JP2019127603A - Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus including the same - Google Patents

Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus including the same Download PDF

Info

Publication number
JP2019127603A
JP2019127603A JP2018008117A JP2018008117A JP2019127603A JP 2019127603 A JP2019127603 A JP 2019127603A JP 2018008117 A JP2018008117 A JP 2018008117A JP 2018008117 A JP2018008117 A JP 2018008117A JP 2019127603 A JP2019127603 A JP 2019127603A
Authority
JP
Japan
Prior art keywords
copper foil
flexible printed
printed circuit
copper
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018008117A
Other languages
Japanese (ja)
Other versions
JP6793138B2 (en
Inventor
裕士 石野
Yuji Ishino
裕士 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018008117A priority Critical patent/JP6793138B2/en
Priority to TW107147630A priority patent/TWI730280B/en
Priority to KR1020190003924A priority patent/KR20190089732A/en
Priority to CN201910043638.6A priority patent/CN110072333B/en
Publication of JP2019127603A publication Critical patent/JP2019127603A/en
Application granted granted Critical
Publication of JP6793138B2 publication Critical patent/JP6793138B2/en
Priority to KR1020200171634A priority patent/KR102470725B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

To provide a copper foil for flexible printed circuit boards having excellent etching properties, and a copper clad laminate, a flexible printed circuit board, and an electronic apparatus including the same.SOLUTION: A copper foil for flexible printed circuit boards contains 99.0 mass% or more of Cu, with the balance being inevitable impurities, and has an average crystal grain size of 0.5-4.0 μm, a degree of aggregation expressed by an X-ray diffraction intensity I(220)/I(220) on the copper foil surface of 1.3 or more and less than 7.0, and a conductivity of 80% or more.SELECTED DRAWING: Figure 1

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。   The present invention relates to a copper foil suitable for a wiring member such as a flexible printed circuit board, a copper clad laminate using the copper foil, a flexible wiring board, and an electronic device.

フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
A flexible printed circuit board (flexible wiring board, hereinafter referred to as “FPC”) has flexibility, and is widely used in a bent portion and a movable portion of an electronic circuit. For example, FPCs are used for moving parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and bending parts of folding mobile phones.
The FPC is formed by etching a copper clad laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated, and then coating the wiring with a resin layer called a coverlay. Prior to laminating the coverlay, etching of the copper foil surface is performed as part of a surface modification process to improve the adhesion between the copper foil and the coverlay. Further, in order to improve the flexibility by reducing the thickness of the copper foil, thinning etching may be performed.

ところで、電子機器の小型、薄型、高性能化に伴い、FPCの回路幅、スペース幅の微細化(例えば、20〜30μm程度)が要求されている。FPCの回路が微細化すると、エッチングにより回路を形成する時にエッチングファクタや回路直線性が劣化し易くなるという問題がある(特許文献1,2)。   By the way, with the miniaturization, thinning, and high performance of electronic devices, miniaturization of FPC circuit width and space width (for example, about 20 to 30 μm) is required. If the circuit of the FPC is miniaturized, there is a problem that the etching factor and circuit linearity are likely to deteriorate when the circuit is formed by etching (Patent Documents 1 and 2).

特開2017-141501号公報Patent Document 1: Japanese Patent Application Publication No. 2017-141501 特開2017-179390号公報Unexamined-Japanese-Patent No. 2017-179390

しかしながら、従来の技術では、エッチング性を改善する方策として平均結晶粒径などを最適化することが行われているが、微細回路の形成におけるエッチング性に改善の余地がある。
本発明は上記の課題を解決するためになされたものであり、エッチング性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in the conventional technique, the average crystal grain size and the like are optimized as a measure for improving the etching property, but there is room for improvement in the etching property in forming a fine circuit.
The present invention has been made to solve the above-mentioned problems, and aims to provide a copper foil for a flexible printed circuit board excellent in etching property, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. To do.

本発明者らは種々検討した結果、〈220〉方位のエッチング速度が大きいことを見出した。特に、塩化第二銅エッチャントでのエッチングでは方位によるエッチング速度の差が存在しないとされてきた。そこで〈220〉方位の結晶粒を多くすることでエッチング性(特にソフトエッチング性およびエッチングファクタ)をさらに向上させることに成功した。   As a result of various studies, the present inventors have found that the etching rate in the <220> direction is high. In particular, in etching with cupric chloride etchant, it has been considered that there is no difference in etching rate depending on orientation. Therefore, we succeeded in further improving the etchability (especially the soft etchability and the etch factor) by increasing the crystal grains of <220> orientation.

すなわち、本発明のフレキシブルプリント基板用銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる圧延銅箔であって、平均結晶粒径が0.5〜 4.0μ m、銅箔表面のX線回折強度I(220)/I(220)で表示される集合度が1.3以上7.0未満、導電率が80%以上である。 That is, the copper foil for flexible printed circuit boards according to the present invention is a rolled copper foil comprising 99.0% by mass or more of Cu and the balance inevitable impurities, and has an average crystal grain size of 0.5 to 4.0 μm, and X-rays on the copper foil surface The aggregation degree represented by the diffraction intensity I (220) / I 0 (220) is 1.3 or more and less than 7.0, and the conductivity is 80% or more.

本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなることが好ましい。
本発明のフレキシブルプリント基板用銅箔は、さらに、添加元素として、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有してなることが好ましい。
本発明のフレキシブルプリント基板用銅箔において、300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)後に、前記平均結晶粒径が0.5〜 4.0μ m、前記集合度が1.3以上7.0未満、前記導電率が80%以上であることが好ましい。
The copper foil for a flexible printed board of the present invention is preferably made of tough pitch copper standardized to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020).
The copper foil for flexible printed circuit boards of the present invention further includes at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn, and Sb as additive elements in total. It is preferable to contain 0.7 mass% or less.
In the copper foil for a flexible printed circuit board of the present invention, the average crystal grain size is 0.5 to 4.0 μm, and the aggregation degree is 300 ° C. × 30 min annealing (where the temperature rising rate is 100 ° C./min to 300 ° C./min). It is preferable that the conductivity is 1.3 or more and less than 7.0 and the conductivity is 80% or more.

本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。   The copper-clad laminate of the present invention is formed by laminating the copper foil for a flexible printed circuit and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。   The flexible printed board of the present invention is formed by forming a circuit on the copper foil in the copper clad laminate.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。   The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、エッチング性(特にソフトエッチング性およびエッチングファクタ)に優れたフレキシブルプリント基板用銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed circuit boards excellent in etching property (especially soft etching property and an etching factor) is obtained.

エッチングファクタEFの測定方法を示す図である。It is a figure which shows the measuring method of etching factor EF. エッチングファクタEFの測定方法を示す別の図である。It is another figure which shows the measuring method of etching factor EF.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。
まず、エッチング性におけるソフトエッチング性とエッチングファクタEFについて説明する。
ソフトエッチング性は、銅箔表面とレジストとの密着性に起因したエッチングによる回路の精度を示す指標で、レジストの密着性が良くレジストが銅箔表面を追従するほど、両者間にエッチング液が侵入して回路の一部が欠ける不具合が抑制され、銅箔全面に均一な回路パターンが得られて歩留まりが向上する。
エッチングファクタEFはエッチングで形成した回路の断面形状の指標であり、EFが高いほど、エッチングで形成した回路の断面がシャープになるので、回路を微細化した際に回路パターンの精度が向上する。
Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
First, the soft etching property in etching property and the etching factor EF will be described.
The soft etching property is an index showing the accuracy of the circuit by etching due to the adhesion between the copper foil surface and the resist. The better the adhesion of the resist is, the more the resist follows the copper foil surface, the etchant penetrates between them. As a result, a defect that a part of the circuit is missing is suppressed, and a uniform circuit pattern can be obtained on the entire surface of the copper foil, and the yield is improved.
The etching factor EF is an index of the cross-sectional shape of the circuit formed by etching, and the higher the EF, the sharper the cross-section of the circuit formed by etching, so that the accuracy of the circuit pattern is improved when the circuit is miniaturized.

ソフトエッチング性が良好であっても、エッチングファクタEFが劣る場合、銅箔全面に均一な回路パターンが得られて歩留まりが向上するが、回路を微細化した際に回路パターンの精度が低下する。
逆に、エッチングファクタEFが良好であっても、ソフトエッチング性が劣る場合、回路を微細化した際に回路パターンの精度が向上するが、(銅箔表面とレジスト間にエッチング液が侵入しやすいため)回路の一部が欠ける不具合が生じ、銅箔全面に均一な回路パターンが得られず歩留まりが低下する。
Even if the soft etching property is good, if the etching factor EF is inferior, a uniform circuit pattern can be obtained on the entire surface of the copper foil to improve the yield, but when the circuit is miniaturized, the accuracy of the circuit pattern decreases.
Conversely, even if the etching factor EF is good, if the soft etching property is inferior, the accuracy of the circuit pattern is improved when the circuit is miniaturized, but the etching solution tends to enter between the copper foil surface and the resist. Therefore, there is a problem that a part of the circuit is missing, and a uniform circuit pattern cannot be obtained on the entire surface of the copper foil, resulting in a decrease in yield.

<組成>
本発明に係る銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる。
本発明の実施例では、銅箔の最終冷間圧延前の結晶粒径を微細化することにより、冷間圧延中に銅箔の転位の蓄積が促進され、再結晶時には再結晶粒が微細になる。また、冷間圧延の最終パスにおいてひずみ速度を極端に高くすると、再結晶時には再結晶粒が特定の方位に配向し、すなわち{200}面集合度が抑制され、かつ、{220}面集合度を高くすることができエッチング性が向上する。
<Composition>
The copper foil according to the present invention comprises 99.0% by mass or more of Cu and the balance of inevitable impurities.
In the embodiment of the present invention, by reducing the grain size of the copper foil before final cold rolling, accumulation of dislocations of the copper foil is promoted during cold rolling, and the recrystallized grains become fine during recrystallization. Become. Also, if the strain rate is made extremely high in the final pass of cold rolling, recrystallized grains are oriented in a specific orientation during recrystallization, that is, the {200} plane aggregation degree is suppressed, and the {220} plane aggregation degree Can be increased, and the etching property is improved.

又、銅箔の再結晶後における結晶粒を微細化するためには、焼鈍と圧延を繰り返す工程全体の中で、最終焼鈍後に行う最終冷間圧延前の結晶粒径を5μm以上20μm以下とすると好ましい。
具体的には、最終焼鈍の温度、及び、最終焼鈍前の冷間圧延の加工度を調整すると、上記粒径を制御できる。最終焼鈍の温度は銅箔の製造条件によっても変わり、限定されないが、例えば300〜400℃とすればよい。又、最終焼鈍前の冷間圧延の加工度も限定されないが、例えば加工度ηを1.6〜3.0とすればよい。
加工度ηは、最終焼鈍前の冷間圧延直前の材料の厚みをA0、最終焼鈍前の冷間圧延直後の材料の厚みをA1とし、η=ln(A0/A1)で表す。
Moreover, in order to refine crystal grains after recrystallization of copper foil, when the crystal grain size before final cold rolling performed after final annealing is 5 μm or more and 20 μm or less in the entire process of repeating annealing and rolling. preferable.
Specifically, the grain size can be controlled by adjusting the temperature of final annealing and the degree of cold rolling before final annealing. Although the temperature of final annealing changes also with the manufacturing conditions of copper foil, it is not limited, For example, what is necessary is just to be 300-400 degreeC. Moreover, although the working degree of the cold rolling before final annealing is not limited, either, for example, the working degree η may be set to 1.6 to 3.0.
The processing degree η is represented by η = ln (A0 / A1), where A0 denotes the thickness of the material immediately before cold rolling before final annealing and A1 denotes the thickness of the material immediately after cold rolling before final annealing.

最終冷間圧延前の結晶粒径が20μm超の場合、加工時の転位の絡み合いが小さくなり、ひずみの蓄積が少なくなるため、再結晶後にひずみが解放されず結晶粒の微細化が不十分となる傾向にある。最終冷間圧延前の結晶粒径が5μmより小さい場合は、加工時の転位の絡み合いが銅箔のほぼ全領域で生じてこれ以上の絡み合いができず、銅箔の再結晶時に再結晶粒が微細化する効果が飽和する。したがって最終冷間圧延前の結晶粒径の下限を5μmとした。   If the crystal grain size before final cold rolling exceeds 20 μm, the entanglement of dislocations during processing will be small and the accumulation of strain will be reduced, so the strain will not be released after recrystallization and the crystal grains will be insufficiently refined. Tend to be. If the crystal grain size before final cold rolling is less than 5 μm, dislocation entanglement during processing occurs in almost the entire area of the copper foil and further entanglement can not be made, and recrystallized grains are generated during recrystallization of the copper foil. The effect of miniaturization is saturated. Therefore, the lower limit of the crystal grain size before the final cold rolling is set to 5 μm.

又、添加元素として、上記組成に対し、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有すると、再結晶粒を微細化することができる。
上記添加元素は、冷間圧延時に転位の絡み合いの頻度を増加させるので、再結晶粒が微細化することができる。
上記添加元素を合計で0.7質量%を超えて含有させると、導電率が低下し、フレキシブル基板用銅箔として適さない場合があるので、0.7質量%を上限とした。上記添加元素の含有量の下限は特に制限されないが、例えば各元素につき0.0005質量%より小さく制御することは工業的に難しいので、各元素の含有量の下限を0.0005質量%とするとよい。
Further, as an additive element, a total of at least one or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb is 0.7% by mass or less based on the above composition. When contained, recrystallized grains can be refined.
The above-described additive elements increase the frequency of dislocation entanglement during cold rolling, so that recrystallized grains can be refined.
If the total amount of the additive elements exceeds 0.7% by mass, the electrical conductivity is lowered and may not be suitable as a copper foil for a flexible substrate, so 0.7% by mass was made the upper limit. The lower limit of the content of the additional element is not particularly limited. For example, since it is industrially difficult to control the content smaller than 0.0005% by mass, the lower limit of the content of each element may be 0.0005% by mass.

本発明に係る銅箔を、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)の無酸素銅(OFC)からなる組成としてもよい。
又、上記TPC又はOFCに対し、Pを含有させてなる組成としてもよい。
The copper foil according to the present invention may be composed of tough pitch copper (TPC) standardized to JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020).
Moreover, it is good also as a composition which contains P with respect to said TPC or OFC.

<平均結晶粒径>
銅箔の平均結晶粒径が0.5〜 4.0μ mである。平均結晶粒径が0.5μ m未満であると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。平均結晶粒径が4.0μ mを超えると、ソフトエッチング性が劣化する。
平均結晶粒径の測定は、誤差を避けるため、箔表面を100μ m× 100μ mの視野で3視野以上を観察して行う。箔表面の観察は、SIM ( Scanning Ion Microscope)またはSEM( Scanning Electron Microscope)を用い、JIS-H0501に基づいて平均結晶粒径を求めることができる。ただし、双晶は、別々の結晶粒とみなして測定する。
<Average crystal grain size>
The average crystal grain size of the copper foil is 0.5 to 4.0 μm. If the average crystal grain size is less than 0.5 μm, the strength becomes too high, the bending rigidity becomes large, the spring back becomes large, and it is not suitable for flexible printed circuit board applications. When the average crystal grain size exceeds 4.0 μm, the soft etching property deteriorates.
In order to avoid an error, the average grain size is measured by observing three or more fields of view on the foil surface with a field of view of 100 μm × 100 μm. For observation of the foil surface, the average crystal grain size can be determined based on JIS-H0501 using SIM (Scanning Ion Microscope) or SEM (Scanning Electron Microscope). However, twins are measured as being considered as separate crystal grains.

<集合度>
銅箔表面のX線回折強度I(220)/I(220)で表示される集合度が1.3以上7.0未満である。
集合度が1.3未満であると、厚み方向のエッチング速度が小さくなり、銅箔の後述するエッチングファクタが低下する。集合度が7.0以上となるひずみ速度の場合、エッチングファクタは良好であるものの、圧延銅箔の形状が悪くなりFPC用銅箔として使用しにくくなる場合がある。
<Degree of assembly>
The degree of aggregation represented by the X-ray diffraction intensity I (220) / I 0 (220) on the copper foil surface is 1.3 or more and less than 7.0.
When the degree of aggregation is less than 1.3, the etching rate in the thickness direction is reduced, and the etching factor of the copper foil described later is lowered. In the case of a strain rate at which the degree of aggregation is 7.0 or more, the etching factor is good, but the shape of the rolled copper foil is deteriorated and it may be difficult to use as a copper foil for FPC.

集合度は以下のように測定する。まず、銅箔の圧延面について{220}面のX線回折強度を測定し、I(220)とする。
また、同一の条件にて、純銅粉末(325mesh(JIS Z8801、純度99.5%),水素気流中で300℃で1時間加熱してから使用)について{220}面のX線回折強度を測定し、I(220)とする。
The degree of assembly is measured as follows. First, the X-ray diffraction intensity of the {220} plane of the rolled surface of the copper foil is measured and set to I (220).
In addition, X-ray diffraction intensity of {220} plane was measured for pure copper powder (325 mesh (JIS Z 8801, purity 99.5%), used after heating at 300 ° C. for 1 hour in a hydrogen stream under the same conditions) And I 0 (220).

そして、次のように規格化する。
・{220}面集合度:I(220)/I(220)
X線回折の測定条件は、つぎのとおりである。
・入射X線源:Co、
・加速電圧:25kV、
・管電流:20mA、
・発散スリット:1度、
・散乱スリット:1度、
・受光スリット:0.3mm、
・発散縦制限スリット:10mm、
・モノクロ受光スリット0.8mm
And standardize as follows.
* Degree of {220} plane assembly: I (220) / I 0 (220)
The measurement conditions for X-ray diffraction are as follows.
-Incident X-ray source: Co,
・ Acceleration voltage: 25 kV,
-Tube current: 20 mA,
・ Divergent slit: 1 degree
・ Scatter slit: 1 degree
・ Light receiving slit: 0.3 mm,
・ Divergent longitudinal restriction slit: 10 mm,
・ Monochrome light receiving slit 0.8mm

<300℃で30分間の熱処理>
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、平均結晶粒径、及びI(220)/I(220)で表示される集合度が変化する。
従って、樹脂と積層する前後で、平均結晶粒径、及び集合度が変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった際の熱処理を受けた状態の銅箔を規定している。つまり、既に熱処理を受けているから、新たな熱処理を行わない状態の銅箔である。
一方、本願の請求項4に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態(例えば、熱処理前の銅箔コイルがCCLの製造工場に納入されてCCLに積層されるときの加熱された状態)を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。なお、熱処理による銅箔表面の酸化を防止するため、熱処理の雰囲気は、還元性又は非酸化性の雰囲気が好ましく、例えば、真空雰囲気、又は、アルゴン、窒素、水素、一酸化炭素等若しくはこれらの混合ガスからなる雰囲気などとすればよい。昇温速度は100〜300℃/minの間であればよい。
<Heat treatment at 300 ° C for 30 minutes>
The copper foil according to the present invention is used for a flexible printed board, and in that case, the CCL in which the copper foil and the resin are laminated is subjected to a heat treatment for curing the resin at 200 to 400 ° C. The degree of aggregation displayed by I (220) / I 0 (220) changes.
Therefore, the average crystal grain size and the degree of aggregation change before and after lamination with the resin. Then, the copper foil for flexible printed circuit boards concerning Claim 1 of this application prescribes | regulates the copper foil of the state which received the heat processing at the time of becoming a copper clad laminated body after resin and lamination | stacking. In other words, the copper foil is in a state where it has not been subjected to a new heat treatment since it has already undergone a heat treatment.
On the other hand, the copper foil for a flexible printed circuit board according to claim 4 of the present application is in a state (for example, a copper foil coil before heat treatment is delivered to a manufacturing plant of CCL) The heated state when being stacked on the CCL). The heat treatment at 300 ° C. for 30 minutes simulates the temperature conditions under which the resin is cured and heat treated during lamination of CCL. In order to prevent oxidation of the surface of the copper foil by heat treatment, the atmosphere for heat treatment is preferably a reducing or non-oxidizing atmosphere, for example, a vacuum atmosphere, or argon, nitrogen, hydrogen, carbon monoxide, etc. An atmosphere made of a mixed gas may be used. The heating rate may be between 100 and 300 ° C./min.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットを溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、好ましくは冷間圧延時の初期に再結晶焼鈍を行うと共に、最終再結晶焼鈍及び最終冷間圧延を行うことにより箔を製造することができる。
冷間圧延の総加工度η、最終冷間圧延前かつ最終再結晶焼鈍後の平均結晶粒径、及び最終冷間圧延前の最終パスのひずみ速度を調整することにより、平均結晶粒径、及び集合度を制御できる。
The copper foil of this invention can be manufactured as follows, for example. First, after melting and casting a copper ingot, it is hot-rolled, cold-rolled and annealed, and preferably recrystallization annealing is performed at the initial stage of cold-rolling, final recrystallization annealing and final cold rolling By doing so, a foil can be produced.
Average grain size by adjusting the total working degree η of cold rolling, the average grain size before final cold rolling and after final recrystallization annealing, and the strain rate of the final pass before final cold rolling, and The degree of assembly can be controlled.

総加工度ηを6.10以上とすると、I(220)/I(220)で表示される集合度をより確実に増やすことができる。
最終冷間圧延前かつ最終再結晶焼鈍後の平均結晶粒径を5〜20μmとすると、製品の平均結晶粒径を確実に0.5〜 4.0μ mにすることができる。
最終冷間圧延前の最終パスのひずみ速度を1000(/秒)以上とすると、集合度をより確実に増やすことができる。
If the total processing degree η is 6.10 or more, the aggregation degree represented by I (220) / I 0 (220) can be more reliably increased.
When the average crystal grain size before the final cold rolling and after the final recrystallization annealing is 5 to 20 μm, the average crystal grain size of the product can be surely set to 0.5 to 4.0 μm.
If the strain rate of the final pass before final cold rolling is set to 1000 (/ second) or more, the degree of assembly can be more reliably increased.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
In addition, (1) casting a resin precursor (for example, a polyimide precursor called varnish) onto the copper foil of the present invention and polymerizing by heat, (2) using a thermoplastic adhesive of the same type as the base film By laminating the base film on the copper foil of the present invention, a copper clad laminate (CCL) composed of two layers of the copper foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper foil of the present invention, a copper clad laminate (CCL) comprising three layers of a copper foil, a resin base material, and an adhesive layer therebetween is obtained. During the production of these CCLs, the copper foil is heat-treated and recrystallized.
A circuit is formed on these using a photolithographic technique, a circuit is plated as needed, and a cover-lay film is laminated, and a flexible printed circuit board (flexible wiring board) is obtained.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material to be the resin layer may be coated on the surface of the copper foil to form a film by heating. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.

樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。   When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive of the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. The polyimide adhesive as used herein refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。また、電解銅箔でも良い。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component. Moreover, an electrolytic copper foil may be used.
For example, the surface of the copper foil may be subjected to a surface treatment by roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。電気銅に、表1に示す元素をそれぞれ添加して表1に示す組成とし、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延した後、冷間圧延および再結晶焼鈍を繰り返し、さらに最終再結晶焼鈍及び最終冷間圧延を行って圧延銅箔を得た。
得られた圧延銅箔にアルゴン雰囲気において300℃×30分の熱処理を加え、銅箔サンプルを得た。熱処理後の銅箔は、CCLの積層時に熱処理を受けた状態を模している。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. The elements shown in Table 1 were added to electric copper, respectively, to obtain compositions shown in Table 1, and casting was performed in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. After this ingot was homogenized and annealed at 900 ° C., after hot rolling, cold rolling and recrystallization annealing were repeated, and final recrystallization annealing and final cold rolling were performed to obtain a rolled copper foil.
The obtained rolled copper foil was heat-treated at 300 ° C. for 30 minutes in an argon atmosphere to obtain a copper foil sample. The copper foil after the heat treatment imitates a state where the heat treatment is performed during the lamination of the CCL.

<銅箔サンプルの評価>
1.導電率
上記熱処理後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が80%IACSより大きければ導電性が良好である。
2.集合度
上記熱処理後の各銅箔サンプルについて、X線回折装置(RINT−2500:理学電機製)を用い、上述の方法で集合度を測定した。なお、I(220)/I(220)で表示される集合度の他、{200}面のX線回折強度を同様に測定し、I(200)/I(200)も求めた。
<Evaluation of copper foil sample>
1. Electrical conductivity The electrical conductivity (% IACS) at 25 ° C. was measured for each copper foil sample after the heat treatment by a four-terminal method based on JIS H 0505.
If the conductivity is greater than 80% IACS, the conductivity is good.
2. Assembly degree About each copper foil sample after the said heat processing, the assembly degree was measured by the above-mentioned method using the X-ray-diffraction apparatus (RINT-2500: Rigaku Corporation make). In addition to the degree of aggregation represented by I (220) / I 0 (220), the X-ray diffraction intensity of the {200} plane was measured in the same manner to obtain I (200) / I 0 (200).

3.エッチングファクタEF
銅箔と樹脂を張り合わせ、その後ドライフィルムレジストを銅箔表面にラミネートし、レジストに短冊状(L/S=25/25)の回路パターンを形成した。塩化第二銅エッチャントのスプレーエッチングでエッチング時間を変化させて、エッチングを実施した。
3. Etching factor EF
A copper foil and a resin were laminated, and then a dry film resist was laminated on the surface of the copper foil to form a strip-like (L / S = 25/25) circuit pattern on the resist. Etching was performed by changing the etching time by spray etching of cupric chloride etchant.

EFの測定方法は種々存在するが、本発明では、エッチングファクタEFの求め方として最も一般的な、幅方向に対する深さ方向のエッチング速度で評価する。本発明では、図1、図2に示すようにして測定を行う。なお、下記の式(1)は、深さ方向と幅方向のエッチング速度のみに着目しており、斜め方向のエッチング速度は考慮しない。
EFは、図1に示すように、回路1本の断面の幅方向及び深さ方向のエッチング速度から、以下の式(1)で求める。
EF=深さ方向のエッチング速度/幅方向のエッチング速度 (1)
Although there are various methods for measuring EF, in the present invention, evaluation is performed by the etching rate in the depth direction with respect to the width direction, which is the most common method for obtaining the etching factor EF. In the present invention, measurement is performed as shown in FIGS. The following equation (1) focuses only on the etching rate in the depth direction and the width direction, and does not consider the etching rate in the oblique direction.
As shown in FIG. 1, the EF is obtained from the etching rate in the width direction and the depth direction of the cross section of one circuit by the following equation (1).
EF = etching rate in the depth direction / etching rate in the width direction (1)

ただし、エッチング速度そのものを測定するのは困難であるので、それぞれエッチング時間を変化させたときの回路の幅と深さを測定する。そして、図2に示すように、横軸を回路の幅、縦軸を回路の深さとして各データをプロットし、以下の式(2)で近似的に求める。つまり、図2のグラフの傾きを最小二乗法による一次の近似式から求めてEFとする。
EF≒深さの時間変化/(幅の時間変化/2)=2×深さの時間変化/幅の時間変化 (2)
ここで、式(2)の係数「2」は、幅方向のエッチングが図1の左右両側に進行するため、半分にする必要があるためである。
However, since it is difficult to measure the etching rate itself, the width and depth of the circuit when the etching time is changed are measured. Then, as shown in FIG. 2, each data is plotted with the horizontal axis as the circuit width and the vertical axis as the circuit depth, and is approximately obtained by the following equation (2). That is, the slope of the graph of FIG. 2 is obtained from a first-order approximation formula using the least square method and is defined as EF.
EF≈time change of depth / (time change of width / 2) = 2 × time change of depth / time change of width (2)
Here, the coefficient “2” in Expression (2) is because etching in the width direction proceeds to both the left and right sides in FIG.

そして、EFの値に応じて以下の指標で評価した。評価が◎、○であれば良好である。
◎:EFが1.4以上
×:EFが1.1以上1.4未満
×:EFが1.1未満
And it evaluated with the following parameter | index according to the value of EF. If evaluation is (double-circle) and (circle), it is favorable.
:: EF is 1.4 or more ×: EF is 1.1 or more and less than 1.4 ×: EF is less than 1.1

4.ソフトエッチング性
上記熱処理後の各銅箔サンプルについて、表面を以下の条件でソフトエッチングした。ソフトエッチング性を評価する指標として、ソフトエッチング後の銅箔表面のJIS-B0601(2001)に基づく算術平均粗さRaを測定した。
ソフトエッチング条件としては、銅箔とレジストとの密着性を付与するためのソフトエッチングを模擬し、過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液( 液温25℃ )に420秒銅箔を浸漬するものとした。算術平均粗さRaが0.2μm以下の場合をソフトエッチング性が良好(○)、算術平均粗さRaが0.2μmを超える場合をソフトエッチング性が不良(×)とした。
4. Soft etching property About each copper foil sample after the said heat processing, the surface was soft-etched on condition of the following. As an index for evaluating the soft etching property, arithmetic average roughness Ra based on JIS-B0601 (2001) on the surface of the copper foil after the soft etching was measured.
As soft etching conditions, we simulated soft etching to give adhesion between copper foil and resist and put it into an aqueous solution (solution temperature 25 ° C) with sodium persulfate concentration of 100 g / L and hydrogen peroxide concentration of 35 g / L. The second copper foil was immersed. When the arithmetic average roughness Ra is 0.2 μm or less, the soft etching property is good (◯), and when the arithmetic average roughness Ra exceeds 0.2 μm, the soft etching property is poor (×).

ソフトエッチング後にレジストが銅箔表面に良く追従すれば密着性に優れ、回路パターンの精度が向上し、ソフトエッチング性が良好となる。Raが0.2μmを超えると、レジストが銅箔表面を追従しにくく、レジストと銅箔表面間に隙間が発生し易くなる。そして、その隙間にエッチング液が侵入することで回路パターンの形成時の精度が低下する。   If the resist follows the surface of the copper foil well after soft etching, the adhesion is excellent, the accuracy of the circuit pattern is improved, and the soft etching property is good. When Ra exceeds 0.2 μm, the resist hardly follows the surface of the copper foil, and a gap is likely to be generated between the resist and the copper foil surface. Then, when the etching solution enters the gap, the accuracy in forming the circuit pattern is lowered.

5.結晶粒径
上記熱処理後の各銅箔サンプルについて、圧延面をSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、圧延方向に平行な断面の400μm ×400μmとした。
5. Crystal grain size About each copper foil sample after the said heat processing, the rolling surface was observed using SEM (Scanning Electron Microscope), and the average particle diameter was calculated | required based on JISH0501. However, the twins were measured as if they were separate crystal grains. The measurement region was 400 μm × 400 μm in a cross section parallel to the rolling direction.

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

Figure 2019127603
Figure 2019127603

Figure 2019127603
Figure 2019127603

表1、表2から明らかなように、結晶粒径が0.5〜 4.0μ mであり、かつ、I(220)/I(220)で表示される集合度が1.3以上7.0未満である各実施例の場合、エッチングファクタおよびソフトエッチング性がともに優れていた。これにより、銅箔全面に均一な回路パターンが得られて歩留まりが向上し、さらに回路を微細化した際に回路パターンの精度が向上する。 As is clear from Tables 1 and 2, the crystal grain size is 0.5 to 4.0 μm, and the degree of aggregation represented by I (220) / I 0 (220) is 1.3 or more and less than 7.0. In each of the examples, both the etching factor and the soft etching property were excellent. As a result, a uniform circuit pattern is obtained on the entire surface of the copper foil, yield is improved, and the accuracy of the circuit pattern is improved when the circuit is further miniaturized.

最終冷間圧延の最終パスのひずみ速度が1000(s-1)未満である比較例1〜4の場合、集合度が1.3未満となり、ソフトエッチング性は良好なもののエッチングファクタが低下した。従って、回路を微細化した際に回路パターンの精度が低下する。
最終冷間圧延前かつ最終再結晶焼鈍後の平均結晶粒径が20μmを超えた比較例5の場合、製品の平均結晶粒径が4.0μ mを超え、エッチングファクタは良好なものの、ソフトエッチング性が劣った。従って、銅箔全面に均一な回路パターンが得られず歩留まりが低下する。
総加工度が6.10未満の比較例6の場合、集合度が1.3未満となり、エッチングファクタが低下した。
添加元素の合計含有量が0.7質量%を超えた比較例7の場合、導電率が80%未満となり導電性が劣った。
In the case of Comparative Examples 1 to 4 in which the strain rate of the final pass of the final cold rolling was less than 1000 (s-1), the degree of aggregation was less than 1.3, and the etching factor decreased although the soft etching property was good. Therefore, the accuracy of the circuit pattern is reduced when the circuit is miniaturized.
In the case of Comparative Example 5 in which the average crystal grain size before final cold rolling and after final recrystallization annealing exceeds 20 μm, the average crystal grain size of the product exceeds 4.0 μm and the etching factor is good, but the soft etching property Was inferior. Therefore, a uniform circuit pattern cannot be obtained on the entire surface of the copper foil, and the yield decreases.
In the case of Comparative Example 6 in which the total degree of processing was less than 6.10, the degree of assembly was less than 1.3, and the etching factor was reduced.
In the case of Comparative Example 7 in which the total content of the additive elements exceeded 0.7% by mass, the conductivity was less than 80%, and the conductivity was inferior.

Claims (7)

99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、
平均結晶粒径が0.5〜 4.0μ m、銅箔表面のX線回折強度I(220)/I(220)で表示される集合度が1.3以上7.0未満、
導電率が80%以上であるフレキシブルプリント基板用銅箔。
Copper foil consisting of 99.0% by mass or more of Cu and the balance inevitable impurities,
The average grain size is 0.5 to 4.0 μm, and the copper foil surface has an aggregation degree of 1.3 or more and less than 7.0, which is represented by the X-ray diffraction intensity I (220) / I 0 (220)
Copper foil for flexible printed circuit boards having an electrical conductivity of 80% or more.
JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなる請求項1に記載のフレキシブルプリント基板用銅箔。   The copper foil for flexible printed circuit boards of Claim 1 which consists of a tough pitch copper specified to JIS-H3100 (C1100) or an oxygen free copper of JIS-H3100 (C1020). さらに、添加元素として、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有してなる請求項1又は2に記載のフレキシブルプリント基板用銅箔。   Furthermore, it comprises at least 0.7 mass% or less in total of at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb as additive elements. Item 3. The copper foil for a flexible printed board according to Item 1 or 2. 300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)後に、前記平均結晶粒径が0.5〜 4.0μ m、前記集合度が1.3以上7.0未満、前記導電率が80%以上である請求項1〜3のいずれか一項に記載のフレキシブルプリント基板用銅箔。   After annealing at 300 ° C. for 30 minutes (however, the heating rate is 100 ° C./min to 300 ° C./min), the average crystal grain size is 0.5 to 4.0 μm, the aggregation degree is 1.3 or more and less than 7.0, the conductivity The copper foil for flexible printed circuit boards as described in any one of Claims 1-3 whose rate is 80% or more. 請求項1〜4のいずれか一項に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。   The copper clad laminated body formed by laminating | stacking the copper foil for flexible printed boards as described in any one of Claims 1-4, and a resin layer. 請求項5に記載の銅張積層体における前記銅箔に回路を形成してなるフレキシブルプリント基板。   The flexible printed circuit board formed by forming a circuit in the said copper foil in the copper clad laminated body of Claim 5. 請求項6に記載のフレキシブルプリント基板を用いた電子機器。   An electronic apparatus using the flexible printed circuit board according to claim 6.
JP2018008117A 2018-01-22 2018-01-22 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Active JP6793138B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018008117A JP6793138B2 (en) 2018-01-22 2018-01-22 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TW107147630A TWI730280B (en) 2018-01-22 2018-12-28 Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
KR1020190003924A KR20190089732A (en) 2018-01-22 2019-01-11 Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
CN201910043638.6A CN110072333B (en) 2018-01-22 2019-01-17 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR1020200171634A KR102470725B1 (en) 2018-01-22 2020-12-09 Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008117A JP6793138B2 (en) 2018-01-22 2018-01-22 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Publications (2)

Publication Number Publication Date
JP2019127603A true JP2019127603A (en) 2019-08-01
JP6793138B2 JP6793138B2 (en) 2020-12-02

Family

ID=67365929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008117A Active JP6793138B2 (en) 2018-01-22 2018-01-22 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Country Status (4)

Country Link
JP (1) JP6793138B2 (en)
KR (2) KR20190089732A (en)
CN (1) CN110072333B (en)
TW (1) TWI730280B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161581A (en) * 2019-03-26 2020-10-01 Jx金属株式会社 Copper foil for flexible printed circuit substrate, copper-clad laminate including the same, flexible printed circuit substrate, and electronic device
JP7164752B1 (en) 2022-07-14 2022-11-01 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
JP7194857B1 (en) 2022-07-14 2022-12-22 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256879A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Rolled copper foil having high elongation
JP2017128804A (en) * 2016-01-15 2017-07-27 Jx金属株式会社 Copper foil, copper-clad laminate, method of manufacturing printed wiring board, method of manufacturing electronic device, method of manufacturing transmission line, and method of manufacturing antenna
JP2017141501A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962291B2 (en) * 2001-07-17 2007-08-22 日鉱金属株式会社 Rolled copper foil for copper clad laminate and method for producing the same
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same
JP2013142162A (en) * 2012-01-10 2013-07-22 Mitsubishi Shindoh Co Ltd Copper or copper alloy plate for base plate with excellent warp workability, and method for producing the same
JP6360654B2 (en) * 2012-01-17 2018-07-18 Jx金属株式会社 Rolled copper foil for flexible printed wiring boards
JP6294257B2 (en) * 2015-03-30 2018-03-14 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6392268B2 (en) * 2016-02-05 2018-09-19 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6328679B2 (en) * 2016-03-28 2018-05-23 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP7133904B2 (en) * 2016-03-31 2022-09-09 住友化学株式会社 LAMINATED FILM AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256879A (en) * 2003-02-27 2004-09-16 Nikko Metal Manufacturing Co Ltd Rolled copper foil having high elongation
JP2017128804A (en) * 2016-01-15 2017-07-27 Jx金属株式会社 Copper foil, copper-clad laminate, method of manufacturing printed wiring board, method of manufacturing electronic device, method of manufacturing transmission line, and method of manufacturing antenna
JP2017141501A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161581A (en) * 2019-03-26 2020-10-01 Jx金属株式会社 Copper foil for flexible printed circuit substrate, copper-clad laminate including the same, flexible printed circuit substrate, and electronic device
JP7164752B1 (en) 2022-07-14 2022-11-01 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
JP7194857B1 (en) 2022-07-14 2022-12-22 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
WO2024014056A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device using same
WO2024014057A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device using same
JP2024011164A (en) * 2022-07-14 2024-01-25 Jx金属株式会社 Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device that employ the same
JP2024011163A (en) * 2022-07-14 2024-01-25 Jx金属株式会社 Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate, and electronic device that employ the same

Also Published As

Publication number Publication date
CN110072333A (en) 2019-07-30
TWI730280B (en) 2021-06-11
KR20190089732A (en) 2019-07-31
KR102470725B1 (en) 2022-11-25
KR20200141427A (en) 2020-12-18
TW201934767A (en) 2019-09-01
JP6793138B2 (en) 2020-12-02
CN110072333B (en) 2022-05-13

Similar Documents

Publication Publication Date Title
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
CN109385554B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102049636B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2021014603A (en) Copper foil for flexible printed substrate
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6774457B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP4798894B2 (en) Copper alloy foil for laminates
JP2019194360A (en) Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2019143229A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200923

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6793138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250