JP5873711B2 - Copper foil, secondary battery electrode, secondary battery, and printed circuit board - Google Patents

Copper foil, secondary battery electrode, secondary battery, and printed circuit board Download PDF

Info

Publication number
JP5873711B2
JP5873711B2 JP2011285464A JP2011285464A JP5873711B2 JP 5873711 B2 JP5873711 B2 JP 5873711B2 JP 2011285464 A JP2011285464 A JP 2011285464A JP 2011285464 A JP2011285464 A JP 2011285464A JP 5873711 B2 JP5873711 B2 JP 5873711B2
Authority
JP
Japan
Prior art keywords
copper foil
secondary battery
active material
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011285464A
Other languages
Japanese (ja)
Other versions
JP2013134934A (en
Inventor
俊夫 谷
俊夫 谷
山崎 悟志
悟志 山崎
宏和 佐々木
宏和 佐々木
鈴木 昭利
昭利 鈴木
健作 篠崎
健作 篠崎
耕二 幡谷
耕二 幡谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011285464A priority Critical patent/JP5873711B2/en
Publication of JP2013134934A publication Critical patent/JP2013134934A/en
Application granted granted Critical
Publication of JP5873711B2 publication Critical patent/JP5873711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Non-Insulated Conductors (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、プリント回路やリチウムイオン二次電池などの非水電解質二次電池、同電極、並びに同負極集電体などに用いられる銅箔に関するものである。特には、フレキシブルプリント回路用途や合金負極活物質を用いた高容量リチウムイオン二次電池の負極集電体に好適に用いられる電解銅箔に関するものである。   The present invention relates to a copper foil used for a non-aqueous electrolyte secondary battery such as a printed circuit or a lithium ion secondary battery, the same electrode, and the same negative electrode current collector. In particular, the present invention relates to an electrolytic copper foil suitably used for a negative electrode current collector of a high capacity lithium ion secondary battery using a flexible printed circuit or an alloy negative electrode active material.

正極と、両面が平滑な銅箔からなる負極集電体の表面に負極活物質層としてカーボン粒子を塗布、乾燥し、さらにプレスした負極と、非水電解質を備えるリチウムイオン二次電池は現在、携帯電話、ノートタイプパソコン等に使用されている。このリチウムイオン二次電池の負極には、電解析出法により製造された、いわゆる「未処理電解銅箔」に防錆処理を施したものが使用されている。   Lithium ion secondary batteries comprising a positive electrode and a negative electrode current collector made of copper foil with smooth both surfaces are coated with carbon particles as a negative electrode active material layer, dried and further pressed, and a non-aqueous electrolyte. Used in mobile phones and notebook computers. As the negative electrode of the lithium ion secondary battery, a so-called “untreated electrolytic copper foil” manufactured by electrolytic deposition is used for rust prevention treatment.

前記リチウムイオン二次電池用負極集電体としての銅箔には、特許文献1に示すように、光沢面と粗面と(銅箔の両面)の間における表面粗さの差を小さくした銅箔を用いることにより、電池の充放電効率の低下を抑えている。   As shown in Patent Document 1, the copper foil as the negative electrode current collector for a lithium ion secondary battery has a reduced surface roughness difference between a glossy surface and a rough surface (both surfaces of the copper foil). By using the foil, a decrease in charge / discharge efficiency of the battery is suppressed.

上記のような光沢面と粗面との表面粗さの差を小さくした電解銅箔は、硫酸銅−硫酸電解液に各種水溶性高分子物質、各種界面活性剤、各種有機イオウ系化合物、塩化物イオンなどを適宜選定して添加することによって製造されている。
例えば、特許文献1には、硫酸銅−硫酸電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000 以下の低分子量膠及び高分子多糖類を添加したものにより製造した電解銅箔を用いた負極集電体が開示されている。
上記製造方法で製造した電解銅箔は、その銅箔の表面にカーボン粒子が塗布され乾燥した後、さらにプレスされて負極となる。
この電解銅箔は引張強さが300〜350N/mmであり、前記カーボン粒子を活物質とした負極用銅箔として使用する場合には適度な伸びと併せて好適な材料である。
The electrolytic copper foil with a small difference in surface roughness between the glossy surface and the rough surface as described above is composed of various water-soluble polymer substances, various surfactants, various organic sulfur compounds, chlorides, and copper sulfate-sulfuric acid electrolytes. It is manufactured by appropriately selecting and adding physical ions.
For example, Patent Document 1 uses an electrolytic copper foil produced by adding a compound having a mercapto group, a chloride ion, and a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide to a copper sulfate-sulfuric acid electrolyte. A negative electrode current collector was disclosed.
The electrolytic copper foil produced by the above production method is coated with carbon particles on the surface of the copper foil, dried, and then pressed to form a negative electrode.
This electrolytic copper foil has a tensile strength of 300 to 350 N / mm 2 , and is a suitable material in combination with appropriate elongation when used as a negative electrode copper foil using the carbon particles as an active material.

ところで近年、リチウムイオン二次電池の高容量化を目的として、充電の際に電気化学的にリチウムと合金化するスズやシリコンなどの金属系負極を負極活物質として用いるリチウムイオン二次電池が提案されている(特許文献2参照)。   Recently, for the purpose of increasing the capacity of lithium ion secondary batteries, lithium ion secondary batteries using a metal negative electrode such as tin or silicon electrochemically alloyed with lithium during charging as a negative electrode active material have been proposed. (See Patent Document 2).

高容量化を目的としたリチウムイオン二次電池用負極電極は、蒸着法やスパッタリング法、CVD法等により、銅箔などの集電体の上に、例えばシリコンを非晶質シリコン薄膜や微結晶シリコン薄膜として堆積し形成している。このような方法で作成した活物質の薄膜層は集電体に密着するため、良好な充放電サイクル特性を示すことが見出されている(特許文献3参照)。
また、最近では粉末シリコンあるいはシリコン化合物をイミド系のバインダと有機溶媒によりスラリー状にして銅箔上に塗布乾燥し、プレスする方法も開発されている。(特許文献4参照)
A negative electrode for a lithium ion secondary battery for the purpose of increasing the capacity is obtained by depositing, for example, silicon on an amorphous silicon thin film or microcrystal on a current collector such as a copper foil by vapor deposition, sputtering, CVD, or the like. It is deposited and formed as a silicon thin film. It has been found that the thin film layer of the active material produced by such a method is in close contact with the current collector, and thus exhibits good charge / discharge cycle characteristics (see Patent Document 3).
Recently, a method has also been developed in which powdered silicon or a silicon compound is slurried with an imide-based binder and an organic solvent, applied onto a copper foil, dried, and pressed. (See Patent Document 4)

しかし、このようなリチウムイオン二次電池用電極においては、例えばシリコン活物質は充電時にリチウムイオンを電気化学的に合金化することにより、体積が2〜4倍程度に膨張するといわれ、さらにリチウムイオンを放出する放電時には収縮する。このような充放電に伴う膨張収縮の体積変化を繰り返すことになる。
こうした充放電に伴う活物質層体積の膨張及び収縮により、活物質が微粉化して集電体から剥離する現象が見られる。
また該活物質層が集電体と密着しているため、充放電の繰り返しにより活物質層の体積が膨張及び収縮すると、電極の塗膜と集電体の間に大きな応力が働き、塗膜と集電体界面に剥離を生じたり、塗膜の一部が脱離したりする。また、集電体にしわが発生する場合もあり、多数回充放電を繰り返すと、最悪の場合には集電箔が破断する問題があった。
However, in such an electrode for a lithium ion secondary battery, for example, the silicon active material is said to expand in volume by about 2 to 4 times by electrochemically alloying lithium ions during charging. Shrinks during discharge. Such volume change of expansion and contraction accompanying charging and discharging is repeated.
Due to the expansion and contraction of the volume of the active material layer accompanying such charge and discharge, there is a phenomenon that the active material is pulverized and peeled off from the current collector.
In addition, since the active material layer is in close contact with the current collector, when the volume of the active material layer expands and contracts due to repeated charging and discharging, a large stress acts between the electrode coating film and the current collector, and the coating film And peeling at the current collector interface, or part of the coating film is detached. In addition, wrinkles may occur in the current collector. When charging and discharging are repeated many times, there is a problem that the current collector foil breaks in the worst case.

集電体にしわなどの変形が生じると、正極と負極が短絡しやすくなるという問題が生じる。また、集電体の破断が起こると長時間安定した電池性能を維持することができないという問題が生じる。   When deformation such as wrinkles occurs in the current collector, there arises a problem that the positive electrode and the negative electrode are easily short-circuited. Further, when the current collector breaks, there arises a problem that stable battery performance cannot be maintained for a long time.

従来こうした問題に対して、引張強さが高く、破断伸びが大きい銅箔を使うことが提案されている。引張り強さが400N/mm以上または破断伸びが7%以上あり、かつ、引張強さと破断伸びとの積が2800N/mm・%以上の電解金属箔を用いてリチウムイオン二次電池を構成することが記載されている。(特許文献5) Conventionally, it has been proposed to use a copper foil having a high tensile strength and a large elongation at break in response to such problems. A lithium ion secondary battery is formed using an electrolytic metal foil having a tensile strength of 400 N / mm 2 or more or a breaking elongation of 7% or more and a product of tensile strength and breaking elongation of 2800 N / mm 2 ·% or more. It is described to do. (Patent Document 5)

特許文献5では活物質にカーボンを使用している例が記載されている。カーボン活物質の場合は、充電時に10%程度の体積膨張が生じるが、シリコン活物質等に比較すると小さい。従って特許文献5に記載されている性能の銅箔はシリコン活物質等に使用した場合充分とは言えない。   Patent Document 5 describes an example in which carbon is used as an active material. In the case of a carbon active material, volume expansion of about 10% occurs during charging, but is smaller than that of a silicon active material or the like. Therefore, it cannot be said that the copper foil having the performance described in Patent Document 5 is sufficient when used as a silicon active material.

特許第3742144号公報Japanese Patent No. 3742144 特開平10−255768号公報Japanese Patent Laid-Open No. 10-255768 特開2002−083594号公報Japanese Patent Laid-Open No. 2002-083594 特開2007−227328号公報JP 2007-227328 A 特開2001−189154号公報JP 2001-189154 A

リチウムイオン二次電池用電極として上述したようにグラファイトなどのカーボン、スズやシリコンを主成分とする活物質層を集電体上に形成した負極電極を用いた場合、充放電反応に伴い活物質層の体積が膨張・収縮し、集電体に大きな応力が働き、集電体にしわなどの変形を生じさせる場合がある。さらに強度の弱い集電箔を用い電極を多数回充放電を繰り返すと、最悪の場合には集電箔が破断するという問題があった。
集電体にしわなどの変形が生じると、活物質が脱離し、充放電可能な容量が小さくなって、電池の寿命が低下するという問題を生じる。また、集電体が破断すると導電パスが切れて、充電・放電の基本電池性能や電極特性が急激に低下することになる。
As described above, when the negative electrode having an active material layer mainly composed of carbon such as graphite, tin, or silicon formed on a current collector as an electrode for a lithium ion secondary battery, the active material accompanies the charge / discharge reaction. In some cases, the volume of the layer expands and contracts, and a large stress acts on the current collector to cause deformation such as wrinkles in the current collector. Further, when charging / discharging of the electrode is repeated many times using a weak current collecting foil, there is a problem that the current collecting foil breaks in the worst case.
When the current collector is deformed such as wrinkles, the active material is detached, the chargeable / dischargeable capacity is reduced, and the battery life is reduced. Further, when the current collector is broken, the conductive path is cut, and the basic battery performance and electrode characteristics for charging and discharging are drastically deteriorated.

本発明は、例えばスズやシリコンを主成分とする主に高比容量を有する金属系活物質を主体とした活物質層を集電箔上に形成した負極電極を用いた非水電解質二次電池において、充放電サイクル効率に優れ、さらに集電体にしわが発生せず、また集電体の破断も起こらない長時間安定した性能を維持できる非水電解質二次電池を提供することを目的とし、二次電池用の電極、ならびに該電極の集電体を構成できる銅箔を提供することを目的とする。また、プリント回路用、特にはフレキシブルプリント回路やファインパターン回路用途の電解銅箔を提供することも目的とする。   The present invention relates to a non-aqueous electrolyte secondary battery using a negative electrode in which an active material layer mainly composed of a metal active material mainly composed of tin or silicon and mainly having a high specific capacity is formed on a current collector foil. The purpose of the present invention is to provide a non-aqueous electrolyte secondary battery that is excellent in charge and discharge cycle efficiency, does not cause wrinkles in the current collector, and maintains stable performance for a long time without causing current collector breakage, It aims at providing the copper foil which can comprise the electrode for secondary batteries, and the electrical power collector of this electrode. It is another object of the present invention to provide an electrolytic copper foil for printed circuits, particularly for flexible printed circuits and fine pattern circuits.

本発明によれば、純度が99質量%以上の銅箔であって、該銅箔中に周囲の銅密度に比較して銅密度が異なる不均一領域が存在し、該不均一領域の大きさが粒径1〜10nmであり、当該不均一領域はカーボンを主体とし、少なくとも塩素、硫黄、酸素のいずれかを含む、銅箔が提供される。
According to the present invention, the copper foil has a purity of 99% by mass or more, and there is a non-uniform region having a copper density different from the surrounding copper density in the copper foil, and the size of the non-uniform region. Has a particle diameter of 1 to 10 nm, and the heterogeneous region is mainly composed of carbon, and at least one of chlorine, sulfur, and oxygen is provided.

粒径の大きさが1〜10nmの前記不均一領域が、その他の大きさを含む不純物領域を合わせた全体の中で最も多い割合に相当するか、または全ての不均一領域の大きさの平均粒径であることが好ましい。   The non-uniform region having a particle size of 1 to 10 nm corresponds to the largest proportion of the total of impurity regions including other sizes, or the average size of all non-uniform regions The particle size is preferred.

前記不均一領域の粒径は小角X線散乱測定で測定することができ、該小角X線散乱測定に用いるX線は放射光を利用して発生させる高エネルギータイプのX線であることが好ましい。   The particle size of the non-uniform region can be measured by small-angle X-ray scattering measurement, and the X-ray used for the small-angle X-ray scattering measurement is preferably a high energy type X-ray generated by using radiant light. .

前記銅箔は95〜99.999質量%の銅純度を有し、室温での引張り強度が500〜1000N/mm、0.2%耐力が350〜800N/mmを有する銅箔であることが好ましい。
また前記銅箔が、300〜350℃で1時間加熱処理後の引張り強度が275〜800N/mmで、前記加熱処理後の0.2%耐力が225〜600N/mmを有する銅箔であることが好ましい。
Said copper foil has a copper purity of 95 to 99.999 wt%, tensile strength 500~1000N / mm 2 at room temperature, 0.2% proof stress is a copper foil having a 350~800N / mm 2 Is preferred.
The copper foil has a tensile strength of 275 to 800 N / mm 2 after heat treatment at 300 to 350 ° C. for 1 hour, and a 0.2% proof stress after the heat treatment of 225 to 600 N / mm 2. Preferably there is.

本発明の負極電極は、前記本発明の銅箔を集電体とする負極電極であって、前記電解銅箔の少なくとも一方の面は必要により粗化処理が施され、防錆処理が施され、該防錆処理が施された表面に電極構成活物質層が形成されている二次電池の負極電極である。   The negative electrode of the present invention is a negative electrode using the copper foil of the present invention as a current collector, and at least one surface of the electrolytic copper foil is subjected to a roughening treatment and a rust prevention treatment as necessary. A negative electrode of a secondary battery in which an electrode-constituting active material layer is formed on the surface subjected to the rust prevention treatment.

本発明の二次電池は、本発明の前記負極電極を組み込んだ二次電池である。   The secondary battery of the present invention is a secondary battery incorporating the negative electrode of the present invention.

本発明の回路基板は、本発明の前記銅箔を、絶縁基板と積層してなるプリント回路基板、またはフレキシブルプリント回路基板である。   The circuit board of the present invention is a printed circuit board formed by laminating the copper foil of the present invention with an insulating substrate, or a flexible printed circuit board.

前記銅箔は、電解銅箔、または電解銅箔を圧延した銅箔であることが望ましい。   The copper foil is preferably an electrolytic copper foil or a copper foil obtained by rolling an electrolytic copper foil.

本発明の銅箔は、主に機械的特性およびその耐熱性が優れるので、非水電解質二次電池の負極集電体に前記銅箔を使用することにより、充放電反応に伴う活物質層の膨張・収縮と集電体への大きな応力に耐えることができ、集電体にしわなどの変形を発生せず、電池性能劣化が少ない、長寿命なリチウムイオン二次電池などの非水電解質二次電池を実現することができる。
また、プリント回路用途、特にはフレキシブルプリント回路やファインパターン回路用途にも、その耐応力性能による高耐折性と微細結晶粒組織による微細エッチング特性を有することから、本発明の銅箔が好適に使用することができる。
Since the copper foil of the present invention is mainly excellent in mechanical properties and its heat resistance, by using the copper foil as a negative electrode current collector of a non-aqueous electrolyte secondary battery, an active material layer associated with a charge / discharge reaction can be obtained. Non-aqueous electrolytes such as long-life lithium-ion secondary batteries that can withstand expansion and contraction and large stress on the current collector, do not cause deformation of the current collector, have little battery performance degradation, etc. A secondary battery can be realized.
The copper foil of the present invention is also suitable for printed circuit applications, particularly flexible printed circuits and fine pattern circuit applications, because of its high folding resistance due to its stress resistance performance and fine etching characteristics due to its fine grain structure. Can be used.

従来のカーボン系の負極構成活物質層を集電体上に形成する場合は、負極活物質であるカーボン、バインダーであるポリフッ化ビニリデン樹脂、溶媒であるN−メチルピロリドンからなるペーストを作り銅箔(集電体)の両面に塗布、乾燥を行う。
この場合は、150℃前後の温度で乾燥を行う。150℃前後の温度では銅箔の引張強さ、0.2%耐力、伸びはほとんど変化しない。
例えば特許文献1に記載されている、硫酸銅−硫酸電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000 以下の低分子量膠及び高分子多糖類を添加した電解液を使って製造した電解銅箔は、10μm箔の室温での引張強さは300〜350N/mm2であるが、150℃前後の温度で乾燥を行ってもその性能はほとんど変化しない。
さらに前記のようにカーボン活物質の場合は充放電時にその体積膨張がせいぜい10%程度であるため充放電による集電体の変形が起こったり破断したりするというようなことはない。
When a conventional carbon-based negative electrode constituent active material layer is formed on a current collector, a copper foil is prepared by making a paste composed of carbon as a negative electrode active material, polyvinylidene fluoride resin as a binder, and N-methylpyrrolidone as a solvent. Application and drying are performed on both sides of the (current collector).
In this case, drying is performed at a temperature of about 150 ° C. At a temperature around 150 ° C., the tensile strength, 0.2% proof stress, and elongation of the copper foil hardly change.
For example, it was manufactured using the electrolytic solution described in Patent Document 1 in which a copper sulfate-sulfuric acid electrolytic solution was added with a compound having a mercapto group, chloride ions, and a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide. The electrolytic copper foil has a tensile strength at room temperature of 10 μm foil of 300 to 350 N / mm 2 , but its performance hardly changes even when it is dried at a temperature of around 150 ° C.
Further, as described above, in the case of a carbon active material, the volume expansion at the time of charging / discharging is at most about 10%, so that the current collector is not deformed or broken due to charging / discharging.

これに対してシリコン系など金属系の活物質を使う場合は、充放電時のケイ素系活物質膨張収縮を防ぐためにバインダーにポリイミド系の樹脂を使う場合がある。この場合乾燥、キュア温度はカーボン系の活物質を使う場合より高く、200℃〜400℃位の温度で乾燥、キュアを行う。
こうした高温で加熱を行うと、前記の銅箔では箔が焼鈍され箔が軟化して、充放電時の活物質の膨張収縮により箔の変形が発生しやすくなる。
On the other hand, when using a metal-based active material such as a silicon-based material, a polyimide-based resin may be used for the binder in order to prevent expansion and shrinkage of the silicon-based active material during charge / discharge. In this case, the drying and curing temperature is higher than when a carbon-based active material is used, and drying and curing are performed at a temperature of about 200 ° C. to 400 ° C.
When heating is performed at such a high temperature, the foil is annealed and softened in the copper foil, and deformation of the foil is likely to occur due to expansion and contraction of the active material during charge and discharge.

箔が変形する場合、箔には降伏点以上の応力がかかったと考えることができる。降伏点とは弾性から塑性に変わるところの応力である。箔に弾性領域の応力がかかっても変形が起こることはない。しかし、塑性領域の応力がかかった場合は変形する。   When the foil is deformed, it can be considered that the foil is subjected to stress above the yield point. The yield point is the stress at which the elasticity changes to plasticity. Even if the foil is subjected to stress in the elastic region, no deformation occurs. However, it deforms when stress in the plastic region is applied.

従って、乾燥、キュアにより箔が加熱された後であっても、降伏点が大きい箔の場合は、充放電によりケイ素系活物質が膨張収縮し、集電体である箔に応力がかかった場合、変形が起こることはない。   Therefore, even after the foil has been heated by drying and curing, if the foil has a large yield point, the silicon active material expands and contracts due to charge and discharge, and stress is applied to the foil that is the current collector. No deformation will occur.

従って、特許文献5に記載されているように、室温において引張り強さが400N/mm以上または破断伸びが7%以上あり、かつ、引張強さと破断伸びとの積が2800N/mm・%以上の電解金属箔を用いてリチウムイオン二次電池を構成することが、充放電による箔変形を起こさないことに効果があるのではなく、乾燥、キュアによる加熱後でも降伏点が大きい箔こそ箔変形を起こさない箔であると言える。 Therefore, as described in Patent Document 5, the tensile strength is 400 N / mm 2 or more at room temperature or the elongation at break is 7% or more at room temperature, and the product of the tensile strength and the elongation at break is 2800 N / mm 2 ·%. Constructing a lithium-ion secondary battery using the above electrolytic metal foil is not effective in preventing foil deformation due to charge / discharge, but it is a foil with a large yield point even after drying and curing. It can be said that the foil does not cause deformation.

銅箔の場合、室温において大きな引張り強さをもつことが、加熱後でも大きな降伏点をもつことと必ずしも一致するわけではない。例えば表2の比較例2に示した箔は室温では高い引張強さを持つが、加熱後には焼鈍され軟化して箔の降伏点が小さい箔になってしまう。   In the case of copper foil, having a large tensile strength at room temperature does not necessarily coincide with having a large yield point even after heating. For example, the foil shown in Comparative Example 2 in Table 2 has a high tensile strength at room temperature, but after heating, it is annealed and softened, resulting in a foil having a small yield point.

ここで、降伏点は引張試験により測定を行うが、銅箔の場合はこの点がはっきりしない。こうした場合、通常0.2%ひずみが発生したときの値をとり降伏点に代用する。これを0.2%耐力と呼んでいる。   Here, the yield point is measured by a tensile test, but this point is not clear in the case of copper foil. In such a case, usually the value when 0.2% strain is generated is taken and substituted for the yield point. This is called 0.2% proof stress.

特許文献5に記載されているように、室温における引張強さが400N/mm以上ある材料でも、加熱により焼鈍され0.2%耐力が小さくなる材料では意味がない。加熱した後の0.2%耐力がある一定の値以上を示すことが重要である。また伸びが小さい場合には充放電サイクルを多数回繰り返すうちに集電体(箔)の破断が発生する。箔の破断を発生させないためには0.2%耐力が250N/mm以上必要で、伸びが4.5%以上必要である。 As described in Patent Document 5, even a material having a tensile strength at room temperature of 400 N / mm 2 or more is meaningless in a material that is annealed by heating and has a 0.2% yield strength. It is important that the 0.2% yield strength after heating is above a certain value. When the elongation is small, the current collector (foil) breaks while the charge / discharge cycle is repeated many times. In order not to cause the foil to break, 0.2% proof stress is required to be 250 N / mm 2 or more, and elongation is required to be 4.5% or more.

銅箔中には、周囲の銅密度と密度が異なる不均一領域(以下「析出相」と云うことがある)が多数存在する。析出相は、小角X線散乱測定の結果得られる散乱曲線とベクトルq(波数ベクトル:4πsinθ/λ)から、強い小角散乱が得られ、得られた散乱パターンのフィッティング解析結果から判別することができる。
本発明の銅箔は95〜99.999質量%を有する高純度な銅箔であり、該本発明の銅箔中には、周囲と密度が異なる不均一領域(析出相)が多数存在することが認められる。本発明銅箔の析出相はそのナノドメイン形状を球形と仮定した微細粒径寸法が1〜10nmである。
また、本発明の銅箔中の前記ナノドメイン形状の微細粒径寸法1〜10nmの析出相が、全体の中で最も多い割合を占めるか、または全体の平均粒径である。
In the copper foil, there are many non-uniform regions (hereinafter sometimes referred to as “precipitated phases”) having different densities from the surrounding copper density. From the scattering curve obtained as a result of the small-angle X-ray scattering measurement and the vector q (wave number vector: 4π sin θ / λ), the precipitated phase can be discriminated from the result of fitting analysis of the obtained scattering pattern. .
The copper foil of the present invention is a high-purity copper foil having 95 to 99.999% by mass, and the copper foil of the present invention has a large number of heterogeneous regions (precipitation phases) having different densities from the surroundings. Is recognized. The deposited phase of the copper foil of the present invention has a fine particle size of 1 to 10 nm assuming that the nanodomain shape is spherical.
In addition, the nano-domain-shaped precipitated phase having a fine particle size of 1 to 10 nm in the copper foil of the present invention occupies the largest proportion of the whole or has the average particle size of the whole.

前記のような微細粒径寸法の析出相を有する銅箔は、結果として、室温での引張り強度500〜1000N/mmを有し、且つ0.2%耐力が350〜800N/mmの良好な機械的特性を有する。 Copper foil having a deposition phase of the fine particle diameter such as described above, as a result, it has a tensile strength 500~1000N / mm 2 at room temperature, and good 0.2% proof stress of 350~800N / mm 2 Have good mechanical properties.

さらには、本発明の前記銅箔は、耐熱性耐軟化性が高く、300〜350℃0.5〜1.5時間加熱処理後にも引張り強度275〜800N/mmを保持し、且つ前記加熱処理後の0.2%耐力が225〜600N/mmを維持する高い機械的熱的特性を有する。 Furthermore, the copper foil of the present invention has high heat resistance and softening resistance, and maintains a tensile strength of 275 to 800 N / mm 2 even after heat treatment at 300 to 350 ° C. for 0.5 to 1.5 hours, and the heating. It has high mechanical and thermal properties that maintain a 0.2% yield strength after treatment of 225 to 600 N / mm 2 .

前記小角X線散乱測定に用いるX線が放射光を利用して発生させる高エネルギータイプのX線の場合と、通常の一般的で特別高くないエネルギーを発生する場合があり、高エネルギータイプX線を用いると大きな寸法サイズの割合が増加する測定結果をもたらすことが多い。小角X線散乱における小角とはおよそ5°以下の散乱角度領域に現れる散乱を言い、このためダイレクトビームを細く絞るなど、一般のX線回折測定よりも装置上の変更を必要とする。小角散乱では、ダイレクト方向と散乱方向の間の角である散乱角を2θで表すと、散乱ベクトルqの大きさは
q=4πsinθ/λ(λはX線の波長)
と表され、前記の小角散乱はq=0〜0.3Å-1程度に相当し、一般的には100nm以下の構造を知ることができる測定解析手法である。
There are cases where the X-rays used for the small-angle X-ray scattering measurement are high energy type X-rays generated by using synchrotron radiation, and normal, general and not particularly high energy may be generated. Often results in a measurement result that increases the proportion of large dimensional size. Small angle in small-angle X-ray scattering refers to scattering that appears in a scattering angle region of about 5 ° or less, and therefore requires more changes on the apparatus than general X-ray diffraction measurement, such as narrowing the direct beam. In small-angle scattering, when the scattering angle, which is the angle between the direct direction and the scattering direction, is expressed by 2θ, the size of the scattering vector q is q = 4π sin θ / λ (λ is the wavelength of the X-ray)
The small-angle scattering corresponds to about q = 0 to 0.3 -1 and is generally a measurement analysis method that can know a structure of 100 nm or less.

測定対象銅箔の小角X線散乱パターンを測定し、これに対して析出相を球形と仮定し、さらにその大きさの割合の多い群の数を仮定して、フィッティング解析を行うことができる。これにより、存在割合の多いピーク粒径を示すグラフ曲線とそれらの値と全体の析出相に対する体積分率による割合、並びに全体の平均粒径の値を得ることができる。これらの値が、本発明銅箔で検出される微細粒径であり、1〜10nmの析出相が多い場合に、好適な機械的・熱的特性を有する。   A small-angle X-ray scattering pattern of the copper foil to be measured is measured, and on the other hand, the precipitation phase is assumed to be spherical, and further, the fitting analysis can be performed assuming the number of groups having a large proportion of the size. Thereby, the graph curve which shows a peak particle size with many existence ratios, those values, the ratio by the volume fraction with respect to the whole precipitation phase, and the value of the whole average particle diameter can be obtained. These values are the fine particle diameters detected by the copper foil of the present invention, and have favorable mechanical and thermal characteristics when there are many 1 to 10 nm precipitated phases.

これら析出相は主に結晶粒内に存在する。従来考えられていた有機系添加物のカーボンなどの成分は結晶粒界への存在であった。本発明では、添加化合物成分を粒内に析出相またはマトリクス銅と異相成分ドメインとして配置存在させることから、機械的応力による単純な粒界破断や熱応力による結晶融合粒界拡大を抑制し、いわば結晶粒内ピン止め効果を示していると考えられる。   These precipitated phases are mainly present in the crystal grains. Ingredients such as carbon of organic additives that have been considered in the past have existed in the grain boundaries. In the present invention, since the additive compound component is arranged and present in the grains as a precipitated phase or matrix copper and a different phase component domain, simple grain boundary breakage due to mechanical stress and crystal fusion grain boundary expansion due to thermal stress are suppressed. It is thought that the pinning effect within a crystal grain is shown.

これらカーボンなどの成分の存在は、EDSやEDX、EPMAなどの定性・半定量機器分析装置により検出することができる。カーボンの様な軽元素の存在は検出され難い場合には、収差補正STEMのEELS(Electron Energy−Loss Spectroscopy、電子エネルギー損失分光法)による高分解能高感度分析からも可能である。   The presence of these components such as carbon can be detected by a qualitative / semi-quantitative instrument analyzer such as EDS, EDX, or EPMA. When it is difficult to detect the presence of a light element such as carbon, it is possible to perform high-resolution and high-sensitivity analysis by EELS (Electron Energy-Loss Spectroscopy) of aberration correction STEM.

さらに、これらの銅箔の断面観察結晶粒径が20〜3500nmの範囲を示す。FIBにより断面を出した、走査型イオン顕微鏡(SIM)像により鮮明な画像が得られ、粒径を観察確認することができる。   Furthermore, the cross-sectional observation crystal grain size of these copper foils is in the range of 20 to 3500 nm. A clear image can be obtained by a scanning ion microscope (SIM) image taken out by FIB, and the particle diameter can be observed and confirmed.

また、本発明の銅箔が、電解析出法により製造の電解銅箔であるか、電解銅箔を圧延した銅箔である場合がより望ましい。前記の元素を電析により有効に銅箔中に取り込むことができるからである。   Moreover, the case where the copper foil of this invention is the electrolytic copper foil manufactured by the electrolytic deposition method, or the case where it is the copper foil which rolled the electrolytic copper foil is more desirable. This is because the above elements can be effectively taken into the copper foil by electrodeposition.

本発明の銅箔の主な用途であるリチウムイオン二次電池負極集電体用銅箔として、さらに求められる必要特性として、電池の充放電サイクルを繰り返した際の容量維持率がある。
リチウムイオン二次電池は充電放電を繰り返すと容量維持率は徐々に低下していく。この容量維持率の低下が少ないほど高性能なリチウムイオン二次電池と言うことができ、長期に亘り使用することができ、需要者は満足する。逆に短期に劣化すれば、電池寿命は短くなり、早々に新品に更新しなければならなくなる。
この特性に影響する要因としては負極活物質自体の劣化、電解液の分解による活物質表面への皮膜の形成、活物質の亀裂発生、或いは活物質−銅箔間の剥離等がある。
このうち銅箔が原因と考えられるものは電極塗膜や活物質と銅箔間の剥離である。
As a copper foil for a lithium-ion secondary battery negative electrode current collector, which is the main use of the copper foil of the present invention, a further required characteristic is a capacity retention rate when the battery charge / discharge cycle is repeated.
When the lithium ion secondary battery is repeatedly charged and discharged, the capacity retention rate gradually decreases. The smaller the decrease in the capacity maintenance rate, the higher the performance of the lithium ion secondary battery, and the longer it can be used, the customer is satisfied. On the other hand, if the battery deteriorates in a short time, the battery life is shortened, and the battery must be updated to a new one as soon as possible.
Factors affecting this property include deterioration of the negative electrode active material itself, formation of a film on the surface of the active material due to decomposition of the electrolytic solution, occurrence of cracks in the active material, or peeling between the active material and the copper foil.
Among these, what is considered to be caused by the copper foil is peeling between the electrode coating film and the active material and the copper foil.

塗膜・活物質−銅箔間の剥離原因として、表面粗さはひとつの要因である。
二次電池用集電体としての適正な表面粗さRzは0.8〜2.8μmである。Rzが0.8μmを下回ると効果がなく、またRzを2.8μm以上にしても効果が飽和してしまったり、かえって充放電時の容量維持率が悪くなったりする。そのため、表面粗さRzが0.8〜2.8μmの粗面化電解銅箔(集電体)上に防錆処理を施し、活物質層を形成することが効果的である。
As a cause of peeling between the coating film / active material and the copper foil, the surface roughness is one factor.
An appropriate surface roughness Rz as a current collector for a secondary battery is 0.8 to 2.8 μm. When Rz is less than 0.8 μm, there is no effect, and even when Rz is 2.8 μm or more, the effect is saturated, or the capacity retention rate during charge / discharge is deteriorated. Therefore, it is effective to form an active material layer by performing a rust prevention treatment on a roughened electrolytic copper foil (current collector) having a surface roughness Rz of 0.8 to 2.8 μm.

本発明において、引張強さ、0.2%耐力、伸びは、日本工業規格(JIS K 6251)に定められた方法により、測定した値である。
また、表面粗さRzは、日本工業規格(JIS B 0601−1994)に定められた十点平均粗さであり、例えば触針式表面粗さ計により測定した値である。
In the present invention, the tensile strength, 0.2% proof stress, and elongation are values measured by a method defined in Japanese Industrial Standard (JIS K 6251).
The surface roughness Rz is a ten-point average roughness defined in Japanese Industrial Standards (JIS B 0601-1994), and is a value measured by, for example, a stylus type surface roughness meter.

本発明のリチウムイオン二次電池負極集電体用として好適な電解銅箔は、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と該陽極に対向させて設けられたチタン製陰極ドラムとの間に該電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。   An electrolytic copper foil suitable for the negative electrode current collector of the lithium ion secondary battery of the present invention comprises an insoluble anode made of titanium coated with a white metal element or an oxide element thereof using a sulfuric acid-copper sulfate aqueous solution as an electrolyte, and the anode Copper is deposited on the surface of the cathode drum by supplying a direct current between both electrodes while supplying the electrolyte between the cathode cathode and a titanium cathode drum provided opposite to the cathode drum and rotating the cathode drum at a constant speed. The deposited copper is peeled off from the surface of the cathode drum and is continuously wound up.

本発明のリチウムイオン二次電池負極集電体用として好適な電解銅箔は、硫酸−硫酸銅電解液にチオ尿素類、高分子多糖類、及び塩化物イオンを添加し製造することができる。   An electrolytic copper foil suitable for the negative electrode current collector of the lithium ion secondary battery of the present invention can be produced by adding a thiourea, a polymer polysaccharide, and a chloride ion to a sulfuric acid-copper sulfate electrolyte.

なお当業者間において、電解銅箔が陰極ドラム表面に接していた側の面を「光沢面」、逆の面を「粗面」と称し、前記のようにして製造された電解銅箔は「未処理電解銅箔」と称している。   In addition, among those skilled in the art, the surface of the side where the electrolytic copper foil is in contact with the surface of the cathode drum is referred to as a “glossy surface”, and the opposite surface is referred to as a “rough surface”. It is called “untreated electrolytic copper foil”.

この場合、「未処理電解銅箔」は中間製品であり、クロメート処理等の無機防錆処理、ベンゾトリアゾール等の有機防錆処理、シランカップリング剤処理等が施されて、リチウムイオン二次電池負極集電体用電解銅箔として使用される。
上記無機防錆処理、有機防錆処理、シランカップリング剤処理は活物質との密着強度を高め、電池の充放電時の容量維持率の低下を防ぐ役割を果たす。
In this case, the “untreated electrolytic copper foil” is an intermediate product, and is subjected to inorganic rust prevention treatment such as chromate treatment, organic rust prevention treatment such as benzotriazole, silane coupling agent treatment, etc., and lithium ion secondary battery Used as an electrolytic copper foil for a negative electrode current collector.
The inorganic rust-proofing treatment, organic rust-proofing treatment, and silane coupling agent treatment increase the adhesion strength with the active material, and play a role of preventing a decrease in capacity maintenance rate during charge / discharge of the battery.

また電解銅箔表面の表面粗さを、Rz=0.8〜2.8μmとするために、未処理電解銅箔の表面を粗面化処理を行う。この粗面化処理としては、めっき法、エッチング法等が好適に採用できる。
めっき法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗面化する方法である。めっき法としては、電解めっき法及び無電解めっき法が採用することができる。
Moreover, in order to make the surface roughness of the electrolytic copper foil surface Rz = 0.8 to 2.8 μm, the surface of the untreated electrolytic copper foil is roughened. As this roughening treatment, a plating method, an etching method, or the like can be suitably employed.
The plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil. As the plating method, an electrolytic plating method and an electroless plating method can be employed.

また電解銅箔表面の表面粗さを、例えばシリコン系活物質を積層する場合に適するRz=0.8〜2.8μmとする。表面粗さは、その表面を粗面化処理することで調整する。この粗面化処理としては、めっき法、エッチング法等が好適に採用できる。
めっき法は、電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗面化する方法である。めっき法としては、電解めっき法または無電解めっき法を採用することができる。
Moreover, the surface roughness of the electrolytic copper foil surface is set to Rz = 0.8 to 2.8 μm, which is suitable when, for example, a silicon-based active material is laminated. The surface roughness is adjusted by roughening the surface. As this roughening treatment, a plating method, an etching method, or the like can be suitably employed.
The plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the electrolytic copper foil. As the plating method, an electrolytic plating method or an electroless plating method can be employed.

めっき法による粗面化としては、銅や銅合金などの銅を主成分とするめっき膜を、電解銅箔表面に形成する方法が好ましい。   As the surface roughening by the plating method, a method of forming a plating film mainly composed of copper such as copper or copper alloy on the surface of the electrolytic copper foil is preferable.

電気めっきにより粗面化する方法としては、例えば、特公昭53−39376号公報に開示された、プリント回路用銅箔に対し一般的に用いられているめっきによる粗面化方法が好ましく用いられる。すなわち、いわゆる「やけめっき」により、粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、その凹凸形状を損なわないように「カプセルめっき」を行い、実質的に平滑なめっき層を堆積させて粒粉状銅をいわゆるコブ状銅とする粗面化方法である。   As a roughening method by electroplating, for example, a roughening method by plating generally used for copper foil for printed circuits disclosed in Japanese Patent Publication No. 53-39376 is preferably used. That is, after a granular copper plating layer is formed by so-called “bake plating”, “capsule plating” is performed on the granular copper plating layer so as not to impair the uneven shape, thereby substantially smoothing. This is a roughening method in which a fine plated layer is deposited to make the granular copper into so-called bumpy copper.

エッチング法による粗面化としては、物理的エッチングや化学的エッチングによる方法が適している。物理的エッチングにはサンドブラスト等でエッチングする方法があり、化学エッチングには処理液として、無機または有機酸と酸化剤と添加剤を含有する液が用いられている。例えば特許2740768号公報には、無機酸+過酸化水素+トリアゾールなどの腐食防止剤+界面活性剤が記載されている。また、特開平10−96088号公報には、無機酸+過酸化物+アゾール+ハロゲン化物を含有する液が開示されている。
通常は酸と酸化剤にキレート剤などの添加剤を付与した浴であり、銅の結晶粒界を優先的に溶解するものである。例えば、前記特許文献に開示されている液組成の他に、メック株式会社のCZ−8100、同8101、三菱ガス化学株式会社のCPE−900などの市販品が採用できる。
As the roughening by the etching method, a method by physical etching or chemical etching is suitable. For physical etching, there is a method of etching by sandblasting or the like, and for chemical etching, a liquid containing an inorganic or organic acid, an oxidizing agent and an additive is used as a processing liquid. For example, Japanese Patent No. 2740768 describes a corrosion inhibitor such as an inorganic acid + hydrogen peroxide + triazole + a surfactant. Japanese Patent Application Laid-Open No. 10-96088 discloses a liquid containing inorganic acid + peroxide + azole + halide.
Usually, it is a bath in which an additive such as a chelating agent is added to an acid and an oxidizing agent, and preferentially dissolves the copper grain boundaries. For example, in addition to the liquid composition disclosed in the above-mentioned patent document, commercially available products such as CZ-8100 and 8101 of MEC Co., Ltd. and CPE-900 of Mitsubishi Gas Chemical Co., Ltd. can be adopted.

本発明における活物質層は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質であることが好ましい。このような活物質材料としては、シリコン、ゲルマニウム、錫、亜鉛、マグネシウム、ナトリウム、アルミニウム、などが挙げられる。これらの中でも、カーボン、シリコン、及びスズがその高い理論容量から好ましく用いられる。従って、本発明において用いる活物質層は、シリコン、カーボン、またはスズを主成分とする層であることが好ましく、特に好ましくはシリコン層である。   The active material layer in the present invention is a substance that occludes / releases lithium, and is preferably an active material that occludes lithium by alloying. Examples of such an active material include silicon, germanium, tin, zinc, magnesium, sodium, and aluminum. Among these, carbon, silicon, and tin are preferably used because of their high theoretical capacity. Accordingly, the active material layer used in the present invention is preferably a layer mainly composed of silicon, carbon, or tin, and particularly preferably a silicon layer.

本発明における活物質層は、活物質をバインダー、溶剤とともにスラリー状にして、塗布、乾燥、プレスすることにより形成する方法が望ましい。   The active material layer in the present invention is preferably formed by slurrying the active material together with a binder and a solvent, coating, drying, and pressing.

本発明においては、集電体は厚みの薄いものであることが好ましく、従って金属箔、特に電解銅箔であることが好ましい。活物質層は、集電体の片面または両面上に形成することができる。   In the present invention, the current collector is preferably thin, and therefore is preferably a metal foil, particularly an electrolytic copper foil. The active material layer can be formed on one side or both sides of the current collector.

本発明における活物質層には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質層を形成する際に添加してもよい。すなわち、リチウムを含有する活物質層を形成することにより、活物質層にリチウムを含有させる。また、活物質層を形成した後に、活物質層にリチウムを吸蔵または添加させてもよい。活物質層にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。   In the active material layer in the present invention, lithium may be occluded or added in advance. Lithium may be added when forming the active material layer. That is, lithium is contained in the active material layer by forming an active material layer containing lithium. Further, after forming the active material layer, lithium may be occluded or added to the active material layer. Examples of a method for inserting or adding lithium into the active material layer include a method for electrochemically inserting or adding lithium.

本発明のリチウムイオン二次電池において用いる非水電解質は、溶媒に溶質を溶解した電解質である。非水電解質の溶媒としては、リチウムイオン二次電池に使用される溶媒であれば特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネートが挙げられる。好ましくは、環状カーボネートと鎖状カーボネートとの混合溶媒が用いられる。また、上記環状カーボネートと、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒や、γ−ブチロラクトン、スルホラン、酢酸メチル等の鎖状エステル等との混合溶媒を用いてもよい。   The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte in which a solute is dissolved in a solvent. The solvent for the nonaqueous electrolyte is not particularly limited as long as it is a solvent used in a lithium ion secondary battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, and diethyl carbonate. And chain carbonates such as methyl ethyl carbonate. Preferably, a mixed solvent of a cyclic carbonate and a chain carbonate is used. Alternatively, a mixed solvent of the above cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane, or a chain ester such as γ-butyrolactone, sulfolane, or methyl acetate may be used. Good.

非水電解質の溶質としては、リチウムイオン二次電池に用いられる溶質であれば特に限定されるものではなく、例えば、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10、Li212Cl12などが挙げられる。特に、LiXFy(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である。)と、リチウムペルフルオロアルキルスルホン酸イミドLiN(Cm2m+1SO2)(Cn2n+1SO2)(式中、m及びnはそれぞれ独立して1〜4の整数である。)またはリチウムペルフルオロアルキルスルホン酸メチドLiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(式中、p、q及びrはそれぞれ独立して1〜4の整数である。)との混合溶質が好ましく用いられる。これらの中でも、LiPF6とLiN(C25SO22との混合溶質が特に好ましく用いられる。 The solute of the nonaqueous electrolyte is not particularly limited as long as it is a solute used for a lithium ion secondary battery. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , Examples thereof include LiClO 4 , Li 2 B 10 Cl 10 , and Li 2 B 12 Cl 12 . In particular, LiXFy (wherein X is P, As, Sb, B, Bi, Al, Ga, or In, y is 6 when X is P, As, or Sb, and X is B, Bi, Al) , Ga, or In, y is 4.) and lithium perfluoroalkylsulfonic acid imide LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ), where m and n Are each independently an integer of 1 to 4.) or lithium perfluoroalkylsulfonic acid methide LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (wherein p, q and r are each independently an integer of 1 to 4). Among these, a mixed solute of LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 is particularly preferably used.

また、非水電解質として、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデンなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、Li3Nなどの無機固体電解質を用いることができる。 As the non-aqueous electrolyte, a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.

本発明のリチウムイオン二次電池の電解質は、イオン導電性を発現させる溶質としてのLi化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。   The electrolyte of the lithium ion secondary battery of the present invention is limited as long as the Li compound as a solute that develops ionic conductivity and the solvent that dissolves and retains it are not decomposed by the voltage at the time of charging, discharging or storing the battery. Can be used.

また、正極に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12などのリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入・脱離する物質であれば、制限なく用いることができる。 Further, as the positive electrode active material used for the positive electrode, lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , Examples include metal oxides such as MnO 2 that do not contain lithium. In addition, any substance that electrochemically inserts and desorbs lithium can be used without limitation.

本発明によれば、充放電により集電体にしわ等の変形、あるいは破断が発生するのを抑制することができ、長期間安定した電池性能、電極特性を維持する非水電解液二次電池またはリチウムイオン二次電池を提供することができる。   According to the present invention, a non-aqueous electrolyte secondary battery that can suppress wrinkle deformation or breakage of a current collector due to charge and discharge and maintain stable battery performance and electrode characteristics for a long period of time. Alternatively, a lithium ion secondary battery can be provided.

以下、本発明を実施例に基づいてさらに具体例を説明する。但し、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。
[実施例1〜3、比較例1〜3]
Hereinafter, specific examples of the present invention will be described based on examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the invention.
[Examples 1-3, Comparative Examples 1-3]

[未処理銅箔の製造]
銅70〜130g/l−硫酸80〜140g/lの酸性銅電解浴に表1に示す組成の添加剤を添加した。表中、チオ尿素類として、エチレンチオ尿素、高分子多糖類としてヒドロキシエチルセルロース、及び塩化物イオンを表1に示す濃度となるように、それぞれ添加し製箔用電解液を調製した。なお、塩化物イオン濃度を30ppmに調整したが、塩化物イオン濃度は電解条件により適宜変更するものであり、この濃度に限定されるものではない。
調製した電解液を用い、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて表1に示す電解条件(電流密度、液温)の下に、およそ10μm厚みの未処理銅箔を電解製箔法によって製造した。
[Manufacture of untreated copper foil]
Additives having the composition shown in Table 1 were added to an acidic copper electrolytic bath of copper 70 to 130 g / l-sulfuric acid 80 to 140 g / l. In the table, ethylenethiourea was added as a thiourea, hydroxyethyl cellulose as a polymeric polysaccharide, and chloride ions were added so as to have the concentrations shown in Table 1 to prepare an electrolytic solution for foil production. Although the chloride ion concentration was adjusted to 30 ppm, the chloride ion concentration is appropriately changed depending on the electrolysis conditions, and is not limited to this concentration.
Using the prepared electrolytic solution, a noble metal oxide-coated titanium electrode for the anode, and a titanium rotating drum for the cathode, under an electrolysis condition (current density, liquid temperature) shown in Table 1, approximately 10 μm thick untreated Copper foil was manufactured by the electrolytic foil manufacturing method.

Figure 0005873711
Figure 0005873711

[負極集電体の作成]
表1に示す実施例1〜3、比較例1については未処理電解銅箔の表面に電気めっきにより銅のやけめっきを施し、粒粉状銅めっき層を形成した。さらに、該粒粉状銅めっき層の上にその凹凸形状を損なわないように、平滑な銅めっき(カプセルめっき)を行い、粒粉状銅と銅箔との密着性を向上させた粗面化銅箔を作成した。
上記に記述したように実施例1〜3、比較例1については、当初約10μmの未処理銅箔を作成し、その後12μm厚さになるように電気めっきによる銅のやけめっき、カプセルめっきを施し粗面化電解銅箔を作成し、クロメート処理を施した後、集電体とした。なお、IPC国際規格による箔厚と単位面積当たり質量に準拠した。
一方、比較例2,3については、12μmの未処理銅箔を作成し、その後銅のやけめっき、カプセルめっきは施さず、クロメート処理のみを施して集電体とした。
すなわち、実施例1〜3、比較例1〜3は集電体になる時には全て12μm相当の質量厚さになるように厚さを合わせた。
なお銅箔表面粗面化のための粒粉状めっきの条件、平滑な銅めっき(カプセルめっき)、クロメート処理の条件は以下のようである。
粒粉状めっき条件:
硫酸銅 80〜140g/L
硫酸 110〜160g/L
添加剤 適量
液温 30〜60℃
電流密度 10〜50A/dm2
処理時間 2〜20秒
[Creation of negative electrode current collector]
For Examples 1 to 3 and Comparative Example 1 shown in Table 1, the surface of the untreated electrolytic copper foil was subjected to copper burnt plating by electroplating to form a granular copper plating layer. Furthermore, smooth copper plating (capsule plating) is performed on the granular powder copper plating layer so as not to impair the irregular shape, and the roughened surface improves the adhesion between the granular copper and the copper foil. Copper foil was created.
As described above, for Examples 1 to 3 and Comparative Example 1, initially, an untreated copper foil of about 10 μm was prepared, and then copper burnt plating and capsule plating by electroplating were performed to a thickness of 12 μm. A roughened electrolytic copper foil was prepared and subjected to chromate treatment, and then a current collector was obtained. In addition, it conformed to the foil thickness and mass per unit area according to the IPC international standard.
On the other hand, for Comparative Examples 2 and 3, a 12 μm untreated copper foil was prepared, and then, copper chromate treatment and capsule plating were not performed, and only a chromate treatment was performed to obtain a current collector.
That is, the thicknesses of Examples 1 to 3 and Comparative Examples 1 to 3 were adjusted so as to have a mass thickness equivalent to 12 μm when they were current collectors.
The conditions for the granular powder plating for roughening the copper foil surface, the smooth copper plating (capsule plating), and the conditions for the chromate treatment are as follows.
Granular plating conditions:
Copper sulfate 80-140g / L
Sulfuric acid 110-160g / L
Additive Appropriate amount Liquid temperature 30-60 ° C
Current density 10-50A / dm 2
Processing time 2 to 20 seconds

緻密な銅めっき(被せめっき)条件:
硫酸銅 200〜300g/L
硫酸 90〜130g/L
液温 30〜60℃
電流密度 10〜30A/dm2
処理時間 2〜20秒
Dense copper plating (cover plating) conditions:
Copper sulfate 200-300g / L
Sulfuric acid 90 ~ 130g / L
Liquid temperature 30-60 ° C
Current density 10-30A / dm 2
Processing time 2 to 20 seconds

クロメート処理条件:
重クロム酸カリウム 1〜10g/L
浸漬処理時間 2〜20秒
Chromate treatment conditions:
Potassium dichromate 1-10g / L
Immersion treatment time 2 to 20 seconds

製造した集電体銅箔の小角X線散乱測定を次の条件により実施した。
放射光小角X線散乱
波長 0.08nm
ビーム径 縦0.2mm、横0.6mm
小角カメラ長 約1700mm
小角検出器 リガク社製 R−AXIS VII(IP)、
画素サイズ:100μm角
前記の実施例1〜3、比較例1〜3の6種類の銅箔の測定から得られた散乱ベクトルのうち、小角側において、析出相固有と判断される散乱パターンについて、フィッティング解析(析出物を球形と仮定し、粒径サイズの分布を解析)を行って、それぞれの銅箔中に存在する析出物の寸法を、粒径サイズ全体の平均値と、各ピークサイズ分布のピークが大きいところ(表2には丸つきの数字で表示)の粒径を表2に示した。また、併せて、それぞれの銅箔の引張強さ、0.2%耐力、伸び率を表2に示した。
なお、比較例2、3に用いた銅箔については、X線測定から得られた散乱ベクトルに小角側に析出物に拠ると考えられる散乱パターンはほぼ認められなかった。
Small-angle X-ray scattering measurement of the manufactured current collector copper foil was performed under the following conditions.
Synchrotron X-ray scattering wavelength 0.08nm
Beam diameter length 0.2mm, width 0.6mm
Small angle camera length approx. 1700mm
Small-angle detector Rigaku R-AXIS VII (IP),
Pixel size: 100 μm square Among the scattering vectors obtained from the measurement of the six types of copper foils of Examples 1 to 3 and Comparative Examples 1 to 3, on the small angle side, the scattering pattern determined to be unique to the precipitated phase, Fitting analysis (assuming the precipitate is spherical and analyzing the distribution of particle size), the size of the precipitate present in each copper foil, the average value of the entire particle size and the distribution of each peak size Table 2 shows the particle diameters where the peak of (2) is shown (indicated by rounded numbers in Table 2). In addition, Table 2 shows the tensile strength, 0.2% proof stress, and elongation of each copper foil.
In addition, about the copper foil used for the comparative examples 2 and 3, the scattering pattern considered to be based on a precipitate on the small angle side was not recognized by the scattering vector obtained from the X-ray measurement.

Figure 0005873711
Figure 0005873711

なお、引張強さ、0.2%耐力、伸びは、引張試験機(インストロン社製1122型)を用いて測定した。   The tensile strength, 0.2% proof stress, and elongation were measured using a tensile tester (Model 1122 manufactured by Instron).

作製した表1の銅箔のSTEM像による直接観察と、観察した析出相(ドメイン)のEDXまたはEELSによる定性分析を実施した。いずれの析出相もCu成分が周囲の相の銅よりも銅検出量が小さく、主にカーボンCを検出した。これらの検出元素を表3に示し、併せてFIB断面SIM像観察による結晶粒径の概略値も記した。析出相のC以外の検出元素は、ドメインによってサブ検出元素は相違し、塩素や硫黄または酸素が検出された。窒素は定性分析での検出力は小さく、SIMSによってその存在が確認された。また、いずれの銅箔もICP発光分光分析により銅純度が99%以上であることを確認した。   Direct observation by the STEM image of the produced copper foil of Table 1 and qualitative analysis by EDX or EELS of the observed precipitated phase (domain) were performed. In any of the precipitated phases, the amount of detected copper was smaller than that of the surrounding phase copper, and carbon C was mainly detected. These detection elements are shown in Table 3, and the approximate value of the crystal grain size by observation of the FIB cross-section SIM image is also shown. The detection elements other than C in the precipitated phase differed in sub-detection elements depending on the domain, and chlorine, sulfur, or oxygen was detected. Nitrogen has low power in qualitative analysis, and its presence was confirmed by SIMS. Moreover, it was confirmed that the copper purity of each copper foil was 99% or more by ICP emission spectroscopic analysis.

Figure 0005873711
Figure 0005873711

[負極の作成]
負極活物質粒子として平均粒径が0.15μmのシリコンとシリコン合金粉末(Si純度約90%)を混合使用し、バインダにポリイミドを用いて、上記の負極活物質粒子とバインダーとが85:15の質量比になるようにしてN−メチル−2−ピロリドンに加え、これらを混合させて負極合剤スラリーを調製した。
[Create negative electrode]
A mixture of silicon having an average particle diameter of 0.15 μm and silicon alloy powder (Si purity of about 90%) is used as the negative electrode active material particles, and the negative electrode active material particles and the binder are 85:15 using polyimide as a binder. In addition to N-methyl-2-pyrrolidone so as to be a mass ratio of these, these were mixed to prepare a negative electrode mixture slurry.

次に、集電体となる銅箔上に上記負極合剤スラリーを塗布し、これを乾燥させて負極集電体の両面に負極合剤層を形成した。この時点の電極厚みは25μmであった。 Next, the negative electrode mixture slurry was applied onto a copper foil serving as a current collector and dried to form negative electrode mixture layers on both sides of the negative electrode current collector. The electrode thickness at this time was 25 μm.

この後、圧延ローラを用いて電極厚み20μmになるまで圧延した後、これを窒素雰囲気下において表1に示す各温度で1時間焼結させて負極を作成した。 Then, after rolling to an electrode thickness of 20 μm using a rolling roller, this was sintered at each temperature shown in Table 1 for 1 hour in a nitrogen atmosphere to prepare a negative electrode.

[三極セル用対極および参照極の作製]
前記の負極電極の充放電特性を三極式セルにて試験評価するための、対極と参照極にリチウム箔をステンレスメッシュ網に圧着させて作製した。
[Production of counter electrode and reference electrode for triode cell]
To test and evaluate the charge / discharge characteristics of the negative electrode in a triode cell, a lithium foil was bonded to a stainless mesh mesh on a counter electrode and a reference electrode.

[非水電解液]
非水電解液を調整するにあたっては、エチレンカーボネートとジエチレンカーボネートとを3:7の体積比で混合させた混合溶媒を主成分とし、LiPFを1モル/リットルの濃度になるように溶解させた、宇部興産製非水電解液(パワーライト)を用いた。
[Non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, a mixed solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 3: 7 was used as a main component, and LiPF 6 was dissolved to a concentration of 1 mol / liter. A non-aqueous electrolyte (power light) manufactured by Ube Industries was used.

[電池充放電特性評価]
上記負極(試験極)および対極、参照極、並びに非水電解液を用いた三極式セルをアルゴン雰囲気で非水環境のグローボックス内にて組み立て配線し密閉容器に封止した後に、大気中に取り出して、充放電特性試験を行った。
[Evaluation of battery charge / discharge characteristics]
The above-mentioned negative electrode (test electrode), counter electrode, reference electrode, and triode cell using a non-aqueous electrolyte are assembled and wired in a non-aqueous environment glow box in an argon atmosphere, sealed in a sealed container, and then in the atmosphere. The charge / discharge characteristic test was conducted.

試験は、初回に0.1C試験レートによる充電、放電を行った後に、0.2Cによる充放電サイクル試験50回を繰り返し行った。充電はLiの標準単極電位基準に対して0.02VまでCC(定電流)で行い、その後はCV(定電位のまま)電流が0.05C低下して充電終了とした。放電はCCにて1.5V(Li基準)まで行った。放電容量が1サイクル目の放電容量の70%に達するまでのサイクル数を測定し、これをサイクル寿命とした。そして、実施例1 のリチウムイオン二次電池のサイクル寿命を100とした指数で、その結果を表4 に示した。   In the test, after charging and discharging at a 0.1C test rate for the first time, 50 charge / discharge cycle tests at 0.2C were repeated. Charging was carried out at CC (constant current) up to 0.02V with respect to the standard unipolar potential of Li, and thereafter the CV (still at constant potential) current was reduced by 0.05C to terminate charging. Discharge was performed to 1.5V (Li reference) at CC. The number of cycles until the discharge capacity reached 70% of the discharge capacity at the first cycle was measured, and this was defined as the cycle life. The results are shown in Table 4 using an index with the cycle life of the lithium ion secondary battery of Example 1 as 100.

また、サイクル後における実施例1〜6及び比較例1、2の各リチウム二次電池を解体して、各負極の負極集電体におけるしわの発生の有無を調べ、その結果を表4に合わせて示した。 In addition, each of the lithium secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2 after the cycle was disassembled, and the presence or absence of wrinkles in the negative electrode current collector of each negative electrode was examined. Showed.

Figure 0005873711
Figure 0005873711

表4に示したように、本発明の銅箔を集電体に用いると、充放電により集電体にしわが発生するのを抑制することができた。また、充放電サイクルを繰り返しても容量の低下が起こらない。   As shown in Table 4, when the copper foil of the present invention was used as a current collector, it was possible to suppress wrinkles from occurring in the current collector due to charge and discharge. Further, the capacity does not decrease even when the charge / discharge cycle is repeated.

これは、本発明の析出ドメインを有する銅箔が、室温では引張り強度500〜1000N/mmを示し、且つ0.2%耐力350〜800N/mmを示し、300〜350℃の加熱処理後の引張り強度275〜800N/mmを示し、且つ前記加熱処理後の0.2%耐力225〜600N/mmなどの、高い機械的・耐熱特性を示すことから、充放電により集電体にしわが発生するのを抑制することができた。また、充放電サイクルを繰り返しても容量の低下が起こらない。 This copper foil with a deposited domain of the present invention represents an intensity 500~1000N / mm 2 tensile at room temperature, and shows a 0.2% proof stress 350~800N / mm 2, after heat treatment of 300 to 350 ° C. It has a tensile strength of 275 to 800 N / mm 2 and exhibits high mechanical and heat resistance characteristics such as 0.2% proof stress 225 to 600 N / mm 2 after the heat treatment. It was possible to suppress the occurrence of wrinkles. Further, the capacity does not decrease even when the charge / discharge cycle is repeated.

また、比較例1の銅箔母相中には多数の析出ドメインが存在するものの、サイズが10nmを超える大きな粒径サイズであるために、全体としての析出ドメインに拠るピン止め強度維持効果が劣るものとみられる。比較例2、3では析出ドメインの存在がほぼ認められない銅箔とみられ、そのために機械的・熱的特性も小さいので、充放電を繰り返すと集電体にしわが発生した。   Moreover, although many precipitation domains exist in the copper foil matrix of Comparative Example 1, since the size is a large particle size exceeding 10 nm, the pinning strength maintaining effect due to the precipitation domains as a whole is inferior. It seems to be a thing. In Comparative Examples 2 and 3, it was considered that the presence of the precipitation domain was almost not observed, and therefore the mechanical and thermal characteristics were small. Therefore, when charging and discharging were repeated, the current collector was wrinkled.

以上のように、銅箔母相中に析出物ドメインを有し、その小角X線散乱測定により得られる散乱ベクトル解析から、認められるそのドメインサイズが1〜10nmである本発明の銅箔は高強度高耐力高耐熱特性を有するので、本銅箔の少なくとも一方の面に防錆処理を施した負極集電体を用い、或いは少なくとも一方の面を粗化し防錆処理を施した銅箔を用いると、充放電により集電体にしわ等の変形が発生するのを抑制することができ、リチウムイオン二次電池の正極と負極の短絡を防ぐことができ、充放電サイクルを繰り返しても容量の低下が起こらない高寿命で、小型化可能なリチウムイオン二次電池などの非水電解質二次電池を提供することができる。     As described above, the copper foil of the present invention having a precipitate domain in the copper foil matrix and the recognized domain size of 1 to 10 nm from the scattering vector analysis obtained by the small-angle X-ray scattering measurement is high. Because it has high strength, high yield strength and high heat resistance, use a negative electrode current collector with rust prevention treatment on at least one surface of the copper foil, or use copper foil with rust prevention treatment by roughening at least one surface And, it is possible to suppress the occurrence of deformation such as wrinkles in the current collector due to charging / discharging, to prevent a short circuit between the positive electrode and the negative electrode of the lithium ion secondary battery, It is possible to provide a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that has a long life and does not deteriorate and can be miniaturized.

なお、本実施例は活物質がシリコンまたはシリコン合金の混合物の場合について記載したが、シリコン単体やシリコンの酸化物、カーボン、スズを主成分とする活物質を使った場合でも、充放電により集電体にしわ等の変形が発生するのを抑制することができ、リチウムイオン二次電池の正極と負極の短絡を防ぐことができ、充放電サイクルを繰り返しても容量の低下が起こらない高寿命のリチウムイオン二次電池を始めとする非水電解質二次電池を提供することができる。   In this example, the active material is a mixture of silicon or a silicon alloy. However, even when an active material mainly composed of silicon alone, silicon oxide, carbon, or tin is used, the active material is collected by charging / discharging. Can suppress the deformation of the electric body such as wrinkles, can prevent the short-circuit between the positive and negative electrodes of the lithium ion secondary battery, and has a long life that does not cause a decrease in capacity even after repeated charge / discharge cycles The non-aqueous electrolyte secondary battery including the lithium ion secondary battery can be provided.

Claims (9)

純度が99質量%以上の銅箔であって、該銅箔中に周囲の銅密度に比較して銅密度が異なる不均一領域が存在し、該不均一領域の大きさが粒径1〜10nmであり、当該不均一領域はカーボンを主体とし、少なくとも塩素、硫黄、酸素のいずれかを含む、銅箔。 A copper foil having a purity of 99% by mass or more, wherein a non-uniform region having a copper density different from the surrounding copper density is present in the copper foil, and the size of the non-uniform region has a particle size of 1 to 10 nm. The non-uniform region is a copper foil mainly composed of carbon and containing at least one of chlorine, sulfur, and oxygen . 粒径の大きさが1〜10nmの前記不均一領域が、その他の大きさを含む不純物領域を合わせた全体の中で最も多い割合に相当するか、または全ての不均一領域の大きさの平均粒径である請求項1に記載の銅箔。   The non-uniform region having a particle size of 1 to 10 nm corresponds to the largest proportion of the total of impurity regions including other sizes, or the average size of all non-uniform regions The copper foil according to claim 1, which has a particle size. 前記不均一領域の粒径は小角X線散乱測定で測定し、該小角X線散乱測定に用いるX線は放射光を利用して発生させる高エネルギータイプのX線である請求項1または2に記載の銅箔。   The particle size of the non-uniform region is measured by small-angle X-ray scattering measurement, and the X-ray used for the small-angle X-ray scattering measurement is a high energy type X-ray generated by using radiant light. The described copper foil. 前記銅箔が、300〜350℃で加熱処理後の引張り強度が275〜800N/mm2で、前記加熱処理後の0.2%耐力が225〜600N/mm2を有する請求項1〜3のいずれかに記載の銅箔。 The copper foil has a tensile strength after heat treatment at 300 to 350 ° C. of 275 to 800 N / mm 2 and a 0.2% proof stress after the heat treatment of 225 to 600 N / mm 2 . The copper foil in any one. 請求項1〜4のいずれかに記載の銅箔を集電体として用いた二次電池の電極であって、 前記銅箔は電解銅箔であり、
前記電解銅箔の少なくとも一方の面に防錆層を有し
該防錆処理層の表面に電極構成活物質層を有する、
二次電池の電極。
An electrode of a secondary battery using the copper foil according to any one of claims 1 to 4 as a current collector, wherein the copper foil is an electrolytic copper foil,
It has a rust prevention layer on at least one surface of the electrolytic copper foil,
Having an electrode-constituting active material layer on the surface of the antirust treatment layer,
Secondary battery electrode.
請求項1〜4のいずれかに記載の銅箔を集電体として用いた二次電池の電極であって、 前記銅箔は電解銅箔であり、
前記電解銅箔の少なくとも一方の面に粗化処理層および防錆層を有し、
該防錆処理層の表面に電極構成活物質層を有する、
二次電池の電極。
An electrode of a secondary battery using the copper foil according to any one of claims 1 to 4 as a current collector , wherein the copper foil is an electrolytic copper foil,
It has a roughening treatment layer and a rust prevention layer on at least one surface of the electrolytic copper foil ,
The surface of rustproof treated layer having the electrodes constituting the active material layer,
Secondary battery electrode.
前記活物質層が、カーボン、シリコン、スズ、アルミニウム、マグネシウムまたはカルシウムのいずれかを主成分とする活物質を有する、請求項5または6に記載の二次電池の電極。 The active material layer, carbon, silicon, tin, aluminum, having an active material mainly composed of either magnesium or calcium, the electrode of the secondary battery according to claim 5 or 6. 請求項1〜7のいずれかに記載の電極を有する二次電池。 Secondary battery having an electrode according to any one of claims 1 to 7. 請求項1〜4のいずれかに記載の銅箔を、絶縁基板と積層してなるプリント回路基板、またはフレキシブルプリント回路基板。 The copper foil according to claim 1, formed by laminating an insulating substrate, a printed circuit board or a flexible printed circuit board.
JP2011285464A 2011-12-27 2011-12-27 Copper foil, secondary battery electrode, secondary battery, and printed circuit board Active JP5873711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285464A JP5873711B2 (en) 2011-12-27 2011-12-27 Copper foil, secondary battery electrode, secondary battery, and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285464A JP5873711B2 (en) 2011-12-27 2011-12-27 Copper foil, secondary battery electrode, secondary battery, and printed circuit board

Publications (2)

Publication Number Publication Date
JP2013134934A JP2013134934A (en) 2013-07-08
JP5873711B2 true JP5873711B2 (en) 2016-03-01

Family

ID=48911486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285464A Active JP5873711B2 (en) 2011-12-27 2011-12-27 Copper foil, secondary battery electrode, secondary battery, and printed circuit board

Country Status (1)

Country Link
JP (1) JP5873711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240984A (en) * 2020-09-22 2021-01-19 清华大学 Lithium ion battery lithium analysis detection method and detection device thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623990A (en) * 2017-07-26 2018-01-23 珠海亚泰电子科技有限公司 Thicken copper base and preparation technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205507A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Lithium battery or copper alloy collector for capacitor and method of manufacturing the same
JP5219973B2 (en) * 2009-09-24 2013-06-26 Jx日鉱日石金属株式会社 Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5685049B2 (en) * 2010-10-25 2015-03-18 株式会社Shカッパープロダクツ Precipitation hardening type copper alloy foil, negative electrode for lithium ion secondary battery using the same, and method for producing precipitation hardening type copper alloy foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240984A (en) * 2020-09-22 2021-01-19 清华大学 Lithium ion battery lithium analysis detection method and detection device thereof
CN112240984B (en) * 2020-09-22 2021-10-26 清华大学 Lithium ion battery lithium analysis detection method and detection device thereof

Also Published As

Publication number Publication date
JP2013134934A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
TWI466367B (en) A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
JP5128695B2 (en) Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode
KR101632852B1 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4225727B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4868786B2 (en) Lithium secondary battery
WO2010110205A1 (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
KR102413674B1 (en) Electrolytic copper foil and various products using electrolytic copper foil
JP2013133514A (en) Copper foil, electrode for secondary battery, secondary battery, and printed circuit board
JP5437536B2 (en) Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR20060076716A (en) Lithium secondary battery
KR20140051375A (en) Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
JP5981165B2 (en) Copper foil, negative electrode of secondary battery, secondary battery, and printed circuit board
JP6067256B2 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5873711B2 (en) Copper foil, secondary battery electrode, secondary battery, and printed circuit board
JP2015198020A (en) Surface treatment copper foil for negative electrode, negative electrode and lithium ion secondary battery using the same
JP2013012450A (en) Metal foil for collector of lithium ion secondary battery electrode, method of manufacturing the metal foil, and lithium ion secondary battery using the metal foil as collector
JP2014009365A (en) Electrolytic copper foil, lithium ion secondary battery negative pole electrode, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5873711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350