JP2002167632A - Rolled copper foil for flexible printed circuit board and its production method - Google Patents

Rolled copper foil for flexible printed circuit board and its production method

Info

Publication number
JP2002167632A
JP2002167632A JP2000362076A JP2000362076A JP2002167632A JP 2002167632 A JP2002167632 A JP 2002167632A JP 2000362076 A JP2000362076 A JP 2000362076A JP 2000362076 A JP2000362076 A JP 2000362076A JP 2002167632 A JP2002167632 A JP 2002167632A
Authority
JP
Japan
Prior art keywords
copper foil
annealing
rolled copper
mass ppm
softening temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000362076A
Other languages
Japanese (ja)
Inventor
Yoshio Kurosawa
善雄 黒澤
Takatsugu Hatano
隆紹 波多野
Masanori Kato
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2000362076A priority Critical patent/JP2002167632A/en
Publication of JP2002167632A publication Critical patent/JP2002167632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide rolled copper foil for FPC having both excellent flexibility and appropriate softening characteristics by appropriately increasing the softening temperature of high flexibility rolled copper foil, and solving troubles to accompany its softening in the process of storage. SOLUTION: The rolled copper foil for a flexible printed circuit board having excellent flexibility and suitable softening characteristics has a composition containing 100 to 500 mass ppm oxygen, and containing one or more kinds selected from Ag, Au, Pd, Pt, Rh, Ir, Ru and Os in the ranges so as to control T defined by the following formula to 100 to 400: T=[Ag]+0.6[Au]+0.6[Pd]+0.4[Pt]+0.4[Rh]+0.3[Ir]+0.3[Ru]+0.3[Os] (wherein, [M] is the mass ppm concentration of the element M), and in which the total content of S, As, Sb, Bi, Se and Te is <=30 mass ppm. The rolled copper foil has a thickness of 5 to 50 μm. The intensity (I) in the 200 plane obtained by X-ray diffraction for the rolled face after annealing at 200 deg.C for 30 min to the intensity (I0) in the 200 plane obtained by X-ray diffraction for the pulverized copper, i.e., I/I0 is >20. The rolled copper foil has a semi-softening temperature of 120 to 150 deg.C, and continuously maintains tensile strength of >=300 N/mm2 at a room temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は優れた屈曲性および好適
な製造性を有するフレキシブルプリント回路基板(Flex
ible printed circuit,以下FPCと表記する)等の可撓
性配線部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible printed circuit board (Flex) having excellent flexibility and favorable manufacturability.
Flexible printed circuit (hereinafter referred to as FPC).

【0002】[0002]

【従来の技術】有機物を基材としたプリント配線基板
は,ガラスエポキシおよび紙フェノール基板を構成材料
とする硬質銅張積層板(リジット)と,ポリイミドおよ
びポリエステル基板を構成材料とする可撓性銅張積層基
板(フレキシブル)とに大別され,プリント配線基板の
導電材としては主として銅箔が使用されている。銅箔は
その製造方法の違いにより電解銅箔と圧延銅箔に分類さ
れる。
2. Description of the Related Art Printed wiring boards based on organic materials include rigid copper-clad laminates (rigid) made of glass epoxy and paper phenol boards and flexible copper boards made of polyimide and polyester boards. Copper foil is mainly used as a conductive material of a printed wiring board. Copper foils are classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method.

【0003】上記プリント配線基板のうち,フレキシブ
ルプリント回路基板(FPC)は,樹脂基板に銅箔をラミ
ネートし,接着剤あるいは加熱加圧により一体化して形
成される。近年では高密度実装の有効な手段として,ビ
ルドアップ基板と呼ばれる多層配線基板が多く用いられ
ている。このFPCの構成部材となる銅箔には,主に圧延
銅箔が用いられている。
[0003] Among the above printed wiring boards, a flexible printed circuit board (FPC) is formed by laminating a copper foil on a resin substrate and integrating them with an adhesive or heating and pressing. In recent years, a multilayer wiring board called a build-up board is often used as an effective means for high-density mounting. Rolled copper foil is mainly used for the copper foil that is a component of the FPC.

【0004】FPCは,プリンターのヘッド部やハードデ
ィスク内の駆動部等の可動部分への配線が必要とされる
場所に広く使用され,100万回以上の屈曲が繰り返され
る。近年の装置の小型化や高水準化に伴い,この屈曲性
への要求はより高度化している。
An FPC is widely used in a place where wiring to a movable portion such as a head portion of a printer or a drive portion in a hard disk is required, and a flexion of 1,000,000 times or more is repeated. With the recent miniaturization and higher standards of equipment, the demand for this flexibility has become more sophisticated.

【0005】FPCに使用される銅箔の素材には,主にタ
フピッチ銅(酸素含有量100〜500 mass ppm)が用いら
れる。このタフピッチ銅箔は,インゴットを熱間圧延し
た後,所定の厚さまで冷間圧延と焼鈍とを繰り返して製
造される。その後,樹脂基板との接着性を向上させるた
め,銅箔には表面に粗化めっきが施される。粗化めっき
後の銅箔は,裁断された後,樹脂基板と貼り合わせられ
る。銅箔と樹脂との貼りあわせには,例えばエポキシ等
の熱硬化性樹脂からなる接着剤が用いられ,張り合わせ
後130〜170℃の温度で数時間〜数十時間加熱して硬化さ
せる。つぎに,銅箔をエッチングして種々の配線パター
ンを形成する。
[0005] The material of the copper foil used in the FPC is mainly tough pitch copper (oxygen content: 100 to 500 mass ppm). This tough pitch copper foil is manufactured by hot rolling an ingot and then repeatedly performing cold rolling and annealing to a predetermined thickness. After that, the surface of the copper foil is subjected to rough plating in order to improve the adhesion to the resin substrate. The copper foil after the rough plating is cut and then bonded to a resin substrate. For bonding the copper foil and the resin, for example, an adhesive made of a thermosetting resin such as epoxy is used, and after bonding, it is cured by heating at a temperature of 130 to 170 ° C. for several hours to several tens of hours. Next, various wiring patterns are formed by etching the copper foil.

【0006】銅箔の屈曲性は再結晶焼鈍を行うことによ
り圧延上がりよりも著しく向上する。そこで銅箔は焼鈍
状態でFPCの構成部材として使用されるが,この焼鈍は
粗化めっきして裁断した後に加熱処理を行うか,銅箔を
樹脂基板と接着する際の加熱で兼ねる。このように,焼
鈍状態の銅箔を最初から用いず製造工程の中間で焼鈍を
行う理由は,焼鈍後の軟質状態では裁断や樹脂基盤との
貼りあわせの際に銅箔が変形したり,銅箔にしわが生じ
たりするためであり,圧延上がりの硬質の状態の方がFP
Cの製造容易性の点からは有利なためである。
[0006] The flexibility of the copper foil is remarkably improved by performing recrystallization annealing as compared with the finished roll. Therefore, the copper foil is used as a component of the FPC in an annealed state. This annealing is performed by heat treatment after roughening plating and cutting, or by heating when bonding the copper foil to a resin substrate. As described above, the reason for performing annealing in the middle of the manufacturing process without using the annealed copper foil from the beginning is that, in the soft state after the annealing, the copper foil deforms during cutting or bonding with a resin base, This is because the foil may be wrinkled, and the harder state after rolling is FP
This is because C is advantageous in terms of manufacturability.

【0007】FPCの屈曲性を高めるためには,その素材
となる圧延銅箔の屈曲性を高めることが有効である。焼
鈍後の銅箔の屈曲性は,立方体集合組織が発達するほど
向上する。また,この立方体集合組織を発達させるため
には,銅箔の製造プロセスにおいて,最終圧延での加工
度を高くすること,および最終圧延直前の焼鈍での結晶
粒径を小さくすることが効果的である(特許第3009383
号)。
[0007] In order to increase the flexibility of FPC, it is effective to increase the flexibility of the rolled copper foil used as the material. The flexibility of the copper foil after annealing increases as the cubic texture develops. In order to develop this cubic texture, it is effective to increase the workability in the final rolling in the copper foil manufacturing process and to reduce the crystal grain size in the annealing just before the final rolling. (Patent No. 3009383
issue).

【0008】ところが,このようなプロセスで製造した
銅箔は,圧延で蓄積される塑性歪みが増大するため軟化
温度が著しく低下し,場合によっては,室温で保管して
いても保管期間が長期に及ぶと軟化することがある。上
述したように,すでに軟化した銅箔を用いてFPCを製造
すると,銅箔が変形する等の問題が生じ,FPCの製造容
易性が著しく低下する。したがって,上記の製造プロセ
スを選択して銅箔の屈曲性を向上させる場合,同時に銅
箔の軟化温度を適度に高くする必要がある。
[0008] However, the copper foil produced by such a process significantly lowers the softening temperature due to an increase in plastic strain accumulated by rolling, and in some cases, the storage period is long even when stored at room temperature. May spread and soften. As described above, when an FPC is manufactured using an already softened copper foil, problems such as deformation of the copper foil occur, and the ease of manufacturing the FPC is significantly reduced. Therefore, when the above manufacturing process is selected to improve the flexibility of the copper foil, it is necessary to simultaneously increase the softening temperature of the copper foil appropriately.

【0009】圧延銅箔が室温で保管中に軟化する問題は
特開平10-230303でも指摘されており,この問題を回避
する手段として50〜90%と低い圧延加工度で銅箔を製造
することが提唱されている。しかし,このような低い圧
延加工度で銅箔を製造すると銅箔の屈曲性は著しく低下
するため,屈曲性が優れた銅箔を製造する場合にこの手
段を用いることはできない。そこで本発明では,従来の
タフピッチ銅箔に合金元素を微量添加することにより軟
化温度を適度な範囲まで高めることを目指した。なお,
過去にFPC用として各種の元素を添加した種々の銅合金
箔が提案されているが,例えば,合金元素を添加する
目的の一つが立方体集合組織((100)方位)の発達を抑
制することであり,しかもこの合金箔の軟化温度は異常
に高い(特許第2505480号),多量の合金元素を,屈
曲性を改善する目的で銅に添加している(特開昭59-785
92)等,いずれも本課題を解決するための参考にはなら
なかった。
The problem that rolled copper foil softens during storage at room temperature is also pointed out in Japanese Patent Application Laid-Open No. Hei 10-230303, and as a means for avoiding this problem, it is necessary to manufacture copper foil with a low rolling degree of 50 to 90%. Has been advocated. However, when a copper foil is manufactured at such a low rolling degree, the flexibility of the copper foil is remarkably reduced. Therefore, this method cannot be used for manufacturing a copper foil having excellent flexibility. Therefore, the present invention aims to increase the softening temperature to an appropriate range by adding a small amount of an alloy element to a conventional tough pitch copper foil. In addition,
Various copper alloy foils with various elements added for FPC have been proposed in the past. For example, one of the purposes of adding alloy elements is to suppress the development of cubic texture ((100) orientation). In addition, the softening temperature of this alloy foil is abnormally high (Japanese Patent No. 2505480), and a large amount of alloying elements are added to copper for the purpose of improving the flexibility (Japanese Patent Laid-Open No. 59-785).
92), etc., did not serve as a reference for solving this problem.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は,高屈
曲性圧延銅箔の軟化温度を適度に高めて保管中の軟化に
伴うトラブルを解消することにより,優れた屈曲性と適
度な軟化特性を併せ持つFPC用圧延銅箔を提供すること
である。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the flexibility and moderate softening by appropriately raising the softening temperature of a high-flexibility rolled copper foil to eliminate troubles associated with softening during storage. An object of the present invention is to provide a rolled copper foil for FPC having characteristics.

【0011】[0011]

【課題を改善するための手段】即ち本発明は,上記の問
題点を解決したものであり,
That is, the present invention has solved the above-mentioned problems.

【0012】(1) 100〜500 mass ppmの酸素を含有
し,Ag,Au,Pd,Pt,Rh,Ir,Ru,Osの内の一種以上
を,次式で定義したTが100〜400になる範囲で含有し, T = [Ag]+0.6[Au]+0.6[Pd]+0.4[Pt]+0.4[Rh]+0.3
[Ir]+0.3[Ru]+0.3[Os] (ただし,[M]は元素Mのmass ppm濃度) S,As,Sb,Bi,SeおよびTeの合計量が30 mass ppm以下
であり,厚さが5〜50μmであり,200℃で30分間の焼鈍
後の圧延面のX線回折で求めた200面の強度(I)が微粉
末銅のX線回折で求めた200面の強度(I0)に対しI/I0
>20であり,120〜150℃の半軟化温度を有し,室温にお
いて継続して300 N/mm2以上の引張り強さを保持し,優
れた屈曲性と適度な軟化特性を有することを特徴とす
る,フレキシブルプリント回路基板用圧延銅箔。
(1) It contains 100 to 500 mass ppm of oxygen, and at least one of Ag, Au, Pd, Pt, Rh, Ir, Ru, and Os has a T defined by the following equation of 100 to 400. T = [Ag] +0.6 [Au] +0.6 [Pd] +0.4 [Pt] +0.4 [Rh] +0.3
[Ir] +0.3 [Ru] +0.3 [Os] (where [M] is the mass ppm concentration of element M) The total amount of S, As, Sb, Bi, Se and Te is 30 mass ppm or less , The thickness of 5 to 50 μm, and the strength (I) of 200 planes determined by X-ray diffraction of the rolled surface after annealing at 200 ° C for 30 minutes is the strength of 200 planes determined by X-ray diffraction of fine powder copper I / I 0 for (I 0 )
> 20, has a semi-softening temperature of 120 to 150 ° C, maintains a tensile strength of 300 N / mm 2 or more at room temperature continuously, and has excellent flexibility and moderate softening characteristics. Rolled copper foil for flexible printed circuit boards.

【0013】(2)インゴットを熱間圧延した後,冷間
圧延と焼鈍とを繰り返し,最後に冷間圧延で箔に仕上げ
るプロセスにおいて,最後の冷間圧延の直前の焼鈍をこ
の焼鈍で得られる再結晶粒の平均粒径が20μm以下にな
る条件下で行い,最後の冷間圧延の加工度を90%を超え
る値とし,優れた屈曲性と適度な軟化特性を得ることを
特徴とする,上記(1)のフレキシブルプリント回路基
板用圧延銅箔の製造方法に関するものである。
(2) After hot rolling the ingot, cold rolling and annealing are repeated, and finally, in the process of finishing the foil by cold rolling, the annealing immediately before the last cold rolling can be obtained by this annealing. The process is performed under the condition that the average grain size of recrystallized grains is 20μm or less, the workability of the last cold rolling is set to a value exceeding 90%, and excellent flexibility and moderate softening characteristics are obtained. The present invention relates to the method (1) for producing a rolled copper foil for a flexible printed circuit board.

【0014】銅箔を高加工度または微細結晶粒のプロセ
スで製造して立方体集合組織を発達させれば,屈曲性は
向上するが,軟化温度が低くなり過ぎる。しかし,素材
の微量成分をコントロールすることにより軟化温度を高
めると,適度な軟化温度を有する銅箔を得ることが可能
となる。
If a copper foil is manufactured by a process of high workability or fine crystal grains to develop a cubic texture, the flexibility is improved, but the softening temperature is too low. However, when the softening temperature is increased by controlling the trace components of the raw material, it becomes possible to obtain a copper foil having an appropriate softening temperature.

【0015】ここでいう適度な軟化温度とは,(1)銅
箔の圧延上がりの引張り強さは400〜500 N/mm2である
が,室温(20〜35℃)で1年間放置しても300 N/mm2
上の引張り強さを保つこと,(2)粗化めっきして裁断
した後の熱処理または樹脂基板と接着する際の熱処理
で,銅箔が軟化すること,の2つの条件によって規定さ
れ,30分間焼鈍の際の半軟化温度(引張強さが焼鈍前と
完全に軟化したときの中間の値になるときの焼鈍温度)
でいえば,120〜150℃の範囲に相当する。
The appropriate softening temperature is as follows: (1) Although the tensile strength of the copper foil after rolling is 400 to 500 N / mm 2, it is left at room temperature (20 to 35 ° C.) for one year. also keep the 300 N / mm 2 or more tensile strength, (2) heat treatment at the time of bonding the heat-treated or resin substrate after roughened plating to cut, the copper foil is softened, two conditions The half-softening temperature during annealing for 30 minutes (the annealing temperature at which the tensile strength reaches an intermediate value between before annealing and when completely softened)
This corresponds to a range of 120 to 150 ° C.

【0016】本発明者らは,優れた屈曲性が得られるプ
ロセスで製造したタフピッチ銅箔の軟化温度を目標の範
囲に収めるために,インゴット溶製の際に添加する元素
として,貴金属元素(Ag,Au)あるいは白金族元素(P
d,Pt,Rh,Ir,Ru,Os)が適当であることを見出し
た。これは次の理由による。
In order to keep the softening temperature of the tough pitch copper foil manufactured by the process of obtaining excellent flexibility within the target range, the present inventors have proposed to use noble metal elements (Ag , Au) or platinum group elements (P
d, Pt, Rh, Ir, Ru, Os) were found to be appropriate. This is for the following reason.

【0017】タフピッチ銅は100〜500mass ppmの酸素を
含有しているため,活性な元素は溶湯に添加する際に酸
化し,その濃度をコントールすることが困難である。ま
た,添加元素はCu中に固溶することによってCuの軟化温
度を高めるため,添加元素が銅箔中で酸化物を形成した
り他の不純物と化合物を形成したとすると,充分な軟化
抑制効果が得られない。Ag,Auといった貴金属元素およ
びPd,Pt,Rh,Ir,Ru,Osといった白金族元素は非活性
なため,添加の際の濃度コントロールが容易であり,銅
箔中で酸化物を形成したり他の不純物と化合物を形成す
ることがない。
Since tough pitch copper contains 100 to 500 mass ppm of oxygen, active elements are oxidized when added to the molten metal, and it is difficult to control the concentration. In addition, since the additive element increases the softening temperature of Cu by forming a solid solution in Cu, if the additive element forms an oxide or a compound with other impurities in the copper foil, a sufficient softening suppression effect is obtained. Can not be obtained. Noble metal elements such as Ag and Au and platinum group elements such as Pd, Pt, Rh, Ir, Ru, and Os are inactive, so that the concentration can be easily controlled at the time of addition. Does not form a compound with the impurities of

【0018】以上のように,本発明は,従来のタフピッ
チ銅にAg,Au,Pd,Pt,Rh,Ir,RuまたはOsを添加し,
箔に加工後の軟化温度を適度な範囲にコントロールする
ことを主旨とするが,この場合,タフピッチ銅中に含有
される不純物を所定のレベル以下に規制した方が,より
正確に軟化温度をコントロールできる。
As described above, according to the present invention, Ag, Au, Pd, Pt, Rh, Ir, Ru or Os is added to conventional tough pitch copper,
The main aim is to control the softening temperature after processing into foil to an appropriate range. In this case, controlling the impurities contained in the tough pitch copper to a specified level or less can more accurately control the softening temperature. it can.

【0019】本発明に関わる圧延銅箔の限定理由を以下
に示す。本発明では,圧延銅箔を室温において継続して
300 N/mm2以上の引張り強さを保持することを目標とし
た。より望ましくは30℃において1年間保管した場合で
あっても300 N/mm2以上の引張り強さを保持できること
である。
The reasons for limiting the rolled copper foil according to the present invention will be described below. In the present invention, the rolled copper foil is continuously
The goal was to maintain a tensile strength of 300 N / mm 2 or more. More desirably, it can maintain a tensile strength of 300 N / mm 2 or more even when stored at 30 ° C. for one year.

【0020】ここで,30℃とは日本国内の年間平均気温
を超える温度に相当し,銅箔がFPCに加工されるまでの
保管期間は,継続して保管されることが多く,更に長く
ても1年間である。また,引張り強さが300 N/mm2以上
であれば,銅箔を加工中にしわが生じる等のトラブルは
発生しない。したがって,30℃で1年間放置しても300N
/mm2以上の引張り強さを保持できれば実用上問題はな
い。このような軟化特性は,30分間焼鈍したときの半軟
化温度に換算すると,120℃以上の温度に相当する。
Here, 30 ° C. corresponds to a temperature exceeding the annual average temperature in Japan, and the storage period until the copper foil is processed into FPC is often stored continuously, and is longer. Is also one year. If the tensile strength is 300 N / mm 2 or more, no trouble such as wrinkling occurs during processing of the copper foil. Therefore, even if left at 30 ° C for 1 year, 300N
There is no practical problem if a tensile strength of / mm 2 or more can be maintained. Such softening characteristics correspond to a temperature of 120 ° C. or more when converted to a half-softening temperature after annealing for 30 minutes.

【0021】一方,30分間焼鈍したときの半軟化温度が
150℃を超えると, 粗化めっきして裁断した後の熱処理
または樹脂基板と接着する際の熱処理で銅箔が軟化しな
いことがある。そこで,30分間焼鈍したときの半軟化温
度を120〜150℃に規定した。
On the other hand, the half-softening temperature after annealing for 30 minutes
If the temperature exceeds 150 ° C, the copper foil may not be softened by heat treatment after roughening plating and cutting or heat treatment for bonding to a resin substrate. Therefore, the half-softening temperature after annealing for 30 minutes was specified to be 120 to 150 ° C.

【0022】FPCの屈曲性を高めるためには,銅箔の屈
曲性を高める必要がある。銅箔は再結晶状態でFPC中に
組み込まれるが,純Cuの再結晶集合組織である立方体集
合組織を発達させれば,銅箔の屈曲性は向上する。満足
できる屈曲性が得られるときの立方体集合組織の発達度
は,X線回折で求めた200面の強度が微粉末銅のX線回折
で求めた200面の強度(I0)に対し I/I0>20の関係で
あることで規定され,より好ましくI/I0>40の関係で
規定される。ここで,200℃で30分間の焼鈍は,X線強度
の測定に際し,銅箔を再結晶させるために行うものであ
る。
In order to increase the flexibility of the FPC, it is necessary to increase the flexibility of the copper foil. The copper foil is incorporated into the FPC in a recrystallized state. However, if a cubic texture, which is a recrystallization texture of pure Cu, is developed, the flexibility of the copper foil is improved. The degree of development of the cubic texture when satisfactory bending properties can be obtained is as follows: the strength of 200 faces determined by X-ray diffraction is higher than the strength (I 0 ) of 200 faces determined by X-ray diffraction of fine powdered copper. It is defined by the relation of I 0 > 20, and more preferably by the relation of I / I 0 > 40. Here, annealing at 200 ° C. for 30 minutes is performed to recrystallize the copper foil when measuring the X-ray intensity.

【0023】Ag,Au,Pd,Pt,Rh,Ir,RuおよびOsは,
半軟化温度を高める目的で添加するが,それぞれの元素
で軟化温度上昇への寄与率が異なるため,元素による重
み付けを行う必要がある。そこで,軟化温度上昇指数
(T)を次式で定義した。 T = [Ag]+0.6[Au]+0.6[Pd]+0.4[Pt]+0.4[Rh]+0.3
[Ir]+0.3[Ru]+0.3[Os] (ただし,[M]は元素Mのmass ppm濃度) ここで,[M]は元素Mのmass ppm濃度である。このTが1
00〜400の範囲になるように,上記元素を添加すれば,
高屈曲が得られるプロセスで製造した銅箔の半軟化温度
を120〜150℃の範囲に収めることができる。一方,Tが1
00より小さくなると半軟化温度が120℃より低くなり,T
が400を超えると半軟化温度が150℃より高くなる。
Ag, Au, Pd, Pt, Rh, Ir, Ru and Os are:
It is added for the purpose of increasing the semi-softening temperature, but since each element has a different contribution to the increase in the softening temperature, it is necessary to weight the elements. Therefore, the softening temperature rise index (T) was defined by the following equation. T = [Ag] + 0.6 [Au] + 0.6 [Pd] + 0.4 [Pt] + 0.4 [Rh] + 0.3
[Ir] +0.3 [Ru] +0.3 [Os] (where [M] is the mass ppm concentration of the element M) Here, [M] is the mass ppm concentration of the element M. This T is 1
If the above elements are added so as to be in the range of 00 to 400,
The semi-softening temperature of the copper foil manufactured by the process that can obtain high bending can be kept in the range of 120 to 150 ° C. On the other hand, T is 1
If it becomes smaller than 00, the half-softening temperature becomes lower than 120 ° C and T
Exceeds 400, the semi-softening temperature becomes higher than 150 ° C.

【0024】S,As,Sb,Bi,SeおよびTeは,通常のタ
フピッチ銅中に含れている不純物であり,半軟化温度へ
の影響が比較的大きい。したがって,Ag,Au,Pd,Pt,
Rh,Ir,RuおよびOsの添加で半軟化温度をコントロール
する場合,これら不純物の濃度を低レベルに抑えた方
が,半軟化温度のコントロールが容易になる。これら元
素は主として,タフピッチ銅箔の原料として用いられる
電気銅から混入するため,その濃度を調整するために
は,用いる電気銅の不純物量を管理する必要がある。
S, As, Sb, Bi, Se and Te are impurities contained in ordinary tough pitch copper and have a relatively large effect on the half-softening temperature. Therefore, Ag, Au, Pd, Pt,
When controlling the half-softening temperature by adding Rh, Ir, Ru, and Os, controlling the half-softening temperature is easier if the concentration of these impurities is suppressed to a low level. Since these elements are mainly mixed from the copper used as a raw material of the tough pitch copper foil, it is necessary to control the amount of impurities in the copper used in order to adjust the concentration.

【0025】S,As,Sb,Bi,SeおよびTeは,その各成
分の内一種以上の合計で30 mass ppm以下にすることが
望ましく,30 mass ppmを超えると,上述した軟化温度
上昇指数Tが同じでも半軟化温度に大きなばらつきが生
じたり,Tの値によっては半軟化温度が150℃を超えたり
する。
S, As, Sb, Bi, Se and Te are desirably at least 30 mass ppm in total of at least one of the respective components. If the total exceeds 30 mass ppm, the above-mentioned softening temperature rise index T However, even if they are the same, the semi-softening temperature varies greatly, or the semi-softening temperature exceeds 150 ° C depending on the value of T.

【0026】通常純度の無酸素銅は,酸素濃度が低い影
響として,タフピッチ銅よりも軟化温度が著しく高いこ
とが知られている。また,タフピッチ銅中に過剰に含有
された酸素は,Cu2Oの介在物を形成する。酸素濃度を10
0〜500 mass ppmに規定した理由は,酸素濃度が100 mas
s ppm未満の状態でAg,Au,Pd,Pt,Rh,Ir,RuまたはO
s を添加すると半軟化温度が150℃を超え,酸素濃度が5
00 mass ppmを超えるとCu2O介在物が増大し屈曲性が低
下するためである。
It is known that oxygen-free copper of normal purity has a significantly higher softening temperature than tough pitch copper due to the low oxygen concentration. In addition, oxygen excessively contained in tough pitch copper forms inclusions of Cu 2 O. Oxygen concentration of 10
The reason for specifying 0 to 500 mass ppm is that the oxygen concentration is 100 mas
Ag, Au, Pd, Pt, Rh, Ir, Ru or O at less than s ppm
When s is added, the half-softening temperature exceeds 150 ° C and the oxygen
If the content exceeds 00 mass ppm, Cu 2 O inclusions increase and the flexibility deteriorates.

【0027】銅箔の厚みについては,薄いほど曲げ部の
外周に生じる歪みが減少するため,屈曲性が向上する。
銅箔の厚さが50μmを超えると,立方体集合組織を発達
させても所望の屈曲性は得られない。一方,銅箔の厚さ
を5μm未満にすると,箔の強度が低くなり過ぎ,破断な
どにより箔の取り扱いが困難となる。そこで銅箔の厚み
を5〜50μmとした。
Regarding the thickness of the copper foil, the thinner the copper foil is, the less the distortion generated on the outer periphery of the bent portion is, so that the flexibility is improved.
If the thickness of the copper foil exceeds 50 μm, the desired flexibility cannot be obtained even if a cubic texture is developed. On the other hand, if the thickness of the copper foil is less than 5 μm, the strength of the foil becomes too low, and the handling of the foil becomes difficult due to breakage or the like. Therefore, the thickness of the copper foil was set to 5 to 50 μm.

【0028】次に,本発明に関わる銅箔は,平均粒径が
20μm以下になる条件で再結晶焼鈍を行なった後,90 %
を超える加工度の冷間圧延を行うことによって箔に仕上
げられるが,圧延前の焼鈍での平均粒径が20μmを超え
る場合または加工度が90%以下の場合には,I/I0<20.0
となって良好な屈曲性が得られない。なお,最終冷間圧
延前の焼鈍を熱間圧延で兼ねることもできるが,この場
合も熱間圧延上がりの結晶粒径を20μm以下に調整する
ことが望ましい。
Next, the copper foil according to the present invention has an average particle size.
After performing recrystallization annealing under the condition of 20μm or less, 90%
The foil can be finished by performing cold rolling with a working ratio exceeding 200%. If the average grain size in annealing before rolling exceeds 20 μm or the working ratio is 90% or less, I / I 0 <20.0
As a result, good flexibility cannot be obtained. The annealing before the final cold rolling can be performed by hot rolling, but also in this case, it is desirable to adjust the crystal grain size after hot rolling to 20 μm or less.

【0029】[0029]

【実施例】以下,本発明の態様を実施例により説明す
る。表1に示す成分の厚さ200 mm,幅600 mmの銅インゴ
ットを製造し,熱間圧延により10 mmまで圧延した。
The embodiments of the present invention will be described below with reference to examples. A copper ingot having a thickness of 200 mm and a width of 600 mm with the components shown in Table 1 was manufactured and rolled to 10 mm by hot rolling.

【0030】[0030]

【表1】 [Table 1]

【0031】つぎに,焼鈍と冷間圧延を繰り返し,厚さ
t0 mmの圧延上がりの板を得た。この板を焼鈍して再結
晶させ,酸化スケールを除去した後,所定の厚みt mmま
で冷間圧延した。ここで,最後の冷間圧延での加工度R
は,R = (t0−t) / t0 × 100(%) で与えられる。ま
た,最終冷間圧延前の焼鈍では,焼鈍後の結晶粒径を圧
延方向に直角な断面において切断法で測定した。
Next, annealing and cold rolling are repeated to obtain a thickness.
A rolled plate of t 0 mm was obtained. The sheet was annealed and recrystallized to remove oxide scale, and then cold-rolled to a predetermined thickness t mm. Here, the degree of work R in the last cold rolling
Is given by R = (t 0 −t) / t 0 × 100 (%). In the annealing before final cold rolling, the grain size after annealing was measured by a cutting method in a cross section perpendicular to the rolling direction.

【0032】このように種々の中間焼鈍条件および最終
圧延加工度で製造した銅箔試料について以下の特性を評
価した。 (1)立方体集合組織 試料を200℃で30分間加熱した後,圧延面のX線回折で求
めた(200)面強度の積分値(I)を求めた。この値をあら
かじめ測定しておいた微粉末銅の(200)面強度の積分値
(I0)で割り,I/I0の値を計算した。なお,ピーク強
度の積分値の測定は,Co管球を用い,2θ=57〜63°
(θは回折角度)の範囲で行った。
The following characteristics were evaluated for the copper foil samples manufactured under the various intermediate annealing conditions and the final rolling degree as described above. (1) Cube texture After the sample was heated at 200 ° C. for 30 minutes, the integrated value (I) of the (200) plane strength obtained by X-ray diffraction of the rolled plane was obtained. This value was divided by the previously measured integral value (I 0 ) of the (200) plane strength of fine powder copper, and the value of I / I 0 was calculated. The integrated value of the peak intensity was measured using a Co tube and 2θ = 57 to 63 °.
(Θ is the diffraction angle).

【0033】(2)屈曲性 試料を200℃で30分間加熱して再結晶させた後,図1に
示す装置により,屈曲疲労寿命の測定を行った。この装
置は,発振駆動体4に振動伝達部材3を結合した構造に
なっており,被試験銅箔1は,矢印で示したねじ2の部
分と振動伝達部材3の先端部の計4点で装置に固定され
る。振動伝達部材3が上下に駆動すると,銅箔1の中間
部は,所定の曲率半径rでヘアピン状に屈曲される。本
試験では,以下の条件下で屈曲を繰り返したときの破断
までの回数を求めた。
(2) Flexibility After the sample was heated at 200 ° C. for 30 minutes to recrystallize, the bending fatigue life was measured by the apparatus shown in FIG. This device has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4. The copper foil 1 to be tested has a total of four points of a screw 2 indicated by an arrow and a tip of the vibration transmitting member 3. Fixed to the device. When the vibration transmitting member 3 is driven up and down, the middle portion of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.

【0034】試験片幅:12.7 mm,試験片長さ:200 m
m,試験片採取方向:試験片の長さ方向が圧延方向と平
行になるように採取,曲率半径r:2.5 mm,振動ストロ
ーク:25 mm,振動速度:1500回/分 なお,屈曲疲労寿命が3万回以上の場合に,優れた屈曲
性を有していると判断した。また,この試験は加速試験
であり,実際にFPCが使用させる条件よりも厳しい条件
下で行っている。
Specimen width: 12.7 mm, specimen length: 200 m
m, Specimen sampling direction: Sampling was performed so that the length direction of the specimen was parallel to the rolling direction, radius of curvature r: 2.5 mm, vibration stroke: 25 mm, vibration speed: 1500 times / min. It was judged that it had excellent flexibility when it was 30,000 times or more. In addition, this test is an accelerated test and is performed under severer conditions than those actually used by FPC.

【0035】(3)半軟化温度 種々の温度で30分間の焼鈍を行なった後の引張り強さを
測定した。そして,焼鈍後の引張り強さが,圧延上がり
の引張り強さと300℃で30分間焼鈍し完全に軟化させた
後の引張り強さとの中間の値になるときの焼鈍温度を求
めた。半軟化温度が120〜150℃の範囲であれば,適正な
軟化特性を有していると判断した。
(3) Semi-softening temperature Tensile strength after annealing at various temperatures for 30 minutes was measured. Then, the annealing temperature at which the tensile strength after annealing reached an intermediate value between the tensile strength after rolling and the tensile strength after completely softening by annealing at 300 ° C. for 30 minutes was determined. If the semi-softening temperature was in the range of 120 to 150 ° C, it was determined that the material had appropriate softening characteristics.

【0036】(4)室温での軟化挙動 圧延上がりの材料を30℃に調整した恒温槽中に保管し,
保管開始から1ヶ月毎に引張り強さを測定し,引張り強
さが300 N/mm2以下の値になるまでの期間を求めた。こ
の評価は12ヶ月間まで継続した。
(4) Softening behavior at room temperature The rolled material is stored in a thermostat adjusted to 30 ° C.
Tensile strength was measured every month from the start of storage, and the period until the tensile strength reached a value of 300 N / mm 2 or less was determined. This evaluation continued for up to 12 months.

【0037】表1に評価した銅箔の成分,製造方法およ
び特性を示す。No.1〜18は本発明に関わる例であり,比
較例のNo.1〜9は成分または製造方法が本発明から外れ
る例である。本発明に関わる圧延銅箔は,焼鈍を行うと
立方体集合組織が発達して200面のI/I 0が20.0を超え,
その結果として3万回以上の優れた屈曲寿命を示してい
る。また,軟化温度は,目標の120〜150℃の範囲内であ
り,室温(30℃)で1年間保管しても引張強さが300 N/m
m2以上の値を保っている。
The components of the copper foil evaluated in Table 1, the production method and
And characteristics. Nos. 1 to 18 are examples related to the present invention.
Nos. 1 to 9 of Comparative Examples deviate from the present invention in the components or the production method.
This is an example. The rolled copper foil according to the present invention
200 faces I / I with cubic texture developed 0Exceeds 20.0,
As a result, it shows an excellent flex life of more than 30,000 times.
You. The softening temperature is within the target range of 120 to 150 ° C.
Tensile strength of 300 N / m even after storage at room temperature (30 ℃) for 1 year
mTwoThe above values are maintained.

【0038】一方,比較例のNo.3は軟化温度上昇指数
(T)が100より小さいため,半軟化温度が120℃よりも
低く,30℃の保管で1年以内に引張強さが300 N/mm2以下
に低下している。比較例のNo.4はTが400を超えるため,
比較例のNo.6は不純物であるS,As,Sb,Bi,SeおよびT
eの合計量が30 mass ppmを超えているため,比較例のN
o.1は酸素濃度が100 mass ppmより低いため,半軟化温
度が150℃を超えており,FPCの製造段階で再結晶しない
危険性が高い。
On the other hand, since the softening temperature rise index (T) of Comparative Example No. 3 is smaller than 100, the semi-softening temperature is lower than 120 ° C., and the storage strength at 30 ° C. becomes less than 300 N within one year. / mm 2 or less. No. 4 of the comparative example has T exceeding 400,
No. 6 of the comparative example is the impurities S, As, Sb, Bi, Se and T
Since the total amount of e exceeds 30 mass ppm, N
In o.1, since the oxygen concentration is lower than 100 mass ppm, the half-softening temperature exceeds 150 ° C, and there is a high risk of not recrystallizing during the FPC manufacturing stage.

【0039】比較例のNo.2は酸素濃度が500 mass ppmを
超えているため,Cu2O介在物が増大し,立方体集合組織
が発達しているにもかかわらず,屈曲回数が3万回未満
の低い値を示している。比較例のNo.5は不純物である
S,As,Sb,Bi,SeおよびTeの合計量が30 mass ppmを超
え,特にSが高くインゴットを熱間圧延する際に割れが
発生し箔に加工できなかった。Sが高くなると結晶粒界
に偏析し,熱間割れを助長することが知られている。同
様に他の添加元素が規定濃度を超えた場合にも,製造歩
留が低下した。比較例のNo.8は圧延前の結晶粒径が20μ
mを超えているため,比較例のNo.9は圧延加工度が90 %
以下であるため,200面のI/I0が20.0未満であり,屈曲
回数が3万回に満たず,圧延で蓄積された塑性歪み少な
いため半軟化温度が150℃を超えている。比較例のNo.7
は厚さが50μmを超えているため,立方体集合組織が発
達しているにもかかわらず,屈曲回数が3万回未満であ
る。
In Comparative Example No. 2, since the oxygen concentration exceeded 500 mass ppm, Cu 2 O inclusions increased and the number of flexions was 30,000 times despite the development of cubic texture. It shows a low value of less than. No. 5 of the comparative example is an impurity
The total amount of S, As, Sb, Bi, Se, and Te exceeded 30 mass ppm. Especially, the S content was so high that cracking occurred during hot rolling of the ingot, and it could not be processed into foil. It is known that when S is increased, segregation occurs at the grain boundaries, which promotes hot cracking. Similarly, when other additive elements exceeded the specified concentrations, the production yield also decreased. No. 8 of the comparative example had a crystal grain size of 20μ before rolling.
No. 9 of the comparative example has a rolling reduction of 90%
Because of the following, the I / I 0 of the 200 surface is less than 20.0, the number of bending is less than 30,000, and the plastic deformation accumulated by rolling is small, so that the semi-softening temperature exceeds 150 ° C. No. 7 of Comparative Example
Since the thickness exceeds 50 μm, the number of flexures is less than 30,000 times despite the development of cubic texture.

【0040】図2に添加成分以外の成分であるS,As,S
b,Bi,SeおよびTeの合計量が30 mass ppm以下で,同一
のプロセスで製造した本発明例のNo.1〜7および比較例
のNo.3,4について,軟化温度上昇指数Tと半軟化温度と
の関係を示す。軟化温度上昇指数Tが高くなると半軟化
温度が上昇し,T=100〜400の範囲で目標の120〜150℃
の半軟化温度が得られていることがわかる。
FIG. 2 shows that S, As, S
With respect to Nos. 1 to 7 of the examples of the present invention and Nos. 3 and 4 of the comparative examples manufactured by the same process with the total amount of b, Bi, Se and Te being 30 mass ppm or less, the softening temperature rise index T and the half The relationship with the softening temperature is shown. As the softening temperature rise index T increases, the semi-softening temperature increases, and the target is 120 to 150 ° C in the range of T = 100 to 400.
It can be seen that the semi-softening temperature was obtained.

【0041】[0041]

【発明の効果】本発明のフレキシブルプリント回路用圧
延銅箔は優れた屈曲性を有する。また,適度な軟化温度
を有し,保管中に軟化するあるいは焼鈍を行っても軟化
しないといったトラブルが生じないため,フレキシブル
プリント回路基板としての好ましい製造性を有する。も
ちろんこの銅箔は,リチウムイオン電池の電極等のフレ
キシブルプリント回路以外の用途にも好適である。
The rolled copper foil for flexible printed circuits of the present invention has excellent flexibility. In addition, it has an appropriate softening temperature and does not cause troubles such as softening during storage or softening during annealing, and therefore has favorable manufacturability as a flexible printed circuit board. Of course, this copper foil is also suitable for uses other than flexible printed circuits, such as electrodes for lithium ion batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】屈曲疲労寿命の測定を行うために使用した屈曲
試験装置の説明図である。
FIG. 1 is an explanatory view of a bending test apparatus used for measuring a bending fatigue life.

【図2】半軟化上昇指数Tと半軟化温度との関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between a semi-softening rise index T and a half-softening temperature.

【符号の説明】[Explanation of symbols]

1 銅箔 2 ねじ 3 振動伝達部材 4 発振駆動体 DESCRIPTION OF SYMBOLS 1 Copper foil 2 Screw 3 Vibration transmission member 4 Oscillation driver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22F 1/00 604 C22F 1/00 604 622 622 630 630F 650 650A 661 661A 682 682 683 683 685 685Z 686 686B 691 691B 694 694A Fターム(参考) 4E002 AD13 4E351 AA01 BB01 BB30 DD04 DD05 DD06 DD19 DD20 GG01 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22F 1/00 604 C22F 1/00 604 622 622 630 630 630F 650 650A 661 661A 682 682 683 683 685 685Z 686 686B 691 691B 694 694A F term (reference) 4E002 AD13 4E351 AA01 BB01 BB30 DD04 DD05 DD06 DD19 DD20 GG01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 100〜500 mass ppmの酸素を含有し,Ag,
Au,Pd,Pt,Rh,Ir,Ru,Osの内の一種以上を,次式で
定義したTが100〜400になる範囲で含有し, T = [Ag]+0.6[Au]+0.6[Pd]+0.4[Pt]+0.4[Rh]+0.3
[Ir]+0.3[Ru]+0.3[Os] (ただし,[M]は元素Mのmass ppm濃度) S,As,Sb,Bi,SeおよびTeの合計量が30 mass ppm以下
であり,厚さが5〜50μmであり,200℃で30分間の焼鈍
後の圧延面のX線回折で求めた200面の強度(I)が微粉
末銅のX線回折で求めた200面の強度(I0)に対しI/I0
>20であり,120〜150℃の半軟化温度を有し,室温にお
いて継続して300 N/mm2以上の引張り強さを保持し,優
れた屈曲性と適度な軟化特性を有することを特徴とす
る,フレキシブルプリント回路基板用圧延銅箔。
Claims: 1. An oxygen containing 100 to 500 mass ppm of oxygen,
Contains at least one of Au, Pd, Pt, Rh, Ir, Ru, and Os in a range where T defined by the following equation is 100 to 400, and T = [Ag] + 0.6 [Au] + 0. 6 [Pd] + 0.4 [Pt] + 0.4 [Rh] + 0.3
[Ir] +0.3 [Ru] +0.3 [Os] (where [M] is the mass ppm concentration of element M) The total amount of S, As, Sb, Bi, Se and Te is 30 mass ppm or less The strength (I) of the rolled surface after annealing at 200 ° C for 30 minutes with a thickness of 5 to 50 μm was determined by the X-ray diffraction of the 200 powder. I / I 0 for (I 0 )
> 20, has a semi-softening temperature of 120 to 150 ° C, maintains a tensile strength of 300 N / mm 2 or more at room temperature continuously, and has excellent flexibility and moderate softening characteristics. Rolled copper foil for flexible printed circuit boards.
【請求項2】インゴットを熱間圧延した後,冷間圧延と
焼鈍とを繰り返し,最後に冷間圧延で箔に仕上げるプロ
セスにおいて,最後の冷間圧延の直前の焼鈍をこの焼鈍
で得られる再結晶粒の平均粒径が20μm以下になる条件
下で行い,最後の冷間圧延の加工度を90%を超える値と
し,優れた屈曲性と適度な軟化特性を得ることを特徴と
する,請求項1のフレキシブルプリント回路基板用圧延
銅箔の製造方法。
2. A process of hot rolling an ingot, repeating cold rolling and annealing, and finally, in a process of finishing the foil by cold rolling, the annealing immediately before the last cold rolling is performed again by the annealing obtained by this annealing. The process is performed under the condition that the average grain size of the crystal grains is 20μm or less, the workability of the last cold rolling is set to a value exceeding 90%, and excellent flexibility and moderate softening characteristics are obtained. Item 10. A method for producing a rolled copper foil for a flexible printed circuit board according to item 1.
JP2000362076A 2000-11-29 2000-11-29 Rolled copper foil for flexible printed circuit board and its production method Pending JP2002167632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362076A JP2002167632A (en) 2000-11-29 2000-11-29 Rolled copper foil for flexible printed circuit board and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362076A JP2002167632A (en) 2000-11-29 2000-11-29 Rolled copper foil for flexible printed circuit board and its production method

Publications (1)

Publication Number Publication Date
JP2002167632A true JP2002167632A (en) 2002-06-11

Family

ID=18833413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362076A Pending JP2002167632A (en) 2000-11-29 2000-11-29 Rolled copper foil for flexible printed circuit board and its production method

Country Status (1)

Country Link
JP (1) JP2002167632A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
WO2012070471A1 (en) * 2010-11-25 2012-05-31 Jx日鉱日石金属株式会社 Rolled copper foil for flexible printed wiring board, copper-clad laminated board, flexible wiring board, and electronic device
US8293033B2 (en) 2010-06-18 2012-10-23 Hitachi Cable, Ltd. Rolled copper foil
JP2013055162A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2013191638A (en) * 2012-03-12 2013-09-26 Jx Nippon Mining & Metals Corp Rolled copper foil for printed wiring board
CN109777993A (en) * 2019-02-26 2019-05-21 昆山全亚冠环保科技有限公司 A kind of copper-gold alloy rolling mill practice

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
US8293033B2 (en) 2010-06-18 2012-10-23 Hitachi Cable, Ltd. Rolled copper foil
WO2012070471A1 (en) * 2010-11-25 2012-05-31 Jx日鉱日石金属株式会社 Rolled copper foil for flexible printed wiring board, copper-clad laminated board, flexible wiring board, and electronic device
JP2013055162A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2013191638A (en) * 2012-03-12 2013-09-26 Jx Nippon Mining & Metals Corp Rolled copper foil for printed wiring board
CN109777993A (en) * 2019-02-26 2019-05-21 昆山全亚冠环保科技有限公司 A kind of copper-gold alloy rolling mill practice
CN109777993B (en) * 2019-02-26 2021-03-16 昆山全亚冠环保科技有限公司 Copper-gold alloy rolling process

Similar Documents

Publication Publication Date Title
JP3856582B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP3856581B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP3009383B2 (en) Rolled copper foil and method for producing the same
JP4522972B2 (en) High gloss rolled copper foil for copper-clad laminates
JP4215093B2 (en) Rolled copper foil and method for producing the same
JP4466688B2 (en) Rolled copper foil
JP5752536B2 (en) Rolled copper foil
JP2009242846A (en) Copper alloy foil
JP5245813B2 (en) Rolled copper foil
JP2007107036A (en) Rolled copper alloy foil to be bent
JP3824593B2 (en) Rolled copper foil with high elongation
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP2000256765A (en) Rolled copper foil for flexible printed circuit board, excellent in bendability, and its manufacture
JP2001262296A (en) Rolled copper foil and its manufacturing process
JP5390852B2 (en) Rolled copper foil
JP3709109B2 (en) Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same
JP2002167632A (en) Rolled copper foil for flexible printed circuit board and its production method
JP3830680B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP2008038170A (en) Rolled copper foil
JP3986707B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
US8293033B2 (en) Rolled copper foil
JP5562218B2 (en) Rolled copper foil
JP5562217B2 (en) Rolled copper foil
JP2013189702A (en) Rolled copper foil and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20060913

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209