JP2014058705A - Rolled copper foil and copper-clad laminate - Google Patents

Rolled copper foil and copper-clad laminate Download PDF

Info

Publication number
JP2014058705A
JP2014058705A JP2012203109A JP2012203109A JP2014058705A JP 2014058705 A JP2014058705 A JP 2014058705A JP 2012203109 A JP2012203109 A JP 2012203109A JP 2012203109 A JP2012203109 A JP 2012203109A JP 2014058705 A JP2014058705 A JP 2014058705A
Authority
JP
Japan
Prior art keywords
maximum value
copper foil
axis
region surrounded
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012203109A
Other languages
Japanese (ja)
Inventor
Kaichiro Nakamuro
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012203109A priority Critical patent/JP2014058705A/en
Publication of JP2014058705A publication Critical patent/JP2014058705A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil having flexibility stably.SOLUTION: A maximum value Ia out of 4 values represented by (1) a maximum value I(0,0) of a strength in the first area surrounded by (φ1,Φ)=(0°,0°), (10°,0°), (0°,10°) and (10°,10°), (2) a maximum value I(90,0) of a strength in the second area surrounded by (φ1,Φ)=(80°,0°), (90°,0°), (80°,10°) and (90°,10°), (3) a maximum value I(0,90) of a strength in the third area, and (4) a maximum value I(90,90) of a strength in the fourth area, is 100 or more at φ2=0° in terms of an Euler angle (φ1,Φ,φ2) when positive pole point determination of a surface after annealing at 200°C for 0.5 hours and recrystallization is performed.

Description

本発明は、例えばフレキシブル配線板(FPC:Flexible Printed Circuit)に使用され、銅張積層板に適した圧延銅箔及び銅張積層板に関する。   The present invention relates to a rolled copper foil and a copper clad laminate suitable for a copper clad laminate, for example, used in a flexible printed circuit (FPC).

フレキシブル配線板(FPC)は樹脂層と銅箔を積層してなり、繰り返し屈曲部に好適に用いられる。このようなFPCに用いられる銅箔としては、屈曲性に優れた圧延銅箔が広く用いられている。圧延銅箔の屈曲性を向上させる方法として、再結晶焼鈍後の立方体集合組織を発達させる技術が報告されている(特許文献1)。又、再結晶焼鈍後の立方体集合組織を発達させる方法として、最終圧延加工度や圧延条件を規定することや(特許文献2)、圧延後に立方体方位を残すこと(特許文献3)が挙げられている。   A flexible wiring board (FPC) is formed by laminating a resin layer and a copper foil, and is preferably used for repeated bent portions. As copper foil used for such FPC, rolled copper foil excellent in flexibility is widely used. As a method for improving the flexibility of the rolled copper foil, a technique for developing a cubic texture after recrystallization annealing has been reported (Patent Document 1). In addition, as a method for developing a cube texture after recrystallization annealing, there are specified the final rolling degree and rolling conditions (Patent Document 2), and leaving the cube orientation after rolling (Patent Document 3). Yes.

特許第3009383号公報Japanese Patent No. 3009383 特開2009−185376号公報JP 2009-185376 A 特開2010−150597号公報JP 2010-150597 A

しかしながら、従来の立方体集合組織を発達させる方法は、最終圧延加工度を調整するため、立方体集合組織が成長する最終圧延前焼鈍時の銅箔素材の厚みを最終製品の厚みに応じて変更する、特殊な条件で圧延を行うなどの必要があり、生産性が低下するという問題がある。
また、従来は立方体集合組織の発達度を、銅箔表面の{200}面のX線回折強度を用いて評価していた。しかし、実際に銅箔が屈曲により変形する際の応力は銅箔面内方向であることから、銅箔の屈曲性に直接的に影響を考える場合、材料中の三次元的な結晶方位の配向が問題となる。
However, the conventional method for developing a cube texture is to adjust the final rolling work degree, the thickness of the copper foil material at the time of annealing before final rolling in which the cube texture grows is changed according to the thickness of the final product, It is necessary to perform rolling under special conditions, and there is a problem that productivity decreases.
Conventionally, the degree of development of the cubic texture has been evaluated using the X-ray diffraction intensity of the {200} plane of the copper foil surface. However, since the stress when the copper foil is actually deformed by bending is in the in-plane direction of the copper foil, when considering the direct influence on the flexibility of the copper foil, the orientation of the three-dimensional crystal orientation in the material Is a problem.

すなわち、本発明は上記の課題を解決するためになされたものであり、優れた屈曲性を安定して得られる圧延銅箔及び銅張積層板の提供を目的とする。   That is, this invention is made | formed in order to solve said subject, and it aims at provision of the rolled copper foil and copper clad laminated board which can obtain the outstanding flexibility stably.

本発明者らは種々検討した結果、銅箔全体が3次元的に特定の結晶方位に多く配向すると、優れた屈曲性が得られることを見出した。
すなわち本発明の圧延銅箔は、200℃で0.5時間加熱して再結晶させた後の表面をX線回折法を用いて正極点測定を行い、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、φ2=0°において、(1)(φ1,Φ)=(0°, 0°)、(10°, 0°)、(0°, 10°)、(10°, 10°)で囲まれる第1領域内での強度の最大値I(0,0)と、(2)(φ1,Φ)=(80°, 0°)、(90°, 0°)、(80°, 10°)、(90°, 10°)で囲まれる第2領域内での強度の最大値I(90,0)と、(3)(φ1,Φ)=(0°, 80°)、(0°, 90°)、(10°, 80°)、(10°, 90°)で囲まれる第3領域内での強度の最大値I(0,90)と、(4)(φ1,Φ)=(80°, 80°)、(80°, 90°)、(90°, 80°)、(90°, 90°)で囲まれる第4領域内での強度の最大値I(90,90)と、で表される4つの値のうち最大の値Iaが100以上である。
As a result of various studies, the present inventors have found that excellent flexibility can be obtained when the entire copper foil is oriented three-dimensionally in a specific crystal orientation.
That is, the rolled copper foil of the present invention was subjected to a positive electrode point measurement using an X-ray diffraction method on the surface after being recrystallized by heating at 200 ° C. for 0.5 hour, and the crystal [001] orientation and material ND When the rotation angle about the direction perpendicular to the plane including the direction is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is φ2, the ND axis is After rotating by φ1 as the rotation axis, it is rotated by φ in order to make the ND axis and z axis coincide with each other, and finally by rotating by φ2 around the [001] axis, the ND, TD, RD of the material and the crystal For Euler angles (φ1, Φ, φ2), which are pairs of angles that coincide with [001], [010], [100], at φ2 = 0 °, (1) (φ1, Φ) = (0 °, Within the first region surrounded by (0 °), (10 °, 0 °), (0 °, 10 °), (10 °, 10 °) Intensity values I (0,0) and (2) (φ1, Φ) = (80 °, 0 °), (90 °, 0 °), (80 °, 10 °), (90 °, (3) (φ1, Φ) = (0 °, 80 °), (0 °, 90 °), (0 °, 90 °), (2) 10 °, 80 °), maximum intensity I (0, 90) in the third region surrounded by (10 °, 90 °) and (4) (φ1, Φ) = (80 °, 80 ° ), (80 °, 90 °), (90 °, 80 °), and the maximum value I (90, 90) in the fourth region surrounded by (90 °, 90 °). The maximum value Ia among the four values is 100 or more.

又、本発明の圧延銅箔は、表面をX線回折法を用いて正極点測定を行い、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、φ2=0°において、(1)(φ1,Φ)=(0°, 0°)、(10°, 0°)、(0°, 10°)、(10°, 10°)で囲まれる第1領域内での強度の最大値I(0,0)と、(2)(φ1,Φ)=(80°, 0°)、(90°, 0°)、(80°, 10°)、(90°, 10°)で囲まれる第2領域内での強度の最大値I(90,0)と、(3)(φ1,Φ)=(0°, 80°)、(0°, 90°)、(10°, 80°)、(10°, 90°)で囲まれる第3領域内での強度の最大値I(0,90)と、(4)(φ1,Φ)=(80°, 80°)、(80°, 90°)、(90°, 80°)、(90°, 90°)で囲まれる第4領域内での強度の最大値I(90,90)と、で表される4つの値のうち最大の値Iaが100以上である。   Further, the rolled copper foil of the present invention has a positive electrode point measurement using an X-ray diffraction method on the surface, and a rotation angle about a direction perpendicular to a plane including the [001] orientation of the crystal and the ND direction of the material. Φ, the rotation angle about the ND direction as φ1, and the rotation angle about the [001] direction as φ2, after rotating the ND axis by φ1 as the rotation axis, the ND axis and the z axis Is rotated by Φ and finally rotated by φ2 around the [001] axis so that the ND, TD, RD of the material and the [001], [010], [100] of the crystal match. For Euler angles (φ1, Φ, φ2), which are pairs of angles, at φ2 = 0 °, (1) (φ1, Φ) = (0 °, 0 °), (10 °, 0 °), (0 ° , 10 [deg.], (10 [deg.], 10 [deg.]), The maximum intensity I (0,0) in the first region, and (2) ([phi] 1, [Phi] = Maximum value I of intensity (90, 0) in the second region surrounded by (80 °, 0 °), (90 °, 0 °), (80 °, 10 °), (90 °, 10 °) ) And (3) (φ1, Φ) = (0 °, 80 °), (0 °, 90 °), (10 °, 80 °), (10 °, 90 °) Intensity values I (0, 90) and (4) (φ1, Φ) = (80 °, 80 °), (80 °, 90 °), (90 °, 80 °), (90 ° , 90 °), the maximum value Ia (90, 90) in the fourth region surrounded by the fourth region is 100 or more.

前記最大値Iaと、φ2=0°において前記第1領域〜前記第4領域を除くいずれかの測定点での強度の最大値Ibとの比Ia/Ibが5以上であることが好ましい。
最終冷間圧延前でかつ再結晶焼鈍後において、前記比Ia/Ibが4以上であることが好ましい。
最終冷間圧延加工度をηとし、η=ln{(最終冷間圧延前の厚み)/(最終冷間圧延後の厚み)}で表したとき、η≧2.3であることが好ましい。
It is preferable that a ratio Ia / Ib between the maximum value Ia and the maximum value Ib of the intensity at any measurement point excluding the first region to the fourth region at φ2 = 0 ° is 5 or more.
The ratio Ia / Ib is preferably 4 or more before final cold rolling and after recrystallization annealing.
When the final cold rolling degree is η, and η = ln {(thickness before final cold rolling) / (thickness after final cold rolling)}, it is preferable that η ≧ 2.3.

本発明の銅張積層板は、前記銅箔と樹脂とからなる。   The copper clad laminate of the present invention comprises the copper foil and resin.

本発明によれば、屈曲性に優れる圧延銅箔及び銅張積層板を安定して得ることができる。   According to the present invention, a rolled copper foil and a copper clad laminate having excellent flexibility can be obtained stably.

オイラー角(φ1、Φ、φ2)を示す図である。It is a figure which shows Euler angles ((phi) 1, (phi), (phi) 2). 第1領域(I)、第2領域(II)、第3領域(III)、第4領域(IV)を示す図である。It is a figure which shows 1st area | region (I), 2nd area | region (II), 3rd area | region (III), and 4th area | region (IV). 屈曲試験装置により屈曲疲労寿命の測定を行う方法を示す図である。It is a figure which shows the method of measuring a bending fatigue life with a bending test apparatus.

以下、本発明の実施形態に係る圧延銅箔について説明する。本発明の実施形態に係る圧延銅箔は、屈曲性に優れるため銅張積層板に好適に使用することができると共に、繰返し変形に対して高い耐性を示すことから、電池の集電体やタブ等にも好適である。   Hereinafter, the rolled copper foil which concerns on embodiment of this invention is demonstrated. Since the rolled copper foil according to the embodiment of the present invention is excellent in flexibility, it can be suitably used for a copper-clad laminate and exhibits high resistance to repeated deformation. Etc. are also suitable.

<成分組成>
銅箔の成分組成としては、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)無酸素銅(OFC)を好適に用いることができる。又、添加元素としてSnを10〜200質量ppm含有し、及び/又はAgを10〜500質量ppm含有し、残部をタフピッチ銅又は無酸素銅としてもよい。
又、添加元素としてAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、B、及びVの群からなる元素の一種以上を合計で10〜500質量ppm含有し、残部をタフピッチ銅又は無酸素銅としてもよい。
なお、FPCに用いられる圧延銅箔は屈曲性を要求されることから、圧延銅箔の厚みは20μm以下が好ましい。圧延銅箔の厚みの下限は特に限定されないが、製造性を考慮すると例えば4μm以上が好ましく、より好ましくは5μm以上である。
<Ingredient composition>
As the component composition of the copper foil, tough pitch copper (TPC) standardized to JIS-H3100 (C1100) or JIS-H3100 (C1020) oxygen-free copper (OFC) can be suitably used. Further, Sn as an additive element may be contained in an amount of 10 to 200 ppm by mass and / or Ag may be contained in an amount of 10 to 500 ppm by mass, and the remainder may be made of tough pitch copper or oxygen-free copper.
Further, 10 to 500 mass in total of at least one element selected from the group consisting of Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, B, and V as additive elements. It may contain ppm, and the balance may be tough pitch copper or oxygen-free copper.
In addition, since the rolled copper foil used for FPC is requested | required of flexibility, the thickness of a rolled copper foil has preferable 20 micrometers or less. The lower limit of the thickness of the rolled copper foil is not particularly limited, but in consideration of manufacturability, for example, 4 μm or more is preferable, and more preferably 5 μm or more.

<銅箔の結晶方位>
本発明の第1の実施形態に係る圧延銅箔は、200℃で0.5時間加熱して再結晶させた後の表面をX線回折法を用いて正極点測定を行い、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、オイラー角(φ1,Φ,φ2)につき、φ2=0°において、
(1)(φ1,Φ)=(0°, 0°)、(10°, 0°)、(0°, 10°)、(10°, 10°)で囲まれる第1領域内での強度の最大値I(0,0)と、
(2)(φ1,Φ)=(80°, 0°)、(90°, 0°)、(80°, 10°)、(90°, 10°)で囲まれる第2領域内での強度の最大値I(90,0)と、
(3)(φ1,Φ)=(0°, 80°)、(0°, 90°)、(10°, 80°)、(10°, 90°)で囲まれる第3領域内での強度の最大値I(0,90)と、
(4)(φ1,Φ)=(80°, 80°)、(80°, 90°)、(90°, 80°)、(90°, 90°)で囲まれる第4領域内での強度の最大値I(90,90)と、
で表される4つの値のうち最大の値Iaが100以上である。
<Crystal orientation of copper foil>
In the rolled copper foil according to the first embodiment of the present invention, the surface after being recrystallized by heating at 200 ° C. for 0.5 hour is subjected to positive electrode spot measurement using an X-ray diffraction method, and [001 The rotation angle about the direction perpendicular to the plane including the orientation and the ND direction of the material is expressed as Φ, the rotation angle about the ND direction as φ1, and the rotation angle about the [001] direction as φ2. In the case of Euler angles (φ1, Φ, φ2) at φ2 = 0 °,
(1) Intensity within the first region surrounded by (φ1, Φ) = (0 °, 0 °), (10 °, 0 °), (0 °, 10 °), (10 °, 10 °) Maximum value I (0,0),
(2) Strength in the second region surrounded by (φ1, Φ) = (80 °, 0 °), (90 °, 0 °), (80 °, 10 °), (90 °, 10 °) Maximum value I (90,0),
(3) Strength in the third region surrounded by (φ1, Φ) = (0 °, 80 °), (0 °, 90 °), (10 °, 80 °), (10 °, 90 °) Maximum value I (0,90),
(4) Strength in the fourth region surrounded by (φ1, Φ) = (80 °, 80 °), (80 °, 90 °), (90 °, 80 °), (90 °, 90 °) Maximum value I (90,90),
The maximum value Ia among the four values represented by is 100 or more.

又、本発明の第2の実施形態に係る圧延銅箔は、200℃で0.5時間加熱を行わない表面をX線回折法を用いて正極点測定を行い、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、オイラー角(φ1,Φ,φ2)につき、φ2=0°において、
(1)(φ1,Φ)=(0°, 0°)、(10°, 0°)、(0°, 10°)、(10°, 10°)で囲まれる第1領域内での強度の最大値I(0,0)と、
(2)(φ1,Φ)=(80°, 0°)、(90°, 0°)、(80°, 10°)、(90°, 10°)で囲まれる第2領域内での強度の最大値I(90,0)と、
(3)(φ1,Φ)=(0°, 80°)、(0°, 90°)、(10°, 80°)、(10°, 90°)で囲まれる第3領域内での強度の最大値I(0,90)と、
(4)(φ1,Φ)=(80°, 80°)、(80°, 90°)、(90°, 80°)、(90°, 90°)で囲まれる第4領域内での強度の最大値I(90,90)と、
で表される4つの値のうち最大の値Iaが100以上である。
なお、第1の実施形態に係る圧延銅箔は、銅箔の製造工程にて最終冷間圧延の後に200℃で0.5時間に相当する加熱をしないで再結晶させずに出荷した後、銅張積層板の製造工程へ供給する場合の出荷状態の銅箔を想定している。一方、第2の実施形態に係る圧延銅箔は、銅箔の製造工程にて最終冷間圧延後に200℃で0.5時間に相当する加熱をし再結晶させてから出荷した後、銅張積層板の製造工程へ供給する場合の出荷状態の銅箔を想定している。
In addition, the rolled copper foil according to the second embodiment of the present invention performs positive point measurement on the surface that is not heated at 200 ° C. for 0.5 hour using the X-ray diffraction method, and the [001] orientation of the crystal When the rotation angle about the direction perpendicular to the plane including the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is φ2 For Euler angles (φ1, Φ, φ2), at φ2 = 0 °,
(1) Intensity within the first region surrounded by (φ1, Φ) = (0 °, 0 °), (10 °, 0 °), (0 °, 10 °), (10 °, 10 °) Maximum value I (0,0),
(2) Strength in the second region surrounded by (φ1, Φ) = (80 °, 0 °), (90 °, 0 °), (80 °, 10 °), (90 °, 10 °) Maximum value I (90,0),
(3) Strength in the third region surrounded by (φ1, Φ) = (0 °, 80 °), (0 °, 90 °), (10 °, 80 °), (10 °, 90 °) Maximum value I (0,90),
(4) Strength in the fourth region surrounded by (φ1, Φ) = (80 °, 80 °), (80 °, 90 °), (90 °, 80 °), (90 °, 90 °) Maximum value I (90,90),
The maximum value Ia among the four values represented by is 100 or more.
The rolled copper foil according to the first embodiment is shipped without recrystallization without heating corresponding to 0.5 hours at 200 ° C. after the final cold rolling in the copper foil manufacturing process, It assumes a copper foil in a shipping state when it is supplied to a copper clad laminate manufacturing process. On the other hand, the rolled copper foil according to the second embodiment is shipped after being recrystallized by heating corresponding to 0.5 hours at 200 ° C. after the final cold rolling in the copper foil manufacturing process. It assumes a copper foil in a shipping state when supplied to a manufacturing process of a laminated board.

ここで、オイラー角(φ1、Φ、φ2)は、図1に示すように、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組(φ1,Φ,φ2)をいう。オイラー角(φ1、Φ、φ2)は、図1に示すBunge方式で表される。又、「RD」は圧延方向、「ND」は圧延面に垂直な方向、「TD」は幅方向である。
又、上記した第1領域(I)、第2領域(II)、第3領域(III)、第4領域(IV)は図2に示される。つまり、各第1領域(I)〜第4領域(IV)は、φ1及びΦが一辺10度の正方形の領域である。
そして、Iaが100未満であると、第1領域(I)〜第4領域(IV)に含まれる方位以外の方位を持つ結晶粒の割合が多くなり、屈曲時に応力印加方向とすべり方向が近いためにすべり変形を起こしにくく、そのために屈曲性が低下しやすくなる。
なお、Iaの上限は特に限定されないが、典型的には250以下、さらに典型的には200以下である。
Here, as shown in FIG. 1, the Euler angles (φ1, Φ, φ2) are rotated by φ1 with the ND axis as a rotation axis, and then rotated by Φ to match the ND axis and the z axis, Finally, a pair of angles (φ1, Φ, φ2) in which the ND, TD, RD of the material and the [001], [010], [100] of the crystal coincide with each other by rotating by φ2 around the [001] axis. Say. Euler angles (φ1, Φ, φ2) are represented by the Bunge method shown in FIG. “RD” is the rolling direction, “ND” is the direction perpendicular to the rolling surface, and “TD” is the width direction.
Further, the first region (I), the second region (II), the third region (III), and the fourth region (IV) are shown in FIG. That is, each of the first region (I) to the fourth region (IV) is a square region having φ1 and Φ of 10 degrees on each side.
When Ia is less than 100, the ratio of crystal grains having orientations other than those included in the first region (I) to the fourth region (IV) increases, and the stress application direction and the slip direction are close when bent. For this reason, slip deformation is unlikely to occur, and the flexibility tends to decrease.
The upper limit of Ia is not particularly limited, but is typically 250 or less, and more typically 200 or less.

さらに、Iaと、φ2=0°において第1領域〜第4領域を除くいずれかの測定点(つまり、図2のφ1−Φ平面)での強度の最大値Ibとの比Ia/Ibが5以上であると、1領域(I)〜第4領域(IV)に含まれる方位を持つ結晶粒の割合が多くなるので、屈曲性がさらに向上する。比Ia/Ibは高いほど屈曲性が高くなるが、典型的には25以下の値となる。   Furthermore, the ratio Ia / Ib between Ia and the maximum intensity value Ib at any measurement point (that is, the φ1-Φ plane in FIG. 2) at φ2 = 0 ° excluding the first region to the fourth region is 5 If it is above, since the ratio of the crystal grains having the orientation included in the first region (I) to the fourth region (IV) is increased, the flexibility is further improved. The higher the ratio Ia / Ib, the higher the flexibility, but typically a value of 25 or less.

<圧延銅箔の製造>
本発明の圧延銅箔は、インゴットを熱間圧延後、冷間圧延と焼鈍を繰り返した後、焼鈍前冷間圧延、再結晶焼鈍、及び最終冷間圧延して製造することができる。
ここで、再結晶焼鈍後の材料を、ηが2.3以上の加工度で最終冷間圧延して製造することが好ましい。ηが2.3未満であると、圧延銅箔の上記Iaが100未満になる、または上記Ia/Ibが5未満になることがある。
なお、最終圧延加工度をηとしたとき、加工度η=ln{(最終冷間圧延前の厚み)/(最終冷間圧延後の厚み)}で表される。
又、最終冷間圧延前でかつ再結晶焼鈍後の試料において、比Ia/Ibが4以上となるよう、最終冷間圧延前の再結晶焼鈍条件を調整することが望ましい。なお、最終冷間圧延前でかつ再結晶焼鈍後の試料の比Ia/Ibの上限は特に制限されないが、典型的には10以下である。
<Manufacture of rolled copper foil>
The rolled copper foil of the present invention can be produced by subjecting an ingot to hot rolling, cold rolling and annealing, and then cold rolling before annealing, recrystallization annealing, and final cold rolling.
Here, the material after recrystallization annealing is preferably manufactured by final cold rolling at a workability of η of 2.3 or more. When η is less than 2.3, the Ia of the rolled copper foil may be less than 100, or the Ia / Ib may be less than 5.
In addition, when the final rolling work degree is η, the work degree is represented by η = ln {(thickness before final cold rolling) / (thickness after final cold rolling)}.
Further, it is desirable to adjust the recrystallization annealing conditions before the final cold rolling so that the ratio Ia / Ib is 4 or more in the sample before the final cold rolling and after the recrystallization annealing. The upper limit of the ratio Ia / Ib of the sample before final cold rolling and after recrystallization annealing is not particularly limited, but is typically 10 or less.

具体的には、最終冷間圧延前のIa/Ibを4以上に制御するためには、最終冷間圧延前の再結晶焼鈍の際の昇温速度を5〜50℃/sとすると好ましい。該昇温速度が速すぎると結晶方位がランダムとなり、Ia/Ibが低下する。該昇温速度が遅すぎると、生産性が低下する。   Specifically, in order to control Ia / Ib before the final cold rolling to 4 or more, it is preferable that the rate of temperature increase during recrystallization annealing before the final cold rolling is 5 to 50 ° C./s. If the heating rate is too high, the crystal orientation becomes random and Ia / Ib decreases. If the rate of temperature increase is too slow, the productivity is lowered.

まず、表1に記載の組成の銅インゴットを製造し、厚み10mmまで熱間圧延を行った。その後、冷間圧延と焼鈍とを1回以上繰り返した後、所定の厚みまで冷間圧延した後に700〜800℃の温度に設定した焼鈍炉で再結晶焼鈍した。さらに、表2に示す加工度(η)で最終冷間圧延し、表1に示す厚みの銅箔を得た。なお、最終冷間圧延前の再結晶焼鈍の際の昇温速度及び最終冷間圧延の際のηを表2に示す。   First, a copper ingot having the composition shown in Table 1 was manufactured and hot-rolled to a thickness of 10 mm. Then, after repeating cold rolling and annealing 1 or more times, it cold-rolled to predetermined thickness, Then, it recrystallized annealing with the annealing furnace set to the temperature of 700-800 degreeC. Furthermore, the final cold rolling was performed at a workability (η) shown in Table 2 to obtain a copper foil having a thickness shown in Table 1. Table 2 shows the rate of temperature increase during recrystallization annealing before final cold rolling and η during final cold rolling.

<配向度>
最終冷間圧延して得られた銅箔試料を200℃で0.5時間加熱して再結晶させた後、X線回折法を用いて試料の表面の正極点測定を行った。X線回折装置は、株式会社リガク製RINT−2000を用い、Schulz反射法で測定を行った。測定条件は以下のとおりである。
X線源:銅、加速電圧:30kV、管電流:100mA、発散スリット:1/2°
発散縦制限スリット:1.2mm、散乱スリット:4mm、受光スリット:4mm
α角度ステップ:5°、β角度ステップ:5°、計数時間:2秒/ステップ
得られた測定結果から株式会社ノルム工学製の結晶解析プログラム(製品名:Standard)の結晶方位分布関数を用い、第1領域(I)〜第4領域(IV)の強度の最大値I(0,0)、I(90,0)、I(0,90)、I(90,90)をそれぞれ求め、これら4つの最大値のうち最大の値Iaを求めた。さらにIbを求めた。
最終冷間圧延前であって、700〜800℃の温度に設定した焼鈍炉で再結晶焼鈍した後の上記試料についても、同様にIa、Ibを求めた。
なお、正極点測定におけるα角度とβ角度のステップ角は、より小さい値(たとえば1°)としても同様の結果が得られたが、測定に長時間を要するため、実際上は5°ステップが適当である。
<Orientation degree>
The copper foil sample obtained by final cold rolling was recrystallized by heating at 200 ° C. for 0.5 hour, and then the positive electrode spot measurement on the surface of the sample was performed using the X-ray diffraction method. The X-ray diffractometer was measured by the Schulz reflection method using RINT-2000 manufactured by Rigaku Corporation. The measurement conditions are as follows.
X-ray source: copper, acceleration voltage: 30 kV, tube current: 100 mA, diverging slit: 1/2 °
Divergence length restriction slit: 1.2 mm, scattering slit: 4 mm, light receiving slit: 4 mm
α angle step: 5 °, β angle step: 5 °, counting time: 2 seconds / step The crystal orientation distribution function of the crystal analysis program (product name: Standard) manufactured by Norm Engineering Co., Ltd. is used from the obtained measurement results. The maximum values I (0,0), I (90,0), I (0,90), and I (90,90) of the first region (I) to the fourth region (IV) are obtained, respectively. The maximum value Ia was determined from the four maximum values. Further, Ib was obtained.
Ia and Ib were similarly calculated | required also about the said sample before refining annealing in the annealing furnace set to the temperature of 700-800 degreeC before final cold rolling.
Note that the same result was obtained even when the step angle of the α angle and β angle in the positive electrode point measurement was set to a smaller value (for example, 1 °). However, since the measurement takes a long time, the step angle is actually 5 °. Is appropriate.

<屈曲性>
最終冷間圧延して得られた銅箔試料を200℃で0.5時間加熱して再結晶させた後、図3に示す屈曲試験装置により、屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、被試験銅箔1は、矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、銅箔1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:1.5mm、振動ストローク:20mm、振動速度:1000回/分。
又、以下の基準で、屈曲性を評価した。評価が◎、○、又は△であれば屈曲性が良好である。
◎:屈曲回数が20万回以上、屈曲性が最も良好である
○:屈曲回数が10万回以上20万回未満、屈曲性が良好である
△:屈曲回数が5万回以上10万回未満、屈曲性に優れる
×:屈曲回数が5万回未満、屈曲性が劣る
<Flexibility>
After the copper foil sample obtained by final cold rolling was recrystallized by heating at 200 ° C. for 0.5 hour, the bending fatigue life was measured by a bending test apparatus shown in FIG. This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and a copper foil 1 to be tested is fixed to the apparatus at a total of four points including a screw 2 part indicated by an arrow and a tip part of 3. Is done. When the vibration part 3 is driven up and down, the intermediate part of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
The test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, curvature radius r : 1.5 mm, vibration stroke: 20 mm, vibration speed: 1000 times / min.
Further, the flexibility was evaluated according to the following criteria. If evaluation is (double-circle), (circle), or (triangle | delta), flexibility is favorable.
◎: The number of bendings is 200,000 times or more and the flexibility is the best. ○: The number of bendings is 100,000 or more and less than 200,000 times, and the flexibility is good. △: The number of bendings is 50,000 or more and less than 100,000. , Excellent flexibility ×: less than 50,000 times of bending, poor flexibility

銅箔の評価結果及び銅箔の製造条件を表1、表2に示す。
ここで、表1中の組成欄の「TPC」はJIS−H3100(C1100)に規格するタフピッチ銅(TPC)を表し、「OFC」はJIS−H3100(C1020)に規格する無酸素銅(OFC)を表す。従って、例えば、表1中の組成欄の「190ppmAg−TPC」はJIS−H3100(C1100)に規格するタフピッチ銅(TPC)に190質量ppmのAgを添加した組成であることを意味する。また、表1中の組成欄の「100ppmSn−OFC」はJIS−H3100(C1020)に規格する無酸素銅(OFC)に100質量ppmのSnを添加した組成であることを意味する。
Tables 1 and 2 show the evaluation results of the copper foil and the manufacturing conditions of the copper foil.
Here, “TPC” in the composition column in Table 1 represents tough pitch copper (TPC) standardized to JIS-H3100 (C1100), and “OFC” represents oxygen-free copper (OFC) standardized to JIS-H3100 (C1020). Represents. Therefore, for example, “190 ppmAg-TPC” in the composition column in Table 1 means a composition in which 190 mass ppm of Ag is added to tough pitch copper (TPC) standardized to JIS-H3100 (C1100). In addition, “100 ppm Sn—OFC” in the composition column of Table 1 means a composition in which 100 mass ppm of Sn is added to oxygen-free copper (OFC) specified in JIS-H3100 (C1020).

Figure 2014058705
Figure 2014058705

Figure 2014058705
Figure 2014058705

表1から明らかなように、Iaが100以上であり、る各実施例の場合、屈曲性が優れたものとなった。特に、Ia/Ibが5以上を満たす各実施例の場合、特に屈曲性が優れたものとなった。   As is clear from Table 1, Ia was 100 or more, and in each of the examples, the flexibility was excellent. In particular, in each example where Ia / Ib satisfies 5 or more, the flexibility was particularly excellent.

一方Iaが100未満である比較例1〜4の場合、屈曲性が劣った。   On the other hand, in Comparative Examples 1 to 4 where Ia was less than 100, the flexibility was inferior.

なお、表2から明らかなように、各実施例の場合、最終冷間圧延前でかつ再結晶焼鈍後の試料において、比Ia/Ibが4以上であった。またηが2.3未満であった実施例23は、ηが2.3以上である他の実施例に比べて、銅箔試料を200℃で0.5時間加熱した後の屈曲性が低くなった。
一方、再結晶焼鈍の際の昇温速度が50℃/sを超えた比較例1〜4の場合、最終冷間圧延前でかつ再結晶焼鈍後の試料において、比Ia/Ibが4未満となった。そのため、最終冷間圧延加工度ηが2.3未満である比較例1、3、及び最終冷間圧延加工度ηが2.3以上である比較例2、4はともに、銅箔を200℃で0.5時間加熱した後のIaが100未満となり、かつIa/Ibが5未満となり、その結果十分な屈曲性が得られなかった。
As apparent from Table 2, in each example, the ratio Ia / Ib was 4 or more in the sample before the final cold rolling and after the recrystallization annealing. In addition, Example 23 in which η was less than 2.3 had lower flexibility after heating the copper foil sample at 200 ° C. for 0.5 hours than other examples in which η was 2.3 or more. became.
On the other hand, in the case of Comparative Examples 1 to 4 in which the temperature increase rate during recrystallization annealing exceeded 50 ° C./s, the ratio Ia / Ib was less than 4 in the sample before the final cold rolling and after recrystallization annealing. became. Therefore, in Comparative Examples 1 and 3 in which the final cold rolling degree η is less than 2.3, and in Comparative Examples 2 and 4 in which the final cold rolling degree η is 2.3 or more, the copper foil is 200 ° C. Ia after heating for 0.5 hour was less than 100 and Ia / Ib was less than 5, and as a result, sufficient flexibility was not obtained.

Claims (6)

200℃で0.5時間加熱して再結晶させた後の表面をX線回折法を用いて正極点測定を行い、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、
ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、φ2=0°において、
(1)(φ1,Φ)=(0°, 0°)、(10°, 0°)、(0°, 10°)、(10°, 10°)で囲まれる第1領域内での強度の最大値I(0,0)と、
(2)(φ1,Φ)=(80°, 0°)、(90°, 0°)、(80°, 10°)、(90°, 10°)で囲まれる第2領域内での強度の最大値I(90,0)と、
(3)(φ1,Φ)=(0°, 80°)、(0°, 90°)、(10°, 80°)、(10°, 90°)で囲まれる第3領域内での強度の最大値I(0,90)と、
(4)(φ1,Φ)=(80°, 80°)、(80°, 90°)、(90°, 80°)、(90°, 90°)で囲まれる第4領域内での強度の最大値I(90,90)と、
で表される4つの値のうち最大の値Iaが100以上である圧延銅箔。
The surface after being recrystallized by heating at 200 ° C. for 0.5 hours is subjected to positive electrode spot measurement using an X-ray diffraction method,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When written as φ2,
After rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally rotated by φ2 around the [001] axis, so that the materials ND, TD, RD And Euler angles (φ1, Φ, φ2), which is a set of angles at which [001], [010], and [100] of the crystal coincide with each other, at φ2 = 0 °,
(1) Intensity within the first region surrounded by (φ1, Φ) = (0 °, 0 °), (10 °, 0 °), (0 °, 10 °), (10 °, 10 °) Maximum value I (0,0),
(2) Strength in the second region surrounded by (φ1, Φ) = (80 °, 0 °), (90 °, 0 °), (80 °, 10 °), (90 °, 10 °) Maximum value I (90,0),
(3) Strength in the third region surrounded by (φ1, Φ) = (0 °, 80 °), (0 °, 90 °), (10 °, 80 °), (10 °, 90 °) Maximum value I (0,90),
(4) Strength in the fourth region surrounded by (φ1, Φ) = (80 °, 80 °), (80 °, 90 °), (90 °, 80 °), (90 °, 90 °) Maximum value I (90,90),
The rolled copper foil whose maximum value Ia is 100 or more among four values represented by these.
表面をX線回折法を用いて正極点測定を行い、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、
ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、φ2=0°において、
(1)(φ1,Φ)=(0°, 0°)、(10°, 0°)、(0°, 10°)、(10°, 10°)で囲まれる第1領域内での強度の最大値I(0,0)と、
(2)(φ1,Φ)=(80°, 0°)、(90°, 0°)、(80°, 10°)、(90°, 10°)で囲まれる第2領域内での強度の最大値I(90,0)と、
(3)(φ1,Φ)=(0°, 80°)、(0°, 90°)、(10°, 80°)、(10°, 90°)で囲まれる第3領域内での強度の最大値I(0,90)と、
(4)(φ1,Φ)=(80°, 80°)、(80°, 90°)、(90°, 80°)、(90°, 90°)で囲まれる第4領域内での強度の最大値I(90,90)と、
で表される4つの値のうち最大の値Iaが100以上である圧延銅箔。
The surface is subjected to positive electrode spot measurement using an X-ray diffraction method,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When written as φ2,
After rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally rotated by φ2 around the [001] axis, so that the materials ND, TD, RD And Euler angles (φ1, Φ, φ2), which is a set of angles at which [001], [010], and [100] of the crystal coincide with each other, at φ2 = 0 °,
(1) Intensity within the first region surrounded by (φ1, Φ) = (0 °, 0 °), (10 °, 0 °), (0 °, 10 °), (10 °, 10 °) Maximum value I (0,0),
(2) Strength in the second region surrounded by (φ1, Φ) = (80 °, 0 °), (90 °, 0 °), (80 °, 10 °), (90 °, 10 °) Maximum value I (90,0),
(3) Strength in the third region surrounded by (φ1, Φ) = (0 °, 80 °), (0 °, 90 °), (10 °, 80 °), (10 °, 90 °) Maximum value I (0,90),
(4) Strength in the fourth region surrounded by (φ1, Φ) = (80 °, 80 °), (80 °, 90 °), (90 °, 80 °), (90 °, 90 °) Maximum value I (90,90),
The rolled copper foil whose maximum value Ia is 100 or more among four values represented by these.
前記最大値Iaと、
φ2=0°において前記第1領域〜前記第4領域を除くいずれかの測定点での強度の最大値Ibとの比Ia/Ibが5以上である、請求項1又は2に記載の圧延銅箔。
The maximum value Ia;
The rolled copper according to claim 1 or 2, wherein a ratio Ia / Ib to a maximum intensity value Ib at any measurement point excluding the first region to the fourth region at φ2 = 0 ° is 5 or more. Foil.
最終冷間圧延前でかつ再結晶焼鈍後において、前記比Ia/Ibが4以上である、請求項1〜3のいずれかに記載の圧延銅箔。 The rolled copper foil according to any one of claims 1 to 3, wherein the ratio Ia / Ib is 4 or more before final cold rolling and after recrystallization annealing. 最終冷間圧延加工度をηとし、η=ln{(最終冷間圧延前の厚み)/(最終冷間圧延後の厚み)}で表したとき、η≧2.3である請求項に記載の圧延銅箔。 The degree of final cold rolling is η, and η ≧ 2.3 when expressed as η = ln {(thickness before final cold rolling) / (thickness after final cold rolling)}. Rolled copper foil. 請求項1〜5のいずれかに記載の銅箔と樹脂とからなる銅張積層板。 The copper clad laminated board which consists of copper foil and resin in any one of Claims 1-5.
JP2012203109A 2012-09-14 2012-09-14 Rolled copper foil and copper-clad laminate Pending JP2014058705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012203109A JP2014058705A (en) 2012-09-14 2012-09-14 Rolled copper foil and copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203109A JP2014058705A (en) 2012-09-14 2012-09-14 Rolled copper foil and copper-clad laminate

Publications (1)

Publication Number Publication Date
JP2014058705A true JP2014058705A (en) 2014-04-03

Family

ID=50615427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203109A Pending JP2014058705A (en) 2012-09-14 2012-09-14 Rolled copper foil and copper-clad laminate

Country Status (1)

Country Link
JP (1) JP2014058705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058704A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2018016823A (en) * 2016-07-25 2018-02-01 古河電気工業株式会社 Copper alloy plate material for heat dissipation member, and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
JP2013108122A (en) * 2011-11-18 2013-06-06 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat radiating property and repeated bending workability
JP2013166971A (en) * 2012-02-14 2013-08-29 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat dissipation and repeated bending workability
JP2014058704A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil
JP2013108122A (en) * 2011-11-18 2013-06-06 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat radiating property and repeated bending workability
JP2013166971A (en) * 2012-02-14 2013-08-29 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat dissipation and repeated bending workability
JP2014058704A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058704A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2018016823A (en) * 2016-07-25 2018-02-01 古河電気工業株式会社 Copper alloy plate material for heat dissipation member, and method for producing the same

Similar Documents

Publication Publication Date Title
JP5752536B2 (en) Rolled copper foil
JP5320638B2 (en) Rolled copper foil and method for producing the same
JP4992940B2 (en) Rolled copper foil
JP4466688B2 (en) Rolled copper foil
JP5245813B2 (en) Rolled copper foil
JP6696895B2 (en) Rolled copper foil, rolled copper foil manufacturing method, flexible flat cable, flexible flat cable manufacturing method
KR20180137040A (en) Copper alloy wire material and manufacturing method thereof
JP2010150597A (en) Rolled copper foil
JP5411357B2 (en) Rolled copper foil
JP2014058705A (en) Rolled copper foil and copper-clad laminate
CN104024463B (en) Rolled copper foil
JP6182372B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
US20090173414A1 (en) Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil
JP5126435B1 (en) Rolled copper foil
JP5126434B1 (en) Rolled copper foil
JP4354930B2 (en) Low gloss rolled copper foil for copper-clad laminates
JP5778460B2 (en) Rolled copper foil, method for producing the same, and copper-clad laminate
JP5631847B2 (en) Rolled copper foil
JP6190646B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
JP2014058704A (en) Rolled copper foil
JP5794817B2 (en) Copper alloy sheet and method for producing the same
KR101376037B1 (en) Rolled copper foil
KR20130095203A (en) Rolled copper foil
JP5683432B2 (en) Rolled copper foil
KR20130129053A (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160523