JP2009194163A - Copper foil for circuit board - Google Patents
Copper foil for circuit board Download PDFInfo
- Publication number
- JP2009194163A JP2009194163A JP2008033460A JP2008033460A JP2009194163A JP 2009194163 A JP2009194163 A JP 2009194163A JP 2008033460 A JP2008033460 A JP 2008033460A JP 2008033460 A JP2008033460 A JP 2008033460A JP 2009194163 A JP2009194163 A JP 2009194163A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled copper
- circuit board
- bending
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、回路基板用銅箔に関し、特にフレキシブルプリント配線基板(FPC;Flexible printed circuit)等に用いられ、優れた屈曲特性を有する回路基板用銅箔に関する。 The present invention relates to a copper foil for a circuit board, and more particularly to a copper foil for a circuit board that is used in a flexible printed circuit board (FPC) and the like and has excellent bending characteristics.
フレキシブルプリント配線基板(以下FPCとする)の基板となる材料は、銅箔と、ポリイミドなどの絶縁性樹脂フィルムと、をクラッドして形成される。クラッドする方法は、エポキシ系接着剤などを介してラミネートしたり、直接熱圧着したりする方法や、銅箔にポリイミドワニスを塗布する方法などがある。FPCは、クラッドされた基板の銅箔にエッチングによって微細回路が形成されることで配線材料として作製される。 A material for a flexible printed circuit board (hereinafter referred to as FPC) is formed by cladding a copper foil and an insulating resin film such as polyimide. The cladding method includes a method of laminating via an epoxy adhesive or the like, a method of directly thermocompression bonding, a method of applying a polyimide varnish to a copper foil, and the like. The FPC is manufactured as a wiring material by forming a fine circuit on a copper foil of a clad substrate by etching.
FPCは、主にプリンターヘッドなどの可動部や携帯電話のヒンジ部などに使用されるため、屈曲性に優れることが要求される。この点から銅箔としては、電解銅箔より屈曲性に優れる圧延銅箔が主に使用されている。 The FPC is mainly used for a movable part such as a printer head or a hinge part of a mobile phone, and therefore, it is required to have excellent flexibility. From this point, as the copper foil, a rolled copper foil that is more flexible than the electrolytic copper foil is mainly used.
圧延銅箔の屈曲性は、圧延上がりの硬質材よりも再結晶材のほうが優れている。しかし圧延銅箔と樹脂フィルムがクラッドされる工程では、圧延銅箔が硬質材であるほうがハンドリングに優れ好都合である。従って、クラッドされる最終工程の熱処理で、圧延銅箔が再結晶するように設計されており、このことからFPC用には120℃〜250℃で軟化するようにタフピッチ銅や無酸素銅などの純銅の圧延銅箔が使用されている。 The recrystallized material is superior in the flexibility of the rolled copper foil to the hard material after rolling. However, in the process in which the rolled copper foil and the resin film are clad, it is more convenient and convenient for the rolled copper foil to be a hard material. Therefore, the rolled copper foil is designed to be recrystallized in the final heat treatment to be clad. From this, for FPC, such as tough pitch copper and oxygen-free copper so as to soften at 120 ° C to 250 ° C. Pure copper rolled copper foil is used.
また再結晶材の屈曲特性は、その材料に形成される立方体集合組織が発達しているほど優れた特性を示すことが分かっている。従って圧延銅箔の製造工程において、最終焼鈍後の冷間圧延加工度をなるべく高くする工夫がなされており、通常90%以上の加工度で冷間圧延されている。ここで圧延加工度とは、圧延前の板厚をt0、圧延後の板厚をtとしたとき、(t0−t)/t0の百分率で表される数字である。 Further, it has been found that the flexural properties of the recrystallized material show better properties as the cubic texture formed in the material develops. Therefore, in the manufacturing process of the rolled copper foil, a device for making the cold rolling work degree after the final annealing as high as possible is made, and cold rolling is usually performed at a work degree of 90% or more. Here, the rolling degree, the plate thickness before rolling t 0, when the plate thickness after rolling was t, is a number expressed as a percentage of (t 0 -t) / t 0 .
そこで従来の技術として、最終冷間圧延加工度を高くすること(例えば、90%以上)によって立方体集合組織を発達させる圧延銅箔の製造方法が知られている(例えば、特許文献1参照)。 Thus, as a conventional technique, there is known a method for producing a rolled copper foil in which a cubic texture is developed by increasing the degree of final cold rolling (for example, 90% or more) (for example, see Patent Document 1).
この圧延銅箔の製造方法は、タフピッチ銅又は無酸素銅のインゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返して、最後に冷間圧延で厚さを0.050mm以下に仕上げるものであり、具体的には、(1)加工度90%以上の冷間圧延、(2)150℃〜250℃の炉温での1〜10時間の再結晶焼鈍、又は、500℃〜800℃の炉温での5〜60秒間の再結晶焼鈍、(3)加工度5〜40%の冷間圧延、を順次行なって再結晶焼鈍を行うことによって、立方体集合組識が圧延銅箔中に発達するので、屈曲特性に優れた圧延銅箔を製造することができる。
しかし、従来の圧延銅箔の製造方法によると、圧延銅箔は、最終冷間圧延加工度を高くするほど加工硬化によって圧延が難しくなり、最終の厚さに近くなるほど圧延1パス当たりの圧下率(加工度)が小さくなり、その分、圧延パス数が多くなるので、製造効率が低下するという問題があった。 However, according to the conventional rolled copper foil manufacturing method, the higher the final cold rolling degree, the more difficult it is to roll by work hardening, and the closer to the final thickness, the lower the rolling reduction per pass. (Processing degree) is reduced, and the number of rolling passes is increased correspondingly, so that there is a problem that manufacturing efficiency is lowered.
また近年、電子機器類の小型化、高集積化(高密度実装化)及び高性能化等の進展に伴い、FPCには従来よりも更なる高屈曲特性の要求が益々高まってきている。FPCの屈曲特性は実質的に圧延銅箔によって決まるため、要求を満たすには、圧延銅箔の屈曲特性を更に向上させることが必須である。 In recent years, with the progress of downsizing, high integration (high density mounting), high performance, and the like of electronic devices, FPCs have been increasingly demanded for higher bending characteristics than before. Since the bending characteristics of the FPC are substantially determined by the rolled copper foil, it is essential to further improve the bending characteristics of the rolled copper foil in order to satisfy the requirements.
従って本発明の目的は、製造効率が高く、また、優れた屈曲特性を有する回路基板用銅箔を提供することにある。 Accordingly, an object of the present invention is to provide a copper foil for circuit boards having high production efficiency and excellent bending characteristics.
[1]本発明は上記目的を達成するため、圧延銅箔の表面に体心立方構造を有する金属からなる被膜が形成されていることを特徴とする回路基板用銅箔を提供する。 [1] In order to achieve the above object, the present invention provides a copper foil for circuit boards, characterized in that a film made of a metal having a body-centered cubic structure is formed on the surface of the rolled copper foil.
[2]本発明は上記目的を達成するため、前記被膜は、Mo或いはFe、又はこれらの合金からなることを特徴とする前記[1]に記載の回路基板用銅箔を提供する。 [2] In order to achieve the above object, the present invention provides the copper foil for a circuit board according to [1], wherein the coating is made of Mo, Fe, or an alloy thereof.
[3]本発明は上記目的を達成するため、前記被膜は、厚さが50nm以上500nm以下であることを特徴とする前記[1]又は[2]に記載の回路基板用銅箔を提供する。 [3] The present invention provides the copper foil for a circuit board according to [1] or [2], wherein the film has a thickness of 50 nm to 500 nm in order to achieve the above object. .
上記した構成によれば、製造効率が高く、また、優れた屈曲特性を有することができる。 According to the above-described configuration, the manufacturing efficiency is high and excellent bending characteristics can be obtained.
このような構成によれば、製造効率が高く、また、優れた屈曲特性を有することができる。 According to such a configuration, manufacturing efficiency is high and excellent bending characteristics can be obtained.
以下に、本発明の回路基板用銅箔の実施の形態を図面を参照し、詳細に説明する。 Embodiments of a copper foil for circuit boards according to the present invention will be described below in detail with reference to the drawings.
[実施の形態]
まず、本発明の実施の形態に係るFPCの製造に用いられる圧延銅箔(回路基板用銅箔)の屈曲特性向上のメカニズムについて説明する。金属結晶に応力が加わると、転位は結晶のすべり面に沿って移動しやすいが、結晶粒界は、一般的に転位の移動に対する障害物となる。多結晶体である圧延銅箔において、屈曲運動により転位が結晶粒界等に集積すると、集積箇所でクラックが生じ易くなり、いわゆる金属疲労を起こすと考えられる。言い換えると、多結晶体において転位が集積することを抑制できれば、屈曲特性が向上することが期待される。つまり従来の圧延銅箔では、前述した通り、その製造工程において、最終冷間加工度を高くとることにより、再結晶後の立方体組織を発達させ、銅結晶の面心立方構造特有のすべり面である{111}面の配列を制御して結晶粒界への転位の集積を起こり難くすることにより屈曲特性の向上を達成していた。
[Embodiment]
First, a mechanism for improving the bending characteristics of a rolled copper foil (a copper foil for a circuit board) used for manufacturing an FPC according to an embodiment of the present invention will be described. When stress is applied to the metal crystal, dislocations easily move along the slip plane of the crystal, but the crystal grain boundary is generally an obstacle to the movement of dislocations. In a rolled copper foil that is a polycrystalline body, when dislocations accumulate at a grain boundary or the like due to a bending motion, cracks are likely to occur at the accumulation location, and so-called metal fatigue is considered to occur. In other words, if the dislocations can be prevented from accumulating in the polycrystalline body, it is expected that the bending property is improved. In other words, in the conventional rolled copper foil, as described above, in the manufacturing process, the final cold working degree is increased to develop the cubic structure after recrystallization, and the sliding surface peculiar to the face-centered cubic structure of the copper crystal. Bending characteristics have been improved by controlling the arrangement of certain {111} planes to make it difficult for dislocations to accumulate at grain boundaries.
しかし、このように配慮された圧延銅箔でも、繰り返し荷重が加えられると、{111}面にすべりが集中し、すべり帯の発生から固執すべり帯を形成し、圧延銅箔表面に初期亀裂を発生させ、これが次第に進展し大きな亀裂へと進展していく。 However, even with a rolled copper foil that has been considered in this way, when a repeated load is applied, slip concentrates on the {111} plane, forming a slip band that persists from the occurrence of the slip band, and causing an initial crack on the rolled copper foil surface. It is generated and gradually progresses to a large crack.
従って本実施の形態においては、圧延銅箔の表面に後述する金属又はそれらの合金で被膜を形成することにより、固執すべり帯の形成から初期亀裂にいたる現象を緩和させることで、屈曲特性の向上、言い換えるなら高い屈曲寿命を持つ圧延銅箔を提供するものである。この点につき本発明者らが鋭意検討を重ねた結果、圧延銅箔の表面に体心立方構造を有する金属の被膜を形成することにより屈曲特性が向上し、特に屈曲寿命が延びることが明らかとなった。その理由は、例えば次のように考えることが出来る。 Therefore, in this embodiment, by forming a film with a metal or an alloy thereof, which will be described later, on the surface of the rolled copper foil, the bending property is improved by relaxing the phenomenon from the formation of the sticking slip band to the initial crack. In other words, the present invention provides a rolled copper foil having a high bending life. As a result of intensive studies by the present inventors on this point, it is clear that the bending property is improved by forming a metal film having a body-centered cubic structure on the surface of the rolled copper foil, and in particular, the bending life is extended. became. The reason can be considered as follows, for example.
体心立方構造を有する、例えばFe(αFe;フェライト)のような金属は、繰り返し荷重が加えられたとき、複数のすべり系が働き、また、交差すべりも起きやすい。従ってCu(圧延銅箔)の表面にFeのような材料の被膜を形成することにより、荷重が複数のすべり系に分散されるので、Cuに対する局部的なすべり帯の集中が緩和され、初期亀裂がCu及びFeに形成されにくくなる。 A metal such as Fe (αFe; ferrite) having a body-centered cubic structure, when a repeated load is applied, has a plurality of slip systems, and cross slip easily occurs. Therefore, by forming a coating of a material such as Fe on the surface of Cu (rolled copper foil), the load is dispersed in a plurality of slip systems, so the concentration of local slip bands on Cu is alleviated and initial cracks are reduced. Is difficult to form on Cu and Fe.
従って被覆する金属としては、体心立方構造を有するCr、Nb、Ta、W、Mo或いはFe、又はこれらの合金が適している。なかでも好ましくは、Mo及びFeがあげられる。その厚さは、厚すぎると形成された被膜の硬さのため可撓性が失われ、FPCの製造工程でエッチングを行う際の障害となるため、500nm以下とするのが適当である。また薄すぎると効果が期待できないため、少なくとも50nm程度が限界となる。 Therefore, Cr, Nb, Ta, W, Mo, Fe, or an alloy thereof having a body-centered cubic structure is suitable as the metal to be coated. Of these, Mo and Fe are preferable. If the thickness is too thick, flexibility is lost due to the hardness of the formed film, which becomes an obstacle when etching is performed in the FPC manufacturing process. Moreover, since an effect cannot be expected if it is too thin, at least about 50 nm is the limit.
(FPC1の製造工程)
図1(a)〜(d)は、本発明の実施の形態に係るFPCの製造工程を示す図である。
(1)まず、図1(a)に示すように、回路基板用銅箔の基材として冷間圧延と焼鈍とを繰り返し、圧延銅箔2を作製する。
(2)図1(b)に示すように、上記した体心立方構造を有する、例えばFeのような金属を電気めっき又はイオンプレーティングなどの方法を用いて圧延銅箔2上に被膜し、被膜3を形成する。
(3)図1(c)に示すように、被膜3が形成された銅箔と、絶縁性樹脂フィルム4とを、エポキシ系接着剤などを介してラミネートしたり、直接熱圧着したりする方法や、銅箔にポリイミドワニスを塗布する方法などを用いてクラッドする。
(4)図1(d)に示すように、所定の微細回路に基づいて被膜3が形成された銅箔に対してエッチングを行い、FPC1は製造される。
(FPC1 manufacturing process)
FIG. 1A to FIG. 1D are diagrams showing manufacturing steps of an FPC according to an embodiment of the present invention.
(1) First, as shown to Fig.1 (a), cold rolling and annealing are repeated as a base material of the copper foil for circuit boards, and the rolled
(2) As shown in FIG. 1 (b), a metal such as Fe having the above-described body-centered cubic structure is coated on the rolled
(3) As shown in FIG. 1C, a method of laminating the copper foil on which the coating 3 is formed and the insulating resin film 4 via an epoxy adhesive or directly thermocompression bonding. Or, clad using a method of applying a polyimide varnish to a copper foil.
(4) As shown in FIG.1 (d), it etches with respect to the copper foil in which the film 3 was formed based on the predetermined | prescribed fine circuit, and FPC1 is manufactured.
以下に、本発明を実施例に基づいて更に詳しく説明する。 Hereinafter, the present invention will be described in more detail based on examples.
回路基板用銅箔用にタフピッチ銅のインゴットを溶製した後、熱間圧延により厚さ12mmの素材を得た。次にこの素材に冷間圧延と焼鈍を繰り返すことにより厚さ0.1mmの最終圧延前の生地材とした。これに最終の焼鈍と冷間圧延を加え、板厚0.016mmの圧延銅箔を作製した。 After melting a tough pitch copper ingot for the copper foil for circuit boards, a material having a thickness of 12 mm was obtained by hot rolling. Next, this material was subjected to cold rolling and annealing to obtain a dough material having a thickness of 0.1 mm before final rolling. This was subjected to final annealing and cold rolling to produce a rolled copper foil having a thickness of 0.016 mm.
この圧延銅箔に本発明に係る被膜形成処理を施し、表1に示す試料を作製した。それぞれの被膜形成処理の条件は次の通りである。 The rolled copper foil was subjected to the film forming treatment according to the present invention, and samples shown in Table 1 were produced. The conditions for each film formation treatment are as follows.
<Fe−Ni被膜>
塩化第一鉄300g/L、塩化ニッケル50g/L、塩化カルシウム150g/Lのめっき液を建浴し、pH3.0、浴温60℃、電流密度2A/dm2で電気めっきすることによりFe−Ni被膜形成を行った。被膜組成(Mol%)は、Fe(95)及びNi(5)であり、被膜の厚さは、片面400nmとしている。
<Fe-Ni coating>
Fe-Ni is prepared by building a plating solution of 300 g / L of ferrous chloride, 50 g / L of nickel chloride and 150 g / L of calcium chloride, and electroplating at pH 3.0, bath temperature 60 ° C., current density 2 A /
<Fe−Mo被膜>
一般的なイオンプレーティングの方法によりFe−Mo被膜形成を行った。被膜組成(Mol%)は、Fe(70)及びMo(30)であり、被膜の厚さは、片面400nmとしている。
<Fe-Mo coating>
Fe-Mo coating was formed by a general ion plating method. The coating composition (Mol%) is Fe (70) and Mo (30), and the thickness of the coating is 400 nm on one side.
<Mo被膜>
一般的なイオンプレーティングの方法によりMo被膜形成を行った。被膜組成(Mol%)は、Mo(100)であり、被膜の厚さは、片面400nmとしている。
<Mo coating>
Mo film formation was performed by the general method of ion plating. The coating composition (Mol%) is Mo (100), and the thickness of the coating is 400 nm on one side.
<Fe−Ni被膜>
実施例1と同様の方法に基づいてFe−Ni被膜形成を行った。被膜組成は、実施例1と同じであるが、被膜厚さを片面60nmとしている。
<Fe-Ni coating>
An Fe—Ni coating was formed based on the same method as in Example 1. The coating composition is the same as in Example 1, but the film thickness is 60 nm on one side.
(比較例1)
<Fe−Ni被膜>
実施例1と同様の方法に基づいてFe−Ni被膜形成を行った。被膜組成は、実施例1と同じであるが、被膜厚さを片面30nmとしている。
(Comparative Example 1)
<Fe-Ni coating>
An Fe—Ni coating was formed based on the same method as in Example 1. The coating composition is the same as in Example 1, but the film thickness is 30 nm on one side.
(比較例2)
実施例1と同様の方法に基づいてFe−Ni被膜形成を行った。被膜組成は、実施例1と同じであるが、被膜厚さを片面700nmとしている。
(Comparative Example 2)
An Fe—Ni coating was formed based on the same method as in Example 1. The coating composition is the same as in Example 1, but the film thickness is 700 nm on one side.
(比較例3)
比較例3は、圧延銅箔に被膜形成を行わない場合を表している。
(Comparative Example 3)
Comparative Example 3 represents a case where no film is formed on the rolled copper foil.
次にこれら供試材の屈曲特性の評価は、各供試材を180℃で60分間加熱し、圧延銅箔を再結晶させた後、それぞれの幅が12.5mm、及び長さが200mmのサンプルを採取して測定した。なお測定はIPC規格(TM-650-2.4.2.1)によって規定されるFPCの耐屈曲性試験と同様の方法によって実施し、供試材の被膜形成処理面を外側にして曲率半径を2.5mm、ストロークを10mm、及び屈曲速度を1500回/分に設定した場合のサンプル破断時の屈曲回数を屈曲寿命とした。また、表2に示す平均とは、測定した同種類の供試材の数(n=10)によって屈曲寿命を平均したことを表している。 Next, the evaluation of the bending characteristics of these test materials was carried out by heating each test material at 180 ° C. for 60 minutes to recrystallize the rolled copper foil, and then measuring each of the widths of 12.5 mm and 200 mm. A sample was taken and measured. The measurement was carried out by the same method as the FPC bending resistance test defined by the IPC standard (TM-650-2.4.2.1), and the radius of curvature was 2.5 mm with the coating-formed surface of the specimen facing outside. The number of bendings at the time of sample breakage when the stroke was set to 10 mm and the bending speed was set to 1500 times / minute was defined as the bending life. Moreover, the average shown in Table 2 represents that the bending life was averaged by the number (n = 10) of the measured specimens of the same type.
表2に示した屈曲寿命の測定結果によれば、被膜形成処理を施した実施例1〜4は、被膜形成処理を行わなかった比較例3に比べ、著しく屈曲寿命が延びていることが分かる。 According to the measurement results of the bending life shown in Table 2, it can be seen that Examples 1 to 4 subjected to the film formation treatment have a significantly increased bending life compared to Comparative Example 3 where the film formation treatment was not performed. .
また比較例1は、実施例1と同じ被膜組成であるが、被膜厚さが30nmと実施例1に比べて薄い。この結果より、被膜厚さが薄いとき、屈曲寿命を延ばすことができないことが分かる。また比較例2は、被膜が700nmと厚いため、可撓性が低下し、実施例1〜4と同等以上の屈曲性を示すことはできない。 Comparative Example 1 has the same coating composition as Example 1, but the film thickness is 30 nm, which is thinner than Example 1. From this result, it can be seen that the bending life cannot be extended when the film thickness is thin. Moreover, since the film of Comparative Example 2 is as thick as 700 nm, the flexibility is lowered, and the flexibility that is equal to or higher than that of Examples 1-4 cannot be exhibited.
(効果)
上記した実施の形態によれば、圧延銅箔の屈曲特性が大幅に向上する。また従来の圧延銅箔と同程度の屈曲特性を得ようとする場合、圧延銅箔の製造工程において、最終の圧延加工度を低く抑えることができる。従って圧延パス数の増大を避けることができ、製造効率を大幅に向上させることが可能となる。
(effect)
According to the above-described embodiment, the bending characteristics of the rolled copper foil are greatly improved. Moreover, when it is going to acquire the bending characteristic comparable as the conventional rolled copper foil, in the manufacturing process of a rolled copper foil, the final rolling work degree can be restrained low. Therefore, an increase in the number of rolling passes can be avoided, and the production efficiency can be greatly improved.
(変形例)
回路基板用銅箔はポリイミドフィルムなどとラミネートされる。従って接着性を向上させるため粗化処理や耐食性処理など各種処理が施される。上記した本実施の形態における圧延銅箔においても、圧延銅箔表面に被膜形成処理を行った後にこのような各種処理を施すことが出来る。
(Modification)
The copper foil for circuit boards is laminated with a polyimide film or the like. Therefore, various treatments such as roughening treatment and corrosion resistance treatment are performed to improve the adhesion. Also in the rolled copper foil in this Embodiment mentioned above, such a various process can be performed after performing a film formation process to the rolled copper foil surface.
なお、本発明は、上記した実施の形態及び変形例に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々の変形が可能である。 The present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from or changing the technical idea of the present invention.
1…FPC、2…圧延銅箔、3…被膜、4…絶縁性樹脂フィルム
DESCRIPTION OF
Claims (3)
The copper foil for circuit boards according to claim 1 or 2, wherein the film has a thickness of 50 nm or more and 500 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008033460A JP2009194163A (en) | 2008-02-14 | 2008-02-14 | Copper foil for circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008033460A JP2009194163A (en) | 2008-02-14 | 2008-02-14 | Copper foil for circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009194163A true JP2009194163A (en) | 2009-08-27 |
Family
ID=41075922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008033460A Pending JP2009194163A (en) | 2008-02-14 | 2008-02-14 | Copper foil for circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009194163A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114626265A (en) * | 2022-03-14 | 2022-06-14 | 天津大学 | Low-cycle fatigue crack initiation and propagation behavior prediction method under multi-scale framework |
-
2008
- 2008-02-14 JP JP2008033460A patent/JP2009194163A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114626265A (en) * | 2022-03-14 | 2022-06-14 | 天津大学 | Low-cycle fatigue crack initiation and propagation behavior prediction method under multi-scale framework |
CN114626265B (en) * | 2022-03-14 | 2022-11-08 | 天津大学 | Method for predicting low-cycle fatigue crack initiation and propagation behaviors under multi-scale framework |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4916154B2 (en) | Copper or copper alloy foil for circuit | |
JP4662834B2 (en) | Copper or copper alloy foil for circuit | |
JP4522972B2 (en) | High gloss rolled copper foil for copper-clad laminates | |
JP5320638B2 (en) | Rolled copper foil and method for producing the same | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
JP2009019232A (en) | Rolled copper foil | |
JP2010100887A (en) | Copper foil excellent in flexibility, and flexible copper clad laminated sheet | |
JP5245813B2 (en) | Rolled copper foil | |
JP5235080B2 (en) | Copper alloy foil and flexible printed circuit board using the same | |
JP2004256879A (en) | Rolled copper foil having high elongation | |
JP4162087B2 (en) | Highly flexible rolled copper foil and method for producing the same | |
JP5532706B2 (en) | Method for producing flexible copper-clad laminate | |
JP6663712B2 (en) | Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6793138B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
JP5329491B2 (en) | Copper foil for flexible printed wiring board and method for producing the same | |
KR20140061201A (en) | Rolled copper foil with copper plating layer | |
JP2009280855A (en) | Rolled copper foil and method for producing the same | |
JP2017140838A (en) | Laminate for printed wiring board, manufacturing method of printed wiring board and manufacturing method of electronic apparatus | |
JP2009170829A (en) | Copper foil for circuit board | |
TWI718025B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same | |
JP2009194163A (en) | Copper foil for circuit board | |
JP5940010B2 (en) | Surface roughening copper foil, method for producing the same, and circuit board | |
KR102136096B1 (en) | Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5546571B2 (en) | Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body |