JP2014058704A - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP2014058704A
JP2014058704A JP2012203065A JP2012203065A JP2014058704A JP 2014058704 A JP2014058704 A JP 2014058704A JP 2012203065 A JP2012203065 A JP 2012203065A JP 2012203065 A JP2012203065 A JP 2012203065A JP 2014058704 A JP2014058704 A JP 2014058704A
Authority
JP
Japan
Prior art keywords
less
copper foil
box number
box
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012203065A
Other languages
Japanese (ja)
Inventor
Kaichiro Nakamuro
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012203065A priority Critical patent/JP2014058704A/en
Publication of JP2014058704A publication Critical patent/JP2014058704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil stably providing flexibility.SOLUTION: When a crystal orientation in an RD direction is displayed with a stereo triangle after heating at 200°C for 0.5 hours, 36 boxes are displayed by dividing the stereo triangle display by 5 degrees with ω and ψ respectively, a [001] direction is set as a box number 1 and thereafter box numbers are increased with increasing ω and ψ, then the box number of a [111] direction is set as 36, where ψ is an angle between the [100] direction and the RD direction of the sample, ω is a value obtained by tanω=tanλ tanψ, λ is an angle between the [001] direction and an ND direction of the sample, a rolled copper foil satisfies an average strength Iof the box number 1 of 20 or more, any average strength I, Iand Iof crystal orientations corresponding the box numbers 7, 11 and 16 of 1.5 or less, 1.0 or less, and 0.5 or less respectively.

Description

本発明は、例えばフレキシブル配線板(FPC:Flexible Printed Circuit)に使用され、銅張積層板に適した圧延銅箔に関する。   The present invention relates to a rolled copper foil used for, for example, a flexible printed circuit (FPC) and suitable for a copper-clad laminate.

フレキシブル配線板(FPC)は樹脂層と銅箔を積層してなり、繰り返し屈曲部に好適に用いられる。このようなFPCに用いられる銅箔としては、屈曲性に優れた圧延銅箔が広く用いられている。圧延銅箔の屈曲性を向上させる方法として、再結晶焼鈍後の立方体集合組織を発達させる技術が報告されている(特許文献1)。又、再結晶焼鈍後の立方体集合組織を発達させる方法として、最終冷間圧延加工度や圧延条件を規定することや(特許文献2)、最終冷間圧延後に立方体方位を残すこと(特許文献3)が挙げられている。   A flexible wiring board (FPC) is formed by laminating a resin layer and a copper foil, and is preferably used for repeated bent portions. As copper foil used for such FPC, rolled copper foil excellent in flexibility is widely used. As a method for improving the flexibility of the rolled copper foil, a technique for developing a cubic texture after recrystallization annealing has been reported (Patent Document 1). Further, as a method of developing a cube texture after recrystallization annealing, the final cold rolling degree and rolling conditions are specified (Patent Document 2), or the cube orientation is left after the final cold rolling (Patent Document 3). ).

特許第3009383号公報Japanese Patent No. 3009383 特開2009−185376号公報JP 2009-185376 A 特開2010−150597号公報JP 2010-150597 A

しかしながら、従来の立方体集合組織を発達させる方法は、最終冷間圧延加工度を調整するため、立方体集合組織が成長する最終冷間圧延前焼鈍時の銅箔素材の厚みを最終製品の厚みに応じて変更する、特殊な条件で冷間圧延を行うなどの必要があり、生産性が低下するという問題がある。
また、従来は立方体集合組織の発達度を、銅箔表面の{200}面のX線回折平均強度を用いて評価していた。しかし、実際に銅箔が屈曲により変形する際の応力は、銅箔の面内方向、特に材料の長手方向であることから、銅箔の屈曲性に直接的に影響を与えるのは、面内の圧延方向(RD方向)の結晶方位である。そのため、銅箔の屈曲性を向上させるためには、RD方向に結晶を配向させることが重要である。
However, the conventional method for developing a cube texture is to adjust the degree of final cold rolling, so that the thickness of the copper foil material during annealing before final cold rolling where the cube texture grows depends on the thickness of the final product. Therefore, there is a problem that productivity is reduced because it is necessary to perform cold rolling under special conditions.
Conventionally, the degree of development of the cubic texture has been evaluated using the X-ray diffraction average intensity of the {200} plane of the copper foil surface. However, since the stress when the copper foil is actually deformed by bending is in the in-plane direction of the copper foil, particularly the longitudinal direction of the material, it is the in-plane that directly affects the flexibility of the copper foil. The crystal orientation in the rolling direction (RD direction). Therefore, in order to improve the flexibility of the copper foil, it is important to orient the crystal in the RD direction.

すなわち、本発明は上記の課題を解決するためになされたものであり、優れた屈曲性を安定して得られる圧延銅箔の提供を目的とする。   That is, this invention is made | formed in order to solve said subject, and it aims at provision of the rolled copper foil which can obtain the outstanding flexibility stably.

本発明者らは種々検討した結果、銅箔の[001]方位がRD方向に多く存在すると、優れた屈曲性が得られることを見出した。   As a result of various studies, the present inventors have found that excellent bending properties can be obtained when there are many [001] orientations of the copper foil in the RD direction.

すなわち本発明の圧延銅箔は、200℃で0.5時間加熱後に、RD方向の結晶方位をステレオ三角表示し、このステレオ三角表示をω、ψでそれぞれ5度ずつ分割して36個のボックスを表示し、[001]方位をボックス番号1とし、以下、ωが大きく、かつψが大きくなるほどボックス番号が大きくなるようにし、[111]方位をボックス番号36としたとき(但し、ψは[100]方位と前記試料のRD方向とがなす角であり、ωはtanω=tanλ・tanψで求められる値、λは[001]方位と前記試料のND方向(圧延面に対して垂直な方向)とがなす角)、ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たす。 That is, the rolled copper foil of the present invention displays the crystal orientation in the RD direction in stereo triangles after heating at 200 ° C. for 0.5 hours, and the stereo triangle display is divided into 36 boxes by dividing each of the stereo triangles by ω and ψ. , The [001] azimuth is box number 1, the box number is increased as ω is larger and ψ is larger, and the [111] direction is box number 36 (where ψ is [ 100] direction and the RD direction of the sample, ω is a value obtained by tan ω = tan λ · tan ψ, and λ is the [001] direction and the ND direction of the sample (direction perpendicular to the rolling surface) preparative angle) is, and the average intensity I 1 of the box number 1 is 20 or more, and an average intensity I 7 crystal orientation corresponding to the box number 7,11,16, I 11, I 16, respectively 1. Hereinafter, 1.0, satisfies either of 0.5 or less.

又、本発明の圧延銅箔は、RD方向の結晶方位をステレオ三角表示し、このステレオ三角表示をω、ψでそれぞれ5度ずつ分割して36個のボックスを表示し、[001]方位をボックス番号1とし、以下、ωが大きく、かつψが大きくなるほどボックス番号が大きくなるようにし、[111]方位をボックス番号36としたとき、(但し、ψは[100]方位と前記試料のRD方向とがなす角であり、ωはtanω=tanλ・tanψで求められる値、λは[001]方位と前記試料のND方向とがなす角)ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たす。 In the rolled copper foil of the present invention, the crystal orientation in the RD direction is displayed in stereo triangle, and this stereo triangle display is divided by 5 degrees each at ω and ψ to display 36 boxes, and the [001] orientation is displayed. When the box number is 1, and ω is larger and ψ is larger and the box number is larger and the [111] orientation is the box number 36 (where ψ is the [100] orientation and the RD of the sample) Ω is a value obtained by tan ω = tan λ · tan ψ, λ is an angle formed by the [001] orientation and the ND direction of the sample) and the average intensity I 1 of box number 1 is 20 or more. In addition, the average intensities I 7 , I 11 , and I 16 of crystal orientations corresponding to the box numbers 7 , 11 , and 16 satisfy 1.5 or less, 1.0 or less, and 0.5 or less, respectively.

前記平均強度I、I、I11、I16につき、(I/I)×100(%)が8以下であり、かつ(I11/I)×100(%)、(I16/I)×100(%)がそれぞれ5以下、3以下のいずれかを満たすことが好ましい。
、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下をすべて満たすことが好ましい。
最終冷間圧延前でかつ再結晶焼鈍後の状態で前記ステレオ三角表示し、かつ前記ボックスを表示し、前記ボックス番号1、7、11、16にそれぞれ対応する結晶方位の平均強度をI1b、I7b、I11b、I16bとし、最終冷間圧延加工度をη(但し、η=Ln{(最終冷間圧延前の厚み)/(最終冷間圧延後の厚み)})としたとき、(I7b/I1b/η)×100(%)が1以上4以下であることが好ましい。
(I11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)がそれぞれ、6以下、4以下のいずれかを満たすことが好ましい。
η≧2.3であることが好ましい。
本発明の銅張積層板は、前記銅箔と、樹脂とからなる。
For the average intensities I 1 , I 7 , I 11 , I 16 , (I 7 / I 1 ) × 100 (%) is 8 or less, and (I 11 / I 1 ) × 100 (%), (I 16 / I 1 ) × 100 (%) preferably satisfies 5 or less and 3 or less, respectively.
It is preferable that I 7 , I 11 , and I 16 satisfy all of 1.5 or less, 1.0 or less, and 0.5 or less, respectively.
In the state before the final cold rolling and after the recrystallization annealing, the stereo triangle is displayed, and the box is displayed, and the average intensities of the crystal orientations corresponding to the box numbers 1, 7, 11, and 16 are set as I 1b , I 7b , I 11b , I 16b and when the final cold rolling degree is η (where η = Ln {(thickness before final cold rolling) / (thickness after final cold rolling)}), (I 7b / I 1b / η) × 100 (%) is preferably 1 or more and 4 or less.
It is preferable that (I 11b / I 1b / η) × 100 (%) and (I 16b / I 1b / η) × 100 (%) satisfy either 6 or less and 4 or less, respectively.
It is preferable that η ≧ 2.3.
The copper clad laminate of the present invention comprises the copper foil and a resin.

本発明によれば、屈曲性に優れる圧延銅箔を安定して得ることができる。   According to the present invention, a rolled copper foil having excellent flexibility can be obtained stably.

集合組織の三次元結晶方位の逆極点図をステレオ投影してステレオ三角表示した例を示す図である。It is a figure which shows the example which stereo-projected the stereogram of the reverse pole figure of the three-dimensional crystal orientation of a texture, and displayed it. ステレオ三角表示を36個のボックスに分割して表示した例を示す図である。It is a figure which shows the example which divided | segmented and displayed the stereo triangle display in 36 boxes. 屈曲試験装置により屈曲疲労寿命の測定を行う方法を示す図である。It is a figure which shows the method of measuring a bending fatigue life with a bending test apparatus.

以下、本発明の実施形態に係る圧延銅箔について説明する。本発明の実施形態に係る圧延銅箔は、屈曲性に優れると共に、繰返し変形に対して高い耐性を示すことから、電池の集電体やタブ等にも好適である。   Hereinafter, the rolled copper foil which concerns on embodiment of this invention is demonstrated. The rolled copper foil according to the embodiment of the present invention is suitable for a battery current collector, a tab, and the like because it has excellent flexibility and exhibits high resistance to repeated deformation.

<成分組成>
銅箔の成分組成としては、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)の無酸素銅(OFC)を好適に用いることができる。又、添加元素としてSnを10〜500質量ppm含有し、及び/又はAgを10〜500質量ppm含有し、残部を上記タフピッチ銅又は無酸素銅としてもよい。
又、添加元素としてSn、Ag、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、B及びVの群から選ばれる元素の一種以上を合計で10〜500質量ppm含有し、残部を上記タフピッチ銅又は無酸素銅としてもよい。
なお、FPCに用いられる圧延銅箔は屈曲性を要求されることから、圧延銅箔の厚みは20μm以下が好ましい。圧延銅箔の厚みの下限は特に限定する必要は無いが、製造性を考慮すると例えば4μm以上が好ましく、より好ましくは5μm以上である。
<Ingredient composition>
As the component composition of the copper foil, tough pitch copper (TPC) standardized to JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020) can be suitably used. Further, Sn as an additive element may be contained in an amount of 10 to 500 ppm by mass, and / or Ag may be contained in an amount of 10 to 500 ppm by mass, and the balance may be the tough pitch copper or oxygen-free copper.
Further, as an additive element, at least one element selected from the group consisting of Sn, Ag, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, B, and V is 10 to 500 mass in total. It may contain ppm, and the balance may be the tough pitch copper or oxygen-free copper.
In addition, since the rolled copper foil used for FPC is requested | required of flexibility, the thickness of a rolled copper foil has preferable 20 micrometers or less. The lower limit of the thickness of the rolled copper foil is not particularly limited, but is preferably 4 μm or more, more preferably 5 μm or more in consideration of manufacturability.

<圧延銅箔の結晶方位>
本発明の実施形態に係る圧延銅箔は、200℃で0.5時間加熱後にRD方向の結晶方位をステレオ三角表示し、このステレオ三角表示をω、ψでそれぞれ5度ずつ分割して36個のボックスを表示し、[001]方位をボックス番号1とし、以下、ωが大きく、かつψが大きくなるほどボックス番号が大きくなるようにし、[111]方位をボックス番号36としたとき、
ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たす。
ここで、RD方向とは、銅箔の圧延方向である。又、ψは[100]方位と試料のRD方向とがなす角であり、ωはtanω=tanλ・tanψで求められる値、λは[001]方位と試料のND方向とがなす角である。ω、ψの2角を指定することで、材料に対する結晶の方位を指定することができる。
なお、銅箔を樹脂フィルムと接合してCCL(銅張積層板)にする際、銅箔に熱が加わる。そこで、CCL製造工程において銅箔に付与される温度履歴を模した熱処理条件(200℃で30分間)で銅箔を加熱した状態で、銅箔の結晶方位を測定する。
<Crystal orientation of rolled copper foil>
The rolled copper foil according to the embodiment of the present invention displays the crystal orientation in the RD direction as a stereo triangle after heating at 200 ° C. for 0.5 hours, and this stereo triangle display is divided into 36 parts each by 5 degrees by ω and ψ. When the [001] direction is set to box number 1, the ω is increased and ψ is increased so that the box number increases, and the [111] direction is set to box number 36.
And the average intensity I 1 of the box number 1 is 20 or more, and an average intensity I 7 of a corresponding crystal orientations respectively box number 7,11,16, I 11, I 16 of 1.5 or less, respectively, 1.0 Or 0.5 or less.
Here, the RD direction is the rolling direction of the copper foil. Ψ is an angle formed by the [100] orientation and the RD direction of the sample, ω is a value obtained by tan ω = tan λ · tan ψ, and λ is an angle formed by the [001] orientation and the ND direction of the sample. By specifying the two angles ω and ψ, the crystal orientation relative to the material can be specified.
In addition, when joining copper foil with a resin film and making it CCL (copper clad laminated board), heat is added to copper foil. Then, the crystal orientation of copper foil is measured in the state which heated copper foil on the heat processing conditions (200 degreeC for 30 minutes) imitating the temperature history provided to copper foil in a CCL manufacturing process.

ここで、図1及び図2を参照し、ステレオ三角表示及びボックス表示について説明する。
図1に示すように、集合組織の三次元結晶方位を逆極点図法により測定し、さらに逆極点図をステレオ投影してステレオ三角表示することが一般に行われている((1)P. D. Ruer and R. Baro :J. Appl. Cryst., 10(1977), 458、(2)長嶋晋一、「ベクトル法による集合組織の3次元解析」、日本金属学会会報, 21(1982), p842)。なお、図1、図2は、上記文献(2)から引用した。
さらに、図2に示すように、ステレオ三角表示をω、ψでそれぞれ5度ずつ分割すると、三角内に36個のボックスが表示される。そして、ステレオ三角の[001]方位をボックス番号1とし、以下、ωが大きく(図2の右へ)、かつψが大きくなる(図2の上へ)ほどボックス番号が大きくなるようにして、連続番号を振る。例えば、ボックス番号2は、ボックス番号1に隣接してωが5度だけ大きく、ψが0度であり、ボックス番号3は、ボックス番号2とωが同じで、ψが5度大きい。このようにして、ステレオ三角の[111]方位をボックス番号36とする。ボックス番号36ではω=ψ=45度である。
Here, stereo triangle display and box display will be described with reference to FIGS.
As shown in FIG. 1, it is common practice to measure the three-dimensional crystal orientation of a texture by an inverse pole figure method, and further project the inverse pole figure in stereo to display a stereo triangle ((1) PD). Ruer and R. Baro: J. Appl. Cryst., 10 (1977), 458, (2) Shinichi Nagashima, “Three-dimensional analysis of textures by the vector method”, The Japan Institute of Metals, 21 (1982), p842) . In addition, FIG. 1, FIG. 2 quoted from the said literature (2).
Further, as shown in FIG. 2, when the stereo triangle display is divided by 5 degrees each at ω and ψ, 36 boxes are displayed in the triangle. Then, the stereo triangle [001] orientation is set to box number 1, and hereinafter, the box number increases as ω increases (to the right in FIG. 2) and ψ increases (to the top in FIG. 2). Give a serial number. For example, box number 2 is adjacent to box number 1 and ω is 5 degrees larger and ψ is 0 degrees, and box number 3 is the same as box number 2 and ω and ψ is 5 degrees larger. In this way, the [111] orientation of the stereo triangle is set to box number 36. In box number 36, ω = ψ = 45 degrees.

本発明者らは種々検討した結果、銅箔の[001]方位がRD方向に多く存在すると、優れた屈曲性が得られることを見出した。そして、ステレオ三角表示のボックス番号1(三角形の左端)は結晶方位の[001]方位を表すため、ボックス番号1におけるRD方向のX線強度(平均強度)が強いと、材料のRD方向と結晶の[001]方位が近づくことになる。そこで、ボックス番号1の平均強度Iを20以上と規定する。一方Iの上限は特に規定する必要は無いが、例えば60以下、また、例えば55以下、例えば50以下、例えば45以下である。 As a result of various studies, the present inventors have found that excellent bending properties can be obtained when there are many [001] orientations of the copper foil in the RD direction. Since box number 1 (the left end of the triangle) in the stereo triangle display represents the [001] orientation of the crystal orientation, if the X-ray intensity (average intensity) in the RD direction in box number 1 is high, the RD direction of the material and the crystal The [001] direction of is approaching. Therefore, the average intensity I 1 of box number 1 is defined as 20 or more. On the other hand, the upper limit of I 1 need not be specified, but is 60 or less, for example, 55 or less, for example 50 or less, for example 45 or less.

なお、各ボックス番号にそれぞれ対応する結晶方位の平均強度(X線強度)は、測定対象とする試料をSchulzの反射法を用いてX線回折したときの極点図測定と、純銅粉末試料のX線回折測定とをもとに、対象試料の各測定点における回折強度を純銅粉末の値で割って規格化する(規格化強度という)ことで求めることができる。特定のボックスのX線強度が1であれば、集合組織を持たないランダムな純銅粉末試料のX線回折強度と同じであるから、その方位への集積がないことを示す。
又、本発明では、各ボックスのX線強度を「平均強度」で表す。「平均強度」とは、対応するボックスが占める領域(ψ5°×ω5°の面積)内に含まれる複数の測定点のそれぞれにおける上記規格化強度の総和を、領域に含まれる測定点数で除した値をいう。
In addition, the average intensity (X-ray intensity) of the crystal orientation corresponding to each box number is determined by the pole figure measurement when the sample to be measured is X-ray diffracted using the Schulz reflection method, and the X of the pure copper powder sample. Based on the line diffraction measurement, the diffraction intensity at each measurement point of the target sample is divided by the value of the pure copper powder and normalized (referred to as normalized intensity). If the X-ray intensity of a specific box is 1, it is the same as the X-ray diffraction intensity of a random pure copper powder sample having no texture, indicating that there is no accumulation in that direction.
In the present invention, the X-ray intensity of each box is represented by “average intensity”. The “average intensity” is the sum of the normalized intensities at each of a plurality of measurement points included in the area (φ5 ° × ω5 ° area) occupied by the corresponding box divided by the number of measurement points included in the area. Value.

ここで、ボックス番号1に対応する[001]方位以外の方位を持つ結晶粒の割合が多いと、屈曲時に応力印加方向とすべり方向が近くなるためにすべり変形を起こしにくく、屈曲性が低下する。特に、ボックス番号7、11、16にそれぞれ対応する方位がすべり変形を起こし難い。
従って、ボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たすことが必要である。
Here, if the ratio of crystal grains having an orientation other than the [001] orientation corresponding to the box number 1 is large, the stress application direction and the slip direction are close to each other at the time of bending, so that slip deformation is unlikely to occur and flexibility is lowered. . In particular, the orientations corresponding to the box numbers 7, 11, and 16 are unlikely to slip.
Therefore, it is necessary that the average intensities I 7 , I 11 , I 16 of the crystal orientations corresponding to the box numbers 7 , 11 , 16 respectively satisfy one of 1.5 or less, 1.0 or less, or 0.5 or less. It is.

さらに、I、I、I11、I16につき、(I/I)×100(%)が8以下であり、かつ(I11/I)×100(%)、(I16/I)×100(%)がそれぞれ5以下、3以下のいずれかを満たすことが好ましい。
(I/I)、(I11/I)、(I16/I)の値が小さいほど、屈曲性に寄与する[001]方位の割合が多くなって屈曲性を向上させる。なお、(I/I)、(I11/I)、(I16/I)の値は低いほど屈曲性が高くなるが、典型的にはこれらの値は0.1%以上である。
なお、上記した「200℃で0.5時間加熱」を既に行った銅箔製品が出荷されることがある。そこで、請求項2に係る発明は、上記焼鈍を既に行った出荷後の製品を対象とし、この製品にさらに上記焼鈍を行わない状態であっても、RD方向の結晶方位をステレオ三角表示し、このステレオ三角表示をω、ψでそれぞれ5度ずつ分割して36個のボックスを表示し、[001]方位をボックス番号1とし、以下、ωが大きく、かつψが大きくなるほどボックス番号が大きくなるようにし、[111]方位をボックス番号36としたとき、ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たすことを規定する。
Furthermore, for I 1 , I 7 , I 11 , and I 16 , (I 7 / I 1 ) × 100 (%) is 8 or less, and (I 11 / I 1 ) × 100 (%), (I 16 / I 1 ) × 100 (%) preferably satisfies 5 or less and 3 or less, respectively.
As the values of (I 7 / I 1 ), (I 11 / I 1 ), and (I 16 / I 1 ) are smaller, the ratio of the [001] orientation that contributes to the flexibility increases and the flexibility is improved. The lower the values of (I 7 / I 1 ), (I 11 / I 1 ), and (I 16 / I 1 ), the higher the flexibility, but typically these values are 0.1% or more. It is.
A copper foil product that has already been subjected to the above-mentioned “heating at 200 ° C. for 0.5 hour” may be shipped. Therefore, the invention according to claim 2 is intended for a product after shipping that has already been annealed, and even if the product is not further annealed, the crystal orientation in the RD direction is displayed as a stereo triangle, This stereo triangle display is divided by 5 degrees each at ω and ψ to display 36 boxes, the [001] direction is box number 1, and hereinafter, the box number increases as ω increases and ψ increases. as the [111] when the a box number 36 orientation, and the average intensity I 1 of the box number 1 is 20 or more, and an average intensity I 7 of a corresponding crystal orientations respectively box number 7,11,16, I 11 and I 16 satisfy any one of 1.5 or less, 1.0 or less, or 0.5 or less, respectively.

<圧延銅箔の製造>
本発明の実施形態に係る圧延銅箔は、インゴットを熱間圧延後、冷間圧延と焼鈍を繰り返した後、焼鈍前冷間圧延、再結晶焼鈍、及び最終冷間圧延して製造することができる。
一般に銅箔の製造工程においては最終冷間圧延加工の加工度が高いため、最終冷間圧延前の組織を制御しても、その影響が最終冷間圧延後まで充分に残りにくい傾向にある。そこで、最終冷間圧延前の組織と最終冷間圧延の加工度とを共に管理することで、200℃で0.5時間加熱後の銅箔において前記結晶方位が得られ、充分な屈曲性が得られる。
この場合、最終冷間圧延前でかつ再結晶焼鈍後の試料を上記ステレオ三角表示し、かつボックス表示したとき、ボックス番号1、7、11、16にそれぞれ対応する結晶方位の平均強度をI1b、I7b、I11b、I16bとし、(I7b/I1b/η)×100(%)が1以上4以下となるよう、最終冷間圧延前の再結晶焼鈍条件と最終冷間圧延加工度を選択することが望ましい。(I7b/I1b/η)×100(%)が1以上3以下であることがより好ましい。但し、η=Ln{(最終冷間圧延前の厚み)/(最終冷間圧延後の厚み)}である。
(I7b/I1b/η)×100(%)が4を超えると、最終冷間圧延後に200℃で0.5時間加熱した銅箔において上記結晶方位が得られず、充分な屈曲性が得られない場合がある。(I7b/I1b/η)×100(%)の値が低いほど屈曲性が高くなるが、実用上は1%以上の値となる。
<Manufacture of rolled copper foil>
The rolled copper foil according to the embodiment of the present invention can be manufactured by hot rolling an ingot, and after repeating cold rolling and annealing, cold rolling before annealing, recrystallization annealing, and final cold rolling. it can.
In general, in the copper foil manufacturing process, the degree of workability of the final cold rolling process is high, so even if the structure before the final cold rolling is controlled, the effect tends not to remain sufficiently until after the final cold rolling. Therefore, by managing both the structure before the final cold rolling and the workability of the final cold rolling, the crystal orientation is obtained in the copper foil after heating at 200 ° C. for 0.5 hours, and sufficient flexibility is obtained. can get.
In this case, when the sample before the final cold rolling and after the recrystallization annealing is displayed in the above stereo triangle and box display, the average intensity of the crystal orientations corresponding to the box numbers 1, 7, 11 and 16 is expressed as I 1b. , I 7b , I 11b , I 16b, and recrystallization annealing conditions and final cold rolling before final cold rolling so that (I 7b / I 1b / η) × 100 (%) is 1 or more and 4 or less. It is desirable to select the degree. (I 7b / I 1b / η) × 100 (%) is more preferably 1 or more and 3 or less. However, η = Ln {(thickness before final cold rolling) / (thickness after final cold rolling)}.
When (I 7b / I 1b / η) × 100 (%) exceeds 4, the above crystal orientation cannot be obtained in the copper foil heated at 200 ° C. for 0.5 hours after the final cold rolling, and sufficient flexibility is obtained. It may not be obtained. The lower the value of (I 7b / I 1b / η) × 100 (%), the higher the flexibility, but practically it is a value of 1% or more.

又、(I11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)がそれぞれ、6以下、4以下のいずれかを満たすよう、最終冷間圧延前の再結晶焼鈍条件と最終冷間圧延加工度を選択することが望ましい。(I11b/I1b/η)×100(%)が1以上5以下であることがより好ましい。(I16b/I1b/η)×100(%)が1以上3以下であることがより好ましい。
最終冷間圧延前でかつ再結晶焼鈍後の試料において、(I7b/I1b/η)×100(%)を1以上4以下に制御するためには、最終冷間圧延前の再結晶焼鈍の際の昇温速度を5〜50℃/sとすると好ましい。該昇温速度が速すぎると結晶方位がランダムとなり、(I7b/I1b/η)×100(%)が大きくなる。該昇温速度が遅すぎると、生産性が低下する。
又、最終冷間圧延前でかつ再結晶焼鈍後の試料において、(I11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)がそれぞれ、6以下、4以下のいずれかを満たすよう制御するためには、最終冷間圧延前の再結晶焼鈍の際の昇温速度を5〜45℃/sとすると好ましい。該昇温速度が速すぎるとI11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)が大きくなる。該昇温速度が遅すぎると、生産性が低下する。
Further, the final cold rolling is performed so that (I 11b / I 1b / η) × 100 (%) and (I 16b / I 1b / η) × 100 (%) satisfy 6 or less and 4 or less, respectively. It is desirable to select the previous recrystallization annealing conditions and the final cold rolling degree. It is more preferable that (I 11b / I 1b / η) × 100 (%) is 1 or more and 5 or less. (I 16b / I 1b / η) × 100 (%) is more preferably 1 or more and 3 or less.
In order to control (I 7b / I 1b / η) × 100 (%) to 1 or more and 4 or less in the sample before the final cold rolling and after the recrystallization annealing, the recrystallization annealing before the final cold rolling is performed. In this case, it is preferable that the heating rate is 5 to 50 ° C./s. If the heating rate is too high, the crystal orientation becomes random, and (I 7b / I 1b / η) × 100 (%) increases. If the rate of temperature increase is too slow, the productivity is lowered.
In the sample before the final cold rolling and after the recrystallization annealing, (I 11b / I 1b / η) × 100 (%) and (I 16b / I 1b / η) × 100 (%) were 6 respectively. Hereinafter, in order to control to satisfy any of 4 or less, it is preferable that the temperature increase rate at the time of recrystallization annealing before the final cold rolling is 5 to 45 ° C./s. If the rate of temperature rise is too high, I 11b / I 1b / η) × 100 (%) and (I 16b / I 1b / η) × 100 (%) increase. If the rate of temperature increase is too slow, the productivity is lowered.

最終冷間圧延の加工度ηは2.3以上であることが好ましい。ηが2.3未満であると、I、I、I11、I16が上記関係を満たすことが難しくなる。 The workability η of the final cold rolling is preferably 2.3 or more. If η is less than 2.3, it is difficult for I 1 , I 7 , I 11 , and I 16 to satisfy the above relationship.

まず、表1に記載の組成の銅インゴットを製造し、厚み10mmまで熱間圧延を行った。その後、冷間圧延と焼鈍を繰り返し、その後所定の厚みまで焼鈍前冷間圧延した後に700〜800℃の温度に設定した焼鈍炉で再結晶焼鈍した。さらに、表2に示す加工度(η)で最終冷間圧延し、表1に示す厚みの銅箔を得た。なお、再結晶焼鈍の際の昇温速度を表1に示す。   First, a copper ingot having the composition shown in Table 1 was manufactured and hot-rolled to a thickness of 10 mm. Thereafter, cold rolling and annealing were repeated, and then cold rolling before annealing to a predetermined thickness, followed by recrystallization annealing in an annealing furnace set at a temperature of 700 to 800 ° C. Furthermore, the final cold rolling was performed at a workability (η) shown in Table 2 to obtain a copper foil having a thickness shown in Table 1. Table 1 shows the rate of temperature increase during recrystallization annealing.

<結晶方位>
最終冷間圧延して得られた銅箔を200℃で0.5時間加熱して再結晶させた後、X線回折装置(RINT−2500:理学電機製)を用い、それぞれ(111)、(200)、(311)面の正極点測定(X線反射平均強度)を行った。得られた測定結果を、StandardODF(株式会社ノルム工学製)を用いて逆極点表現に変換した。変換した逆極点データを、解析支援ソフトであるInversDisp(Helpertex社製)を用いてRD方向のステレオ三角表示(この三角内に36分割されたボックス表記)に変換した。
X線回折の測定条件は、入射X線源:Co、加速電圧:30kV、管電流:100mA、発散スリット:0.5度、散乱スリット:4mm、受光スリット:4mm、発散縦制限スリット:1.2mmとした。又、同一条件でX線回折を行った純銅粉末の値(X線反射平均強度)を用いて規格化した。なお、各ボックスのX線強度を「平均強度」で表した。「平均強度」とは、対応するボックスが占める領域(ψ5°×ω5°の面積)内に含まれる複数の測定点のそれぞれにおける上記規格化強度の総和を、領域に含まれる測定点数で除した値をいう。
また、最終冷間圧延前であって、700〜800℃の温度に設定した焼鈍炉で再結晶焼鈍した後の試料についても、前述の方法で同様に測定を行った
<Crystal orientation>
After the copper foil obtained by the final cold rolling was recrystallized by heating at 200 ° C. for 0.5 hour, using an X-ray diffractometer (RINT-2500: manufactured by Rigaku Corporation), (111), ( 200), (311) plane positive electrode point measurement (X-ray reflection average intensity) was performed. The obtained measurement result was converted into a reverse pole expression using Standard ODF (manufactured by Norm Engineering Co., Ltd.). The converted inverse pole data was converted into stereo triangle display in the RD direction (box notation divided into 36 within this triangle) using InverseDisp (manufactured by Helpertex) which is analysis support software.
The measurement conditions of X-ray diffraction are incident X-ray source: Co, acceleration voltage: 30 kV, tube current: 100 mA, divergence slit: 0.5 degree, scattering slit: 4 mm, light receiving slit: 4 mm, divergence longitudinal limiting slit: 1. It was 2 mm. Moreover, it normalized using the value (X-ray reflection average intensity) of the pure copper powder which performed the X-ray diffraction on the same conditions. In addition, the X-ray intensity of each box was represented by “average intensity”. The “average intensity” is the sum of the normalized intensities at each of a plurality of measurement points included in the area (φ5 ° × ω5 ° area) occupied by the corresponding box divided by the number of measurement points included in the area. Value.
Moreover, it measured similarly by the above-mentioned method also about the sample after the recrystallization annealing in the annealing furnace set to the temperature of 700-800 degreeC before the last cold rolling.

<屈曲性>
最終冷間圧延して得られた銅箔試料を200℃で0.5時間加熱して再結晶させた後、図3に示す屈曲試験装置により、屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、被試験銅箔1は、矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、銅箔1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:1.5mm、振動ストローク:20mm、振動速度:1000回/分。
又、以下の基準で、屈曲性を評価した。評価が◎、○、又は△であれば屈曲性が良好である。
◎:屈曲回数が20万回以上、屈曲性が最も良好である
○:屈曲回数が10万回以上20万回未満、屈曲性が良好である
△:屈曲回数が5万回以上10万回未満、屈曲性に優れる
×:屈曲回数が5万回未満、屈曲性が劣る
<Flexibility>
After the copper foil sample obtained by final cold rolling was recrystallized by heating at 200 ° C. for 0.5 hour, the bending fatigue life was measured by a bending test apparatus shown in FIG. This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and a copper foil 1 to be tested is fixed to the apparatus at a total of four points including a screw 2 part indicated by an arrow and a tip part of 3. Is done. When the vibration part 3 is driven up and down, the intermediate part of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
The test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, curvature radius r : 1.5 mm, vibration stroke: 20 mm, vibration speed: 1000 times / min.
Further, the flexibility was evaluated according to the following criteria. If evaluation is (double-circle), (circle), or (triangle | delta), flexibility is favorable.
◎: The number of bendings is 200,000 times or more and the flexibility is the best. ○: The number of bendings is 100,000 or more and less than 200,000 times, and the flexibility is good. △: The number of bendings is 50,000 or more and less than 100,000. , Excellent flexibility ×: less than 50,000 times of bending, poor flexibility

得られた結果を表1、表2に示す。
ここで、表1中の組成欄の「TPC」はJIS−H3100(C1100)に規格するタフピッチ銅(TPC)を表し、「OFC」はJIS−H3100(C1020)に規格する無酸素銅(OFC)を表す。従って、例えば、表1中の組成欄の「190ppmAg−TPC」はJIS−H3100(C1100)に規格するタフピッチ銅(TPC)に190質量ppmのAgを添加した組成であることを意味する。また、表1中の組成欄の「100ppmSn−OFC」はJIS−H3100(C1020)に規格する無酸素銅(OFC)に100質量ppmのSnを添加した組成であることを意味する。
又、表1、表2の(I/I)等の値は、%表示(つまり、(I/I)×100)である。
The obtained results are shown in Tables 1 and 2.
Here, “TPC” in the composition column in Table 1 represents tough pitch copper (TPC) standardized to JIS-H3100 (C1100), and “OFC” represents oxygen-free copper (OFC) standardized to JIS-H3100 (C1020). Represents. Therefore, for example, “190 ppmAg-TPC” in the composition column in Table 1 means a composition in which 190 mass ppm of Ag is added to tough pitch copper (TPC) standardized to JIS-H3100 (C1100). In addition, “100 ppm Sn—OFC” in the composition column of Table 1 means a composition in which 100 mass ppm of Sn is added to oxygen-free copper (OFC) specified in JIS-H3100 (C1020).
In Tables 1 and 2, values such as (I 7 / I 1 ) are represented in% (that is, (I 7 / I 1 ) × 100).

表1から明らかなように、ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16のいずれかがそれぞれ1.5以下、1.0以下、0.5以下となる各実施例の場合、屈曲性が優れたものとなった。 As it is evident from Table 1, and the average intensity I 1 of the box number 1 is 20 or more, and one of each box number 7,11,16 average intensity I 7 of a corresponding crystal orientation, I 11, I 16 In each of the examples in which the values were 1.5 or less, 1.0 or less, and 0.5 or less, the flexibility was excellent.

なお、表1から明らかなように、ボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16のいずれかがそれぞれ1.5、1.0、0.5を超えた実施例2、10、13、14、19、21、23ではそのほかの実施例に比較して屈曲性が若干低下したが、実用上は問題のない程度であった。
なお、表2から明らかなように、すべての実施例で(I7b/I1b/η)×100(%)が1以上4以下であった。又、実施例13、14を除く各実施例の場合、(I11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)がそれぞれ、6以下、4以下を共に満たした。
As is apparent from Table 1, any of the average intensities I 7 , I 11 , I 16 of the crystal orientations corresponding to the box numbers 7 , 11 , 16 is 1.5, 1.0, 0.5, respectively. In Examples 2, 10, 13, 14, 19, 21, and 23 that exceeded the range, the flexibility was slightly lowered as compared with the other examples, but there was no practical problem.
As is clear from Table 2, (I 7b / I 1b / η) × 100 (%) was 1 or more and 4 or less in all Examples. In each of the examples except Examples 13 and 14, (I 11b / I 1b / η) × 100 (%) and (I 16b / I 1b / η) × 100 (%) are 6 or less, Both below 4 were satisfied.

一方、Iが20未満である比較例1〜3の場合、屈曲性が劣った。
平均強度Iが20以上であるが、平均強度I、I11、I16がそれぞれ1.5、1.0、0.5を超えた比較例4の場合も、屈曲性が劣った。
なお、比較例1〜4は、いずれも(I/I)×100(%)が8を超え、かつ(I11/I)×100(%)、(I16/I)×100(%)がそれぞれ5以下、3以下のいずれかを満たさなかった。
又、比較例1〜4は、いずれも(I7b/I1b/η)×100(%)が4を超え、(I11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)がそれぞれ、6以下、4以下のいずれかを満たさなかった。
On the other hand, in Comparative Examples 1 to 3 where I 1 was less than 20, the flexibility was inferior.
In the case of Comparative Example 4 in which the average strength I 1 was 20 or more but the average strengths I 7 , I 11 , and I 16 exceeded 1.5, 1.0, and 0.5, respectively, the flexibility was poor.
In all of Comparative Examples 1 to 4, (I 7 / I 1 ) × 100 (%) exceeds 8, and (I 11 / I 1 ) × 100 (%), (I 16 / I 1 ) × 100 (%) did not satisfy any of 5 or less and 3 or less, respectively.
Further, in each of Comparative Examples 1 to 4, (I 7b / I 1b / η) × 100 (%) exceeds 4 and (I 11b / I 1b / η) × 100 (%), (I 16b / I 1b / η) × 100 (%) did not satisfy any of 6 or less and 4 or less, respectively.

Claims (8)

200℃で0.5時間加熱後に、RD方向の結晶方位をステレオ三角表示し、このステレオ三角表示をω、ψでそれぞれ5度ずつ分割して36個のボックスを表示し、[001]方位をボックス番号1とし、以下、ωが大きく、かつψが大きくなるほどボックス番号が大きくなるようにし、[111]方位をボックス番号36としたとき、
(但し、ψは[100]方位と前記試料のRD方向とがなす角であり、ωはtanω=tanλ・tanψで求められる値、λは[001]方位と前記試料のND方向とがなす角)
ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たす圧延銅箔。
After heating at 200 ° C. for 0.5 hour, the crystal orientation in the RD direction is displayed in stereo triangle, and this stereo triangle display is divided by 5 degrees each at ω and ψ to display 36 boxes, and the [001] orientation is displayed. Suppose that box number is 1, and ω is large and ψ is large so that the box number increases, and the [111] orientation is box number 36.
(Where ψ is an angle formed by the [100] direction and the RD direction of the sample, ω is a value obtained by tan ω = tan λ · tan ψ, and λ is an angle formed by the [001] direction and the ND direction of the sample. )
And the average intensity I 1 of the box number 1 is 20 or more, and an average intensity I 7 of a corresponding crystal orientations respectively box number 7,11,16, I 11, I 16 of 1.5 or less, respectively, 1.0 , Rolled copper foil satisfying any of 0.5 or less.
RD方向の結晶方位をステレオ三角表示し、このステレオ三角表示をω、ψでそれぞれ5度ずつ分割して36個のボックスを表示し、[001]方位をボックス番号1とし、以下、ωが大きく、かつψが大きくなるほどボックス番号が大きくなるようにし、[111]方位をボックス番号36としたとき、
(但し、ψは[100]方位と前記試料のRD方向とがなす角であり、ωはtanω=tanλ・tanψで求められる値、λは[001]方位と前記試料のND方向とがなす角)
ボックス番号1の平均強度Iが20以上であり、かつボックス番号7、11、16にそれぞれ対応する結晶方位の平均強度I、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下のいずれかを満たす圧延銅箔。
The crystal orientation in the RD direction is displayed as a stereo triangle, and this stereo triangle display is divided into 5 degrees each by ω and ψ to display 36 boxes, the [001] orientation is box number 1, and ω is large below. , And the larger ψ is, the larger the box number is, and when the [111] orientation is the box number 36,
(Where ψ is an angle formed by the [100] direction and the RD direction of the sample, ω is a value obtained by tan ω = tan λ · tan ψ, and λ is an angle formed by the [001] direction and the ND direction of the sample. )
And the average intensity I 1 of the box number 1 is 20 or more, and an average intensity I 7 of a corresponding crystal orientations respectively box number 7,11,16, I 11, I 16 of 1.5 or less, respectively, 1.0 , Rolled copper foil satisfying any of 0.5 or less.
前記平均強度I、I、I11、I16につき、(I/I)×100(%)が8以下であり、かつ(I11/I)×100(%)、(I16/I)×100(%)がそれぞれ5以下、3以下のいずれかを満たす、請求項1又は2に記載の圧延銅箔。 For the average intensities I 1 , I 7 , I 11 , I 16 , (I 7 / I 1 ) × 100 (%) is 8 or less, and (I 11 / I 1 ) × 100 (%), (I The rolled copper foil according to claim 1 or 2, wherein 16 / I 1 ) x 100 (%) satisfies 5 or less and 3 or less, respectively. 、I11、I16がそれぞれ1.5以下、1.0以下、0.5以下をすべて満たす請求項1〜3のいずれかに記載の圧延銅箔。 The rolled copper foil according to claim 1, wherein I 7 , I 11 , and I 16 satisfy all of 1.5 or less, 1.0 or less, and 0.5 or less, respectively. 最終冷間圧延前でかつ再結晶焼鈍後の状態で前記ステレオ三角表示し、かつ前記ボックスを表示し、
前記ボックス番号1、7、11、16にそれぞれ対応する結晶方位の平均強度をI1b、I7b、I11b、I16bとし、最終冷間圧延加工度をη(但し、η=Ln{(最終冷間圧延前の厚み)/(最終冷間圧延後の厚み)})としたとき、(I7b/I1b/η)×100(%)が1以上4以下である、請求項1〜4のいずれか一項に記載の圧延銅箔。
The stereo triangle is displayed in a state before the final cold rolling and after the recrystallization annealing, and the box is displayed,
The average intensities of the crystal orientations corresponding to the box numbers 1, 7 , 11 , and 16 are I 1b , I 7b , I 11b , and I 16b , respectively, and the final cold rolling work degree is η (where η = Ln {(final (Thickness before cold rolling) / (Thickness after final cold rolling)}), (I 7b / I 1b / η) × 100 (%) is 1 or more and 4 or less. The rolled copper foil as described in any one of these.
(I11b/I1b/η)×100(%)、(I16b/I1b/η)×100(%)がそれぞれ、6以下、4以下のいずれかを満たす、請求項5に記載の圧延銅箔。 The rolling according to claim 5, wherein (I 11b / I 1b / η) × 100 (%) and (I 16b / I 1b / η) × 100 (%) satisfy any of 6 or less and 4 or less, respectively. Copper foil. η≧2.3である請求項5記載の圧延銅箔。 The rolled copper foil according to claim 5, wherein η ≧ 2.3. 請求項1〜7のいずれか一項に記載の銅箔と、樹脂とからなる銅張積層板。 The copper clad laminated board which consists of copper foil as described in any one of Claims 1-7, and resin.
JP2012203065A 2012-09-14 2012-09-14 Rolled copper foil Pending JP2014058704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012203065A JP2014058704A (en) 2012-09-14 2012-09-14 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203065A JP2014058704A (en) 2012-09-14 2012-09-14 Rolled copper foil

Publications (1)

Publication Number Publication Date
JP2014058704A true JP2014058704A (en) 2014-04-03

Family

ID=50615426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203065A Pending JP2014058704A (en) 2012-09-14 2012-09-14 Rolled copper foil

Country Status (1)

Country Link
JP (1) JP2014058704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
JP2013108122A (en) * 2011-11-18 2013-06-06 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat radiating property and repeated bending workability
JP2013166971A (en) * 2012-02-14 2013-08-29 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat dissipation and repeated bending workability
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil
JP2013108122A (en) * 2011-11-18 2013-06-06 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat radiating property and repeated bending workability
JP2013166971A (en) * 2012-02-14 2013-08-29 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in heat dissipation and repeated bending workability
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate

Similar Documents

Publication Publication Date Title
JP5752536B2 (en) Rolled copper foil
JP5320638B2 (en) Rolled copper foil and method for producing the same
JP5826160B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP6696895B2 (en) Rolled copper foil, rolled copper foil manufacturing method, flexible flat cable, flexible flat cable manufacturing method
JP4992940B2 (en) Rolled copper foil
US20140254114A1 (en) Flexible circuit board and method for producing same and bend structure of flexible circuit board
US20060045790A1 (en) Copper alloy and method of manufacturing the same
WO2015099097A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP5411357B2 (en) Rolled copper foil
JP6182372B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
CN104024463B (en) Rolled copper foil
JP2014058704A (en) Rolled copper foil
JP2014058705A (en) Rolled copper foil and copper-clad laminate
JP6190646B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
JP2013170279A (en) Rolled copper foil
JP5794817B2 (en) Copper alloy sheet and method for producing the same
JP5127082B2 (en) Rolled copper foil
JP6069023B2 (en) Rolled copper foil
JP2013216970A (en) Rolled copper foil
JP5995421B2 (en) Copper alloy strip and method for producing the same
JP5683432B2 (en) Rolled copper foil
JP6944963B2 (en) Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards
KR20130095203A (en) Rolled copper foil
JP5698634B2 (en) Rolled copper foil
JP2015017300A (en) Secondary battery current collector copper alloy rolled foil and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160523