JP2014139335A - Copper plating layer-clad rolled copper foil - Google Patents

Copper plating layer-clad rolled copper foil Download PDF

Info

Publication number
JP2014139335A
JP2014139335A JP2013008820A JP2013008820A JP2014139335A JP 2014139335 A JP2014139335 A JP 2014139335A JP 2013008820 A JP2013008820 A JP 2013008820A JP 2013008820 A JP2013008820 A JP 2013008820A JP 2014139335 A JP2014139335 A JP 2014139335A
Authority
JP
Japan
Prior art keywords
plating layer
copper plating
copper foil
copper
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013008820A
Other languages
Japanese (ja)
Inventor
Takemi Muroga
岳海 室賀
Chizuru Goto
千鶴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2013008820A priority Critical patent/JP2014139335A/en
Publication of JP2014139335A publication Critical patent/JP2014139335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To bestow, even if a copper plating layer has been formed, an excellent flexural resistance after a recrystallizing and annealing step.SOLUTION: The provided object is furnished with a rolled copper foil which has undergone a final cold rolling step but has yet to undergo a recrystallizing and annealing step and a copper plating layer formed on at least either of the primary surface of the rolled copper foil and the rear surface thereof and possessing multiple crystal faces mainly having random orientations, whereas crystal grains exhibiting tetrahedral symmetry wherein {022} face diffraction peaks obtained owing to the in-plane rotation of the surface of the copper plating layer at a flap angle α of 45° exist at in-plane rotation angle β intervals of 90°±5° each at the time of a {022} face pole figure measurement rendered with reference to the surface of the copper plating layer exist along the random orientations within the copper plating layer.

Description

本発明は、銅めっき層付き圧延銅箔に関し、特に、フレキシブルプリント配線板に用いられる銅めっき層付き圧延銅箔に関する。   The present invention relates to a rolled copper foil with a copper plating layer, and particularly relates to a rolled copper foil with a copper plating layer used for a flexible printed wiring board.

フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れることから、電子機器等への実装形態における自由度が高い。そのため、FPCは、折り畳み式携帯電話の折り曲げ部や、デジタルカメラ、プリンタヘッド等の可動部のほか、ハードディスクドライブ(HDD:Hard Disk Drive)やデジタルバーサタイルディスク(DVD:Digital Versatile Disk)やコンパクトディスク(CD:Compact Disk)等のディスク関連機器の可動部の配線等に用いられることが多い。したがって、FPCやその配線材として用いられる圧延銅箔には、高屈曲特性、つまり、繰り返しの曲げに耐える優れた耐屈曲性が要求されてきた。   A flexible printed circuit (FPC) is thin and excellent in flexibility, and thus has a high degree of freedom in mounting form on an electronic device or the like. For this reason, FPCs are not only for folding parts of foldable mobile phones, but also for moving parts such as digital cameras and printer heads, as well as hard disk drives (HDDs), digital versatile disks (DVDs), and compact disks (DVDs). It is often used for wiring of movable parts of disk related equipment such as CD (Compact Disk). Therefore, the rolled copper foil used as FPC and its wiring material has been required to have high bending properties, that is, excellent bending resistance that can withstand repeated bending.

FPC用の圧延銅箔は、例えば熱間圧延、冷間圧延等の工程を経て製造される。その後のFPCの製造工程において、圧延銅箔は、接着剤を介し或いは直接的に、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされる。基材上の圧延銅箔は、エッチング等の表面加工を施されて配線となる。圧延銅箔の耐屈曲性は、圧延されて硬化した冷間圧延後の硬質な状態よりも、再結晶により軟化した焼鈍後の状態の方が著しく向上する。そこで、例えば上述のFPCの製造工程においては、冷間圧延後の硬化した圧延銅箔を用いて伸びやしわ等の変形を避けつつ圧延銅箔を裁断し、基材上に重ね合わせる。その後、圧延銅箔と基材とを密着させ複合する工程も兼ねて加熱することにより、圧延銅箔の再結晶焼鈍を行って耐屈曲性の向上を図っている。   The rolled copper foil for FPC is manufactured through processes such as hot rolling and cold rolling, for example. In the subsequent FPC manufacturing process, the rolled copper foil is bonded to an FPC base film (base material) made of a resin such as polyimide by heating or the like via an adhesive or directly. The rolled copper foil on the base material is subjected to surface processing such as etching to become a wiring. The bending resistance of the rolled copper foil is significantly improved in the state after annealing softened by recrystallization than in the hard state after cold rolling that has been rolled and hardened. Thus, for example, in the FPC manufacturing process described above, the rolled copper foil is cut using the hardened rolled copper foil after cold rolling while avoiding deformation such as elongation and wrinkles, and is superimposed on the substrate. Thereafter, the rolled copper foil and the base material are heated together to be combined and heated, whereby the rolled copper foil is recrystallized and annealed to improve the bending resistance.

上述のFPCの製造工程を前提として、耐屈曲性に優れた圧延銅箔やその製造方法についてこれまでに種々の研究がなされてきた。その結果を受け、圧延銅箔の表面に立方体方位である{002}面({200}面)を発達させるほど耐屈曲性が向上することが数多く報告されている。   On the premise of the manufacturing process of the FPC described above, various studies have been made so far on a rolled copper foil excellent in bending resistance and its manufacturing method. As a result, it has been reported that the flex resistance is improved as the {002} plane ({200} plane) which is a cubic orientation is developed on the surface of the rolled copper foil.

例えば、特許文献1では、最終冷間圧延の直前の焼鈍を、再結晶粒の平均粒径が5μm〜20μmになる条件下で行う。また、最終冷間圧延での圧延加工度を90%以上とする。これにより、再結晶組織となるよう調質された状態において、圧延面のX線回折で求めた{200}面の強度をIとし、微粉末銅のX線回折で求めた{200}面の強度をIとしたとき、I/I>20である立方体集合組織を得る。 For example, in Patent Document 1, annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains is 5 μm to 20 μm. Further, the rolling degree in the final cold rolling is set to 90% or more. As a result, in a state of being tempered to have a recrystallized structure, the strength of the {200} plane obtained by X-ray diffraction of the rolled surface is I, and the {200} plane obtained by X-ray diffraction of fine powder copper When the intensity is I 0 , a cubic texture with I / I 0 > 20 is obtained.

また、例えば、特許文献2では、最終冷間圧延前の立方体集合組織の発達度を高め、最終冷間圧延での加工度を93%以上とする。更に再結晶焼鈍を施すことにより、{200}面の積分強度がI/I≧40の、立方体集合組織が著しく発達した圧延銅箔を得る。 Further, for example, in Patent Document 2, the degree of development of the cube texture before the final cold rolling is increased, and the degree of processing in the final cold rolling is set to 93% or more. Further, by performing recrystallization annealing, a rolled copper foil having a remarkably developed cubic texture with an integral strength of {200} plane of I / I 0 ≧ 40 is obtained.

また、例えば、特許文献3では、最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15%〜50%に制御する。これにより、再結晶焼鈍後には、所定の結晶粒配向状態が得られる。つまり、X線回折極点図測定により得られる圧延面の{200}面に対する{111}面の面内配向度Δβが10°以下となる。また、圧延面における立方体集合組織である{200}面の規格化した回折ピーク強度[a]と{200}面の双晶関係にある結晶領域の規格化した回折ピーク強度[b]との比が、[a]/[b]≧3となる。   Further, for example, in Patent Document 3, the total work degree in the final cold rolling process is set to 94% or more, and the work degree per pass is controlled to 15% to 50%. Thereby, a predetermined crystal grain orientation state is obtained after recrystallization annealing. That is, the in-plane orientation degree Δβ of the {111} plane with respect to the {200} plane of the rolled plane obtained by X-ray diffraction pole figure measurement is 10 ° or less. Further, the ratio between the normalized diffraction peak intensity [a] of the {200} plane which is a cubic texture in the rolled surface and the normalized diffraction peak intensity [b] of the crystal region in the twin relation of the {200} plane. However, [a] / [b] ≧ 3.

このように、従来技術では、最終冷間圧延工程の総加工度を高くすることで、再結晶焼鈍工程後に圧延銅箔の立方体集合組織を発達させて耐屈曲性の向上を図っている。   Thus, in the prior art, by increasing the total degree of work in the final cold rolling process, the cube texture of the rolled copper foil is developed after the recrystallization annealing process, thereby improving the bending resistance.

特許第3009383号公報Japanese Patent No. 3009383 特許第3856616号公報Japanese Patent No. 3856616 特許第4285526号公報Japanese Patent No. 4285526

ところで、FPC用途の圧延銅箔では、基材との貼り合せ強度を向上させるため、例えば圧延銅箔の片面または両面に銅めっき層を形成したうえで、粗化粒を付着させる場合がある。   By the way, in the rolled copper foil for FPC, in order to improve the bonding strength with the base material, for example, after forming a copper plating layer on one side or both sides of the rolled copper foil, roughened particles may be attached.

しかしながら、銅めっき層を形成した銅めっき層付き圧延銅箔では、例えば上記の特許文献1〜3の技術を用いて耐屈曲性を高めた圧延銅箔であっても、繰り返しの曲げによるとみられる疲労破断が発生してしまうことがある。つまり、銅めっき層付き圧延銅箔では、耐屈曲性の悪化がみられることがあった。   However, in the rolled copper foil with a copper plating layer in which the copper plating layer is formed, for example, even a rolled copper foil having improved bending resistance using the techniques of Patent Documents 1 to 3 above is considered to be due to repeated bending. Fatigue fracture may occur. That is, in the rolled copper foil with a copper plating layer, the bending resistance may be deteriorated.

本発明の目的は、銅めっき層が形成されていても再結晶焼鈍工程後に優れた耐屈曲性を具備させることが可能な銅めっき層付き圧延銅箔を提供することである。   The objective of this invention is providing the rolled copper foil with a copper plating layer which can be provided with the outstanding bending resistance after a recrystallization annealing process, even if the copper plating layer is formed.

本発明の第1の態様によれば、
最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔と、
前記圧延銅箔の主表面またはその裏面の少なくとも片側の面上に形成され、主にランダム方位からなる複数の結晶面を有する銅めっき層と、を備え、
前記銅めっき層の表面を基準とする{022}面極点図測定において、あおり角度αが45°における前記銅めっき層の表面の面内回転により得られる{022}面の回折ピークが前記面内回転の回転角度βの90°±5°ごとに存在する4回対称性を示す結晶粒が、前記銅めっき層中のランダム方位の中に存在する
銅めっき層付き圧延銅箔が提供される。
According to a first aspect of the invention,
After the final cold rolling process, the rolled copper foil before the recrystallization annealing process,
A copper plating layer formed on at least one surface of the main surface of the rolled copper foil or its back surface, and having a plurality of crystal faces mainly composed of random orientations, and
In the {022} plane pole figure measurement based on the surface of the copper plating layer, the diffraction peak of the {022} plane obtained by in-plane rotation of the surface of the copper plating layer when the tilt angle α is 45 ° is the in-plane There is provided a rolled copper foil with a copper plating layer in which crystal grains having a four-fold symmetry existing every 90 ° ± 5 ° of the rotation angle β of rotation exist in a random orientation in the copper plating layer.

本発明の第2の態様によれば、
前記圧延銅箔が、純銅または希薄銅合金からなる純銅型集合組織の形態をとる
第1の態様に記載の銅めっき層付き圧延銅箔が提供される。
According to a second aspect of the invention,
The rolled copper foil with a copper plating layer according to the first aspect, in which the rolled copper foil takes the form of a pure copper type texture composed of pure copper or a diluted copper alloy, is provided.

本発明の第3の態様によれば、
前記銅めっき層と前記圧延銅箔との全体の厚さが、1μm以上20μm以下である
第1又は第2の態様に記載の銅めっき層付き圧延銅箔が提供される。
According to a third aspect of the invention,
The rolled copper foil with a copper plating layer according to the first or second aspect, in which the entire thickness of the copper plating layer and the rolled copper foil is 1 μm or more and 20 μm or less.

本発明の第4の態様によれば、
前記銅めっき層は前記圧延銅箔よりも薄い
第1〜第3の態様のいずれかに記載の銅めっき層付き圧延銅箔が提供される。
According to a fourth aspect of the invention,
The rolled copper foil with a copper plating layer according to any one of the first to third aspects, wherein the copper plating layer is thinner than the rolled copper foil.

本発明の第5の態様によれば、
フレキシブルプリント配線板用である
第1〜第4の態様のいずれかに記載の銅めっき層付き圧延銅箔が提供される。
According to a fifth aspect of the present invention,
The rolled copper foil with a copper plating layer in any one of the 1st-4th aspect which is an object for flexible printed wiring boards is provided.

本発明の第6の態様によれば、
最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔と、
前記圧延銅箔の主表面またはその裏面の少なくとも片側の面上に形成され、主にランダム方位からなる複数の結晶面を有する銅めっき層と、を備え、
2軸配向した{002}面の結晶粒が前記銅めっき層中のランダム方位の中に存在する
銅めっき層付き圧延銅箔が提供される。
According to a sixth aspect of the present invention,
After the final cold rolling process, the rolled copper foil before the recrystallization annealing process,
A copper plating layer formed on at least one surface of the main surface of the rolled copper foil or its back surface, and having a plurality of crystal faces mainly composed of random orientations, and
There is provided a rolled copper foil with a copper plating layer in which biaxially oriented {002} plane crystal grains exist in a random orientation in the copper plating layer.

本発明の第7の態様によれば、
前記2軸配向した{002}面の結晶粒が、
{022}面極点図測定において前記2軸配向した{002}面の存在を示す回折ピークの検出限界以上の比率で前記銅めっき層中のランダム方位の中に存在する
第6の態様に記載の銅めっき層付き圧延銅箔が提供される。
According to a seventh aspect of the present invention,
The biaxially oriented {002} plane crystal grains are
In the {022} plane pole figure measurement, the ratio above the detection limit of the diffraction peak indicating the presence of the biaxially oriented {002} plane is present in the random orientation in the copper plating layer. A rolled copper foil with a copper plating layer is provided.

本発明によれば、銅めっき層が形成されていても再結晶焼鈍工程後に優れた耐屈曲性を具備させることが可能な銅めっき層付き圧延銅箔が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if the copper plating layer is formed, the rolled copper foil with a copper plating layer which can be equipped with the outstanding bending resistance after a recrystallization annealing process is provided.

本発明の一実施形態に係る銅めっき層付き圧延銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the rolled copper foil with a copper plating layer which concerns on one Embodiment of this invention. 本発明の実施例及び比較例における極点図測定の測定方法の概要を示す図である。It is a figure which shows the outline | summary of the measuring method of the pole figure measurement in the Example and comparative example of this invention. (a)は、上段が本発明の実施例1の銅めっき層の極点図であり、下段が本発明の実施例1の銅めっき層の極点図測定の測定結果であり、(b)は、上段が比較例5の圧延銅箔の極点図であり、下段が比較例5の圧延銅箔の極点図測定の測定結果である。(A) is the pole figure of the copper plating layer of Example 1 of the present invention in the upper stage, the lower part is the measurement result of the pole figure measurement of the copper plating layer of Example 1 of the present invention, (b) The upper row is the pole figure of the rolled copper foil of Comparative Example 5, and the lower row is the measurement result of the pole figure measurement of the rolled copper foil of Comparative Example 5. (a)は、上段が比較例1の銅めっき層の極点図であり、下段が比較例1の銅めっき層の極点図測定の測定結果であり、(b)は、上段が比較例5の圧延銅箔の極点図であり、下段が比較例5の圧延銅箔の極点図測定の測定結果である。(A) is the pole figure of the copper plating layer of Comparative Example 1, the lower part is the measurement result of the pole figure measurement of the copper plating layer of Comparative Example 1, and (b) is the upper part of Comparative Example 5. It is a pole figure of rolled copper foil, and the lower stage is a measurement result of pole figure measurement of the rolled copper foil of Comparative Example 5. (a)は、上段が比較例3の銅めっき層の極点図であり、下段が比較例3の銅めっき層の極点図測定の測定結果であり、(b)は、上段が比較例5の圧延銅箔の極点図であり、下段が比較例5の圧延銅箔の極点図測定の測定結果である。(A) is the pole figure of the copper plating layer of Comparative Example 3, the lower part is the measurement result of the pole figure measurement of the copper plating layer of Comparative Example 3, and (b) is the upper part of Comparative Example 5. It is a pole figure of rolled copper foil, and the lower stage is a measurement result of pole figure measurement of the rolled copper foil of Comparative Example 5. 本発明の実施例及び比較例に係る銅めっき層付き圧延銅箔の耐屈曲性を測定する摺動屈曲試験装置の模式図である。It is a schematic diagram of the sliding bending test apparatus which measures the bending resistance of the rolled copper foil with a copper plating layer which concerns on the Example and comparative example of this invention. (a)は、上段が本発明の実施例3の銅めっき層の極点図であり、下段が本発明の実施例3の銅めっき層の極点図測定の測定結果であり、(b)は、上段が比較例11の圧延銅箔の極点図であり、下段が比較例11の圧延銅箔の極点図測定の測定結果である。(A) is the pole figure of the copper plating layer of Example 3 of the present invention in the upper stage, the lower part is the measurement result of the pole figure measurement of the copper plating layer of Example 3 of the present invention, (b) The upper row is a pole figure of the rolled copper foil of Comparative Example 11, and the lower row is the measurement result of the pole figure measurement of the rolled copper foil of Comparative Example 11. (a)は、上段が比較例7の銅めっき層の極点図であり、下段が比較例7の銅めっき層の極点図測定の測定結果であり、(b)は、上段が比較例11の圧延銅箔の極点図であり、下段が比較例11の圧延銅箔の極点図測定の測定結果である。(A) is the pole figure of the copper plating layer of Comparative Example 7, the lower part is the measurement result of the pole figure measurement of the copper plating layer of Comparative Example 7, and (b) is the upper part of Comparative Example 11. It is a pole figure of rolled copper foil, and a lower stage is a measurement result of pole figure measurement of the rolled copper foil of Comparative Example 11. (a)は、上段が比較例9の銅めっき層の極点図であり、下段が比較例9の銅めっき層の極点図測定の測定結果であり、(b)は、上段が比較例11の圧延銅箔の極点図であり、下段が比較例11の圧延銅箔の極点図測定の測定結果である。(A) is the pole figure of the copper plating layer of Comparative Example 9, the lower part is the measurement result of the pole figure measurement of the copper plating layer of Comparative Example 9, and (b) is the upper part of Comparative Example 11. It is a pole figure of rolled copper foil, and a lower stage is a measurement result of pole figure measurement of the rolled copper foil of Comparative Example 11.

<本発明者等が得た知見>
上述のように、例えばFPCの配線材として用いられる圧延銅箔においては、FPCの基材との貼り合せ強度を向上させるため、例えば圧延銅箔の片面または両面に粗化粒を付着させる場合がある。このとき、粗化粒を均一に付着させるため、圧延銅箔の粗化粒の形成面に銅めっき層を形成し、表面の平坦化を図る場合がある。
<Knowledge obtained by the present inventors>
As described above, for example, in rolled copper foil used as a wiring material for FPC, in order to improve the bonding strength with the base material of FPC, for example, roughened particles may adhere to one or both sides of the rolled copper foil. is there. At this time, in order to uniformly attach the roughened grains, a copper plating layer may be formed on the surface on which the roughened grains of the rolled copper foil are formed, and the surface may be flattened.

しかしながら、銅めっき層が形成された圧延銅箔では、上述の特許文献1〜3のように、加熱後の{002}面の比率を高め、優れた耐屈曲性を有する圧延銅箔であっても、疲労破断が発生するなど耐屈曲性の悪化がみられることがあった。本発明者等は、このような破断が銅めっき層を起点に発生していることを突き止めた。銅めっき層で発生した破断は直ちに圧延銅箔へと伝播し、銅めっき層付き圧延銅箔全体でみたときに、耐屈曲性を悪化させているものと考えられる。   However, in the rolled copper foil in which the copper plating layer is formed, as described in Patent Documents 1 to 3 above, the ratio of the {002} surface after heating is increased, and the rolled copper foil has excellent bending resistance. In some cases, however, the bending resistance deteriorated, such as fatigue fracture. The inventors of the present invention have found that such a rupture occurs from the copper plating layer. It is considered that the breakage generated in the copper plating layer immediately propagates to the rolled copper foil and deteriorates the bending resistance when viewed in the whole rolled copper foil with the copper plating layer.

そこで、本発明者等は、通常、主にランダム方位となっている銅めっき層の結晶組織中、僅かに存在する{002}面に着目した。銅めっき層においても、{002}面の特質を利用した耐屈曲性の向上を図ることができるのではないかと考えたのである。   Therefore, the present inventors have focused attention on the {002} plane that is slightly present in the crystal structure of the copper plating layer that is mainly in a random orientation. Even in the copper plating layer, it was thought that it would be possible to improve the bending resistance utilizing the characteristics of the {002} plane.

本発明者等は、鋭意研究の結果、銅めっき層のランダム方位中に含まれる{002}面の比率が僅かであっても、{002}面の状態制御により、優れた耐屈曲性が得られることを見いだした。   As a result of earnest research, the present inventors have obtained excellent bending resistance by controlling the state of the {002} plane even if the ratio of the {002} plane included in the random orientation of the copper plating layer is small. I found out that

本発明は、発明者等が見いだしたこれらの知見に基づくものである。   The present invention is based on these findings found by the inventors.

<本発明の一実施形態>
(1)銅めっき層付き圧延銅箔の構成
まずは、本発明の一実施形態に係る銅めっき層付き圧延銅箔の構成について説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Rolled Copper Foil with Copper Plating Layer First, the configuration of the rolled copper foil with a copper plating layer according to an embodiment of the present invention will be described.

本実施形態に係る銅めっき層付き圧延銅箔は、無酸素銅やタフピッチ銅、または無酸素銅やタフピッチ銅を母相とする希薄銅合金からなる圧延銅箔と、圧延銅箔の少なくとも片側の面上に形成された銅めっき層と、を備える。また、係る銅めっき層付き圧延銅箔は、例えばFPCの可撓性の配線材としての用途に用いられるよう、全体の厚さが1μm以上20μm以下となるよう構成されている。   The rolled copper foil with a copper plating layer according to the present embodiment is a rolled copper foil made of oxygen-free copper, tough pitch copper, or a dilute copper alloy having oxygen-free copper or tough pitch copper as a parent phase, and at least one side of the rolled copper foil. A copper plating layer formed on the surface. Moreover, the rolled copper foil with a copper plating layer is configured to have an overall thickness of 1 μm or more and 20 μm or less so as to be used for, for example, an FPC flexible wiring material.

(圧延銅箔の概要)
銅めっき層付き圧延銅箔が備える圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料とする鋳塊に、後述の熱間圧延工程や冷間圧延工程等を施し所定厚さとした、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔である。すなわち、本実施形態に係る圧延銅箔は、例えば総加工度が80%以上、好ましくは90%以上、より好ましくは94%以上の最終冷間圧延工程により、銅めっき層を含めた全体の厚さが例えば上述の厚さとなるよう構成されている。この後、上述のように、例えばFPCの基材との貼り合わせの工程を兼ねて銅めっき層付き圧延銅箔に再結晶焼鈍工程が施されると、再結晶に調質された圧延銅箔が、優れた耐屈曲性を具備するよう企図されている。
(Outline of rolled copper foil)
The rolled copper foil with which the rolled copper foil with a copper plating layer is provided is configured, for example, in a plate shape having a rolled surface as the main surface. This rolled copper foil has a predetermined thickness by subjecting an ingot made of pure copper such as oxygen-free copper (OFC) or tough pitch copper to a hot rolling process or a cold rolling process, which will be described later. The rolled copper foil after the final cold rolling process and before the recrystallization annealing process. That is, the rolled copper foil according to the present embodiment has a total thickness including the copper plating layer, for example, by a final cold rolling step in which the total workability is 80% or more, preferably 90% or more, more preferably 94% or more. Is configured to have the above-described thickness, for example. After that, as described above, for example, when the recrystallization annealing process is performed on the rolled copper foil with a copper plating layer also serving as a bonding process with the FPC base material, the rolled copper foil tempered for recrystallization Is intended to have excellent flex resistance.

圧延銅箔の原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、圧延銅箔の原材料となるタフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。これらの原材料からなる圧延銅箔は、例えば純銅型集合組織(純金属型集合組織とも呼ばれる)の形態をとっていることが好ましい。或いは、圧延銅箔として、無酸素銅やタフピッチ銅にスズ(Sn)や銀(Ag)やホウ素(B)、チタン(Ti)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された原材料を用いてもよい。このとき、添加材の添加量が、母相の純銅による純銅型集合組織の結晶方位形態の形成を妨げない範囲とすることが好ましい。   The oxygen-free copper used as a raw material for the rolled copper foil is a copper material having a purity specified in JIS C1020, H3100, etc. of 99.96% or more. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Moreover, the tough pitch copper used as the raw material of the rolled copper foil is a copper material having a purity specified in, for example, JIS C1100, H3100, etc. of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. The rolled copper foil made of these raw materials is preferably in the form of, for example, a pure copper texture (also referred to as a pure metal texture). Alternatively, as a rolled copper foil, oxygen-free copper or tough pitch copper is added to a small amount of a predetermined additive such as tin (Sn), silver (Ag), boron (B), titanium (Ti) to form a diluted copper alloy, You may use the raw material in which various characteristics, such as property, were adjusted. At this time, it is preferable that the addition amount of the additive is in a range that does not hinder the formation of the crystal orientation form of the pure copper texture by the pure copper of the parent phase.

最終冷間圧延工程における圧延銅箔の総加工度は、最終冷間圧延工程前の加工対象物(銅の板材)の厚さをTとし、最終冷間圧延工程後の加工対象物の厚さをTとすると、総加工度(%)=[(T−T)/T]×100で表わされる。総加工度を上述の範囲内とすることで、再結晶焼鈍工程における加熱後の{002}面の比率が高まり、高い耐屈曲性を具備することとなる圧延銅箔が得られる。 The total working ratio of the rolled copper foil in the final cold rolling process, the final cold rolling step prior to the workpiece thickness of the (sheet of copper) and T B, the thickness of the final cold working object after rolling process When T a a is the total working ratio (%) = represented by [(T B -T a) / T B] × 100. By setting the total workability within the above range, the ratio of the {002} plane after heating in the recrystallization annealing step is increased, and a rolled copper foil that has high bending resistance can be obtained.

(銅めっき層の概要)
銅めっき層付き圧延銅箔が備える銅めっき層は、圧延銅箔の主表面としての圧延面、またはその裏面の、少なくとも片側の面上に、例えば電解めっき等を用いて形成されている。本実施形態に係る銅めっき層は、例えば圧電銅箔より薄く形成され、例えば0.01μm以上2μm以下の厚さに構成されている。
(Overview of copper plating layer)
The copper plating layer with which the rolled copper foil with a copper plating layer is provided is formed on the rolling surface as the main surface of the rolled copper foil, or on at least one surface of the back surface, for example, using electrolytic plating. The copper plating layer according to the present embodiment is formed thinner than, for example, a piezoelectric copper foil, and has a thickness of, for example, 0.01 μm or more and 2 μm or less.

このような厚さに形成することで、例えば後述する粗化粒や防錆層の下地として銅めっき層により圧延銅箔の表面を平坦化し、粗化粒を均一に付着させたり、防錆層を均一に形成したりすることができる。また、このように銅めっき層を圧延銅箔よりも薄く形成することで、銅めっき層付き圧延銅箔の全体としての耐屈曲性の向上が図り易くなる。本実施形態においては、銅めっき層が薄いほど好ましい。   By forming to such a thickness, for example, the surface of the rolled copper foil is flattened by a copper plating layer as a base of roughened grains and a rust preventive layer to be described later, and the roughened grains are uniformly attached, or the rust preventive layer Can be formed uniformly. In addition, by forming the copper plating layer thinner than the rolled copper foil in this way, it becomes easy to improve the bending resistance of the rolled copper foil with a copper plating layer as a whole. In this embodiment, the thinner the copper plating layer, the better.

(銅めっき層の結晶構造)
銅めっき層付き圧延銅箔が備える銅めっき層は、主にランダム方位、つまり、無作為、無原則の方位からなる複数の結晶面を有する。銅めっき層のランダム方位中には、所定の比率で{002}面の結晶粒が含まれている。係る{002}面の結晶粒のうち、少なくとも一部は2軸配向している。
(Crystal structure of copper plating layer)
The copper plating layer provided in the rolled copper foil with a copper plating layer has a plurality of crystal planes mainly composed of random orientations, that is, random and non-principal orientations. The random orientation of the copper plating layer includes {002} plane crystal grains at a predetermined ratio. At least a part of the {002} plane crystal grains is biaxially oriented.

{002}面の結晶粒が2軸配向していることは、X線回折を用いた{022}面極点図(Pole−Figure)測定により確認することができる。ここで、{022}面極点図測定について、図2を参照して説明する。なお、ここでの説明は概略に留め、詳細については後述する。   The fact that the {002} plane crystal grains are biaxially oriented can be confirmed by {022} plane pole figure (Pole-Figure) measurement using X-ray diffraction. Here, {022} plane pole figure measurement is demonstrated with reference to FIG. Note that the description here is only an outline, and details will be described later.

図2に示されているように、銅めっき層付き圧延銅箔等の試料片50をθ軸、α軸、β軸の3つの走査軸回りに回転可能に配置する。{022}面極点図測定では、試料片50をα軸回りに回転させ、15°以上90°以下の範囲内の所定のあおり角度αについて2θ/θ法の要領で回折X線を検出する。すなわち、試料片50をθ軸回りに回転させ、試料片50に対し角度θで入射X線を入射する。また、入射X線の入射方向に対して角度2θで回折された回折X線を検出する。このとき、所定のあおり角度αにおいて、その角度αを維持しつつ、上述の試料片50をβ軸回りに回転させて面内回転角度βを0°以上360°以下の範囲内で変化させて測定を行い、各回転角度βにおける銅結晶の{022}面の回折ピークをそれぞれ取得する。   As shown in FIG. 2, a sample piece 50 such as a rolled copper foil with a copper plating layer is disposed so as to be rotatable around three scanning axes of the θ axis, the α axis, and the β axis. In the {022} plane pole figure measurement, the sample piece 50 is rotated around the α axis, and diffracted X-rays are detected in the manner of the 2θ / θ method with respect to a predetermined tilt angle α within a range of 15 ° to 90 °. That is, the sample piece 50 is rotated about the θ axis, and incident X-rays are incident on the sample piece 50 at an angle θ. Further, diffracted X-rays diffracted at an angle 2θ with respect to the incident direction of incident X-rays are detected. At this time, at the predetermined tilt angle α, while maintaining the angle α, the sample piece 50 described above is rotated around the β axis, and the in-plane rotation angle β is changed within a range of 0 ° to 360 °. Measurement is performed to obtain diffraction peaks on the {022} plane of the copper crystal at each rotation angle β.

上述の{002}面の結晶粒の配向性を調べるには、このような銅めっき層の表面を基準とする{022}面極点図測定において、あおり角度αを45°とする。このあおり角度αが45°における銅めっき層の表面の面内回転により、{022}面の回折ピークを得る。2軸配向している{002}面の結晶粒が銅めっき層中のランダム方位の中に存在すれば、得られる{022}面の回折ピークは4回対称性を示す。つまり、あおり角度αが45°における面内回転の回転角度βの90°±5°ごとに{022}面の回折ピークが現れる。具体的には、銅めっき層付き圧延銅箔の圧延方向の回転角度βを0°とした場合、4回対称の回折ピークの中心は、β=0°±5°,90°±5°,180°±5°,270°±5°となる。   In order to examine the orientation of the crystal grains on the {002} plane, the tilt angle α is set to 45 ° in the {022} plane pole figure measurement based on the surface of such a copper plating layer. A diffraction peak of the {022} plane is obtained by in-plane rotation of the surface of the copper plating layer when the tilt angle α is 45 °. If the biaxially oriented {002} plane crystal grains are present in a random orientation in the copper plating layer, the diffraction peak of the {022} plane obtained exhibits fourfold symmetry. That is, a diffraction peak of the {022} plane appears every 90 ° ± 5 ° of the in-plane rotation angle β when the tilt angle α is 45 °. Specifically, when the rotation angle β in the rolling direction of the rolled copper foil with a copper plating layer is 0 °, the centers of the four-fold symmetric diffraction peaks are β = 0 ° ± 5 °, 90 ° ± 5 °, 180 ° ± 5 ° and 270 ° ± 5 °.

なお、4回対称性を示す{022}面の回折ピークが上述の{022}面極点図測定において認められれば、2軸配向している{002}面の結晶粒の比率は特に問わない。換言すれば、2軸配向している{002}面の結晶粒が、4回対称性を示す{022}面の回折ピークが検出される程度、つまり、検出限界以上の比率で銅めっき層中に存在していれば、本実施形態の構成を満たす。   In addition, if the {022} plane diffraction peak exhibiting 4-fold symmetry is recognized in the above-described {022} plane pole figure measurement, the ratio of the crystal grains of the {002} plane that is biaxially oriented is not particularly limited. In other words, the crystal grains of the {002} plane that are biaxially oriented have a degree of detection of the diffraction peak of the {022} plane that exhibits fourfold symmetry, that is, in the copper plating layer at a ratio that exceeds the detection limit. If present, the configuration of the present embodiment is satisfied.

(結晶構造の作用)
上述のように、本実施形態における圧延銅箔は、再結晶焼鈍工程後に{002}面の比率が高まり、優れた耐屈曲性を具備することとなる。
(Action of crystal structure)
As described above, the rolled copper foil in the present embodiment has a high ratio of the {002} plane after the recrystallization annealing step and has excellent bending resistance.

一方、銅めっき層の結晶構造は、最終冷間圧延工程後、再結晶焼鈍工程前の状態において、{002}面の結晶粒のうち、少なくとも一部が2軸配向している。これにより、銅めっき層においても優れた耐屈曲性が得られる。   On the other hand, in the crystal structure of the copper plating layer, at least a part of the crystal grains on the {002} plane is biaxially oriented in the state after the final cold rolling process and before the recrystallization annealing process. Thereby, the outstanding bending resistance is obtained also in a copper plating layer.

上述のように、本発明者等は、銅めっき層においても{002}面の結晶粒の特質を利用して耐屈曲性が得られると考えた。しかしながら、銅めっき層においては、圧延銅箔の表面のように{002}面を優勢に形成することは困難である。銅めっき層は、結晶成長学上、下地、ここでは最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に対してエピタキシャル成長し、圧延銅箔の再結晶焼鈍工程前の結晶方位、つまり、{002}面が優勢となる前の方位と略同じ状態になると考えられる。或いは、エピタキシャル成長せず、略完全に無作為、無原則の方位(ランダム方位)になると考えられる。   As described above, the present inventors considered that the bending resistance can be obtained even in the copper plating layer by utilizing the characteristics of the crystal grains of the {002} plane. However, in the copper plating layer, it is difficult to form the {002} plane predominantly like the surface of the rolled copper foil. The copper plating layer is epitaxially grown on the base, here the final cold rolling process, and before the recrystallization annealing process, and the crystal orientation before the recrystallization annealing process of the rolled copper foil, that is, the crystal growth , {002} plane is considered to be in substantially the same state as the previous orientation. Alternatively, it is considered that the epitaxial growth does not occur and the orientation is almost completely random and non-principle (random orientation).

また、銅めっき層には圧延銅箔のように大きな加工歪は蓄積し難く、例えば上述のFPC製造工程における加熱処理程度では、その結晶方位にはほとんど変化は起こらないと考えられる。つまり、銅めっき層の形成時、或いは、少なくとも銅めっき層付き圧延銅箔の製造終了時には、銅めっき層の結晶方位が決まってしまうこととなる。このことは、従来技術に係る銅めっき層付き圧延銅箔において、銅めっき層の結晶粒と圧延銅箔の結晶粒とが独立し不連続となる境界線を有し、この状態が再結晶焼鈍後にもほとんどそのまま維持されることからも明らかである。なお、銅めっき層中には、加熱処理前から、つまり、常温の状態で再結晶が混在する場合もあるが、上述のように、主にランダム方位の結晶粒が優勢となっている。   In addition, it is difficult to accumulate large processing strains in the copper plating layer as in the rolled copper foil, and it is considered that the crystal orientation hardly changes in the degree of heat treatment, for example, in the FPC manufacturing process described above. That is, the crystal orientation of the copper plating layer is determined when the copper plating layer is formed or at least when the production of the rolled copper foil with the copper plating layer is completed. This is because the rolled copper foil with a copper plating layer according to the prior art has a boundary line in which the crystal grains of the copper plating layer and the crystal grains of the rolled copper foil are independent and discontinuous, and this state is a recrystallization annealing. It is clear from the fact that it will be maintained almost as it is later. In the copper plating layer, recrystallization may be mixed before the heat treatment, that is, at room temperature, but as described above, mainly random orientation crystal grains are dominant.

そこで、本発明者等は、主にランダム方位となっている銅めっき層の結晶組織中に僅かに存在する{002}面に着目した。そして、銅めっき層の中の{002}面の比率を顕著に増加させることができなくとも、{002}面を1軸配向ではなく2軸配向させることで、耐屈曲性が向上することを見いだした。本発明者等は、2軸配向した{002}面が、何らかの形で耐屈曲性の向上に寄与していると考えている。また、本発明者等は、2軸配向した{002}面が、再結晶焼鈍時に結晶成長の核として働いている可能性もあると推察している。   Therefore, the present inventors have focused on the {002} plane that exists slightly in the crystal structure of the copper plating layer that is mainly in a random orientation. Even if the ratio of the {002} plane in the copper plating layer cannot be remarkably increased, the bending resistance is improved by orienting the {002} plane biaxially instead of uniaxially. I found it. The present inventors believe that the biaxially oriented {002} plane contributes to the improvement of bending resistance in some form. The present inventors also speculate that the biaxially oriented {002} plane may function as a nucleus for crystal growth during recrystallization annealing.

(銅めっき層付き圧延銅箔の他の構成)
銅めっき層付き圧延銅箔の銅めっき層上には、例えば粗化銅めっき層、カプセル銅めっき層、防錆層がこの順に設けられていてもよい。粗化銅めっき層は、粗化粒を備える。粗化粒は、例えば銅(Cu)単体、または、銅に、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、亜鉛(Zn)等を少なくとも1種類以上含む直径1μm程度の金属粒子である。カプセル銅めっき層は、粗化粒をコブ状突起へと成長させる、所謂、被せめっき層である。防錆層は、例えばニッケルめっき層、亜鉛めっき層、3価クロム化成処理層、シランカップリング層がこの順に形成された積層構造を備える。
(Other configurations of rolled copper foil with copper plating layer)
On the copper plating layer of the rolled copper foil with a copper plating layer, for example, a roughened copper plating layer, a capsule copper plating layer, and a rust prevention layer may be provided in this order. The roughened copper plating layer includes roughened grains. The roughened grains are, for example, copper (Cu) alone or at least one of iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), tin (Sn), zinc (Zn), and the like. It is a metal particle having a diameter of about 1 μm including at least types. The capsule copper plating layer is a so-called covering plating layer that grows roughened grains into bump-shaped protrusions. The anticorrosive layer has a laminated structure in which, for example, a nickel plating layer, a zinc plating layer, a trivalent chromium chemical conversion treatment layer, and a silane coupling layer are formed in this order.

(2)銅めっき層付き圧延銅箔の製造方法
本発明者等は、銅めっき層の{002}面の結晶粒の少なくとも一部が2軸配向となっている本実施形態の銅めっき層付き圧延銅箔を得るべく、鋭意研究を行った。
(2) Manufacturing method of rolled copper foil with copper plating layer The present inventors have a copper plating layer of this embodiment in which at least a part of crystal grains on the {002} plane of the copper plating layer is biaxially oriented. In order to obtain a rolled copper foil, intensive research was conducted.

具体的には、銅めっき層を形成する際のめっき浴に、銅めっき層の{002}面の結晶粒の2軸配向を促進させるような薬剤(以下、配向調整剤ともいう)を添加すればよいと考え、種々の添加剤を試した。その結果、電解めっき等で用いられる所定の添加剤に、銅めっき層の{002}面の結晶粒を2軸配向させる働きが認められた。つまり、これまで光沢剤やめっき促進剤として用いられていた所定の添加剤に、配向調整剤としての新たな効果を見いだした。   Specifically, an agent that promotes biaxial orientation of crystal grains on the {002} plane of the copper plating layer (hereinafter also referred to as an orientation adjusting agent) is added to the plating bath when forming the copper plating layer. Various additives were tried, considering that it was sufficient. As a result, the function of biaxially orienting the crystal grains on the {002} plane of the copper plating layer was recognized as a predetermined additive used in electrolytic plating or the like. In other words, the present inventors have found a new effect as an alignment adjusting agent in a predetermined additive which has been used as a brightener or a plating accelerator.

次に、以上の知見に基づく、本発明の一実施形態に係る銅めっき層付き圧延銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る銅めっき層付き圧延銅箔の製造工程を示すフロー図である。   Next, the manufacturing method of the rolled copper foil with a copper plating layer based on one Embodiment of this invention based on the above knowledge is demonstrated using FIG. FIG. 1 is a flowchart showing a manufacturing process of a rolled copper foil with a copper plating layer according to the present embodiment.

(鋳塊の準備工程S10)
図1に示されているように、まずは、銅めっき層付き圧延銅箔の圧延銅箔部分を製造する。
(Ingot preparation step S10)
As shown in FIG. 1, first, a rolled copper foil portion of a rolled copper foil with a copper plating layer is manufactured.

すなわち、無酸素銅(OFC)やタフピッチ銅等の純銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所定厚さ、所定幅を備える板状に形成する。原材料となる無酸素銅やタフピッチ銅は、圧延銅箔の諸特性を調整するため、所定の添加材が添加された希薄銅合金となっていてもよい。   That is, an ingot is prepared by casting pure copper such as oxygen-free copper (OFC) or tough pitch copper as a raw material. The ingot is formed in a plate shape having a predetermined thickness and a predetermined width, for example. Oxygen-free copper or tough pitch copper used as a raw material may be a dilute copper alloy to which a predetermined additive is added in order to adjust various properties of the rolled copper foil.

添加材で調整可能な圧延銅箔の諸特性には、例えば耐熱性がある。上述のように、FPC用の圧延銅箔では、高い耐屈曲性を得るための再結晶焼鈍工程は、例えばFPCの基材との貼り合わせの工程を兼ねて行われる。貼り合わせの際の加熱温度は、例えばFPCの樹脂等からなる基材の硬化温度や、使用する接着剤の硬化温度等に合わせて設定され、温度条件の範囲は広く多種多様である。このように設定された加熱温度に圧延銅箔の軟化温度を合わせるべく、圧延銅箔の耐熱性を調整可能な添加材が、適宜、添加される場合がある。   Various characteristics of the rolled copper foil that can be adjusted with the additive include, for example, heat resistance. As described above, in the rolled copper foil for FPC, the recrystallization annealing step for obtaining high bending resistance is performed, for example, also as a bonding step with the FPC base material. The heating temperature at the time of bonding is set in accordance with, for example, the curing temperature of a substrate made of an FPC resin or the like, the curing temperature of an adhesive to be used, and the range of temperature conditions is wide and diverse. In order to adjust the softening temperature of the rolled copper foil to the heating temperature set in this way, an additive capable of adjusting the heat resistance of the rolled copper foil may be appropriately added.

本実施形態に使用される鋳塊として、添加材が無添加の鋳塊や、幾種類かの添加材を添加した鋳塊を以下の表1に例示する。   As an ingot used in the present embodiment, an ingot having no additive added, and an ingot added with several kinds of additives are exemplified in Table 1 below.

また、表1に示す添加材やその他の添加材として、耐熱性を上昇又は降下させる添加材の代表例には、例えば10ppm〜2000ppm程度のスズ(Sn)、銀(Ag)、ホウ素(B)、ニオブ(Nb)、チタン(Ti)、ニッケル(Ni)、ジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ハフニウム(Hf)、タンタル(Ta)、及びカルシウム(Ca)のいずれか1つ又は複数の元素を添加した例がある。或いは、第1の添加元素としてAgを添加し、第2の添加元素として上述の元素のいずれか1つ又は複数の元素を添加した例がある。そのほか、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、金(Au)等を微量添加することも可能である。   Moreover, as a representative example of the additive which raises or lowers the heat resistance as the additive shown in Table 1 and other additives, for example, tin (Sn), silver (Ag), boron (B) of about 10 ppm to 2000 ppm , Niobium (Nb), titanium (Ti), nickel (Ni), zirconium (Zr), vanadium (V), manganese (Mn), hafnium (Hf), tantalum (Ta), and calcium (Ca) There are examples of adding one or more elements. Alternatively, there is an example in which Ag is added as the first additive element and any one or more of the above-described elements are added as the second additive element. In addition, chromium (Cr), zinc (Zn), gallium (Ga), germanium (Ge), arsenic (As), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), gold (Au) ) Etc. can also be added in small amounts.

なお、鋳塊の組成は、後述の最終冷間圧延工程S40を経た後の圧延銅箔においても略そのまま維持され、鋳塊中に添加材を加えた場合には、鋳塊と圧延銅箔とは略同じ添加材濃度となる。   Note that the composition of the ingot is maintained substantially as it is in the rolled copper foil after the final cold rolling step S40 described later, and when an additive is added to the ingot, the ingot and the rolled copper foil Have substantially the same additive concentration.

また、後述の焼鈍工程S32における温度条件は、銅材質や添加材による耐熱性に応じて適宜変更する。但し、上記銅材質や添加材、これに応じた焼鈍工程S32の温度条件の変更等は、本実施形態の効果に対してほとんど影響を与えない。   Moreover, the temperature conditions in the below-mentioned annealing process S32 are suitably changed according to the heat resistance by a copper material or an additive. However, the change of the temperature condition of the said copper material, an additive, and annealing process S32 according to this has little influence with respect to the effect of this embodiment.

(熱間圧延工程S20)
次に、準備した鋳塊に熱間圧延を施して、鋳造後の所定厚さよりも薄い板厚の板材とする。
(Hot rolling process S20)
Next, the prepared ingot is hot-rolled to obtain a plate material having a thickness smaller than a predetermined thickness after casting.

(繰り返し工程S30)
続いて、冷間圧延工程S31と焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた上記板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。
(Repetition step S30)
Subsequently, a repeating step S30 is performed in which the cold rolling step S31 and the annealing step S32 are repeatedly performed a predetermined number of times. That is, work hardening is relieved by subjecting the plate material that has been cold-rolled and work hardened to an annealing treatment to anneal the plate material. By repeating this a predetermined number of times, a copper strip called “dough” is obtained. When an additive for adjusting heat resistance is added to the copper material, the temperature condition of the annealing treatment is appropriately changed according to the heat resistance of the copper material.

なお、繰り返し工程S30中、繰り返し途中の焼鈍工程S32を「中間焼鈍工程」と呼ぶ。また、繰り返しの最後、つまり、後述の最終冷間圧延工程S40の直前に行われる焼鈍工程S32を「最終焼鈍工程」又は「生地焼鈍工程」と呼ぶ。生地焼鈍工程では、上記の銅条(生地)に生地焼鈍処理を施し、焼鈍生地を得る。生地焼鈍工程においても、銅材の耐熱性に応じて温度条件を適宜変更する。このとき、生地焼鈍工程は、上記の各工程に起因する加工歪を充分に緩和することのできる温度条件、例えば完全焼鈍処理と略同等の温度条件で実施することが好ましい。   In addition, in the repetition process S30, the annealing process S32 in the middle of the repetition is referred to as an “intermediate annealing process”. Further, the annealing step S32 performed at the end of the repetition, that is, immediately before the final cold rolling step S40 described later is referred to as a “final annealing step” or a “dough annealing step”. In the dough annealing process, the above copper strip (fabric) is subjected to dough annealing to obtain an annealed dough. Also in the dough annealing step, the temperature condition is appropriately changed according to the heat resistance of the copper material. At this time, the dough annealing step is preferably performed under a temperature condition that can sufficiently relieve the processing strain caused by each of the above steps, for example, a temperature condition substantially equivalent to a complete annealing treatment.

(最終冷間圧延工程S40)
次に、最終冷間圧延工程S40を実施する。最終冷間圧延は仕上げ冷間圧延とも呼ばれ、仕上げとなる冷間圧延を複数回に亘って焼鈍生地に施して薄い銅箔状とする。このとき、高い耐屈曲性を有する圧延銅箔が得られるよう、最終冷間圧延工程S40内での総加工度を80%以上、好ましくは90%以上、より好ましくは94%以上とする。これにより、再結晶焼鈍工程後において、優れた耐屈曲性が得られ易い圧延銅箔となる。
(Final cold rolling process S40)
Next, the final cold rolling step S40 is performed. The final cold rolling is also called finish cold rolling, and the cold rolling to be finished is applied to the annealed fabric a plurality of times to form a thin copper foil. At this time, the total work degree in the final cold rolling step S40 is set to 80% or more, preferably 90% or more, more preferably 94% or more so that a rolled copper foil having high bending resistance can be obtained. Thereby, it becomes a rolled copper foil in which excellent bending resistance is easily obtained after the recrystallization annealing step.

また、冷間圧延を複数回繰り返すごとに焼鈍生地が薄くなるのに応じて、1回(1パス)あたりの加工度を徐々に小さくしていくことが好ましい。ここで、1パスあたりの加工度は、上述の総加工度の例に倣い、nパス目の圧延前の加工対象物の厚さをTBnとし、圧延後の加工対象物の厚さをTAnとすると、1パスあたりの加工度(%)=[(TBn−TAn)/TBn]×100で表わされる。 Moreover, it is preferable to gradually reduce the degree of processing per one (one pass) as the annealed dough becomes thinner each time cold rolling is repeated a plurality of times. Here, the degree of processing per pass follows the above-described example of the total degree of processing, and the thickness of the workpiece before rolling of the nth pass is T Bn, and the thickness of the workpiece after rolling is T B Assuming that An is a degree of processing per pass (%) = [(T Bn −T An ) / T Bn ] × 100.

圧延加工時、焼鈍生地等の加工対象物は、例えば互いに対向する1対のロール間の間隙に引き込まれ、反対側に引き出されることで減厚される。加工対象物の速度は、ロールに引き込まれる前の入り口側ではロールの回転速度より遅く、ロールから引き出された後の出口側ではロールの回転速度より速い。したがって、加工対象物には、入り口側では圧縮応力が、出口側では引張応力がかかる。加工対象物を薄く加工するためには、圧縮応力>引張応力でなければならない。上記のように、例えば1パスあたりの加工度を調整することで、圧縮応力>引張応力であることを前提として、それぞれの応力成分(圧縮成分と引張成分)の比を調整することができる。   At the time of rolling, an object to be processed such as annealed dough is reduced in thickness by, for example, being drawn into a gap between a pair of rolls facing each other and drawn to the opposite side. The speed of the workpiece is slower than the rotation speed of the roll on the entrance side before being drawn into the roll, and faster than the rotation speed of the roll on the exit side after being drawn out of the roll. Accordingly, the workpiece is subjected to compressive stress on the entrance side and tensile stress on the exit side. In order to thinly process a workpiece, compressive stress> tensile stress must be satisfied. As described above, for example, by adjusting the degree of processing per pass, it is possible to adjust the ratio of each stress component (compression component and tensile component) on the assumption that compression stress> tensile stress.

また、最終冷間圧延工程S40では、冷間圧延を複数回繰り返すごとに、以下に説明する中立点の位置がロールの出口側へと移動していくよう制御することが好ましい。すなわち、上記のように、ロールの回転速度に対して入り口側と出口側とで大小関係が逆転する加工対象物の速度は、入り口側及び出口側の間のどこかの位置でロールの回転速度と等しくなる。この両者の速度が等しい位置を中立点といい、中立点では加工対象物にかかる圧力が最大となる。   In the final cold rolling step S40, it is preferable to control the position of the neutral point described below to move toward the outlet side of the roll every time cold rolling is repeated a plurality of times. That is, as described above, the speed of the workpiece whose magnitude relationship is reversed between the inlet side and the outlet side with respect to the rotational speed of the roll is the rotational speed of the roll at some position between the inlet side and the outlet side. Is equal to A position where both speeds are equal is called a neutral point, and the pressure applied to the workpiece is maximized at the neutral point.

中立点の位置は、前方張力、後方張力、圧延速度(ロールの回転速度)、ロール径、加工度、圧延荷重等の組み合わせを調整することで制御することができる。つまり、中立点の位置を制御することによっても、圧縮応力及び引張応力の比を調整することができる。   The position of the neutral point can be controlled by adjusting a combination of forward tension, backward tension, rolling speed (roll rotational speed), roll diameter, degree of processing, rolling load, and the like. That is, the ratio between the compressive stress and the tensile stress can be adjusted also by controlling the position of the neutral point.

このように、各パスにおける加工度の大きさ制御や中立点の位置制御等により、圧縮応力と引張応力との応力バランスを調整しつつ最終冷間圧延工程S40を施すことで、圧縮応力と引張応力との応力バランスを適宜調整することができる。   Thus, by applying the final cold rolling step S40 while adjusting the stress balance between the compressive stress and the tensile stress by controlling the degree of processing in each pass, the position control of the neutral point, etc., the compressive stress and the tensile stress are applied. The stress balance with the stress can be adjusted as appropriate.

以上により、本実施形態に係る銅めっき層付き圧延銅箔における圧延銅箔が製造される。   The rolled copper foil in the rolled copper foil with a copper plating layer concerning this embodiment is manufactured by the above.

(銅めっき層形成工程S50)
続いて、圧延銅箔の圧延面、またはその裏面の少なくとも片側の面上に、銅めっき層を形成する。
(Copper plating layer forming step S50)
Subsequently, a copper plating layer is formed on the rolled surface of the rolled copper foil or on at least one surface of the back surface thereof.

銅めっき層を形成するにあたっては、予め、圧延銅箔を脱脂浴、酸洗浄浴に順次浸漬し、圧延銅箔の表面を清浄にしておく。つまり、脱脂浴では、例えば水酸化ナトリウム(NaOH)水溶液等のアルカリ溶液を用いて陰極電解脱脂を行う。続く酸洗浄浴では、例えば硫酸(HSO)水溶液や銅エッチング液等の酸性溶液を用いて圧延銅箔の表面に酸洗浄を施し、表面に残存するアルカリ溶液の中和を図ると共に、表面に形成された銅酸化膜(CuO)等を除去する。 In forming the copper plating layer, the rolled copper foil is preliminarily immersed in a degreasing bath and an acid cleaning bath in advance to clean the surface of the rolled copper foil. That is, in the degreasing bath, cathode electrolytic degreasing is performed using an alkaline solution such as a sodium hydroxide (NaOH) aqueous solution. In the subsequent acid cleaning bath, for example, acid cleaning is performed on the surface of the rolled copper foil using an acidic solution such as a sulfuric acid (H 2 SO 4 ) aqueous solution or a copper etching solution to neutralize the alkali solution remaining on the surface, The copper oxide film (CuO) formed on the surface is removed.

銅めっき層の形成には、例えば電解めっき等を用いることができる。めっき浴としては、例えば硫酸銅(CuSO)と硫酸(HSO)とを主成分とする水溶液で満たされた硫酸銅−硫酸浴等の酸性銅めっき浴を用いることができる。ここでは、コスト面等の観点から硫酸銅−硫酸浴等を用いることとするが、銅めっき浴に用いることができる溶液等はこれに限定されない。 For example, electrolytic plating can be used for forming the copper plating layer. As the plating bath, for example, an acidic copper plating bath such as a copper sulfate-sulfuric acid bath filled with an aqueous solution mainly containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) can be used. Here, a copper sulfate-sulfuric acid bath or the like is used from the viewpoint of cost and the like, but a solution that can be used for the copper plating bath is not limited thereto.

このとき、めっき電流密度を限界電流密度よりも小さくすることが好ましい。これにより、表面に凹凸が生じるのを抑制し、より平坦な銅めっき層が得られる。但し、めっき電流密度が高い方が生産性は向上する。そこで、めっき電流密度は、限界電流密度より小さい範囲で、かつ、可能な限り高く設定することが好ましい。めっき条件の目安を以下に例示する。但し、以下の条件はあくまでもめっき条件の一例であって、これに限定されない。硫酸銅−硫酸浴等の液組成や液温、電解条件は、広い範囲内から選択可能である。   At this time, it is preferable to make the plating current density smaller than the limit current density. Thereby, it is suppressed that an unevenness | corrugation arises on the surface, and a flatter copper plating layer is obtained. However, productivity is improved as the plating current density is higher. Therefore, the plating current density is preferably set as high as possible within a range smaller than the limit current density. The standard of plating conditions is illustrated below. However, the following conditions are merely examples of plating conditions and are not limited thereto. The liquid composition such as a copper sulfate-sulfuric acid bath, liquid temperature, and electrolysis conditions can be selected from a wide range.

硫酸銅五水和物:20g/L〜300g/L
硫酸:10g/L〜200g/L
液温:15℃〜50℃
めっき電流密度:1A/dm〜30A/dm(限界電流密度未満)
めっき時間:1秒間〜20秒間
Copper sulfate pentahydrate: 20 g / L to 300 g / L
Sulfuric acid: 10 g / L to 200 g / L
Liquid temperature: 15 ° C to 50 ° C
Plating current density: 1 A / dm 2 to 30 A / dm 2 (less than the limit current density)
Plating time: 1 second to 20 seconds

また、硫酸銅−硫酸浴には、添加剤として、例えばビス(3−スルホプロピル)ジスルフィド2ナトリウム(以下、SPSともいう)や、3−メルカプト−1−プロパンスルホン酸(以下、MPSともいう)等のメルカプト(−SH)基を持つ化合物を加える。また、他の添加剤として、ポリエチレングリコール(PEG:Poly-Ethylene Glycol)を主成分とする薬液を加える。   Further, in the copper sulfate-sulfuric acid bath, as additives, for example, disodium bis (3-sulfopropyl) disulfide (hereinafter also referred to as SPS) or 3-mercapto-1-propanesulfonic acid (hereinafter also referred to as MPS). A compound having a mercapto (-SH) group such as is added. Moreover, the chemical | medical solution which has polyethyleneglycol (PEG: Poly-Ethylene Glycol) as a main component is added as another additive.

このような添加剤を添加した酸性銅めっき浴に表面が清浄化された圧延銅箔を浸漬し、圧延銅箔を陰極とする電解めっき処理を施して、圧延銅箔の片面あるいは両面に銅めっき層を形成する。これにより、少なくとも一部が2軸配向した{002}面の結晶粒を有する銅めっき層が得られる。   Immerse the cleaned copper foil in an acidic copper plating bath with such an additive, apply electrolytic plating with the rolled copper foil as the cathode, and apply copper plating to one or both sides of the rolled copper foil. Form a layer. Thereby, a copper plating layer having {002} -plane crystal grains at least partially biaxially oriented is obtained.

本発明者等は、このように、SPSやMPS、PEG等の添加剤を添加して銅めっきを行うことで、銅めっき層のランダム方位中、少なくとも一部が2軸配向した{002}面の結晶粒が得られ易いことを見いだした。本発明者等は、これらの添加剤の少なくとも1つ、或いは複数、又はこれらの所定の組み合わせが、{002}面の結晶粒の配向を制御する配向調整剤として働いていると推測している。本発明者等が見いだしたSPSやMPS、PEG等のこのような効果や用途、使用法は、これらの化合物の光沢剤や界面活性剤等としての従来の効果や用途、使用法とは全く異なる新規なものである。   In this way, the present inventors added copper and other additives such as SPS, MPS, and PEG, so that at least a part of the random orientation of the copper plating layer was biaxially oriented {002} plane It was found that the crystal grains were easily obtained. The present inventors presume that at least one of these additives, or a plurality of these additives, or a predetermined combination thereof, works as an alignment regulator that controls the orientation of crystal grains in the {002} plane. . Such effects, uses and usages of SPS, MPS, PEG, etc. found by the present inventors are completely different from conventional effects, uses and usages of these compounds as brighteners and surfactants. It is new.

(表面処理工程S60)
以上により形成された銅めっき層の表面に所定の処理を施し、本実施形態に係る銅めっき層付き圧延銅箔が製造される。
(Surface treatment step S60)
The surface of the copper plating layer formed as described above is subjected to a predetermined treatment, and the rolled copper foil with a copper plating layer according to this embodiment is manufactured.

ここで、所定の表面処理として、以下に示すように、例えば粗化銅めっき層、カプセル銅めっき層、防錆層を順次、銅めっき層上に形成するような処理を行ってもよい。但し、以下に説明するこれらの処理は行わなくともよい。   Here, as the predetermined surface treatment, as shown below, for example, a roughened copper plating layer, a capsule copper plating layer, and a rust prevention layer may be sequentially formed on the copper plating layer. However, these processes described below may not be performed.

まずは、銅めっき層に粗化銅めっき層を形成する例について説明する。   First, the example which forms a roughening copper plating layer in a copper plating layer is demonstrated.

粗化銅めっき層を形成するめっき浴としては、例えば硫酸銅−硫酸浴等の酸性銅めっき浴を用いることができる。また、酸性銅めっき浴には、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、スズ(Sn)、亜鉛(Zn)等のイオン成分が1種類以上配合されていてもよい。   As a plating bath for forming the roughened copper plating layer, for example, an acidic copper plating bath such as a copper sulfate-sulfuric acid bath can be used. The acidic copper plating bath contains one or more ionic components such as iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), tin (Sn), and zinc (Zn). Also good.

また、粗化銅めっきにおいては、銅めっき層を下地として、限界電流密度以上の高電流密度、つまり、いわゆる焼けめっきとなる電流密度で電解する。但し、このとき、硫酸銅−硫酸浴等の液組成や液温、電解条件は、広い範囲内から選択可能である。これにより、電着物や析出物が銅めっき層上に付着し、さらにこれらが肥大化して、例えば直径1μm程度の粗化粒が得られる。   Further, in roughened copper plating, electrolysis is performed with a copper plating layer as a base at a high current density equal to or higher than a limit current density, that is, a current density that is so-called burn plating. However, at this time, the liquid composition such as a copper sulfate-sulfuric acid bath, the liquid temperature, and the electrolysis conditions can be selected from a wide range. As a result, electrodeposits and deposits adhere to the copper plating layer, which further enlarges to obtain roughened grains having a diameter of, for example, about 1 μm.

続いて、カプセル銅めっき層を形成する例について説明する。   Then, the example which forms a capsule copper plating layer is demonstrated.

すなわち、上述のめっき浴の限界電流密度未満の電流により粗化銅めっき層の粗化粒に被せめっきを行って、粗化粒をコブ状銅粒へと成長させる。但し、粗化粒を微小なままに留めたい場合には、カプセル銅めっき層を形成しなくともよい。このとき、硫酸銅−硫酸浴等の液組成や液温、電解条件は、広い範囲内から選択可能である。また、このとき、めっき浴中に有機物添加材を添加してもよい。   That is, the roughened grains of the roughened copper plating layer are plated with a current less than the limit current density of the plating bath described above to grow the roughened grains into bump-shaped copper grains. However, when it is desired to keep the coarse grains fine, it is not necessary to form the capsule copper plating layer. At this time, the liquid composition such as a copper sulfate-sulfuric acid bath, liquid temperature, and electrolysis conditions can be selected from a wide range. At this time, an organic additive may be added to the plating bath.

次に、防錆層を形成する例について説明する。   Next, an example of forming a rust prevention layer will be described.

防錆層は、後処理めっき層とも呼ばれ、これにより充分な防錆性能を得ることができる。まずは、ニッケルめっき層またはニッケル合金めっき層を形成し、銅の拡散抑制を図る。続いて、亜鉛めっき層または亜鉛合金めっき層を形成し、耐熱性の向上を図る。次に、3価クロムタイプの反応型クロメート液等を用いて3価クロム化成処理層を形成する。その後、化成処理被膜として例えばシランカップリング層を形成し、FPCの基材等との密着性の向上を図る。   The rust preventive layer is also referred to as a post-treatment plated layer, and thereby sufficient rust preventive performance can be obtained. First, a nickel plating layer or a nickel alloy plating layer is formed to suppress copper diffusion. Subsequently, a zinc plating layer or a zinc alloy plating layer is formed to improve heat resistance. Next, a trivalent chromium chemical conversion treatment layer is formed using a trivalent chromium type reactive chromate solution or the like. Thereafter, for example, a silane coupling layer is formed as a chemical conversion coating, and adhesion with the FPC substrate is improved.

以上により、銅めっき層の表面処理を終了する。   Thus, the surface treatment of the copper plating layer is completed.

(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る銅めっき層付き圧延銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the rolled copper foil with a copper plating layer which concerns on one Embodiment of this invention is demonstrated.

(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る銅めっき層付き圧延銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法のいずれを用いてもよい。接着剤を用いる場合には、加熱処理により、上述のシランカップリング剤等の接着剤を硬化させて銅めっき層付き圧延銅箔の銅めっき層およびそれに付着する粗化粒等を有する面と基材とを密着させ複合する。接着剤を用いない場合には、加熱・加圧により銅めっき層付き圧延銅箔の銅めっき層およびそれに付着する粗化粒等を有する面と基材とを直接密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下とすることができる。
(Recrystallization annealing process (CCL process))
First, the rolled copper foil with a copper plating layer according to the present embodiment is cut into a predetermined size, and bonded to an FPC base material made of a resin such as polyimide to form a CCL (Copper Clad Laminate). At this time, either a method of forming a three-layer material CCL that is bonded using an adhesive or a method of forming a two-layer material CCL that is directly bonded without using an adhesive may be used. In the case of using an adhesive, the surface and base having a copper plating layer of the rolled copper foil with a copper plating layer and roughened grains adhering to it by curing the above-mentioned adhesive such as a silane coupling agent by heat treatment. The material is closely adhered and combined. When the adhesive is not used, the surface of the rolled copper foil with a copper plating layer and the surface having roughened grains attached thereto is directly adhered to the substrate by heating and pressing. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive and the base material, and can be set to 1 to 120 minutes at a temperature of 150 to 400 ° C., for example.

上述のように、銅めっき層付き圧延銅箔が備える圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、最終冷間圧延工程S40により加工硬化した状態の圧延銅箔が、上記加熱により軟化し再結晶に調質される。つまり、基材に銅めっき層付き圧延銅箔を貼り合わせるCCL工程が、銅めっき層付き圧延銅箔の圧延銅箔に対する再結晶焼鈍工程を兼ねている。   As above-mentioned, the heat resistance of the rolled copper foil with which the rolled copper foil with a copper plating layer is equipped is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil in the state of work hardening in the final cold rolling step S40 is softened by the heating and tempered to recrystallization. That is, the CCL process of bonding the rolled copper foil with the copper plating layer to the base material also serves as a recrystallization annealing process for the rolled copper foil of the rolled copper foil with the copper plating layer.

このように、CCL工程が再結晶焼鈍工程を兼ねることで、銅めっき層付き圧延銅箔を基材に貼り合わせるまでの工程では、圧延銅箔が最終冷間圧延工程S40後の加工硬化した状態で銅めっき層付き圧延銅箔を取り扱うことができ、銅めっき層付き圧延銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。   Thus, in the process until the CCL process also serves as the recrystallization annealing process and the rolled copper foil with the copper plating layer is bonded to the base material, the rolled copper foil is work-hardened after the final cold rolling process S40. Thus, the rolled copper foil with a copper plating layer can be handled, and deformation such as elongation, wrinkle, and fold can be made difficult to occur when the rolled copper foil with a copper plating layer is bonded to a substrate.

また、上述のような圧延銅箔の軟化は、再結晶焼鈍工程により、調質された圧延銅箔、つまり、再結晶組織を有する圧延銅箔が得られたことを示している。具体的には、{002}面の比率が高まって、耐屈曲性に優れた圧延銅箔を得ることができる。   The softening of the rolled copper foil as described above indicates that a tempered rolled copper foil, that is, a rolled copper foil having a recrystallized structure, was obtained by the recrystallization annealing process. Specifically, the ratio of the {002} plane is increased, and a rolled copper foil having excellent bending resistance can be obtained.

一方で、銅めっき層の結晶方位を変化させるには、CCL工程の加熱処理条件では熱エネルギーが小さすぎる。このため、銅めっき層の結晶構造は、再結晶焼鈍工程後も略変わることなく、銅めっき層を形成した直後の状態に保たれる。但し、上述のように、本実施形態においては、銅めっき層を形成した後には、銅めっき層の有する{002}面の少なくとも一部が2軸配向となっている。これにより、銅めっき層は、再結晶焼鈍工程の前後によらず、優れた耐屈曲性を備えている。   On the other hand, in order to change the crystal orientation of the copper plating layer, the heat energy is too small under the heat treatment conditions in the CCL process. For this reason, the crystal structure of the copper plating layer is maintained in the state immediately after the copper plating layer is formed without substantially changing after the recrystallization annealing step. However, as described above, in this embodiment, after the copper plating layer is formed, at least a part of the {002} plane of the copper plating layer is biaxially oriented. Thereby, the copper plating layer has excellent bending resistance regardless of before and after the recrystallization annealing step.

(表面加工工程)
次に、基材に貼り合わせた銅めっき層付き圧延銅箔に表面加工工程を施す。表面加工工程では、銅めっき層付き圧延銅箔に例えばエッチング等の手法を用いて銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the rolled copper foil with a copper plating layer bonded to the base material. In the surface processing step, a wiring forming step for forming a copper wiring or the like on the rolled copper foil with a copper plating layer using a technique such as etching, and a plating process for improving the connection reliability between the copper wiring and other electronic members. And a protective film forming process for forming a protective film such as a solder resist so as to cover a part of the copper wiring in order to protect the copper wiring and the like.

以上により、本実施形態に係る銅めっき層付き圧延銅箔を用いたFPCが製造される。   By the above, FPC using the rolled copper foil with a copper plating layer concerning this embodiment is manufactured.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態においては、銅めっき層付き圧延銅箔が備える圧延銅箔の耐熱性を調整する添加材として主にSn,Ag,B等を用いることとしたが、添加材は、Sn,Ag,Bや上記代表例等に挙げたものに限られない。また、添加材により調整可能な諸特性は耐熱性に限られず、調整を必要とする諸特性に応じて添加材を適宜選択してもよい。   For example, in the above-described embodiment, Sn, Ag, B, and the like are mainly used as the additive for adjusting the heat resistance of the rolled copper foil included in the rolled copper foil with a copper plating layer. , Ag, B and the above-mentioned representative examples. Moreover, the various characteristics that can be adjusted by the additive are not limited to heat resistance, and the additive may be appropriately selected according to the various characteristics that require adjustment.

また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。   In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.

また、上述の実施形態においては、銅めっき層付き圧延銅箔はFPC用途に用いられることとしたが、銅めっき層付き圧延銅箔の用途はこれに限られず、例えばリチウムイオン二次電池の負極集電銅箔やその他の耐屈曲性を必要とする他の用途にも用いることができる。また、銅めっき層付き圧延銅箔の厚さについても、FPC用途をはじめとする各種用途に応じて、10μm以下の超極薄、或いは、20μm超などとしてもよい。   Moreover, in the above-mentioned embodiment, although the rolled copper foil with a copper plating layer was used for FPC use, the use of the rolled copper foil with a copper plating layer is not restricted to this, For example, the negative electrode of a lithium ion secondary battery It can also be used for current collector copper foil and other applications that require bending resistance. Also, the thickness of the rolled copper foil with a copper plating layer may be ultra-thin of 10 μm or less, or over 20 μm, depending on various uses including FPC.

また、上述の実施形態においては、銅めっき層を圧延銅箔より薄くすることとしたが、これに限られない。銅めっき層を例えば圧延銅箔より厚くしても、銅めっき層付き圧延銅箔の全体としての耐屈曲性を向上させる本発明の所定の効果は得られる。   Moreover, in the above-mentioned embodiment, although the copper plating layer was made thinner than a rolled copper foil, it is not restricted to this. Even if the copper plating layer is thicker than the rolled copper foil, for example, the predetermined effect of the present invention that improves the bending resistance of the rolled copper foil with a copper plating layer as a whole can be obtained.

また、上述の実施形態においては、圧延銅箔が純銅型集合組織の形態をとるとしたが、これに限られない。例えばFPC用途以外に用いる場合などには、合金型集合組織の形態を取っていてもよい。   Moreover, in the above-mentioned embodiment, although rolled copper foil assumed the form of the pure copper type | mold texture, it is not restricted to this. For example, when used for purposes other than FPC, it may take the form of an alloy-type texture.

また、上述の実施形態においては、銅めっき層の結晶組織は主にランダム方位をとるとしたが、完全にランダムでなくともよい。例えば、結晶方位に多少の偏在や配向がみられる準ランダム方位であってもよい。つまり、準ランダム方位の中に2軸配向の{002}面が存在していてもよく、このような場合においても、2軸配向した{002}面により耐屈曲性を向上させる効果は得られる。すなわち、本明細書中における「ランダム方位」は、「準ランダム方位」をも含む「広義のランダム方位」の意味である。   Moreover, in the above-mentioned embodiment, although the crystal structure of the copper plating layer mainly has a random orientation, it may not be completely random. For example, it may be a quasi-random orientation in which the crystal orientation is somewhat unevenly distributed or oriented. That is, a biaxially oriented {002} plane may exist in the quasi-random orientation, and even in such a case, the effect of improving the bending resistance can be obtained by the biaxially oriented {002} plane. . That is, “random orientation” in the present specification means “random orientation in a broad sense” including “quasi-random orientation”.

なお、このような準ランダム方位は、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔の圧延面に配向している圧延結晶方位である{022}面等に対して、銅めっき層が多少なりともエピタキシャル成長した場合にみられる。或いは、準ランダム方位は、圧延銅箔の結晶方位とは無関係に、つまり、エピタキシャル成長はせずに{022}面等が偏在した場合などにみられる。両者間の区別はつけ難いが、2軸配向の{002}面により得られる効果に変わりはない。   In addition, such a quasi-random orientation is a copper plating with respect to a {022} plane or the like that is a rolling crystal orientation oriented on the rolling surface of the rolled copper foil after the final cold rolling step and before the recrystallization annealing step. This is seen when the layer grows more or less epitaxially. Alternatively, the quasi-random orientation is seen regardless of the crystal orientation of the rolled copper foil, that is, when the {022} plane is unevenly distributed without epitaxial growth. Although it is difficult to distinguish between the two, the effect obtained by the biaxially oriented {002} plane remains unchanged.

また、上述の実施形態においては、銅めっき層上に粗化銅めっき層、カプセル銅めっき層、防錆層を設けることとしたが、これらの層の組み合わせは任意である。例えば、粗化粒を小さくする場合にはカプセル銅めっきは設けなくともよい。また、粗化銅めっき層やカプセル銅めっき層を設けずに、直接、防錆層を銅めっき層上に設けてもよい。また、銅めっき層付き圧延銅箔を適用する用途によっては、つまり、FPC用途以外の用途などでは、そもそも基材との密着性を考慮に入れなくともよく、銅めっき層上の構成を全て省略することも可能である。   Moreover, in the above-mentioned embodiment, although the roughening copper plating layer, the capsule copper plating layer, and the antirust layer were provided on the copper plating layer, the combination of these layers is arbitrary. For example, when making coarse grains small, it is not necessary to provide capsule copper plating. Moreover, you may provide a rust prevention layer directly on a copper plating layer, without providing a roughening copper plating layer and a capsule copper plating layer. Also, depending on the application to which the rolled copper foil with a copper plating layer is applied, that is, in applications other than the FPC application, it is not necessary to consider the adhesiveness to the substrate in the first place, and all configurations on the copper plating layer are omitted. It is also possible to do.

また、上述の実施形態においては、最終冷間圧延工程S40での総加工度を80%以上などとし、圧延銅箔において優れた耐屈曲性を得ることとしたが、最終冷間圧延工程における総加工度を例えば80%未満としても、耐屈曲性を向上させた銅めっき層の所定効果は、これとは独立して得られる。よって、ある程度の耐屈曲性が得られていればよい場合等には、圧延銅箔の総加工度を例えば80%未満、或いは70%未満等と低く抑え、製造工程における負荷を低減することができる。   Further, in the above-described embodiment, the total degree of work in the final cold rolling step S40 is set to 80% or more, and excellent bending resistance is obtained in the rolled copper foil. Even if the degree of processing is less than 80%, for example, the predetermined effect of the copper plating layer with improved bending resistance can be obtained independently. Therefore, when it is sufficient that a certain degree of bending resistance is obtained, the total processing degree of the rolled copper foil can be kept low, for example, less than 80%, or less than 70%, and the load in the manufacturing process can be reduced. it can.

また、上述の実施形態においては、銅めっき層の{002}面の結晶粒の少なくとも一部が2軸配向となった銅めっき層付き圧延銅箔の製造方法として、SPSやMPS、PEG等の添加剤を用いた電解めっき等に所定の効果が見いだされた。但し、これら以外にも、配向調整剤としての働きを有する他の添加剤を用いてもよい。また、上述とは異なる他の銅めっき層形成工程、或いは、再結晶焼鈍工程等により、銅めっき層の{002}面の配向を制御してもよい。   Moreover, in the above-mentioned embodiment, as a manufacturing method of the rolled copper foil with a copper plating layer in which at least a part of crystal grains on the {002} plane of the copper plating layer is biaxially oriented, SPS, MPS, PEG, etc. A predetermined effect was found in electrolytic plating using an additive. However, in addition to these, other additives having a function as an alignment regulator may be used. Further, the orientation of the {002} plane of the copper plating layer may be controlled by another copper plating layer forming step different from the above or a recrystallization annealing step.

本発明の主眼は、あくまで、銅めっき層付き圧延銅箔の銅めっき層の{002}面の少なくとも一部が2軸配向している点と、これにより銅めっき層において優れた耐屈曲性が得られるという点と、にある。   The main point of the present invention is that at least a part of the {002} plane of the copper plating layer of the rolled copper foil with a copper plating layer is biaxially oriented, and thereby excellent bending resistance in the copper plating layer. It is in the point that it is obtained.

なお、本発明の効果を奏するために、上記に挙げた工程のすべてが必須であるとは限らない。上述の実施形態や後述の実施例で挙げる種々の条件もあくまで例示であって、適宜変更可能である。   In addition, in order to show the effect of this invention, not all the processes mentioned above are necessarily essential. The various conditions given in the above-described embodiment and examples described later are merely examples, and can be changed as appropriate.

次に、本発明に係る実施例について比較例とともに説明する。   Next, examples according to the present invention will be described together with comparative examples.

(1)無酸素銅を用いた銅めっき層付き圧延銅箔
まずは、無酸素銅を用いた実施例1,2並びに比較例1〜4に係る銅めっき層付き圧延銅箔、及び比較例5,6に係る銅めっき層なしの圧延銅箔を製作し、それぞれについて各種評価を行った。
(1) Rolled copper foil with a copper plating layer using oxygen-free copper First, rolled copper foil with a copper plating layer according to Examples 1 and 2 and Comparative Examples 1 to 4 using oxygen-free copper, and Comparative Example 5, A rolled copper foil without a copper plating layer according to No. 6 was produced, and various evaluations were performed for each.

(銅めっき層付き圧延銅箔の製作)
まずは、実施例1,2並びに比較例1〜4に係る銅めっき層付き圧延銅箔、及び比較例5,6に係る銅めっき層なしの圧延銅箔を以下の通り製作した。
(Production of rolled copper foil with copper plating layer)
First, the rolled copper foil with a copper plating layer according to Examples 1 and 2 and Comparative Examples 1 to 4 and the rolled copper foil without a copper plating layer according to Comparative Examples 5 and 6 were manufactured as follows.

純度が99.99%の無酸素銅を用い、上述の実施形態と同様の手順及び方法で、無酸素銅の鋳塊を2本製作した。次に、上述の実施形態と同様の手順及び方法で、熱間圧延工程にて厚さ8mmの板材を得た。この板材に対して冷間圧延工程と中間焼鈍工程とを繰り返し実施して得た銅条(生地)に、生地焼鈍工程を施し焼鈍生地を得た。   Using oxygen-free copper having a purity of 99.99%, two oxygen-free copper ingots were produced by the same procedure and method as in the above embodiment. Next, a plate material having a thickness of 8 mm was obtained in the hot rolling step by the same procedure and method as in the above embodiment. A dough annealing process was performed on a copper strip (fabric) obtained by repeatedly performing a cold rolling process and an intermediate annealing process on the plate material to obtain an annealed dough.

中間焼鈍工程では、700℃〜800℃の温度で約1分間〜2分間、板材を保持した。生地焼鈍工程では、約700℃の温度で約1分間、生地を保持した。ここで、各焼鈍工程の温度条件等は、無酸素銅からなる銅材の耐熱性に合わせた。なお、同じ銅材に対して各焼鈍条件が異なるのは、銅材の厚さに応じて耐熱性が変化するためである。具体的には、銅材が薄いときは温度を下げることができる。   In the intermediate annealing step, the plate material was held at a temperature of 700 ° C. to 800 ° C. for about 1 minute to 2 minutes. In the dough annealing step, the dough was held at a temperature of about 700 ° C. for about 1 minute. Here, the temperature conditions of each annealing process were matched with the heat resistance of the copper material made of oxygen-free copper. In addition, each annealing condition differs with respect to the same copper material because heat resistance changes according to the thickness of copper material. Specifically, the temperature can be lowered when the copper material is thin.

次に、最終冷間圧延工程を行った。このとき、幾つかの焼鈍生地に対しては、総加工度を80%とし、厚さが19.0μmの実施例1および比較例1,3,5に係る圧延銅箔を製作した。また、他の焼鈍生地に対しては、総加工度を95%とし、厚さが11.0μmの実施例2および比較例2,4,6に係る圧延銅箔を製作した。   Next, the final cold rolling process was performed. At this time, for some annealed fabrics, the rolled copper foil according to Example 1 and Comparative Examples 1, 3, and 5 having a total workability of 80% and a thickness of 19.0 μm was manufactured. For other annealed fabrics, rolled copper foils according to Example 2 and Comparative Examples 2, 4 and 6 having a total workability of 95% and a thickness of 11.0 μm were manufactured.

続いて、比較例5,6を除く圧延銅箔の表面に、以下の通り、銅めっき層を形成した。   Subsequently, a copper plating layer was formed on the surface of the rolled copper foil excluding Comparative Examples 5 and 6 as follows.

まず、圧延銅箔の表面を清浄化する電解脱脂を施した。このとき、水酸化ナトリウム40g/L、炭酸ナトリウム20g/Lを含む水溶液中で、液温40℃、電流密度10A/dmにて10秒間の処理とした。 First, electrolytic degreasing for cleaning the surface of the rolled copper foil was performed. At this time, the treatment was carried out for 10 seconds in an aqueous solution containing 40 g / L of sodium hydroxide and 20 g / L of sodium carbonate at a liquid temperature of 40 ° C. and a current density of 10 A / dm 2 .

続いて、圧延銅箔の表面に残存するアルカリ溶液の中和および銅の酸化膜を除去する酸洗処理を施した。このとき、硫酸150g/Lを含む水溶液中で、液温25℃にて10秒間浸漬した。   Subsequently, a pickling treatment was performed to neutralize the alkaline solution remaining on the surface of the rolled copper foil and remove the copper oxide film. At this time, it was immersed for 10 seconds at a liquid temperature of 25 ° C. in an aqueous solution containing 150 g / L of sulfuric acid.

次に、圧延銅箔を陰極とする電解処理を施して、銅めっき層を圧延銅箔の圧延面に形成した。このとき、銅めっき層の厚さは全て1.0μmとした。各圧延銅箔に対するめっき条件を、表2に示す。   Next, electrolytic treatment using a rolled copper foil as a cathode was performed to form a copper plating layer on the rolled surface of the rolled copper foil. At this time, all the copper plating layers had a thickness of 1.0 μm. Table 2 shows the plating conditions for each rolled copper foil.

表2の各条件にて、いずれも同程度の平坦性を有する銅めっき層が得られた。銅めっき層の表面粗さは、十点平均粗さRzjis(JIS B0601:2001)で0.5μm〜0.8μmであった。   Under the conditions shown in Table 2, a copper plating layer having the same level of flatness was obtained. The surface roughness of the copper plating layer was 0.5 μm to 0.8 μm in terms of ten-point average roughness Rzjis (JIS B0601: 2001).

({022}面極点図測定)
以上のように得られた実施例1,2並びに比較例1〜4に係る銅めっき層付き圧延銅箔、及び比較例5,6に係る銅めっき層なしの圧延銅箔について、銅めっき層および圧延銅箔の結晶方位をX線回折装置にて測定した。X線回折装置としては、株式会社リガク製のX線回折装置(型式:Ultima IV)を用いた。また、銅めっき層の結晶方位を測定する際には、銅めっき層の表面に照射したX線が、銅めっき層を貫通して圧延銅箔にまで透過しない出力とした。具体的には、X線が圧延銅箔にまで透過しないことを確認のうえ、X線の出力を0.8kW(40kV×20mA)とした。
({022} face pole figure measurement)
About the rolled copper foil with the copper plating layer according to Examples 1 and 2 and Comparative Examples 1 to 4 obtained as described above and the copper plating layer according to Comparative Examples 5 and 6, the copper plating layer and The crystal orientation of the rolled copper foil was measured with an X-ray diffractometer. As the X-ray diffractometer, an X-ray diffractometer (Model: Ultimate IV) manufactured by Rigaku Corporation was used. Moreover, when measuring the crystal orientation of a copper plating layer, it was set as the output which the X-ray irradiated to the surface of a copper plating layer does not permeate | transmit a rolled copper foil through a copper plating layer. Specifically, the X-ray output was set to 0.8 kW (40 kV × 20 mA) after confirming that the X-ray did not pass through the rolled copper foil.

X線回折を用いた極点図(Pole−Figure)測定には、あおり角度αを15°〜90°の範囲とする反射法と、0°〜15°の範囲とする透過法とがある。本実施例では反射法を用いた。測定方法の詳細について、図2を用いて以下に説明する。   Pole-Figure measurement using X-ray diffraction includes a reflection method in which the tilt angle α is in the range of 15 ° to 90 ° and a transmission method in which the tilt angle α is in the range of 0 ° to 15 °. In this embodiment, the reflection method is used. Details of the measurement method will be described below with reference to FIG.

図2に示されているように、圧延銅箔又は銅めっき層付き圧延銅箔の試料片50を、上述の通り、θ軸、α軸、β軸の3つの走査軸回りに回転可能に配置する。これら3つの走査軸は、一般に、それぞれ試料軸、あおり軸、面内回転軸と呼ばれる。本実施形態におけるX線回折の測定には、銅(Cu)管球から発生するX線(Cu Kα線)を用いるものとする。   As shown in FIG. 2, the sample piece 50 of the rolled copper foil or the rolled copper foil with the copper plating layer is arranged so as to be rotatable around the three scanning axes of the θ axis, the α axis, and the β axis as described above. To do. These three scanning axes are generally called a sample axis, a tilt axis, and an in-plane rotation axis, respectively. For the measurement of X-ray diffraction in the present embodiment, X-rays (Cu Kα rays) generated from a copper (Cu) tube are used.

極点図測定では、検出器の走査角を、着目する{hkl}面の2θ値に固定し、この2θ値に対してα軸走査をステップで行う。このとき、各α値に対して試料片50をβ軸走査、つまり、0°〜360°まで面内回転(自転)させて測定を行う。これにより、着目する{hkl}面が、銅めっき層の表面や圧延銅箔の圧延面等の測定対象面に対する垂直方向と面内回転方向とに対してどの程度傾いているか(回転してずれているか)を評価することができ、結晶方位の全体的な形成状態が把握できる。   In the pole figure measurement, the scanning angle of the detector is fixed to the 2θ value of the {hkl} plane of interest, and α-axis scanning is performed in steps with respect to this 2θ value. At this time, the sample piece 50 is subjected to β-axis scanning for each α value, that is, in-plane rotation (rotation) from 0 ° to 360 ° is performed. As a result, how much the {hkl} surface of interest is inclined with respect to the direction perpendicular to the surface to be measured, such as the surface of the copper plating layer or the rolled surface of the rolled copper foil, and the in-plane rotation direction (rotating and shifting). And the overall formation state of the crystal orientation can be grasped.

本実施例では、{002}面の配向性を調査すべく、上述のような極点図測定の特徴を利用した面内配向測定(対称性測定)を行った。   In this example, in order to investigate the orientation of the {002} plane, in-plane orientation measurement (symmetry measurement) using the characteristics of the pole figure measurement as described above was performed.

すなわち、面内配向測定では、以下のように規定されるあおり角度αを利用して測定を行う。つまり、試料片50に垂直な方向(β軸方向)のあおり角度αを90°と定義する。また、着目する結晶面である{hkl}面に幾何学的に対応する結晶面である{h’k’l’}面が{hkl}面となす角度をα’とする。このとき、あおり角度α=90−α’と規定される。   That is, in the in-plane orientation measurement, the tilt angle α defined as follows is used for measurement. That is, the tilt angle α in the direction perpendicular to the sample piece 50 (β-axis direction) is defined as 90 °. Further, α ′ is an angle formed by a {h′k′l ′} plane, which is a crystal plane geometrically corresponding to the {hkl} plane, which is the crystal plane of interest, and the {hkl} plane. At this time, the tilt angle α is defined as 90−α ′.

このような規定のもと、あおり角度αが「90−α’」となるようにα軸を走査し、つまり、試料片50を傾け、検出器の走査角を{h’k’l’}面の2θ値に固定したうえで、この2θ値に対して試料片50をβ軸走査させる。   Under such a definition, the α axis is scanned so that the tilt angle α becomes “90−α ′”, that is, the sample piece 50 is tilted, and the scanning angle of the detector is set to {h′k′l ′}. After fixing to the 2θ value of the surface, the sample piece 50 is β-axis scanned with respect to this 2θ value.

この測定では、測定対象面内において、着目する{hkl}面がどの程度のばらつきで回転しているかを評価することができる。つまり、例えば{002}面が2軸配向している場合には、{002}面に対して45°傾いた位置関係にある{022}面の面内配向測定により、2軸配向を示す4回対称の回折ピークが検出される。   In this measurement, it is possible to evaluate to what extent the target {hkl} plane rotates within the measurement target plane. That is, for example, when the {002} plane is biaxially oriented, 4 indicates biaxial orientation by measuring the in-plane orientation of the {022} plane that is inclined by 45 ° with respect to the {002} plane. A symmetric diffraction peak is detected.

より具体的には、2軸配向した{002}面の存在は以下により示される。すなわち、銅めっき層の表面を基準とする{022}面極点図測定において、あおり角度αが45°における銅めっき層の表面の面内回転により得られる{022}面の回折ピークが面内回転の回転角度βの90°±5°ごとに存在する4回対称性を示す結晶粒が、銅めっき層中のランダム方位の中に存在する。これにより、銅めっき層において、2軸配向した{002}面の存在を間接的に評価することができる。   More specifically, the presence of a biaxially oriented {002} plane is shown by the following. That is, in the {022} pole figure measurement based on the surface of the copper plating layer, the diffraction peak of the {022} plane obtained by in-plane rotation of the surface of the copper plating layer when the tilt angle α is 45 ° is in-plane rotation. The crystal grains having the 4-fold symmetry existing every 90 ° ± 5 ° of the rotation angle β are present in the random orientation in the copper plating layer. This makes it possible to indirectly evaluate the presence of the biaxially oriented {002} plane in the copper plating layer.

実施例1および比較例1,3,5の極点図測定の結果を図3〜図5に示す。   The results of the pole figure measurement of Example 1 and Comparative Examples 1, 3, and 5 are shown in FIGS.

図3(a),図4(a),図5(a)は、実施例1および比較例1,3の各銅めっき層の測定結果である。また、対比のため、比較例5の圧延銅箔の測定結果が、図3(b),図4(b),図5(b)に示されている。また、各図の上段は極点図であり、下段は極点図測定の回折ピークのスペクトルである。横軸が回転角度β(°)であり、縦軸が回折強度(任意単位)である。   3 (a), 4 (a), and 5 (a) are measurement results of the copper plating layers of Example 1 and Comparative Examples 1 and 3. FIG. Moreover, the measurement result of the rolled copper foil of the comparative example 5 is shown by FIG.3 (b), FIG.4 (b), FIG.5 (b) for the comparison. Moreover, the upper part of each figure is a pole figure, and the lower part is the spectrum of the diffraction peak of the pole figure measurement. The horizontal axis is the rotation angle β (°), and the vertical axis is the diffraction intensity (arbitrary unit).

図3(a)に示されているように、実施例1の銅めっき層においては、回折ピークに4回対称性が認められる。また、4回対称性を示す回折ピーク以外の領域は、ランダム方位を示している。したがって、実施例1の銅めっき層の結晶組織は、主にランダム方位からなる結晶中に、{002}面のみが2軸配向している状態であることがわかる。なお、実施例2においても、同様の結果が得られた。   As shown in FIG. 3A, in the copper plating layer of Example 1, fourfold symmetry is observed in the diffraction peak. In addition, the region other than the diffraction peak showing the fourfold symmetry shows a random orientation. Therefore, it can be seen that the crystal structure of the copper plating layer of Example 1 is a state in which only the {002} plane is biaxially oriented in a crystal mainly having a random orientation. In Example 2, similar results were obtained.

また、図3(a)上段をみると、極点図の中心付近、つまりあおり角度が90°付近において、多少の偏在が認められる。つまり、実施例1の銅めっき層におけるランダム方位は、準ランダム方位になっていると考えられる。この場合においても、2軸配向した{002}面の効果を奏する。   Further, when viewing the upper part of FIG. 3A, some uneven distribution is recognized near the center of the pole figure, that is, when the tilt angle is around 90 °. That is, the random orientation in the copper plating layer of Example 1 is considered to be a quasi-random orientation. Also in this case, the effect of the {002} plane biaxially oriented is exhibited.

また、図4(a)に示されているように、比較例1の銅めっき層においては、回折ピークに4回対称性は認められない。なお、比較例2においても、同様の結果が得られた。   Further, as shown in FIG. 4A, in the copper plating layer of Comparative Example 1, no four-fold symmetry is observed in the diffraction peak. In Comparative Example 2, similar results were obtained.

また、図5(a)に示されているように、比較例3の銅めっき層においては、図5(b)に示されている下地の圧延銅箔の回折ピークと略同様の回折ピークが得られた。このことから、比較例3においては、銅めっき層が圧延銅箔の結晶構造に倣ってエピタキシャル成長したことがわかる。また、回折ピークには、4回対称性は認められない。なお、比較例4においても、同様の結果が得られた。   Further, as shown in FIG. 5 (a), the copper plating layer of Comparative Example 3 has a diffraction peak substantially similar to the diffraction peak of the underlying rolled copper foil shown in FIG. 5 (b). Obtained. From this, it can be seen that in Comparative Example 3, the copper plating layer was epitaxially grown following the crystal structure of the rolled copper foil. In addition, no four-fold symmetry is observed in the diffraction peak. In Comparative Example 4, similar results were obtained.

以上のような実施例および比較例における差は、銅めっき層の形成時、めっき浴に所定量以上の各種添加剤を添加したか否かに影響を受けている可能性がある。   The difference between the above Examples and Comparative Examples may be influenced by whether or not a predetermined amount or more of various additives are added to the plating bath during the formation of the copper plating layer.

(屈曲疲労寿命試験)
次に、各圧延銅箔および各銅めっき層付き圧延銅箔の耐屈曲性を調べるため、各圧延銅箔および各銅めっき層付き圧延銅箔が破断するまでの繰返し曲げ回数(屈曲回数)を測定する屈曲疲労寿命試験を行った。係る試験は、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31B2S)を用い、IPC(米国プリント回路工業会)規格に準拠して行った。図6には、このようなFPC高速屈曲試験機等も含む、一般的な摺動屈曲試験装置10の模式図を示す。
(Bending fatigue life test)
Next, in order to examine the bending resistance of each rolled copper foil and each rolled copper foil with a copper plating layer, the number of repeated bendings (number of bendings) until each rolled copper foil and each rolled copper foil with a copper plating layer break A bending fatigue life test was performed. Such a test was performed using an FPC high-speed bending tester (model: SEK-31B2S) manufactured by Shin-Etsu Engineering Co., Ltd. in accordance with the IPC (American Printed Circuit Industry Association) standard. FIG. 6 shows a schematic diagram of a general sliding bending test apparatus 10 including such an FPC high-speed bending tester.

まずは、各銅めっき層付き圧延銅箔、および銅めっき層のない各圧延銅箔を幅12.5mm、長さ220mm(圧延方向に220mm)に切り取った試料片50に、上述の再結晶焼鈍工程に倣い、300℃、5分間の再結晶焼鈍を施した。係る条件は、フレキシブルプリント配線板のCCL工程で、基材との密着の際に圧延銅箔が実際に受ける熱量の一例を模している。   First, the above-described recrystallization annealing step is performed on the sample piece 50 obtained by cutting each rolled copper foil with a copper plating layer and each rolled copper foil without a copper plating layer into a width of 12.5 mm and a length of 220 mm (220 mm in the rolling direction). Following this, recrystallization annealing was performed at 300 ° C. for 5 minutes. Such a condition imitates an example of the amount of heat that the rolled copper foil actually receives in close contact with the substrate in the CCL process of the flexible printed wiring board.

次に、図6に示されているように、試料片50を、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料片50を振動伝達部13に接触させて貼り付け、発振駆動体14により振動伝達部13を上下方向に振動させて試料片50に振動を伝達し、屈曲疲労寿命試験を実施した。屈曲疲労寿命の測定条件としては、曲げ半径10rを1.5mmとし、ストローク10sを10mmとし、振幅数を25Hzとした。係る条件下、各試料片50を3枚ずつ測定し、破断が発生するまでの屈曲回数の平均値を比較した。これにより、得られた測定結果を以下の表3に示す。   Next, as shown in FIG. 6, the sample piece 50 was fixed to the sample fixing plate 11 of the sliding bending test apparatus 10 with screws 12. Subsequently, the specimen piece 50 was attached in contact with the vibration transmission section 13, and the vibration transmission section 13 was vibrated in the vertical direction by the oscillation driver 14 to transmit vibration to the specimen piece 50, and a bending fatigue life test was performed. . As the measurement conditions for the bending fatigue life, the bending radius 10r was 1.5 mm, the stroke 10 s was 10 mm, and the amplitude number was 25 Hz. Under such conditions, each of the sample pieces 50 was measured three times, and the average value of the number of bendings until the fracture occurred was compared. The measurement results thus obtained are shown in Table 3 below.

なお、表3では、異なる厚さの試料片50が混在している。試料片50の厚さは破断までの屈曲回数、すなわち、耐屈曲性に影響を与えるため留意が必要である。つまり、材料が略同一であれば、一般に厚さが増すほど破断までの屈曲回数は低下する。よって、表3に示す各試料片50においては、圧延銅箔に対し層厚が薄い銅めっき層の有無に関わらず、全体の厚さ、つまり、総厚さが増すほど耐屈曲性は低くなる。   In Table 3, sample pieces 50 having different thicknesses are mixed. It should be noted that the thickness of the sample piece 50 affects the number of times of bending until breakage, that is, the bending resistance. That is, if the materials are substantially the same, in general, the number of bendings until rupture decreases as the thickness increases. Therefore, in each sample piece 50 shown in Table 3, the bending resistance decreases as the total thickness, that is, the total thickness increases, regardless of the presence or absence of a copper plating layer having a thin layer thickness relative to the rolled copper foil. .

銅めっき層と圧延銅箔との総厚さが20.0μmの実施例1および比較例1,3をみると、破断までの屈曲回数(屈曲破断回数)は、比較例3、比較例1、実施例1の順に増している。実施例1においては、銅めっき層を形成する前の圧延銅箔、つまり、比較例5の屈曲破断回数に対して90%以上の屈曲破断回数が得られている。比較例5よりも実施例1の厚さが増していることを考えると、実施例1においては銅めっき層を設けたことによる耐屈曲性の低下はほとんどなかったと考えられる。一方、比較例1,3の屈曲破断回数は、それぞれ実施例1の60%および35%程度まで低下してしまった。   Looking at Example 1 and Comparative Examples 1 and 3 in which the total thickness of the copper plating layer and the rolled copper foil was 20.0 μm, the number of bendings until the break (number of bending breaks) was Comparative Example 3, Comparative Example 1, It is increasing in the order of Example 1. In Example 1, the rolled copper foil before forming the copper plating layer, that is, the number of bending breaks of 90% or more with respect to the number of bending breaks of Comparative Example 5 was obtained. Considering that the thickness of Example 1 is greater than that of Comparative Example 5, it is considered that there was almost no decrease in flex resistance due to the provision of the copper plating layer in Example 1. On the other hand, the number of bending breaks of Comparative Examples 1 and 3 decreased to about 60% and 35% of Example 1, respectively.

次に、銅めっき層と圧延銅箔との総厚さが12.0μmの実施例2および比較例2,4をみると、破断までの屈曲回数(屈曲破断回数)は、比較例4、比較例2、実施例2の順に増している。実施例2においては、銅めっき層を形成する前の圧延銅箔、つまり、比較例6の屈曲破断回数に対して90%以上の屈曲破断回数が得られている。比較例6よりも実施例2の厚さが増している。上述のように、全体の厚さが増すほど耐屈曲性が低下することを考えると、実施例2においては銅めっき層を設けたことによる耐屈曲性の低下はほとんどなかったと考えられる。一方、比較例2,4の屈曲破断回数は、それぞれ実施例2の60%および30%程度まで低下してしまった。   Next, in Example 2 and Comparative Examples 2 and 4 in which the total thickness of the copper plating layer and the rolled copper foil is 12.0 μm, the number of bendings until the break (the number of bending breaks) is Comparative Example 4 and It is increasing in the order of Example 2 and Example 2. In Example 2, the rolled copper foil before forming the copper plating layer, that is, the number of bending breaks of 90% or more with respect to the number of bending breaks of Comparative Example 6 was obtained. The thickness of Example 2 is greater than that of Comparative Example 6. As described above, considering that the bending resistance decreases as the overall thickness increases, it is considered that there was almost no decrease in bending resistance due to the provision of the copper plating layer in Example 2. On the other hand, the number of bending breaks in Comparative Examples 2 and 4 decreased to about 60% and 30% of Example 2, respectively.

以上、2軸配向した{002}面を有する実施例1,2において、耐屈曲性を向上させる効果が認められた。   As described above, in Examples 1 and 2 having the biaxially oriented {002} plane, the effect of improving the bending resistance was recognized.

(2)無酸素銅の希薄銅合金を用いた銅めっき層付き圧延銅箔
次に、無酸素銅を母相とする希薄銅合金を用いた実施例3,4並びに比較例7〜10に係る銅めっき層付き圧延銅箔、及び比較例11,12に係る銅めっき層なしの圧延銅箔を製作し、それぞれについて各種評価を行った。
(2) Rolled copper foil with a copper plating layer using a dilute copper alloy of oxygen-free copper Next, according to Examples 3 and 4 and Comparative Examples 7 to 10 using a dilute copper alloy having oxygen-free copper as a parent phase A rolled copper foil with a copper plating layer and a rolled copper foil without a copper plating layer according to Comparative Examples 11 and 12 were produced, and various evaluations were performed on each.

(銅めっき層付き圧延銅箔の製作)
上述の実施例と同様の手順及び方法で、実施例3,4並びに比較例7〜10に係る銅めっき層付き圧延銅箔、及び比較例11,12に係る銅めっき層なしの圧延銅箔を製作した。
(Production of rolled copper foil with copper plating layer)
By the same procedure and method as the above-mentioned Example, the rolled copper foil with a copper plating layer according to Examples 3 and 4 and Comparative Examples 7 to 10 and the rolled copper foil without a copper plating layer according to Comparative Examples 11 and 12 were used. Produced.

このとき、純度が99.99%の無酸素銅にSnを30ppm〜80ppmの範囲内で添加した希薄銅合金を原料とした。Snの添加量はごく微量であるので、精度上、上述のような所定範囲でその濃度を規定した。   At this time, a dilute copper alloy in which Sn was added to oxygen-free copper having a purity of 99.99% within a range of 30 ppm to 80 ppm was used as a raw material. Since the addition amount of Sn is very small, its concentration is defined within the predetermined range as described above for accuracy.

各焼鈍工程の温度条件は、希薄銅合金からなる銅材の耐熱性に合わせた。具体的には、中間焼鈍工程の条件を750℃〜850℃の温度で約2分間〜4分間とした。生地焼鈍工程の条件を約800℃の温度で約2分間とした。最終冷間圧延工程では、総加工度を95%とし、厚さが16.0μmの実施例3および比較例7,9に係る圧延銅箔を製作した。また、総加工度を97%とし、厚さが8.0μmの実施例4および比較例8,10に係る圧延銅箔を製作した。   The temperature condition of each annealing process was matched with the heat resistance of the copper material which consists of a dilute copper alloy. Specifically, the conditions of the intermediate annealing process were set to a temperature of 750 ° C. to 850 ° C. for about 2 minutes to 4 minutes. The conditions of the dough annealing process were set at a temperature of about 800 ° C. for about 2 minutes. In the final cold rolling step, rolled copper foils according to Example 3 and Comparative Examples 7 and 9 having a total workability of 95% and a thickness of 16.0 μm were manufactured. Moreover, the rolled copper foil which concerns on Example 4 and Comparative Examples 8 and 10 with a total workability of 97% and a thickness of 8.0 μm was manufactured.

また、実施例3,4および比較例7〜10の圧延面に銅めっき層を形成した。このとき、銅めっき層の厚さは全て0.5μmとした。各圧延銅箔に対するめっき条件を、表4に示す。   Moreover, the copper plating layer was formed in the rolling surface of Examples 3 and 4 and Comparative Examples 7-10. At this time, the thickness of the copper plating layer was all 0.5 μm. Table 4 shows the plating conditions for each rolled copper foil.

表4の各条件にて、いずれも同程度の平坦性を有する銅めっき層が得られた。銅めっき層の表面粗さは、十点平均粗さRzjis(JIS B0601:2001)で0.5μm〜0.8μmであった。   Under each condition in Table 4, a copper plating layer having the same level of flatness was obtained. The surface roughness of the copper plating layer was 0.5 μm to 0.8 μm in terms of ten-point average roughness Rzjis (JIS B0601: 2001).

({022}面極点図測定)
以上のように得られた実施例3,4並びに比較例7〜10に係る銅めっき層付き圧延銅箔、及び比較例11,12に係る銅めっき層なしの圧延銅箔について、銅めっき層および圧延銅箔の結晶方位を上述の実施例と同様の手順及び方法で測定した。
({022} face pole figure measurement)
About the rolled copper foil with the copper plating layer according to Examples 3 and 4 and Comparative Examples 7 to 10 obtained as described above and the copper plating layer without the copper plating layer according to Comparative Examples 11 and 12, the copper plating layer and The crystal orientation of the rolled copper foil was measured by the same procedure and method as in the above examples.

実施例3および比較例7,9,11の極点図測定の結果を図7〜図9に示す。   The result of the pole figure measurement of Example 3 and Comparative Examples 7, 9, and 11 is shown in FIGS.

図7(a),図8(a),図9(a)は、実施例3および比較例7,9の各銅めっき層の測定結果である。また、対比のため、比較例11の圧延銅箔の測定結果が、図7(b),図8(b),図9(b)に示されている。また、各図の上段は極点図であり、下段は極点図測定の回折ピークのスペクトルである。横軸が回転角度β(°)であり、縦軸が回折強度(任意単位)である。   FIG. 7A, FIG. 8A, and FIG. 9A show the measurement results of the copper plating layers of Example 3 and Comparative Examples 7 and 9. FIG. Moreover, the measurement result of the rolled copper foil of the comparative example 11 is shown by FIG.7 (b), FIG.8 (b), and FIG.9 (b) for the comparison. Moreover, the upper part of each figure is a pole figure, and the lower part is the spectrum of the diffraction peak of the pole figure measurement. The horizontal axis is the rotation angle β (°), and the vertical axis is the diffraction intensity (arbitrary unit).

図7(a)に示されているように、実施例3の銅めっき層においては、回折ピークに4回対称性が認められる。また、4回対称性を示す回折ピーク以外の領域は、ランダム方位を示している。したがって、実施例3の銅めっき層の結晶組織は、主にランダム方位からなる結晶中に、{002}面のみが2軸配向している状態であることがわかる。なお、実施例4においても、同様の結果が得られた。   As shown in FIG. 7 (a), in the copper plating layer of Example 3, fourfold symmetry is observed in the diffraction peak. In addition, the region other than the diffraction peak showing the fourfold symmetry shows a random orientation. Therefore, it can be seen that the crystal structure of the copper plating layer of Example 3 is in a state where only the {002} plane is biaxially oriented in a crystal mainly composed of random orientations. In Example 4, similar results were obtained.

また、図7(a)上段をみると、極点図の中心付近、つまりあおり角度が90°付近において、多少の偏在が認められる。つまり、実施例3の銅めっき層におけるランダム方位は、準ランダム方位になっていると考えられる。この場合においても、2軸配向した{002}面の効果を奏する。   In addition, in the upper part of FIG. 7A, some uneven distribution is recognized near the center of the pole figure, that is, when the tilt angle is around 90 °. That is, the random orientation in the copper plating layer of Example 3 is considered to be a quasi-random orientation. Also in this case, the effect of the {002} plane biaxially oriented is exhibited.

また、図8(a)に示されているように、比較例7の銅めっき層においては、回折ピークに4回対称性は認められない。なお、比較例8においても、同様の結果が得られた。   Further, as shown in FIG. 8A, in the copper plating layer of Comparative Example 7, no four-fold symmetry is observed in the diffraction peak. In Comparative Example 8, the same result was obtained.

また、図8(a)上段をみると、極点図の中心付近に多少の偏在が認められる。このように偏在する結晶方位は{022}面と考えられることから、銅めっき層が形成される際、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔の結晶方位である{022}面の影響を若干受けたものと思われる。つまり、圧延銅箔の{022}面に倣って銅めっき層の一部がエピタキシャル成長したと思われる。   In addition, in the upper part of FIG. 8A, some uneven distribution is recognized near the center of the pole figure. Since the unevenly oriented crystal orientation is considered to be the {022} plane, when the copper plating layer is formed, it is the crystal orientation of the rolled copper foil after the final cold rolling step and before the recrystallization annealing step {022}. } It seems that it was affected by the surface. That is, it seems that a part of the copper plating layer was epitaxially grown following the {022} plane of the rolled copper foil.

また、図9(a)に示されているように、比較例9の銅めっき層においては、図9(b)に示されている下地の圧延銅箔の回折ピークと略同様の回折ピークが得られた。このことから、比較例9においては、銅めっき層が圧延銅箔の結晶構造に倣ってエピタキシャル成長したことがわかる。また、回折ピークには、4回対称性は認められない。なお、比較例10においても、同様の結果が得られた。   9A, the copper plating layer of Comparative Example 9 has a diffraction peak substantially similar to the diffraction peak of the underlying rolled copper foil shown in FIG. 9B. Obtained. From this, it can be seen that in Comparative Example 9, the copper plating layer was epitaxially grown following the crystal structure of the rolled copper foil. In addition, no four-fold symmetry is observed in the diffraction peak. In Comparative Example 10, similar results were obtained.

以上のような実施例および比較例における差は、銅めっき層の形成時、めっき浴に所定量以上の各種添加剤を添加したか否かに影響を受けている可能性がある。   The difference between the above Examples and Comparative Examples may be influenced by whether or not a predetermined amount or more of various additives are added to the plating bath during the formation of the copper plating layer.

(屈曲疲労寿命試験)
次に、各圧延銅箔および各銅めっき層付き圧延銅箔の耐屈曲性を上述の実施例と同様の手順及び方法で測定した。得られた測定結果を以下の表5に示す。
(Bending fatigue life test)
Next, the bending resistance of each rolled copper foil and each rolled copper foil with a copper plating layer was measured by the same procedure and method as in the above-described Examples. The obtained measurement results are shown in Table 5 below.

なお、表5では、異なる厚さの試料片50が混在しており、耐屈曲性に影響を与えるため留意が必要である。   In Table 5, it should be noted that sample pieces 50 having different thicknesses are mixed and affect the bending resistance.

銅めっき層と圧延銅箔との総厚さが16.5μmの実施例3および比較例7,9をみると、破断までの屈曲回数(屈曲破断回数)は、比較例9、比較例7、実施例3の順に増している。実施例3においては、銅めっき層を形成する前の圧延銅箔、つまり、比較例11の屈曲破断回数に対して90%以上の屈曲破断回数が得られている。比較例11よりも実施例3の厚さが増していることを考えると、実施例3においては銅めっき層を設けたことによる耐屈曲性の低下はほとんどなかったと考えられる。一方、比較例7,9の屈曲破断回数は、それぞれ実施例3の60%および50%程度まで低下してしまった。   Looking at Example 3 and Comparative Examples 7 and 9 in which the total thickness of the copper plating layer and the rolled copper foil is 16.5 μm, the number of bendings until the break (the number of bending breaks) is Comparative Example 9, Comparative Example 7, It is increasing in the order of Example 3. In Example 3, the rolled copper foil before forming the copper plating layer, that is, the number of bending breaks of 90% or more with respect to the number of bending breaks of Comparative Example 11 was obtained. Considering that the thickness of Example 3 is greater than that of Comparative Example 11, it is considered that there was almost no decrease in flex resistance due to the provision of the copper plating layer in Example 3. On the other hand, the number of bending breaks of Comparative Examples 7 and 9 has decreased to about 60% and 50% of Example 3, respectively.

次に、銅めっき層と圧延銅箔との総厚さが8.5μmの実施例4および比較例8,10をみると、破断までの屈曲回数(屈曲破断回数)は、比較例10、比較例8、実施例4の順に増している。実施例4においては、銅めっき層を形成する前の圧延銅箔、つまり、比較例12の屈曲破断回数に対して90%以上の屈曲破断回数が得られている。比較例12よりも実施例4の厚さが増していることを考えると、実施例4においては銅めっき層を設けたことによる耐屈曲性の低下はほとんどなかったと考えられる。一方、比較例8,10の屈曲破断回数は、それぞれ実施例2の60%および50%程度まで低下してしまった。   Next, in Example 4 and Comparative Examples 8 and 10 in which the total thickness of the copper plating layer and the rolled copper foil is 8.5 μm, the number of bendings until the break (the number of bending breaks) is as follows. It is increasing in the order of Example 8 and Example 4. In Example 4, the rolled copper foil before forming the copper plating layer, that is, the number of bending breaks of 90% or more with respect to the number of bending breaks of Comparative Example 12 was obtained. Considering that the thickness of Example 4 is greater than that of Comparative Example 12, it is considered that there was almost no decrease in flex resistance due to the provision of the copper plating layer in Example 4. On the other hand, the number of bending breaks of Comparative Examples 8 and 10 has decreased to about 60% and 50% of Example 2, respectively.

以上、無酸素銅を母相とする希薄銅合金を用いても、2軸配向した{002}面を有する実施例3,4において、耐屈曲性を向上させる効果が認められた。   As described above, even when a dilute copper alloy having oxygen-free copper as a parent phase was used, in Examples 3 and 4 having {002} planes biaxially oriented, the effect of improving the bending resistance was recognized.

(3)タフピッチ銅を用いた銅めっき層付き圧延銅箔
ここでは、タフピッチ銅を用いた実施例および比較例と、タフピッチ銅を母相とする希薄銅合金を用いた実施例および比較例とに対し、各種評価を行った。
(3) Rolled copper foil with copper plating layer using tough pitch copper Here, examples and comparative examples using tough pitch copper and examples and comparative examples using a dilute copper alloy having tough pitch copper as a parent phase Various evaluations were performed.

まず、タフピッチ銅を用いた実施例5,6並びに比較例13〜16に係る銅めっき層付き圧延銅箔、及び比較例17,18に係る銅めっき層なしの圧延銅箔を製作し、それぞれについて各種評価を行った。銅めっき層付き圧延銅箔については、銅めっき層の厚さを全て1.5μmとした。結果を以下の表6に示す。   First, Examples 5 and 6 using tough pitch copper and rolled copper foil with a copper plating layer according to Comparative Examples 13 to 16 and rolled copper foil without a copper plating layer according to Comparative Examples 17 and 18 were manufactured. Various evaluations were performed. About the rolled copper foil with a copper plating layer, all the thickness of the copper plating layer was 1.5 micrometers. The results are shown in Table 6 below.

いずれの実施例においても2軸配向した{002}面が認められ、耐屈曲性が向上した。また、いずれの比較例についても2軸配向した{002}面は認められず、耐屈曲性の向上効果も得られなかった。   In any of the examples, a biaxially oriented {002} plane was observed, and the bending resistance was improved. Further, in any of the comparative examples, the {002} plane with biaxial orientation was not recognized, and the effect of improving the bending resistance was not obtained.

また、タフピッチ銅にAgを150ppm〜250ppmの範囲内で添加した希薄銅合金を用いた実施例7,8並びに比較例19〜22に係る銅めっき層付き圧延銅箔、及び比較例23,24に係る銅めっき層なしの圧延銅箔を製作し、それぞれについて各種評価を行った。銅めっき層付き圧延銅箔については、銅めっき層の厚さを全て0.5μmとした。結果を以下の表7に示す。   Further, Examples 7 and 8 using a dilute copper alloy in which Ag is added to tough pitch copper in a range of 150 ppm to 250 ppm, and rolled copper foil with a copper plating layer according to Comparative Examples 19 to 22, and Comparative Examples 23 and 24 The rolled copper foil without such a copper plating layer was manufactured, and various evaluation was performed about each. About the rolled copper foil with a copper plating layer, all the thickness of the copper plating layer was 0.5 micrometer. The results are shown in Table 7 below.

いずれの実施例においても2軸配向した{002}面が認められ、耐屈曲性が向上した。また、いずれの比較例についても2軸配向した{002}面は認められず、耐屈曲性の向上効果も得られなかった。   In any of the examples, a biaxially oriented {002} plane was observed, and the bending resistance was improved. Further, in any of the comparative examples, the {002} plane with biaxial orientation was not recognized, and the effect of improving the bending resistance was not obtained.

以上、タフピッチ銅や、タフピッチ銅を母相とする希薄銅合金を用いても、2軸配向した{002}面を有する実施例において、耐屈曲性を向上させる効果が認められた。   As described above, even when using tough pitch copper or a dilute copper alloy having tough pitch copper as a parent phase, the effect of improving the bending resistance was confirmed in the example having the biaxially oriented {002} plane.

10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
50 試料片
DESCRIPTION OF SYMBOLS 10 Sliding bending test apparatus 11 Sample fixing plate 12 Screw 13 Vibration transmission part 14 Oscillation drive body 50 Sample piece

Claims (7)

最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔と、
前記圧延銅箔の主表面またはその裏面の少なくとも片側の面上に形成され、主にランダム方位からなる複数の結晶面を有する銅めっき層と、を備え、
前記銅めっき層の表面を基準とする{022}面極点図測定において、あおり角度αが45°における前記銅めっき層の表面の面内回転により得られる{022}面の回折ピークが前記面内回転の回転角度βの90°±5°ごとに存在する4回対称性を示す結晶粒が、前記銅めっき層中のランダム方位の中に存在する
ことを特徴とする銅めっき層付き圧延銅箔。
After the final cold rolling process, the rolled copper foil before the recrystallization annealing process,
A copper plating layer formed on at least one surface of the main surface of the rolled copper foil or its back surface, and having a plurality of crystal faces mainly composed of random orientations, and
In the {022} plane pole figure measurement based on the surface of the copper plating layer, the diffraction peak of the {022} plane obtained by in-plane rotation of the surface of the copper plating layer when the tilt angle α is 45 ° is the in-plane Rolled copper foil with a copper plating layer, characterized in that crystal grains having a 4-fold symmetry existing every 90 ° ± 5 ° of the rotation angle β of rotation are present in a random orientation in the copper plating layer .
前記圧延銅箔が、純銅または希薄銅合金からなる純銅型集合組織の形態をとる
ことを特徴とする請求項1に記載の銅めっき層付き圧延銅箔。
The rolled copper foil with a copper plating layer according to claim 1, wherein the rolled copper foil takes the form of a pure copper type texture composed of pure copper or a diluted copper alloy.
前記銅めっき層と前記圧延銅箔との全体の厚さが、1μm以上20μm以下である
ことを特徴とする請求項1又は2に記載の銅めっき層付き圧延銅箔。
The rolled copper foil with a copper plating layer according to claim 1 or 2, wherein the total thickness of the copper plating layer and the rolled copper foil is 1 µm or more and 20 µm or less.
前記銅めっき層は前記圧延銅箔よりも薄い
ことを特徴とする請求項1〜3のいずれかに記載の銅めっき層付き圧延銅箔。
The rolled copper foil with a copper plating layer according to any one of claims 1 to 3, wherein the copper plating layer is thinner than the rolled copper foil.
フレキシブルプリント配線板用である
ことを特徴とする請求項1〜4のいずれかに記載の銅めっき層付き圧延銅箔。
It is an object for flexible printed wiring boards, The rolled copper foil with a copper plating layer in any one of Claims 1-4 characterized by the above-mentioned.
最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔と、
前記圧延銅箔の主表面またはその裏面の少なくとも片側の面上に形成され、主にランダム方位からなる複数の結晶面を有する銅めっき層と、を備え、
2軸配向した{002}面の結晶粒が前記銅めっき層中のランダム方位の中に存在する
ことを特徴とする銅めっき層付き圧延銅箔。
After the final cold rolling process, the rolled copper foil before the recrystallization annealing process,
A copper plating layer formed on at least one surface of the main surface of the rolled copper foil or its back surface, and having a plurality of crystal faces mainly composed of random orientations, and
A rolled copper foil with a copper plating layer, wherein biaxially oriented {002} plane crystal grains are present in a random orientation in the copper plating layer.
前記2軸配向した{002}面の結晶粒が、
{022}面極点図測定において前記2軸配向した{002}面の存在を示す回折ピークの検出限界以上の比率で前記銅めっき層中のランダム方位の中に存在する
ことを特徴とする請求項6に記載の銅めっき層付き圧延銅箔。
The biaxially oriented {002} plane crystal grains are
The {022} plane pole figure measurement exists in the random orientation in the copper plating layer at a ratio equal to or higher than the detection limit of a diffraction peak indicating the presence of the biaxially oriented {002} plane. 6. A rolled copper foil with a copper plating layer according to 6.
JP2013008820A 2013-01-21 2013-01-21 Copper plating layer-clad rolled copper foil Pending JP2014139335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008820A JP2014139335A (en) 2013-01-21 2013-01-21 Copper plating layer-clad rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008820A JP2014139335A (en) 2013-01-21 2013-01-21 Copper plating layer-clad rolled copper foil

Publications (1)

Publication Number Publication Date
JP2014139335A true JP2014139335A (en) 2014-07-31

Family

ID=51416177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008820A Pending JP2014139335A (en) 2013-01-21 2013-01-21 Copper plating layer-clad rolled copper foil

Country Status (1)

Country Link
JP (1) JP2014139335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702881B1 (en) * 2014-06-23 2015-04-15 株式会社Shカッパープロダクツ Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262296A (en) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing process
JP2010037585A (en) * 2008-08-01 2010-02-18 Hitachi Cable Ltd Copper foil and copper foil manufacturing method
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2012012621A (en) * 2010-06-29 2012-01-19 Mitsui Sumitomo Metal Mining Brass & Copper Co Ltd Rolled copper foil, and method for producing the same
JP2012117123A (en) * 2010-12-02 2012-06-21 Hitachi Cable Ltd Rolled copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262296A (en) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing process
JP2010037585A (en) * 2008-08-01 2010-02-18 Hitachi Cable Ltd Copper foil and copper foil manufacturing method
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
JP2012012621A (en) * 2010-06-29 2012-01-19 Mitsui Sumitomo Metal Mining Brass & Copper Co Ltd Rolled copper foil, and method for producing the same
JP2012117123A (en) * 2010-12-02 2012-06-21 Hitachi Cable Ltd Rolled copper foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702881B1 (en) * 2014-06-23 2015-04-15 株式会社Shカッパープロダクツ Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil

Similar Documents

Publication Publication Date Title
JP4285526B2 (en) Rolled copper foil and method for producing the same
TWI633196B (en) Rolled copper foil with copper plating
TWI719110B (en) Manufacturing methods of copper foil, copper-clad laminates, printed wiring boards, manufacturing methods of electronic devices, manufacturing methods of transmission lines, and manufacturing methods of antennas
US7789977B2 (en) Rolled copper foil and manufacturing method thereof
TW201738393A (en) Copper Foil, Copper-Clad Laminate Board, Method For Producing Printed Wiring Board, Method For Producing Electronic Apparatus, Method For Producing Transmission Channel, And Method For Producing Antenna
JP2009185376A (en) Rolled copper foil and manufacturing method therefor
JP2008106313A (en) Rolled copper foil and manufacturing method therefor
JP2009019232A (en) Rolled copper foil
JP5245813B2 (en) Rolled copper foil
JP2013234383A (en) Hot rolled copper foil, coppered laminated plate, flexible printed wiring plate and its manufacturing method
US20100323214A1 (en) Rolled copper foil
JP7132435B2 (en) LAMINATED STRUCTURE, FLEXIBLE COPPER FILM LAMINATED CONTAINING SAME, AND METHOD FOR MANUFACTURING SAME LAMINATED STRUCTURE
TW201418005A (en) Rolled copper foil having copper plating layer
JP2010150578A (en) Rolled copper foil
US20090173414A1 (en) Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil
KR102002355B1 (en) Rolled copper foil
KR102002346B1 (en) Rolled copper foil
JP5126434B1 (en) Rolled copper foil
JP2014152344A (en) Composite copper foil and production method thereof
JP2014139335A (en) Copper plating layer-clad rolled copper foil
JP5273236B2 (en) Rolled copper foil
JP2014152343A (en) Composite copper foil and production method thereof
KR102001952B1 (en) Rolled copper foil
JP2013241631A (en) Rolled copper foil
JP5201431B1 (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122