0.03 to 0.1% by mass of Mg, 0.03 to 0.1% by mass of In, and 0.02 to 0.1% by mass of Ag, with the balance being Cu and inevitable impurities. A copper alloy foil having a thickness of 20 μm or less,
Formula 1: [mass% of Sn] + 1.9 × [mass% of Mg] + 1.5 × [mass% of In] + 0.9 × [mass% of Ag] ≧ 0.10, and formula 2: 2.88 × [Sn Copper atom foil satisfying the relationship of [Atom%] + 0.65 × [Mg Atom%] + 1.06 × [In Atom%] + 0.14 × [Ag Atom%] ≦ 0.42.
焼鈍時間を30分としたときの半軟化温度が350℃以上である請求項1に記載の銅合金箔。 The copper alloy foil according to claim 1, wherein the semi-softening temperature is 350 ° C. or higher when the annealing time is 30 minutes. 350℃で30分焼鈍後の導電率が80%IACS以上である請求項1又は2に記載の銅合金箔。 The copper alloy foil according to claim 1 or 2, wherein the electrical conductivity after annealing at 350 ° C for 30 minutes is 80% IACS or more. 400℃で30分焼鈍後に平均結晶粒径が2μm以上7μm以下の再結晶粒が形成され、かつ伸びが15%以上である請求項〜3のいずれかに記載の銅合金箔。 The copper alloy foil according to any one of claims 1 to 3, wherein recrystallized grains having an average crystal grain size of 2 µm or more and 7 µm or less are formed after annealing at 400 ° C for 30 minutes, and elongation is 15% or more. 請求項1〜3のいずれかに記載の銅合金箔が未再結晶の状態で樹脂基材と積層された銅貼り積層板を用いたフレキシブルプリント基板。 A flexible printed board using a copper-clad laminate in which the copper alloy foil according to claim 1 is laminated with a resin base material in an unrecrystallized state. 請求項1〜4のいずれかに記載の銅合金箔が再結晶した状態で樹脂基材と積層された銅貼り積層板を用いたフレキシブルプリント基板。 The flexible printed circuit board using the copper bonding laminated board laminated | stacked with the resin base material in the state which the copper alloy foil in any one of Claims 1-4 recrystallized.
JP2008035562A 2007-09-28 2008-02-18 Copper alloy foil and flexible printed circuit board using the same Expired - Fee Related JP5235080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035562A JP5235080B2 (en) 2007-09-28 2008-02-18 Copper alloy foil and flexible printed circuit board using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007252892 2007-09-28
JP2007252892 2007-09-28
JP2008035562A JP5235080B2 (en) 2007-09-28 2008-02-18 Copper alloy foil and flexible printed circuit board using the same

Publications (2)

Publication Number Publication Date
JP2009097075A JP2009097075A (en) 2009-05-07
JP5235080B2 true JP5235080B2 (en) 2013-07-10

Family

ID=40700353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035562A Expired - Fee Related JP5235080B2 (en) 2007-09-28 2008-02-18 Copper alloy foil and flexible printed circuit board using the same

Country Status (1)

Country Link
JP (1) JP5235080B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177268B2 (en) * 2011-09-01 2013-04-03 日立電線株式会社 Rolled copper foil
JP6212482B2 (en) * 2012-04-13 2017-10-11 日本発條株式会社 Copper base circuit board
JP6220132B2 (en) * 2013-02-21 2017-10-25 Jx金属株式会社 Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body
JP5822895B2 (en) * 2013-11-08 2015-11-25 Jx日鉱日石金属株式会社 Copper alloy plate and heat dissipating electronic component including the same
JP6392268B2 (en) * 2016-02-05 2018-09-19 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294376B2 (en) * 2016-02-05 2018-03-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN106101960A (en) * 2016-07-21 2016-11-09 瑞声科技(新加坡)有限公司 Copper alloy, the flexible PCB applying described copper alloy and minitype acoustic generator
JP6712561B2 (en) * 2017-03-21 2020-06-24 Jx金属株式会社 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP6827022B2 (en) * 2018-10-03 2021-02-10 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116742A (en) * 1985-11-14 1987-05-28 Furukawa Electric Co Ltd:The Highly flexible conductive copper alloy
JPH0616522B2 (en) * 1987-03-04 1994-03-02 日本鉱業株式会社 Copper alloy foil for tape carrier
JPH04267388A (en) * 1991-02-22 1992-09-22 Tatsuta Electric Wire & Cable Co Ltd Flexible printed board
JP2743668B2 (en) * 1991-11-15 1998-04-22 日立電線株式会社 Method for producing rolled copper alloy foil for film carrier
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate

Also Published As

Publication number Publication date
JP2009097075A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5235080B2 (en) Copper alloy foil and flexible printed circuit board using the same
JP5055088B2 (en) Copper foil and flexible printed circuit board using the same
JP4672515B2 (en) Rolled copper alloy foil for bending
JP3856582B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
EP1630239B1 (en) Copper alloy and method of manufacturing the same
JP4704474B2 (en) Rolled copper foil with excellent bending resistance
JP2000212660A (en) Rolled copper foil for flexible printed circuit board and its production
KR101632515B1 (en) Rolled copper foil
JP2009111203A (en) Rolled copper foil, and flexible printed wiring board
JP6294376B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5245813B2 (en) Rolled copper foil
JP3824593B2 (en) Rolled copper foil with high elongation
JP5356714B2 (en) Copper alloy foil for flexible printed circuit board excellent in etching property and flexible printed circuit board using the same
JP6617313B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP6643287B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP5778460B2 (en) Rolled copper foil, method for producing the same, and copper-clad laminate
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP3830680B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP7027602B1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP7014884B1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees