JP5437536B2 - Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery - Google Patents

Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5437536B2
JP5437536B2 JP2013516862A JP2013516862A JP5437536B2 JP 5437536 B2 JP5437536 B2 JP 5437536B2 JP 2013516862 A JP2013516862 A JP 2013516862A JP 2013516862 A JP2013516862 A JP 2013516862A JP 5437536 B2 JP5437536 B2 JP 5437536B2
Authority
JP
Japan
Prior art keywords
electrode
current collector
active material
secondary battery
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013516862A
Other languages
Japanese (ja)
Other versions
JPWO2013080988A1 (en
Inventor
俊夫 谷
健作 篠崎
昭利 鈴木
耕二 幡谷
直文 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2013516862A priority Critical patent/JP5437536B2/en
Application granted granted Critical
Publication of JP5437536B2 publication Critical patent/JP5437536B2/en
Publication of JPWO2013080988A1 publication Critical patent/JPWO2013080988A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池をはじめとする充放電可能な非水電解質二次電池、この二次電池に用いる電極、並びにこの電極の構成要素である集電体に関する。   The present invention relates to a chargeable / dischargeable nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, an electrode used in the secondary battery, and a current collector as a component of the electrode.

リチウムイオン二次電池は、正極と負極と非水電解質を備えている。負極は、表面が平滑な銅箔からなる負極集電体の表面に、負極活物質層としてカーボン粒子を塗布し、さらにプレスして形成されている。リチウムイオン二次電池は現在、携帯電話、ノートタイプパソコン等に使用されている。このリチウムイオン二次電池の正極集電体にはアルミニウム箔が、負極集電体には主に防錆処理を施した銅箔が使用されている。   The lithium ion secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode is formed by applying carbon particles as a negative electrode active material layer to the surface of a negative electrode current collector made of a copper foil having a smooth surface, and further pressing it. Lithium ion secondary batteries are currently used in mobile phones, notebook computers and the like. An aluminum foil is used for the positive electrode current collector of this lithium ion secondary battery, and a copper foil subjected to rust prevention treatment is mainly used for the negative electrode current collector.

前記リチウムイオン二次電池用負極集電体として、光沢面と粗面と(銅箔の両面)の間における表面粗さの差を小さくした電解銅箔を用いている。これにより、電池の充放電効率の低下が抑えられている。(特許文献1参照)   As the negative electrode current collector for a lithium ion secondary battery, an electrolytic copper foil in which the difference in surface roughness between the glossy surface and the rough surface (both surfaces of the copper foil) is reduced is used. Thereby, the fall of the charging / discharging efficiency of a battery is suppressed. (See Patent Document 1)

上記のような光沢面と粗面との表面粗さの差を小さくした電解銅箔は、銅を析出させる電解液に、有機または無機化合物やイオン種を添加して製造されている。例えば、電解液に有機化合物や塩化物イオン、並びに低分子量膠及び高分子多糖類を添加したものを用いた電解銅箔の製造方法が開示されている(特許文献2参照)。このような製造方法で製造した電解銅箔は、その銅箔の表面に炭素系活物質粒子等を含むスラリーが塗布され、乾燥後さらにプレスされて負極とされる。   The electrolytic copper foil having a small difference in surface roughness between the glossy surface and the rough surface as described above is produced by adding an organic or inorganic compound or an ionic species to an electrolytic solution for depositing copper. For example, a method for producing an electrolytic copper foil using an electrolytic solution to which an organic compound, chloride ion, low molecular weight glue and high molecular polysaccharide are added is disclosed (see Patent Document 2). The electrolytic copper foil manufactured by such a manufacturing method is coated with a slurry containing carbon-based active material particles and the like on the surface of the copper foil, and after drying, is further pressed into a negative electrode.

ところで近年、リチウムイオン二次電池の高容量化を目的として、充電の際に電気化学的にリチウムと合金化するゲルマニウム、シリコン、スズなどを負極活物質として用いるリチウムイオン二次電池が提案されている(特許文献3参照)。   Recently, lithium ion secondary batteries using germanium, silicon, tin, etc., which are electrochemically alloyed with lithium during charging, have been proposed for the purpose of increasing the capacity of lithium ion secondary batteries. (See Patent Document 3).

高容量化を目的としたリチウムイオン二次電池用電極(負極)は、CVD法やスパッタリング法により、銅箔などの集電体の上に、例えばシリコンを非晶質シリコン薄膜や微結晶シリコン薄膜として堆積し形成している。このような方法で作成した活物質の薄膜層は集電体に密着するため、良好な充放電サイクル特性を示すことが見出されている(特許文献4参照)。   An electrode (negative electrode) for a lithium ion secondary battery for the purpose of increasing the capacity is obtained by depositing, for example, silicon on an amorphous silicon thin film or microcrystalline silicon thin film on a current collector such as a copper foil by CVD or sputtering. As it is deposited and formed. Since the thin film layer of the active material prepared by such a method is in close contact with the current collector, it has been found that it exhibits good charge / discharge cycle characteristics (see Patent Document 4).

また、最近では粉末シリコンをイミド系のバインダとともに有機溶剤によりスラリー状にして銅箔上に塗布し、乾燥、プレスし電極とする形成方法も開発されている。   Recently, a forming method has been developed in which powdered silicon together with an imide binder is slurried with an organic solvent, applied onto a copper foil, dried and pressed to form an electrode.

特許第3742144号公報Japanese Patent No. 3742144 特許第3313277号公報Japanese Patent No. 3313277 特開平10−255768号公報Japanese Patent Laid-Open No. 10-255768 特開2002−083594号公報Japanese Patent Laid-Open No. 2002-083594

しかしながら、例えば、高い理論比容量を有するシリコン活物質は、充放電時に活物質層の体積の膨張及び収縮が起きる。すなわち、充電時にリチウムイオンを吸蔵することによりその体積が最大で約4倍膨張し、放電時にはリチウムイオンを放出して収縮する。これにより、活物質が微粉化して集電体から剥離する現象が見られる。また活物質層が集電体と密着しているため、充放電の繰り返しにより活物質層の体積が膨張及び収縮すると、集電体に大きな応力がかかるといった問題がある。   However, for example, in a silicon active material having a high theoretical specific capacity, the volume of the active material layer expands and contracts during charging and discharging. That is, when the lithium ions are occluded during charging, the volume expands by about 4 times at the maximum, and the lithium ions are released and contracted during discharging. Thereby, the phenomenon in which the active material is pulverized and peeled from the current collector is observed. Further, since the active material layer is in close contact with the current collector, there is a problem that a large stress is applied to the current collector when the volume of the active material layer expands and contracts due to repeated charge and discharge.

このような膨張及び収縮の大きい電極を電池内に収納し、多数回充放電を繰り返すと、集電体も合わせて伸縮するため、集電体にシワが発生する。シワを許容するためには、電池内で電極が占める体積に余裕を持たせる必要があるが、そうすると体積当たりのエネルギー密度(または充放電容量)が低下するという問題を生じる。   When such an electrode with large expansion and contraction is accommodated in the battery and repeated charging and discharging a number of times, the current collector also expands and contracts, and thus the current collector is wrinkled. In order to allow wrinkles, it is necessary to make room for the volume occupied by the electrode in the battery, but this causes a problem that the energy density (or charge / discharge capacity) per volume decreases.

また、体積当たりのエネルギー密度(または充放電容量)を向上させようとすると、集電体の伸縮に対して余裕がなくなるので、集電体が破断して安定した電池性能を維持することができなくなるという問題を生じる。   In addition, if the energy density per volume (or charge / discharge capacity) is increased, there is no room for the expansion and contraction of the current collector, so that the current collector is broken and stable battery performance can be maintained. The problem of disappearing.

また、集電体への応力によるシワだけではなく、集電体と活物質層との間に剥離が生じることで、電池のサイクル特性が低下する問題も生じる。   Further, not only wrinkles due to stress on the current collector, but also peeling between the current collector and the active material layer causes a problem that the cycle characteristics of the battery deteriorate.

本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、シリコンまたはスズなどの高比容量を有する活物質を集電体に堆積した負極電極を用いたリチウムイオン二次電池において、集電体のシワの発生、集電体の破断、または集電体と活物質層との剥離が抑制され、活物質と集電体の密着力が高く、長期間安定した性能を維持できるリチウムイオン二次電池を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide lithium ion secondary batteries using a negative electrode in which an active material having a high specific capacity such as silicon or tin is deposited on a current collector. In secondary batteries, generation of wrinkles on the current collector, breakage of the current collector, or peeling between the current collector and the active material layer is suppressed, and the adhesion between the active material and the current collector is high, and the performance is stable for a long time. It is to provide a lithium ion secondary battery capable of maintaining the above.

前述した目的を達成するために、以下の発明を提供する。
(1)電極活物質と水系バインダとを含むスラリーを用いて活物質含有層を形成するための電極用集電体であって、前記活物質含有層を形成する面において、粗さ(Z軸)方向の解像度を0.05μmで測定を行った場合の実表面積を単位平面面積で割った表面積比率が1.11〜3.95であることを特徴とする、非水電解質二次電池用負極に使用するための電極用集電体。
(2)前記表面積比率が1.11〜2.36であることを特徴とする(1)に記載の電極用集電体。
(3)前記表面積比率が1.11〜1.98であることを特徴とする(1)に記載の電極用集電体。
(4)前記表面積比率が1.11〜1.46であることを特徴とする(1)に記載の電極用集電体。
(5)前記電極用集電体が銅箔であることを特徴とする(1)〜(4)のいずれかに記載の電極用集電体。
(6)前記電極用集電体が粗面化処理された銅箔であることを特徴とする(5)に記載の電極用集電体。
(7)前記電極用集電体の表面に、クロメート処理層、ベンゾトリアゾール処理層、シランカップリング処理層、ニッケル処理層、亜鉛処理層、スズ処理層のいずれか一層以上を有することを特徴とする(1)〜(6)のいずれかに記載の電極用集電体。
(8)前記電極用集電体が、引っ張り強度450MPa以上であり、破断伸び率3%以上であり、180℃5分加熱後の破断伸び率3%以上であり、300℃1時間加熱後の引っ張り強度300MPa以上であることを特徴とする(1)〜(7)のいずれかに記載の電極用集電体。
(9)請求項1に記載の電極用集電体に、電極活物質と、水系バインダと、を含むスラリーを用いて活物質含有層を形成したことを特徴とする非水電解質二次電池用負極
(10)前記電極活物質がシリコンまたはスズを含むことを特徴とする(9)に記載の非水電解質二次電池用負極
(11)(9)または(10)に記載の負極を用いた非水電解質二次電池。
In order to achieve the above-mentioned object, the following invention is provided.
(1) An electrode current collector for forming an active material-containing layer using a slurry containing an electrode active material and an aqueous binder, wherein the surface on which the active material-containing layer is formed has a roughness (Z axis ) A negative electrode for a non-aqueous electrolyte secondary battery, wherein a surface area ratio obtained by dividing an actual surface area by a unit plane area when the resolution in the direction is 0.05 μm is 1.13 to 3.95 Current collector for electrodes for use in
(2) The current collector for an electrode according to (1), wherein the surface area ratio is 1.11 to 2.36.
(3) The electrode current collector according to (1), wherein the surface area ratio is 1.11 to 1.98.
(4) The electrode current collector according to (1), wherein the surface area ratio is 1.11 to 1.46.
(5) The electrode current collector according to any one of (1) to (4), wherein the electrode current collector is a copper foil.
(6) The electrode current collector according to (5) , wherein the electrode current collector is a roughened copper foil.
(7) The surface of the current collector for electrodes has any one or more of a chromate treatment layer, a benzotriazole treatment layer, a silane coupling treatment layer, a nickel treatment layer, a zinc treatment layer, and a tin treatment layer. The current collector for an electrode according to any one of (1) to (6) .
(8) The electrode current collector has a tensile strength of 450 MPa or more, a breaking elongation of 3% or more, a breaking elongation of 3% or more after heating at 180 ° C. for 5 minutes, and after heating at 300 ° C. for 1 hour. The electrode current collector according to any one of (1) to (7) , which has a tensile strength of 300 MPa or more.
(9) An active material-containing layer is formed on a current collector for an electrode according to claim 1 using a slurry containing an electrode active material and an aqueous binder, for a non-aqueous electrolyte secondary battery Negative electrode .
(10) The negative electrode for a nonaqueous electrolyte secondary battery according to (9) , wherein the electrode active material contains silicon or tin .
(11) A nonaqueous electrolyte secondary battery using the negative electrode according to (9) or (10) .

本発明により、シリコンまたはスズなどの高比容量を有する活物質を集電体に堆積した負極電極を用いたリチウムイオン二次電池において、集電体のシワの発生、集電体の破断、または集電体と活物質層との剥離が抑制され、活物質と集電体の密着力が高く、長期間安定した性能を維持できるリチウムイオン二次電池を提供することができる。また、一般に水系バインダ使用電極は、有機溶剤系バインダより、銅箔と電極塗膜との密着性に劣り、充放電サイクル寿命も短い傾向にある。本発明により、水系バインダ使用電極に対する界面の膨れや剥離を防止することができ、サイクル寿命が向上する。有機溶剤バインダ使用電極に対しては、界面実表面積を大きく規定することにより、密着性が向上し、サイクル寿命が伸長する。   According to the present invention, in a lithium ion secondary battery using a negative electrode in which an active material having a high specific capacity such as silicon or tin is deposited on a current collector, wrinkles of the current collector, breakage of the current collector, or It is possible to provide a lithium ion secondary battery in which separation between the current collector and the active material layer is suppressed, the adhesion between the active material and the current collector is high, and stable performance can be maintained for a long time. In general, an electrode using a water-based binder is inferior in adhesion between a copper foil and an electrode coating film and has a shorter charge / discharge cycle life than an organic solvent-based binder. According to the present invention, swelling and peeling of the interface with the aqueous binder-using electrode can be prevented, and the cycle life is improved. For an electrode using an organic solvent binder, the adhesion is improved and the cycle life is extended by specifying a large interface real surface area.

(a)第1または第2の実施形態に係る電極3、(b)第1または第2の実施形態に係る電極6を示す断面図、(c)第1または第2の実施形態に係る電極9を示す断面図。(A) Electrode 3 according to the first or second embodiment, (b) Cross-sectional view showing the electrode 6 according to the first or second embodiment, (c) Electrode according to the first or second embodiment FIG. 非水電解質二次電池11を示す断面図。FIG. 3 is a cross-sectional view showing a nonaqueous electrolyte secondary battery 11. (a)水系バインダを用いた電極、(b)有機溶剤系バインダを用いた電極、の実施例における容量維持率を示すプロット。The plot which shows the capacity | capacitance maintenance factor in the Example of (a) the electrode using an aqueous binder, and (b) the electrode using an organic-solvent binder.

[第1の実施形態]
(第1の実施形態にかかる集電体の構成)
第1の実施形態にかかる電極用集電体は、図1(a)、(b)、(c)に示す集電体1、4、7である。集電体1、4,7は、電極活物質または導電助剤と水系バインダとを含むスラリーを塗布することで活物質含有層2、5、8を形成する。集電体1、4,7の活物質含有層2、5、8を形成する面において、粗さ(Z軸)方向の解像度を0.05μmで測定を行った場合、実表面積を単位平面面積で割った表面積比率が1.1〜4.0であることを特徴とする。
[First Embodiment]
(Configuration of current collector according to the first embodiment)
The current collectors for electrodes according to the first embodiment are current collectors 1, 4, and 7 shown in FIGS. 1 (a), 1 (b), and 1 (c). The current collectors 1, 4, and 7 form the active material-containing layers 2, 5, and 8 by applying a slurry containing an electrode active material or a conductive additive and an aqueous binder. When the surface of the current collectors 1, 4, 7 on which the active material containing layers 2, 5, 8 are formed is measured with a resolution in the roughness (Z-axis) direction of 0.05 μm, the actual surface area is the unit plane area The surface area ratio divided by is 1.1 to 4.0.

実表面積とは、表面の微小な凹凸の表面積を含んだ表面積である。電極用集電体の表面の実表面積測定は、超深度形状測定レーザー顕微鏡を用いた微小区画表面の測定と画像解析により行われる。例えば、ピンホール共焦点光学式スキャン方式によるレーザー顕微鏡では、概略次の様な測定解析に基づく。Z軸方向の或る高さ位置における、指定倍率での特定縦横画面の広さを有するX−Y平面内を、当該装置の解像度により決まる数を有する点の位置をレーザースキャン測定する。これをZ軸方向に指定解像度毎に移動して、X−Y平面内測定を繰り返し行い、各平面データを取り込んだ後に、三次元表現して算出する。現状の装置において、観察倍率は数百倍から2万倍まで、平面レーザー走査精度は1024×768ピクセルから2048×1536ピクセルまで、Z軸方向リニアスケール解像度は10nm(0.01μm)から0.5nm(0.0005μm)まで可能であり、これらの値は装置に依る。
単位平面面積とは、測定した範囲の、表面の凹凸を無視した幾何学的な面積である。表面積比率とは、実表面積を単位平面面積で割った値である。表面の凹凸が無く、表面の平滑度が高いほど、表面積比率は、最低値の1に近くなる。表面積比率が高いほど、表面の凹凸が著しいことを意味する。
The actual surface area is a surface area including the surface area of minute irregularities on the surface. The actual surface area of the surface of the electrode current collector is measured by measuring the surface of the minute compartment and image analysis using an ultra-deep shape measurement laser microscope. For example, a laser microscope using a pinhole confocal optical scanning method is based on the following measurement analysis. Laser scanning measurement is performed on the position of a point having a number determined by the resolution of the apparatus in an XY plane having a specific vertical and horizontal screen width at a specified magnification at a certain height position in the Z-axis direction. This is moved in the Z-axis direction for each designated resolution, and XY in-plane measurement is repeatedly performed. After each plane data is captured, the three-dimensional representation is calculated. In the current apparatus, the observation magnification is several hundred times to 20,000 times, the planar laser scanning accuracy is from 1024 × 768 pixels to 2048 × 1536 pixels, and the Z-axis direction linear scale resolution is 10 nm (0.01 μm) to 0.5 nm. (0.0005 μm) is possible and these values depend on the device.
The unit plane area is a geometric area in the measured range ignoring surface irregularities. The surface area ratio is a value obtained by dividing the actual surface area by the unit plane area. The higher the surface smoothness is, the more the surface area ratio is closer to the minimum value of 1 as there are no surface irregularities. Higher surface area ratio means more uneven surface.

一般に、表面積比率が高いほど実際に密着している面積が大きいので密着性は向上する。一方で、表面積比率が高い表面形状においては、凹凸形状や凹凸形状に起因する実厚みの変化、スラリー塗布量や電極厚みの変化等が原因となる問題も派生する。例えば、凸形状部では、充放電時に電流集中を生じ、電流密度が高くなることから、界面に副反応を生じる。これにより、電解液成分の分解反応などの障害となる事象を起こすことがある。特に重篤な例として、水と表面凸形状の複合的影響が挙げられる。非水電解質二次電池では、電解液中の水溶媒は原則含まないように処理がなされるが、水やフッ化水素イオンなどはppmオーダーでは含有していることが多い。充放電を繰り返すにつれて、副反応等により徐々に増加していく可能性が高い。また、水系バインダ電極塗膜にも乾燥条件によっては水分が残存している場合が考えられる。前記の表面凸形状が強いと、これら微量の水分等が負極表面または銅箔界面において、高電流密度による還元分解を生じる。このとき発生する水素ガスが、電極塗膜の膨れや集電体からの剥離を引き起こす。このような現象を防止するために、水系バインダによる電極作製に用いる集電体に対しては、実表面積を単位平面面積で割った表面積比率を4.0以下に抑える必要がある。これにより水の還元分解が大幅に抑制されるので、電極塗膜の密着性低下や充放電特性の低下が抑制される。前記の理由から、水系バインダを用いる電極の集電体の表面積比率は小さいほど適するが、下限値としては1.1程度である。   In general, the higher the surface area ratio, the greater the area that is actually in close contact, so the adhesion is improved. On the other hand, in a surface shape with a high surface area ratio, problems such as uneven shapes, changes in actual thickness due to uneven shapes, changes in slurry application amount, electrode thickness, and the like are also derived. For example, in the convex portion, current concentration occurs at the time of charging / discharging, and the current density increases, so that a side reaction occurs at the interface. This may cause an obstacle such as a decomposition reaction of the electrolyte component. A particularly severe example is the combined effect of water and surface convexity. In a non-aqueous electrolyte secondary battery, the treatment is performed so as not to include the aqueous solvent in the electrolytic solution in principle, but water, hydrogen fluoride ions, and the like are often contained on the order of ppm. As charging / discharging is repeated, there is a high possibility that it gradually increases due to side reactions and the like. Also, water may remain in the aqueous binder electrode coating film depending on the drying conditions. When the surface convex shape is strong, these trace amounts of moisture and the like cause reductive decomposition due to high current density at the negative electrode surface or the copper foil interface. The hydrogen gas generated at this time causes swelling of the electrode coating film and peeling from the current collector. In order to prevent such a phenomenon, it is necessary to suppress a surface area ratio obtained by dividing an actual surface area by a unit plane area to 4.0 or less for a current collector used for electrode preparation with an aqueous binder. Thereby, since reductive decomposition of water is suppressed significantly, the adhesiveness fall of an electrode coating film and the fall of charging / discharging characteristic are suppressed. For the above reasons, the smaller the surface area ratio of the current collector of the electrode using the aqueous binder, the better, but the lower limit is about 1.1.

前記同様の理由から、水系バインダを用いる電極における集電体の表面粗さも小さい方が適する。十点平均粗さRzが2.0μm以下が望ましい。下限値としてはRz1.0μm程度である。すなわち、第1の実施形態にかかる電極用集電体である、図1(a)、(b)、(c)に示す集電体1、4、7の表面粗さRzが1.0〜2.0μmである特徴を有する。   For the same reason as described above, it is suitable that the surface roughness of the current collector in the electrode using the aqueous binder is also small. The ten-point average roughness Rz is desirably 2.0 μm or less. The lower limit is about Rz 1.0 μm. That is, the surface roughness Rz of the current collectors 1, 4, and 7 shown in FIGS. 1A, 1 </ b> B, and 1 </ b> C, which is the electrode current collector according to the first embodiment, is 1.0 to 1.0. It has a feature of 2.0 μm.

本発明においては、集電体は厚みの薄いものであることが好ましく、従って銅箔やアルミニウム箔などの金属箔、特に銅箔の場合には電解銅箔や圧延銅箔であることが好ましい。集電体の厚さは、電池用途に応じて、薄いものとしては8μm、厚いものとしては20μm程度が好ましい。8μm以下では箔の強度が保てず活物質の膨張・収縮時に破断が生じるためである。また20μmを超えると電池特性は満足できるが電池自体が大きく、重くなることから20μm程度までが好ましい。   In the present invention, the current collector is preferably thin, and therefore, it is preferably a metal foil such as a copper foil or an aluminum foil, particularly an electrolytic copper foil or a rolled copper foil in the case of a copper foil. The thickness of the current collector is preferably about 8 μm for the thin and about 20 μm for the thick depending on the battery application. This is because if the thickness is 8 μm or less, the strength of the foil cannot be maintained, and breakage occurs when the active material expands or contracts. On the other hand, when the thickness exceeds 20 μm, the battery characteristics can be satisfied, but the battery itself is large and heavy.

活物質含有層は、集電体の片面または両面上に堆積して形成することができる。前記の水系バインダに限らなければ、一般的に活物質含有層を形成する集電体の面の表面粗さRzが1.0〜5μmであることが好ましい。集電体の両表面に活物質含有層を形成する場合には、集電体の両面の表面粗さRzが1.0〜5μmであり、尚且つ両面の表裏差が3μm以内であることが好ましい。
一般に、Rzの値が下限を下回ると活物質とのアンカー効果による密着性が乏しい。また、Rzの値が上限値を上回ると逆に活物質が粗化面の奥に均一に入り込まず、銅箔と活物質の密着性が悪くなる。他方、電極反応により副反応を生じる場合には、大きな粗面がその反応を助長することがある。前記の水系バインダの場合や、後述のように用いるバインダによって適正領域が認められる。また、円筒型や角型の多数回重ね巻く電池用途の場合には、凹凸や表面粗さの大き過ぎる集電体を用いると多重巻きの回数が限られ、それだけで電池全体の容量が制限されることに繋がる。なお、表面粗さの表裏の差が大きいと活物質の塗工工程で活物質の厚みが両面で異なり、出来上がった電極の特性が低下してしまう。
The active material-containing layer can be formed by being deposited on one side or both sides of the current collector. If it is not restricted to the said water-system binder, it is preferable that the surface roughness Rz of the surface of the collector which forms an active material content layer generally is 1.0-5 micrometers. When the active material-containing layer is formed on both surfaces of the current collector, the surface roughness Rz on both sides of the current collector is 1.0 to 5 μm, and the difference between the front and back surfaces is 3 μm or less. preferable.
Generally, when the value of Rz is lower than the lower limit, adhesion due to the anchor effect with the active material is poor. On the other hand, when the value of Rz exceeds the upper limit value, the active material does not uniformly enter the depth of the roughened surface, and the adhesion between the copper foil and the active material is deteriorated. On the other hand, when a side reaction occurs due to an electrode reaction, a large rough surface may promote the reaction. An appropriate region is recognized in the case of the water-based binder described above or depending on the binder used as described later. In addition, in the case of a cylindrical or square battery that is wound many times, using a current collector with too large irregularities or surface roughness limits the number of multiple windings, and that alone limits the capacity of the entire battery. It leads to that. In addition, if the difference between the front and back of the surface roughness is large, the thickness of the active material is different on both sides in the active material coating process, and the characteristics of the completed electrode are deteriorated.

また、集電体が銅箔である場合、粗面化処理が施されていてもよく、その粗面化処理は、粒径0.1〜3μmで、銅または、Cuを主成分として含む銅合金の微粒子を表面に付与することによりなされることが好ましい。Cuを主成分とする上記銅または銅合金からなる合金微粒子を粗化粒子として用いて、粗化粒子を銅めっきにより銅箔表面に固定した粗化処理層を形成する。このことにより、粗化粒子と未処理銅箔との密着性が向上し、また、粗化粒子の結晶粒径の制御によって粗さを調整することが容易になるからである。それにより、活物質(又はスラリー)の塗工性と密着性がより向上する。なお、主成分とするとは、50質量%以上含むことを意味する。   Further, when the current collector is a copper foil, a surface roughening treatment may be performed, and the surface roughening treatment has a particle diameter of 0.1 to 3 μm and copper or copper containing Cu as a main component. It is preferable that the fine particles of the alloy be applied to the surface. A roughening treatment layer in which the roughened particles are fixed to the surface of the copper foil by copper plating is formed using the alloy fine particles made of copper or a copper alloy containing Cu as a main component as the roughened particles. This is because the adhesion between the roughened particles and the untreated copper foil is improved, and the roughness can be easily adjusted by controlling the crystal grain size of the roughened particles. Thereby, the applicability | paintability and adhesiveness of an active material (or slurry) improve more. In addition, the main component means containing 50% by mass or more.

また、集電体がアルミニウム箔の場合、エッチング溶液への浸漬処理や、交流電解エッチングなどのエッチング処理により微細粗面化を行って実表面積を増加させることが好ましい。   Further, when the current collector is an aluminum foil, it is preferable to increase the actual surface area by performing fine surface roughening by an immersion treatment in an etching solution or an etching treatment such as alternating current electrolytic etching.

前記電極用集電体の表面に、クロメート処理層、ベンゾトリアゾール処理層、シランカップリング処理層、ニッケル処理層、亜鉛処理層、スズ処理層のいずれか一層以上を有することが好ましい。クロメート処理層とは、集電体をクロム酸塩や重クロム酸塩などの水溶液に浸漬処理し、或いは電解処理を行うことで、表面に得られる不動態層である。ベンゾトリアゾール処理層とは、集電体をベンゾトリアゾール水溶液に浸漬することで、集電体表面に生成する層である。シランカップリング処理層とは、集電体の表面をシランカップリング剤溶液にて浸漬処理することで得られる層である。ニッケル処理層とは、集電体表面にニッケルメッキなどを行って得られるニッケル層である。亜鉛処理層とは、集電体表面に亜鉛メッキなどを行って得られる亜鉛層である。スズ処理層とは、集電体表面にスズメッキなどを行って得られるスズ層である。いずれのメッキ処理も常法に従って実施することができ、高い導電性を阻害しない1μm以下の薄層が望ましい。   It is preferable that any one or more of a chromate treatment layer, a benzotriazole treatment layer, a silane coupling treatment layer, a nickel treatment layer, a zinc treatment layer, and a tin treatment layer is provided on the surface of the current collector for electrodes. The chromate treatment layer is a passive layer obtained on the surface by immersing the current collector in an aqueous solution such as chromate or dichromate or by performing electrolytic treatment. The benzotriazole-treated layer is a layer generated on the current collector surface by immersing the current collector in a benzotriazole aqueous solution. The silane coupling treatment layer is a layer obtained by immersing the surface of the current collector with a silane coupling agent solution. The nickel treatment layer is a nickel layer obtained by performing nickel plating or the like on the current collector surface. The zinc treatment layer is a zinc layer obtained by galvanizing the surface of the current collector. The tin treatment layer is a tin layer obtained by performing tin plating or the like on the current collector surface. Any of the plating treatments can be performed according to a conventional method, and a thin layer of 1 μm or less that does not inhibit high conductivity is desirable.

(集電体の機械的特性)
一般に集電体の引っ張り強度や破断伸びなどの機械的特性が低下すると、集電体の破断が生じる。ゲルマニウム、シリコン、スズなどの高比容量負極活物質を主体に使用する場合やカーボン系活物質と混合使用する場合等、どの様な粗化処理が施されていても電池の膨張・収縮を集電体が吸収することが出来ず、破断が生じる。破断を防ぐためには集電体の引っ張り強度が450MPa以上、破断伸び率が3%以上程度あることが好ましい。
(Mechanical characteristics of current collector)
Generally, when the mechanical properties such as the tensile strength and elongation at break of the current collector are lowered, the current collector is broken. The battery expands and contracts regardless of the roughening treatment, such as when mainly using high specific capacity negative electrode active materials such as germanium, silicon, and tin, or when mixed with carbon-based active materials. The electric body cannot absorb and breaks. In order to prevent breakage, it is preferable that the current collector has a tensile strength of 450 MPa or more and a break elongation of about 3% or more.

また、リチウムイオン電池用の負極集電体はその製造工程中に乾燥工程がある。この乾燥が不十分であると電池の特性が劣化する。しかしながら乾燥工程で集電体である銅箔が熱により軟化すると、部分伸長による歪みを生じたり、電極製造工程で電極設計仕様に合わなかったり、極端な場合には箔の破断という不具合をもたらす。よって、180℃5分加熱後の破断伸び率も3%以上を有することが好ましい。さらには、上述したような充放電時には、膨張収縮による大きな体積変化と応力歪みを集電箔にもたらす耐熱性が高く、弾性率などの機械的強度の優れる有機溶剤系バインダを用いることにより、電池特性も向上する場合がある。この場合には乾燥焼き付け後の集電体の引っ張り強度を保つため、耐熱性を有する銅箔を集電箔に用いて、300℃1時間加熱後の引っ張り強度は300MPa以上を有する箔が好ましい。   Moreover, the negative electrode collector for lithium ion batteries has a drying process in the manufacturing process. If this drying is insufficient, the characteristics of the battery deteriorate. However, when the copper foil as the current collector is softened by heat in the drying process, distortion due to partial elongation occurs, the electrode manufacturing process does not meet the electrode design specifications, and in extreme cases, the foil breaks. Therefore, it is preferable that the elongation at break after heating at 180 ° C. for 5 minutes is also 3% or more. Furthermore, at the time of charging / discharging as described above, the battery can be obtained by using an organic solvent-based binder that has high heat resistance that brings a large volume change and stress strain due to expansion and contraction to the current collector foil and excellent mechanical strength such as elastic modulus. The characteristics may also be improved. In this case, in order to maintain the tensile strength of the current collector after drying and baking, a heat-resistant copper foil is used for the current collector foil, and a foil having a tensile strength of 300 MPa or more after heating at 300 ° C. for 1 hour is preferable.

本発明において、引っ張り強度、伸び率は、日本工業規格(JIS K 6251)に定められた方法により、測定した値である。また、表面粗さRzは、日本工業規格(JIS B 0601−1994)に定められた十点平均粗さであり、例えば表面粗さ計により測定した値である。   In the present invention, the tensile strength and the elongation rate are values measured by a method defined in Japanese Industrial Standard (JIS K 6251). Further, the surface roughness Rz is a ten-point average roughness defined in Japanese Industrial Standard (JIS B 0601-1994), for example, a value measured by a surface roughness meter.

第1の実施形態に係る電極用集電体1、4、7に、電極活物質または導電助剤と水系バインダとを含むスラリーを塗布して活物質含有層2、5、8を形成した電極3、6、9は、サイクル特性に優れ、長寿命である。   The electrode which formed the active material containing layers 2, 5, and 8 by apply | coating the slurry containing an electrode active material or a conductive support agent, and a water-system binder to the electrode collectors 1, 4, and 7 which concern on 1st Embodiment. 3, 6, and 9 are excellent in cycle characteristics and have a long life.

(第2の実施形態にかかる集電体の構成)
第2の実施形態にかかる電極用集電体は、図1(a)、(b)、(c)に示す集電体1、4、7であり、集電体1、4、7は、電極活物質または導電助剤と有機溶剤系バインダとを含むスラリーを塗布して活物質含有層2、5、8を形成するための電極10に用いられる集電体であって、活物質含有層2、5、8を形成する面において、実表面積を単位平面面積で割った表面積比率が1.0〜7.0であることを特徴とする。つまり、50μm角平面の微小表面を超深度形状測定顕微鏡で測定した集電体の、或いは粗化処理後の集電体の、それぞれの表面積が2500〜17500μm/2500μmあることが好ましい。
(Configuration of current collector according to the second embodiment)
The electrode current collectors according to the second embodiment are current collectors 1, 4, and 7 shown in FIGS. 1 (a), (b), and (c). A current collector used for an electrode 10 for forming an active material-containing layer 2, 5, 8 by applying a slurry containing an electrode active material or a conductive additive and an organic solvent-based binder, the active material-containing layer 2, 5, and 8, the surface area ratio obtained by dividing the actual surface area by the unit plane area is 1.0 to 7.0. In other words, a 50μm square planar micro surface of the current collector was measured with an ultra deep shape measuring microscope, or the roughening treatment after the current collector, it is preferable that each of the surface area is 2500~17500μm 2 / 2500μm 2.

第2の実施形態においては、実表面積を単位平面面積で割った表面積比率が異なる点と、用いられるスラリーに含まれるバインダが有機溶剤系バインダであることを除けば、第1の実施形態と同様の構成を有する。バインダが有機溶剤系であるので、水分の塗膜残存が水系バインダに比べて少なく、水系バインダのような還元分解によるガス発生の発生量が少ないため、水系バインダに比べ表面積比率を抑える必要性が低い。よって集電体表面を電極塗膜密着性と電池電極特性に優れる最適な表面積比率とすることができる。   The second embodiment is the same as the first embodiment except that the surface area ratio obtained by dividing the actual surface area by the unit plane area is different and that the binder contained in the slurry used is an organic solvent-based binder. It has the composition of. Since the binder is organic solvent-based, there is less moisture film remaining than water-based binders, and there is less gas generation due to reductive decomposition like water-based binders, so there is a need to suppress the surface area ratio compared to water-based binders. Low. Therefore, the current collector surface can be set to an optimum surface area ratio excellent in electrode coating film adhesion and battery electrode characteristics.

第2の実施形態に係る電極用集電体1、4、7に、電極活物質または導電助剤と有機溶剤系バインダとを含むスラリーを塗布して活物質含有層2、5、8を形成した電極3、6、9は、サイクル特性に優れ、長寿命である。   Active material containing layers 2, 5, 8 are formed by applying a slurry containing an electrode active material or a conductive additive and an organic solvent binder to the electrode current collectors 1, 4, 7 according to the second embodiment. The electrodes 3, 6, and 9 have excellent cycle characteristics and a long life.

(本発明に係る電極用集電体の製造方法)
本発明に係る電極用集電体は、銅箔からなる場合、未処理箔を作製し、その後に粗面化処理や防錆等の機能表面処理を行うことで、製造される。図1(a)に示す集電体1は、未処理銅箔の表面に防錆処理や平滑なメッキ処理を施した集電体である。図1(b)は、未処理銅箔の表面に、化学薬品によるエッチングや交流エッチングによる粗面化処理を施した集電体である。図1(c)に示す集電体7は、表面に銅合金の微粒子10を含むコブ状銅層を形成する粗面化処理を施した集電体である。
(Method for producing current collector for electrode according to the present invention)
When the current collector for an electrode according to the present invention is made of a copper foil, it is produced by producing an untreated foil and then performing a functional surface treatment such as a roughening treatment or rust prevention. A current collector 1 shown in FIG. 1 (a) is a current collector in which the surface of an untreated copper foil is subjected to rust prevention treatment and smooth plating treatment. FIG.1 (b) is the electrical power collector which performed the roughening process by the etching by a chemical agent or alternating current etching on the surface of untreated copper foil. A current collector 7 shown in FIG. 1 (c) is a current collector that has been subjected to a roughening treatment for forming a bump-shaped copper layer containing copper alloy fine particles 10 on the surface.

(未処理銅箔の作製方法)
以下に本発明のリチウムイオン二次電池電極用集電体に用いる未処理銅箔の作製方法の一例を説明する。白金属元素又はその酸化物で被覆したチタンからなる不溶性陽極(DSA:Dimensionally Stable Anode)と、該陽極に対向させて設けられたチタン製陰極ドラムとの間に電解液である硫酸−銅水溶液を供給する。陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させる。析出させた銅を陰極ドラム表面から引き剥がし、連続的に巻き取ることにより電解銅箔が製造される。
(Production method of untreated copper foil)
Below, an example of the preparation methods of the untreated copper foil used for the collector for lithium ion secondary battery electrodes of this invention is demonstrated. An aqueous solution of sulfuric acid and copper as an electrolyte is provided between an insoluble anode (DSA) made of titanium coated with a white metal element or an oxide thereof and a titanium cathode drum provided to face the anode. Supply. Copper is deposited on the surface of the cathode drum by applying a direct current between the two electrodes while rotating the cathode drum at a constant speed. The deposited copper is peeled off from the surface of the cathode drum and continuously wound up to produce an electrolytic copper foil.

本発明のリチウムイオン二次電池電極用銅箔に用いる未処理銅箔は、硫酸−銅電解液に、例えばメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000以下の低分子量膠及び高分子多糖類を加えることにより製造することができる。例えば、MPS(3−メルカプト1−プロパンスルホン酸ナトリウム)、HEC(ヒドロキシエチルセルロース)、膠が挙げられる。   The untreated copper foil used for the copper foil for a lithium ion secondary battery electrode of the present invention includes, for example, a compound having a mercapto group, a chloride ion, a low molecular weight glue having a molecular weight of 10,000 or less, and a high molecular weight in a sulfuric acid-copper electrolyte. It can be produced by adding saccharides. For example, MPS (3-mercapto 1-propanesulfonic acid sodium), HEC (hydroxyethyl cellulose), glue can be mentioned.

電解銅箔ではチタン製陰極ドラムに接していた面を光沢面(以下S面)、電解液に接していた面をマット面(以下M面)とするのが一般的である。本発明における粗化処理を施す前の電解銅箔は、両面平滑または光沢箔が望ましく、両表面の粗さRzは2.5μm以下の低いものが望ましく、表裏差も小さい箔が好適である。しかし、従来のプリント回路用途技術で製造される電解銅箔はM面に山谷状の凹凸を持ち、18μm以下の箔厚の表面粗さは2.2〜5.0μm程度である。このように表面の粗い銅箔に、例えば粗面化処理を行っても、十分な効果が出ない。すなわち、未処理時の表面粗さが大きい箔を用いると、凹凸形状がさらに大きくなり、表面粗さが大きくなった不均一な粗面形状となる。粗面化処理後の集電体の、表面積が25000μm/2500μmよりも大きくなり、表面積比率が10を超え本発明の効果を十分に引き出さないためである。均一に微細粗面化された集電体表面形状が望ましい。In the electrolytic copper foil, the surface in contact with the titanium cathode drum is generally a glossy surface (hereinafter referred to as S surface), and the surface in contact with the electrolytic solution is generally defined as a mat surface (hereinafter referred to as M surface). The electrolytic copper foil before the roughening treatment in the present invention is preferably a double-sided smooth or glossy foil, and the surface Rz of both surfaces is preferably as low as 2.5 μm or less, and a foil having a small difference in front and back is suitable. However, the electrolytic copper foil manufactured by the conventional printed circuit application technology has ridges and valleys on the M surface, and the surface roughness of the foil thickness of 18 μm or less is about 2.2 to 5.0 μm. Even if, for example, a roughening treatment is performed on the copper foil having a rough surface as described above, a sufficient effect cannot be obtained. That is, when a foil having a large surface roughness when not treated is used, the uneven shape is further increased, resulting in a non-uniform rough surface shape having a large surface roughness. Of the current collector after the surface roughening treatment, because the surface area 25000μm 2 / 2500μm 2 becomes larger than the surface area ratio not sufficiently pulled the effect of exceeding the present invention 10. A current collector surface shape that is uniformly finely roughened is desirable.

(未処理銅箔の粗面化処理)
表面粗さRzが1.0〜2.0μm、或いは5μm程度までである集電体表面を得るために、一部の未処理電解銅箔の表面を粗面化処理する。この粗面化処理としては、電解めっき法が好適に採用できる。電解めっき法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗面化する方法である。前記の表面粗さに適合している未処理箔のままでも一部は、クロメート処理やシランカップリング処理等の防錆処理ほか、機能表面処理を施したものを用いることが可能である。また、表面粗さや凹凸、表面積比率を小さくするために、平滑なめっき処理を施すことも可能である。
(Roughening treatment of untreated copper foil)
In order to obtain a current collector surface having a surface roughness Rz of about 1.0 to 2.0 μm or about 5 μm, the surface of some untreated electrolytic copper foils is roughened. As this roughening treatment, an electrolytic plating method can be suitably employed. The electrolytic plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil. Even if the untreated foil conforms to the above surface roughness, a part of which has been subjected to a functional surface treatment in addition to a rust prevention treatment such as a chromate treatment or a silane coupling treatment can be used. Moreover, in order to reduce surface roughness, unevenness, and surface area ratio, it is possible to perform smooth plating treatment.

粗面化処理として、例えば、電析法で銅や銅合金などの銅を主成分とするめっき膜である粗化処理層を未処理電解銅箔表面に形成する。電解めっき法としては、以下のような方法が好ましい。まず、粒径0.1〜3μmで、銅または、Cuを主成分として含む銅合金の微粒子を添加した銅めっき電解液中に、未処理電解銅箔を浸す。未処理電解銅箔の表面に微粒子を付与し、粗粒粉状銅めっき層を形成する。次いで、この粒粉状銅めっき層の上に、その凹凸形状を損なわないようにカプセルめっきを行う。これにより実質的に平滑なめっき層を堆積させ、粒粉状銅をいわゆるコブ状銅層とする。コブ状銅層が形成された面が、粗面となる。   As the roughening treatment, for example, a roughening treatment layer which is a plating film mainly composed of copper such as copper or copper alloy is formed on the surface of the untreated electrolytic copper foil by an electrodeposition method. As the electrolytic plating method, the following method is preferable. First, an untreated electrolytic copper foil is immersed in a copper plating electrolytic solution having a particle diameter of 0.1 to 3 μm and added with copper or copper alloy fine particles containing Cu as a main component. Fine particles are imparted to the surface of the untreated electrolytic copper foil to form a coarse powdery copper plating layer. Next, capsule plating is performed on the grainy copper plating layer so as not to impair the uneven shape. Thereby, a substantially smooth plating layer is deposited, and the granular copper is used as a so-called bumpy copper layer. The surface on which the bumpy copper layer is formed becomes a rough surface.

例えば、特許文献(特公昭53−39376号公報)に開示された、プリント回路用銅箔に用いられているめっきによる粗面化方法を用いても良い。すなわち、いわゆる「やけめっき」により、粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、その凹凸形状を損なわないようにカプセルめっきを行う。これにより実質的に平滑なめっき層を堆積させて粒粉状銅をいわゆるコブ状銅層とする。コブ状銅層が形成された面が、粗面となる。   For example, you may use the roughening method by the plating currently disclosed by patent document (Japanese Patent Publication No.53-39376) used for the copper foil for printed circuits. That is, after a granular copper plating layer is formed by so-called “bake plating”, capsule plating is performed on the granular copper plating layer so as not to impair the uneven shape. As a result, a substantially smooth plating layer is deposited to make the powdered copper into a so-called bumpy copper layer. The surface on which the bumpy copper layer is formed becomes a rough surface.

また、ギ酸や塩酸などの化学薬品によるエッチングや交流エッチングによる粗面化処理を用いても良く、アルミ箔や各合金箔にも適用可能である。   Further, etching with a chemical such as formic acid or hydrochloric acid or roughening treatment by alternating current etching may be used, and it is also applicable to aluminum foil and each alloy foil.

(本発明にかかる電極用集電体を用いた電極)
第1及び第2の実施形態に係る非水電解質二次電池用電極3、6、7は、図1(a)、(b)、(c)に示すように、第1及び第2の実施形態に係る電極用集電体1、4、7に、電極活物質または導電助剤と、水系バインダと、を含むスラリーを塗布して活物質含有層2、5、8を形成したことを特徴とする。
(Electrode using current collector for electrode according to the present invention)
As shown in FIGS. 1A, 1B, and 1C, the non-aqueous electrolyte secondary battery electrodes 3, 6, and 7 according to the first and second embodiments are arranged in the first and second embodiments. The active material containing layers 2, 5, 8 are formed by applying a slurry containing an electrode active material or a conductive additive and an aqueous binder to the electrode current collectors 1, 4, 7 according to the embodiment. And

本発明における活物質は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質を含む。このような活物質材料としては、カーボン、シリコン、ゲルマニウム、スズ、鉛、亜鉛、マグネシウム、ナトリウム、アルミニウム、カリウム、インジウム、アンチモンなどが挙げられる。これらの中でも、シリコン、及びスズがその高い理論容量から好ましく用いられる。従って、本発明において用いる活物質含有層は、シリコン、またはスズを主成分とする層であることが好ましく、特に好ましくはシリコンを主成分とした層である。   The active material in the present invention is a material that occludes and releases lithium, and includes an active material that occludes lithium by alloying. Examples of such an active material include carbon, silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, potassium, indium, and antimony. Among these, silicon and tin are preferably used because of their high theoretical capacity. Therefore, the active material-containing layer used in the present invention is preferably a layer containing silicon or tin as a main component, and particularly preferably a layer containing silicon as a main component.

また、本発明における活物質は、結晶、非晶質または微結晶を問わず用いることができる。また、活物質の一部が合金となっている形態や、単体に合金が付帯した形態、或いは単体と合金の両方を個別にスラリー混合した後、混合混成した形態を用いることも可能である。例えば、前記の活物質材料の単体と、コバルト、ニッケル、カルシウム、スカンジウム、銅、銀、金、鉄、チタン、バナジウム、クロム、マンガン、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、バリウム、ハフニウム、タンタル、タングステン、イリジウムから選ばれる金属と前記活物質材料との合金との混合や、単体と合金との接合形態である。特に、シリコンを活物質とする場合には、マンガン、クロム、ストロンチウム、コバルト、ジルコニウム、ニオブ、モリブデン、チタン、バナジウム、ニッケル、カルシウム、鉄、金、銀、銅、スカンジウム、タングステン、イリジウム、ハフニウム、バリウム、ロジウム、ルテニウム、イットリウムから選択される金属との合金の形態が望ましい。これらは、活物質単体と固溶体の第一の相と、活物質元素とそれ以外の元素の化合物である第二の相を有し、両相が接合している形態を含む。   Further, the active material in the present invention can be used regardless of crystal, amorphous or microcrystal. Further, it is possible to use a form in which a part of the active material is an alloy, a form in which an alloy is attached to a single substance, or a form in which both the simple substance and the alloy are mixed with a slurry and then mixed and mixed. For example, a single element of the above active material, cobalt, nickel, calcium, scandium, copper, silver, gold, iron, titanium, vanadium, chromium, manganese, strontium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, barium , A mixture of a metal selected from hafnium, tantalum, tungsten, and iridium and an alloy of the active material, or a bonding form of a simple substance and the alloy. In particular, when silicon is used as an active material, manganese, chromium, strontium, cobalt, zirconium, niobium, molybdenum, titanium, vanadium, nickel, calcium, iron, gold, silver, copper, scandium, tungsten, iridium, hafnium, An alloy form with a metal selected from barium, rhodium, ruthenium and yttrium is desirable. These include a first phase of a single active material and a solid solution, and a second phase that is a compound of an active material element and other elements, in which both phases are joined.

また、前記の活物質元素を含む形態には、一次粒子と、一次粒子を造粒により大きくした二次粒子があり、これら粒径は概略0.01〜10μm程度のものを用いる。さらには、これら活物質表面を、導電性物質で被覆したり、親水性、疎水性処理、或いは非凝集分散性処理などを施したりした形態を用いてもよい。シリコンの表面酸化による導電性低下を防止する非晶質カーボンコートなどが好適には挙げられる。電気化学理論比容量からはシリコンまたはシリコン−シリコン合金や前記のカーボンコートした形態が好適に用いられる。充放電サイクルの長寿命化目的に一部に酸素を取り込んだシリコン系活物質形態も用いられる。酸素を有する酸化シリコン形態がリチウムイオンの電気化学的合金化による体積膨張を緩和するので、活物質シリコンの破壊微粉化を抑制することができるからである。同様の理由と充放電特性のさらなる安定性から、カーボン系活物質とシリコンやスズを混合使用した活物質を含有する電極電池としても優れる。   The form containing the active material element includes primary particles and secondary particles obtained by enlarging the primary particles by granulation, and those having a particle size of about 0.01 to 10 μm are used. Furthermore, a form in which the surface of these active materials is coated with a conductive material, or subjected to hydrophilicity, hydrophobicity treatment, non-aggregation dispersion treatment, or the like may be used. Preferable examples include an amorphous carbon coat that prevents a decrease in conductivity due to surface oxidation of silicon. From the electrochemical theoretical specific capacity, silicon or a silicon-silicon alloy or the above-described carbon-coated form is preferably used. For the purpose of extending the life of the charge / discharge cycle, a silicon-based active material form partially incorporating oxygen is also used. This is because the silicon oxide form having oxygen relaxes the volume expansion due to electrochemical alloying of lithium ions, so that the active material silicon can be prevented from being broken and pulverized. From the same reason and the further stability of charge / discharge characteristics, it is excellent as an electrode battery containing an active material in which a carbon-based active material is mixed with silicon or tin.

本発明における活物質含有層は、活物質または導電助剤をバインダ、溶剤とともにスラリー状にして、集電体(銅箔)の表面に塗布、乾燥、プレスすることにより形成する。   The active material-containing layer in the present invention is formed by applying an active material or a conductive auxiliary agent into a slurry together with a binder and a solvent, and applying, drying and pressing the surface of the current collector (copper foil).

バインダとしては、水系バインダか、有機溶剤系バインダを用いることができる。また、水系バインダを用いる場合には、溶剤として水系の溶剤を、有機溶剤系バインダを用いる場合には、溶剤として有機溶剤を用いることができる。   As the binder, an aqueous binder or an organic solvent binder can be used. Further, when using an aqueous binder, an aqueous solvent can be used as a solvent, and when using an organic solvent binder, an organic solvent can be used as a solvent.

水系バインダとしては、スチレンブタジエンコポリマー(SBR)やラテックス、及びポリアクリレートに代表されるポリマーを水中に粒子状に分散させた水系バインダを用いることができる。   As the water-based binder, a water-based binder in which a polymer represented by styrene-butadiene copolymer (SBR), latex, and polyacrylate is dispersed in water can be used.

有機溶剤系バインダとしては、ポリフッ化ビニリデン、エポキシ樹脂、ポリアミドイミド、ポリベンズイミダゾール、ポリイミドを用いることができる。これらの有機溶剤系バインダを乾燥または焼成硬化して得られる塗膜の特性が、引っ張り強度が150MPa以上であり、引っ張り弾性率が2GPa以上であり、伸び率が20%以上であることが好ましい。シリコンをはじめとする高電気化学比容量を有する金属系活物質を用いる非水電解質二次電池では、リチウムの電気化学的合金化(充電)によって大きく体積膨張し、脱合金化(放電)によって体積収縮する。従って、集電体と電極塗膜界面や、塗膜間の活物質周囲には大きな応力が作用し、界面剥離や凝集破壊または塗膜破断を生じる可能性がある。これを防止または抑止するためには、塗膜マトリクスを形成するバインダやポリマーが応力による塑性変形し難い特性を有することが好ましいためである。   As the organic solvent binder, polyvinylidene fluoride, epoxy resin, polyamideimide, polybenzimidazole, and polyimide can be used. It is preferable that the coating film obtained by drying or baking and curing these organic solvent binders has a tensile strength of 150 MPa or more, a tensile elastic modulus of 2 GPa or more, and an elongation of 20% or more. In non-aqueous electrolyte secondary batteries using a metal-based active material having a high electrochemical specific capacity such as silicon, the volume expands greatly due to electrochemical alloying (charging) of lithium and the volume is increased by dealloying (discharging). Shrink. Therefore, a large stress acts on the current collector / electrode coating interface or around the active material between the coatings, and there is a possibility that interface peeling, cohesive failure, or coating failure occurs. This is because, in order to prevent or inhibit this, it is preferable that the binder or polymer forming the coating film matrix has a characteristic that is difficult to be plastically deformed by stress.

本発明における活物質含有層には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質含有層を形成する際に添加してもよい。すなわち、予めリチウムを含有する活物質含有層を集電体表面に形成する。また、活物質含有層を形成した後に、活物質含有層にリチウムを吸蔵または添加させてもよい。活物質含有層にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法等がある。   In the active material-containing layer in the present invention, lithium may be occluded or added in advance. Lithium may be added when forming the active material-containing layer. That is, an active material-containing layer containing lithium is formed on the current collector surface in advance. Moreover, after forming an active material content layer, you may occlude or add lithium to an active material content layer. Examples of the method for inserting or adding lithium into the active material-containing layer include a method for electrochemically inserting or adding lithium.

(リチウムイオン二次電池の構成)
本発明のリチウムイオン二次電池は、上記本発明のリチウムイオン二次電池用電極からなる負極と、リチウムを吸蔵・放出する物質を活物質に用いた正極と、非水電解質とを備えている。例えば、図2に示したように、本発明のリチウムイオン二次電池である非水電解質二次電池11は、正極13、負極12を、セパレータ15を介して、セパレータ−負極−セパレータ−正極の順に積層配置している。このとき正極13が内側になるように巻回して極板群を構成し、これを電池缶19内に挿入する。そして正極13は正極リード21を介して正極端子25に、負極12は負極リード23を介して電池缶19にそれぞれ接続している。このことから、非水電解質二次電池11内部で生じた化学エネルギーを電気エネルギーとして外部に取り出し得るようにする。次いで、電池缶19内に電解質17を極板群を覆うように充填する。続いて、電池缶19の上端(開口部)に、封口体27を、環状の絶縁ガスケットを介して取り付けることで製造することができる。このとき、封口体27は、円形蓋板とその上部の正極端子25からなり、その内部に安全弁機構を内蔵した構造となっている。
(Configuration of lithium ion secondary battery)
A lithium ion secondary battery of the present invention comprises a negative electrode comprising the lithium ion secondary battery electrode of the present invention, a positive electrode using a material that absorbs and releases lithium as an active material, and a nonaqueous electrolyte. . For example, as shown in FIG. 2, the non-aqueous electrolyte secondary battery 11 which is a lithium ion secondary battery of the present invention includes a positive electrode 13 and a negative electrode 12, which are separator-negative electrode-separator-positive electrode through a separator 15. Laminated in order. At this time, the positive electrode 13 is wound so as to be on the inner side to constitute an electrode plate group, which is inserted into the battery can 19. The positive electrode 13 is connected to the positive electrode terminal 25 via the positive electrode lead 21, and the negative electrode 12 is connected to the battery can 19 via the negative electrode lead 23. Therefore, the chemical energy generated inside the nonaqueous electrolyte secondary battery 11 can be taken out as electric energy. Next, the battery 17 is filled with the electrolyte 17 so as to cover the electrode plate group. Then, it can manufacture by attaching the sealing body 27 to the upper end (opening part) of the battery can 19 via a cyclic | annular insulating gasket. At this time, the sealing body 27 is composed of a circular lid plate and the positive electrode terminal 25 on the upper portion thereof, and has a structure in which a safety valve mechanism is built therein.

本発明のリチウムイオン二次電池において用いる非水電解質は、溶媒に溶質を溶解した電解質である。非水電解質の溶媒としては、リチウムイオン二次電池に使用される溶媒であれば特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネートが挙げられる。好ましくは、環状カーボネートと鎖状カーボネートとの混合溶媒が用いられる。また、上記環状カーボネートと、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒や、γ−ブチロラクトン、スルホラン、酢酸メチル等の鎖状エステル等との混合溶媒を用いてもよい。   The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte in which a solute is dissolved in a solvent. The solvent for the nonaqueous electrolyte is not particularly limited as long as it is a solvent used in a lithium ion secondary battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, and diethyl carbonate. And chain carbonates such as methyl ethyl carbonate. Preferably, a mixed solvent of a cyclic carbonate and a chain carbonate is used. Alternatively, a mixed solvent of the above cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane, or a chain ester such as γ-butyrolactone, sulfolane, or methyl acetate may be used. Good.

非水電解質の溶質としては、リチウムイオン二次電池に用いられる溶質であれば特に限定されるものではなく、例えば、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10、Li212Cl12などが挙げられる。特に、LiXFy(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である。)と、リチウムペルフルオロアルキルスルホン酸イミドLiN(Cm2m+1SO2)(Cn2n+1SO2)(式中、m及びnはそれぞれ独立して1〜4の整数である。)またはリチウムペルフルオロアルキルスルホン酸メチドLiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(式中、p、q及びrはそれぞれ独立して1〜4の整数である。)との混合溶質が好ましく用いられる。これらの中でも、LiPF6とLiN(C25SO22との混合溶質が特に好ましく用いられる。The solute of the nonaqueous electrolyte is not particularly limited as long as it is a solute used for a lithium ion secondary battery. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , Examples thereof include LiClO 4 , Li 2 B 10 Cl 10 , and Li 2 B 12 Cl 12 . In particular, LiXFy (wherein X is P, As, Sb, B, Bi, Al, Ga, or In, y is 6 when X is P, As, or Sb, and X is B, Bi, Al) , Ga or the y when in is 4.), lithium perfluoroalkyl sulfonic acid imide LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) ( wherein,, m and n Are each independently an integer of 1 to 4.) or lithium perfluoroalkylsulfonic acid methide LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (wherein p, q and r are each independently an integer of 1 to 4), and mixed solutes are preferably used. Among these, a mixed solute of LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 is particularly preferably used.

また、非水電解質として、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデンなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、Li3Nなどの無機固体電解質を用いることができる。As the non-aqueous electrolyte, a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.

本発明のリチウムイオン二次電池の電解質は、イオン導電性を発現させる溶質としてのLi化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。   The electrolyte of the lithium ion secondary battery of the present invention is limited as long as the Li compound as a solute that develops ionic conductivity and the solvent that dissolves and retains it are not decomposed by the voltage at the time of charging, discharging or storing the battery. Can be used without any problem.

また、正極に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12などのリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に合金化する物質であれば、制限なく用いることができる。Further, as the positive electrode active material used for the positive electrode, lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , Examples include metal oxides such as MnO 2 that do not contain lithium. In addition, any substance that can electrochemically alloy lithium can be used without limitation.

本発明によれば、電極バインダに応じた集電体の最適な仕様を提供できるので、界面密着性等が充放電繰り返しに対しても損なわれず、高いサイクル寿命を達成することができる電極と二次電池を提供することが出来る。   According to the present invention, since it is possible to provide an optimum specification of the current collector according to the electrode binder, the interfacial adhesion and the like are not impaired even after repeated charge and discharge, and an electrode that can achieve a high cycle life. A secondary battery can be provided.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

〔実施例及び比較例〕
〔未処理銅箔の製造〕
表1に示す電解条件により、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて、10μm厚さの未処理銅箔3種(A,B,C)を製箔した。なお、電解条件は適宜変更できるものであり、これらの濃度や電解条件に限定されるものではない。製箔した銅箔の性能を表2に示す。
[Examples and Comparative Examples]
[Manufacture of untreated copper foil]
Under the electrolysis conditions shown in Table 1, three types of untreated copper foils (A, B, C) having a thickness of 10 μm were formed using a noble metal oxide-coated titanium electrode for the anode and a titanium rotating drum for the cathode. . The electrolysis conditions can be changed as appropriate, and are not limited to these concentrations and electrolysis conditions. Table 2 shows the performance of the copper foil produced.

なお、厚さは、マイクロメーターで測定した値であり、引っ張り強度、破断伸び率は、引張試験機(インストロン社製1122型)を用いて測定した値である。また、表面粗さRzは、触針式表面粗さ計(小坂研究所製SE−3C型)により測定した。   The thickness is a value measured with a micrometer, and the tensile strength and elongation at break are values measured using a tensile tester (Model 1122 manufactured by Instron). The surface roughness Rz was measured with a stylus type surface roughness meter (SE-3C type, manufactured by Kosaka Laboratory).

Figure 0005437536
Figure 0005437536

Figure 0005437536
Figure 0005437536

〔未処理銅箔の粗面化処理〕
前記条件で製箔した銅箔それぞれの両表面に下記条件で電解めっきにより銅のやけめっきを施し、均一微細粒粉状銅めっき層を形成する。さらに、該粒粉状銅めっき層の上にその凹凸形状を損なわないように、平滑な銅めっき(カプセルめっき)を行う。これらの工程により粒粉状銅と電解銅箔との密着性を向上させた。その後、三酸化クロム水溶液に浸漬処理して、表3、4に示す各種の粗面化電解銅箔を作成した。未処理箔Aの一部には、防錆処理だけや平滑めっきだけを施して、未処理箔より表面粗さや面積比率の小さい箔を作製した。
[Roughening treatment of untreated copper foil]
The both surfaces of the copper foils made under the above conditions are subjected to copper burn plating by electrolytic plating under the following conditions to form a uniform fine-grained copper plating layer. Furthermore, smooth copper plating (capsule plating) is performed on the granular powder copper plating layer so as not to impair the uneven shape. Through these steps, the adhesion between the granular copper and the electrolytic copper foil was improved. Then, it immersed in the chromium trioxide aqueous solution, and various roughened electrolytic copper foils shown in Tables 3 and 4 were created. A part of the untreated foil A was subjected only to rust prevention treatment or smooth plating, and a foil having a smaller surface roughness and area ratio than the untreated foil was produced.

粒粉状めっき条件:
硫酸銅 80g/L
硫酸 110〜160g/L
添加剤* 適量
液温 30〜60℃
電流密度 10〜50A/dm2
処理時間 2〜20秒
*添加剤:銅合金の粒径0.1〜3μmの微粒子。
Granular plating conditions:
Copper sulfate 80g / L
Sulfuric acid 110-160g / L
Additive * Appropriate amount Liquid temperature 30-60 ° C
Current density 10-50A / dm 2
Treatment time 2 to 20 seconds * Additive: Fine particles of copper alloy having a particle size of 0.1 to 3 μm.

緻密な銅めっき(カプセルめっき)条件:
硫酸銅 200g/L
硫酸 90〜130g/L
液温 30〜60℃
電流密度 10〜30A/dm2
処理時間 2〜20秒
Dense copper plating (capsule plating) conditions:
Copper sulfate 200g / L
Sulfuric acid 90 ~ 130g / L
Liquid temperature 30-60 ° C
Current density 10-30A / dm 2
Processing time 2 to 20 seconds

粗化処理後の銅箔の表面粗さRz、実表面積、表面積比率をそれぞれ測定した。表面粗さRzは、前記した方法で測定した。また、実表面積はKEYENCE社製超深度形状測定レーザー顕微鏡VK−8500を用いて測定した。表面積比率は、実表面積を単位平面面積で割って求めた。なお測定は、観察倍率は2千倍で行い、50μm角の微小平面(面積2500μm)を計測した。平面レーザー走査は1024×768ピクセル(80万ポイント)を、粗さ(Z軸)方向の解像度は0.05μmで測定を行った。各平面内データをZ軸位置毎に三次元集計した後に実表面積を画像解析処理して算出した。但し、実施例表中の実表面積と表面積比率は、判り易いように4倍した値(100μm角、10000μm)に対して記した。The surface roughness Rz, actual surface area, and surface area ratio of the copper foil after the roughening treatment were measured. The surface roughness Rz was measured by the method described above. Moreover, the actual surface area was measured using the ultra deep shape measuring laser microscope VK-8500 made by KEYENCE. The surface area ratio was obtained by dividing the actual surface area by the unit plane area. The measurement was performed at an observation magnification of 2,000 and a 50 μm square micro-plane (area 2500 μm 2 ) was measured. The planar laser scanning was performed at 1024 × 768 pixels (800,000 points) and the resolution in the roughness (Z-axis) direction was 0.05 μm. Each in-plane data was three-dimensionally aggregated for each Z-axis position, and the actual surface area was calculated by image analysis processing. However, the actual surface area and the surface area ratio in the example table are described with respect to a value (100 μm square, 10000 μm 2 ) multiplied by 4 for easy understanding.

〔作用極(負極)の作成〕
作成した粗面化電解銅箔を集電体として作用極を作製、電極特性を評価した。水系バインダを用いる場合、シリコン電極は、集電体の上に、シリコン系粉末とアセチレンブラック、カルボキシメチルセルロースナトリウム水溶液と水分散SBRを、常法により混練調整してスラリーとしたものを塗布し、乾燥、プレスすることにより作製した。有機溶剤系バインダを用いる場合、シリコン電極は、集電体の上に、シリコン系粉末とアセチレンブラック、ポリイミド前駆体(有機溶剤系バインダとしてのポリアミド酸)、NMP(N−メチル−2−ピロリドン、有機溶剤として)を混練調整してスラリーとしたものを塗布し、乾燥、プレスすることにより作製した。ポリイミドには、ポリイミド(1)、(2)、(3)の3種類を用い、塗膜としての引っ張り強度が(1)400MPa、(2)170MPa、(3)125MPa、および塗膜弾性率が(1)8GPa、(2)3GPa、(3)1GPa、並びに塗膜伸び率が(1)50%、(2)22%、(3)11%の3種類を用いた。ポリイミド(2)を実施例32、(3)を実施例33に用いた以外はポリイミド(1)を用いた。
[Creation of working electrode (negative electrode)]
Working electrodes were prepared using the prepared roughened electrolytic copper foil as a current collector, and the electrode characteristics were evaluated. In the case of using an aqueous binder, the silicon electrode is applied on a current collector by applying a silicon powder and acetylene black, an aqueous sodium carboxymethylcellulose solution and an aqueous dispersion SBR, which are kneaded and adjusted in a conventional manner, and dried. It was produced by pressing. In the case of using an organic solvent binder, the silicon electrode is formed on a current collector on a silicon powder and acetylene black, a polyimide precursor (polyamic acid as an organic solvent binder), NMP (N-methyl-2-pyrrolidone, It was prepared by applying a kneaded and adjusted slurry as an organic solvent, drying and pressing. Three types of polyimides (1), (2), and (3) are used as the polyimide, and the tensile strength as a coating film is (1) 400 MPa, (2) 170 MPa, (3) 125 MPa, and the coating film elastic modulus is Three types were used: (1) 8 GPa, (2) 3 GPa, (3) 1 GPa, and coating elongation percentages of (1) 50%, (2) 22%, and (3) 11%. Polyimide (1) was used except that polyimide (2) was used in Example 32 and (3) was used in Example 33.

〔ビーカーセルの作成〕
上記の作用極(負極電極)を用い、アルゴンガス雰囲気下のグローブボックス中で、対極と試験極、及び参照極からなる三極式セルを作製した。セルは、SUS容器内に密閉組み立て、試験極と参照極の間に電解液を注液することにより構成した。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比3:7の割合で混合した溶媒に対し、少なくともLiPF6を1モル/リットル溶解した電解液を用いた。対極及び参照極としてはリチウム金属を用いた。
[Create beaker cell]
Using the above working electrode (negative electrode), a three-electrode cell comprising a counter electrode, a test electrode, and a reference electrode was produced in a glove box under an argon gas atmosphere. The cell was configured by hermetically assembling in a SUS container and injecting an electrolyte between the test electrode and the reference electrode. As the electrolytic solution, an electrolytic solution in which at least 1 mol / liter of LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 was used. Lithium metal was used as the counter electrode and the reference electrode.

〔充放電サイクル特性の評価〕
上記のようにして作成したセルを、25℃にて0.1Cレート(1時間率)に相当する定電流で、作用極の電位が0.02V(vs.Li/Li)に達するまで充電した。その後、0.05C相当の電流に低下したところでカットオフした。10分放置後に0.1Cレート相当の定電流で、作用極の電位が1.5V(vs.Li/Li)に達するまで放電した。同様に2回目から5サイクル目までの4サイクルは0.2Cレート相当の電流により試験した。次に、6回目から0.5Cレート相当の電流にて50サイクル充放電を行った。50サイクル後の放電容量保持率にて評価した。評価結果を表3、4に示す。また50サイクル充放電を繰り返した後の電極銅箔のシワの有無についても表3、4中に示した。
[Evaluation of charge / discharge cycle characteristics]
The cell prepared as described above is charged at a constant current corresponding to a 0.1 C rate (1 hour rate) at 25 ° C. until the potential of the working electrode reaches 0.02 V (vs. Li / Li + ). did. Thereafter, when the current was reduced to 0.05 C, the cut-off was performed. After standing for 10 minutes, discharging was performed at a constant current corresponding to a 0.1 C rate until the potential of the working electrode reached 1.5 V (vs. Li / Li + ). Similarly, four cycles from the second to the fifth cycle were tested with a current corresponding to a 0.2 C rate. Next, 50 cycles of charge and discharge were performed at a current corresponding to a 0.5 C rate from the sixth time. The discharge capacity retention after 50 cycles was evaluated. The evaluation results are shown in Tables 3 and 4. Tables 3 and 4 also show the presence or absence of wrinkles on the electrode copper foil after 50 cycles of charge and discharge.

Figure 0005437536
Figure 0005437536

表3および図3(a)に示したように、水系バインダを用いた電極では、表面積比率が高くなるほど、容量維持率が低下する関係にある。この様な関係は、本件のような高解像度の面積測定法ではじめて検出されたものである。実施例8の集電体は表面積比率が2.36であり、4.0より小さいので、サイクル試験の容量維持率が44%と良好であった。実施例13の表面積比率3.95の集電体を用いた電極では、33%まで容量維持率が低下した。一方で、表面積比率が4.21の比較例1は、容量維持率が29%であった。すなわち、表面積比率4.0以上を満たさないので容量維持率が30%を割り、大きく低下した。なお、水系バインダを用いた実施例1〜13では、活物質含有層を形成する面において、十点平均表面粗さRzが一定の範囲(1.0〜2.0μm)に収まるように調節した。   As shown in Table 3 and FIG. 3A, in the electrode using the water-based binder, the capacity retention ratio is decreased as the surface area ratio is increased. Such a relationship was first detected by the high-resolution area measurement method as in the present case. The current collector of Example 8 had a surface area ratio of 2.36 and was smaller than 4.0. Therefore, the capacity retention rate of the cycle test was as good as 44%. In the electrode using the current collector with a surface area ratio of 3.95 in Example 13, the capacity retention rate decreased to 33%. On the other hand, Comparative Example 1 having a surface area ratio of 4.21 had a capacity retention rate of 29%. That is, since the surface area ratio of 4.0 or more was not satisfied, the capacity retention ratio was 30%, which was greatly reduced. In Examples 1 to 13 using an aqueous binder, the 10-point average surface roughness Rz was adjusted to be within a certain range (1.0 to 2.0 μm) on the surface on which the active material-containing layer was formed. .

これは、水系バインダを用いた電極では、電極と電解液の電極副反応が発生するため、活物質の膨張収縮を抑制できるよう、表面積比率を低めにする方が、長寿命となったと考えられる。一方で表面積比率が大きすぎると、膨張収縮も大きくなりすぎて、活物質含有層の剥離や微粉化も生じると考えられる。   This is because, in an electrode using a water-based binder, an electrode side reaction between the electrode and the electrolytic solution occurs, so that it is considered that a lower surface area ratio has a longer life so that expansion and contraction of the active material can be suppressed. . On the other hand, if the surface area ratio is too large, the expansion / contraction is too large, and it is considered that the active material-containing layer is peeled off or pulverized.

Figure 0005437536
Figure 0005437536

表4および図3に示したように、ポリイミドバインダの有機溶剤系バインダを用いた電極では、実施例14〜33の集電体は、表面積比率が1.0〜7.0である。よってサイクル試験の容量維持率が60%以上であり、水系バインダに比べて良好であった。さらに、実施例19〜29の集電体の表面積比率が1.4〜6.5の範囲を用いた電極の場合の容量維持率は70%以上である。実施例21〜26における表面積比率が2.0〜4.0の集電体電極に依れば、75%以上の維持率が得られ、それぞれ良好となる。   As shown in Table 4 and FIG. 3, in the electrode using the organic solvent binder of the polyimide binder, the current collectors of Examples 14 to 33 have a surface area ratio of 1.0 to 7.0. Therefore, the capacity retention rate of the cycle test was 60% or more, which was better than that of the aqueous binder. Furthermore, the capacity retention ratio in the case of the electrode using the surface area ratio of the current collectors of Examples 19 to 29 in the range of 1.4 to 6.5 is 70% or more. According to the current collector electrode having a surface area ratio of 2.0 to 4.0 in Examples 21 to 26, a maintenance ratio of 75% or more is obtained, and each is good.

また、実施例31〜33は、バインダに使用するポリイミドの種類が異なる。実施例31で使用したポリイミドが最も塗膜強度(及び弾性率または伸び率)が高い。実施例32で使用したポリイミドは次に強度(同前出)が高い。一方実施例33で使用したポリイミドは、塗膜の特性が、引っ張り強度が150MPa未満であり、引っ張り弾性率が2GPa未満であり、破断伸び率が20%未満であるため、実施例31、32に比べて容量維持率が悪化した。バインダに使用するポリイミドは、強度、弾性率が高いほど、シリコンなどの高容量充放電に伴う大きな体積変化に対して有効であり、容量維持率が高いことがわかった。   Moreover, Examples 31-33 differ in the kind of polyimide used for a binder. The polyimide used in Example 31 has the highest coating film strength (and elastic modulus or elongation). The polyimide used in Example 32 has the next highest strength (supra). On the other hand, since the polyimide used in Example 33 has the properties of the coating film, the tensile strength is less than 150 MPa, the tensile elastic modulus is less than 2 GPa, and the elongation at break is less than 20%. Compared to the capacity maintenance rate. It has been found that the polyimide used for the binder is more effective for large volume changes accompanying high capacity charge / discharge of silicon or the like and has a higher capacity retention ratio as the strength and elastic modulus are higher.

ポリイミドバインダなどの有機溶剤系バインダが、高い容量維持率を持つ理由として以下のことが考えられる。有機溶剤系バインダを用いた電極では、塗膜に水分が含まれにくいため、電極と電解液の電極副反応が発生しにくく、気体の発生が生じにくいため、活物質のある程度大きな膨張収縮も許容され、表面積比率が大きくても高い容量維持率が保持できた。一方で、表面積比率が小さすぎると、集電体と塗膜である活物質含有層との間の密着性が悪くなり、充放電を繰り返すうちに活物質含有層の剥離が生じた。さらに、密着性が悪いため、導電パスの確保が困難でもあった。また、表面積比率が大きすぎると、膨張収縮が大きすぎて、活物質含有層の剥離や微粉化が生じると考えられる。   The following can be considered as the reason why an organic solvent binder such as a polyimide binder has a high capacity retention rate. In an electrode using an organic solvent-based binder, the coating film does not easily contain moisture, so electrode side reactions between the electrode and the electrolyte solution are unlikely to occur, and gas generation is unlikely to occur. Even when the surface area ratio is large, a high capacity retention rate can be maintained. On the other hand, when the surface area ratio is too small, the adhesion between the current collector and the active material-containing layer that is a coating film is deteriorated, and the active material-containing layer is peeled off during repeated charging and discharging. Furthermore, since the adhesiveness is poor, it is difficult to secure a conductive path. Further, if the surface area ratio is too large, the expansion / contraction is too large, and it is considered that the active material-containing layer is peeled off or pulverized.

他方、集電体銅箔の機械的特性のうち、300℃加熱後の引っ張り強度が最も小さい未処理銅箔C(表2)を用いた比較例5の容量維持率は30%を割り込むほどの劣化を示した。未処理箔Aを用いた実施例29と未処理箔Bを用いた実施例31はRzがほぼ同じで、使用ポリイミドも同じであるので、未処理銅箔の相違による比較をするに適する。充放電試験での容量維持率の結果は未処理箔Bの90%(実施例31)に対し、未処理箔Aの71%(実施例29)である。有機溶剤系バインダを使用する場合、表面積比率の大小が容量維持率に与える影響が大きくないため、実施例31と実施例29の容量維持率の差は、銅箔の伸び率や引っ張り強度の特性の相違が大きく影響している。これは、まず、スラリー塗布後のポリイミドバインダ前駆体からの高温加熱焼成処理(イミド化)によって、耐熱性に劣るC箔が軟化した。その結果、大きな充放電時の体積変化に、集電体及び電極が追従できずにシワを生じた。それと共に、塗膜の脱離や部分剥離等によりリチウムイオン伝導や電子導電パスに欠如が生じた。その結果、大きな容量低下をもたらしたと考えられる。未処理箔Aと未処理箔B使用の前記の2例での比較も耐熱性の相違が容量維持率の相違に現れたとみられる。   On the other hand, among the mechanical properties of the current collector copper foil, the capacity retention rate of Comparative Example 5 using untreated copper foil C (Table 2) having the smallest tensile strength after heating at 300 ° C. is less than 30%. Deteriorated. Since Example 29 using untreated foil A and Example 31 using untreated foil B have substantially the same Rz and the same polyimide used, they are suitable for comparison due to differences in untreated copper foil. The result of the capacity retention rate in the charge / discharge test is 71% of the untreated foil A (Example 29) as compared to 90% of the untreated foil B (Example 31). When using an organic solvent-based binder, the difference in the capacity retention ratio between Example 31 and Example 29 is not due to the effect of the surface area ratio on the capacity retention ratio. The difference is greatly affected. First, C foil which is inferior in heat resistance was softened by high-temperature heat baking treatment (imidization) from the polyimide binder precursor after slurry application. As a result, the current collector and the electrode could not follow the volume change during large charge / discharge, and wrinkles were generated. At the same time, there was a lack of lithium ion conduction and electronic conduction paths due to detachment and partial peeling of the coating film. As a result, it is considered that the capacity was greatly reduced. The comparison between the two examples using the untreated foil A and the untreated foil B also seems to have caused a difference in heat resistance in a difference in capacity retention rate.

本発明によれば、電極バインダに応じた集電体の最適な仕様を提供できるので、界面密着性等が充放電繰り返しに対しても損なわれず、高いサイクル寿命を達成することができる電極と二次電池を提供することが出来る。   According to the present invention, since it is possible to provide an optimum specification of the current collector according to the electrode binder, the interfacial adhesion and the like are not impaired even after repeated charge and discharge, and an electrode that can achieve a high cycle life. A secondary battery can be provided.

以上、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇において、各種の変更例または修正例に想到しえることは明らかである。それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application. Of course, it is understood that they belong to the technical scope of the present invention.

1………集電体
2………活物質含有層
3………電極
4………集電体
5………活物質含有層
6………電極
7………集電体
8………活物質含有層
9………電極
10………微粒子
11………非水電解質二次電池
12………負極
13………正極
15………セパレータ
17………電解質
19………電池缶
21………正極リード
23………負極リード
25………正極端子
27………封口体
DESCRIPTION OF SYMBOLS 1 ......... Current collector 2 ......... Active material containing layer 3 ......... Electrode 4 ......... Current collector 5 ......... Active material containing layer 6 ......... Electrode 7 ......... Current collector 8 ... ... Active material-containing layer 9 ......... Electrode 10 ......... Particulate 11 ......... Non-aqueous electrolyte secondary battery 12 ......... Negative electrode 13 ......... Positive electrode 15 ......... Separator 17 ... …… Electrolyte 19 ......... Battery Can 21 ......... Positive lead 23 ......... Negative lead 25 ......... Positive terminal 27 ......... Sealing body

Claims (11)

電極活物質と水系バインダとを含むスラリーを用いて活物質含有層を形成するための電極用集電体であって、前記活物質含有層を形成する面において、粗さ(Z軸)方向の解像度を0.05μmで測定を行った場合の実表面積を単位平面面積で割った表面積比率が1.11〜3.95であることを特徴とする、
非水電解質二次電池用負極に使用するための電極用集電体。
An electrode current collector for forming an active material-containing layer using a slurry containing an electrode active material and an aqueous binder, wherein the active material-containing layer is formed in a direction of roughness (Z-axis). The surface area ratio obtained by dividing the actual surface area when the resolution is measured at 0.05 μm by the unit plane area is 1.11 to 3.95 ,
An electrode current collector for use in a negative electrode for a non-aqueous electrolyte secondary battery .
前記表面積比率が1.11〜2.36であることを特徴とする請求項1に記載の電極用集電体。  The current collector for an electrode according to claim 1, wherein the surface area ratio is 1.11 to 2.36. 前記表面積比率が1.11〜1.98であることを特徴とする請求項1に記載の電極用集電体。  The current collector for an electrode according to claim 1, wherein the surface area ratio is 1.11 to 1.98. 前記表面積比率が1.11〜1.46であることを特徴とする請求項1に記載の電極用集電体。  The current collector for an electrode according to claim 1, wherein the surface area ratio is 1.11 to 1.46. 前記電極用集電体が銅箔であることを特徴とする請求項1〜4のいずれか1項に記載の電極用集電体。 The current collector for an electrode according to any one of claims 1 to 4, wherein the current collector for an electrode is a copper foil. 前記電極用集電体が粗面化処理された銅箔であることを特徴とする請求項に記載の電極用集電体。 The current collector for an electrode according to claim 5 , wherein the current collector for an electrode is a roughened copper foil. 前記電極用集電体の表面に、クロメート処理層、ベンゾトリアゾール処理層、シランカップリング処理層、ニッケル処理層、亜鉛処理層、スズ処理層のいずれか一層以上を有することを特徴とする請求項1〜のいずれか1項に記載の電極用集電体。 The surface of the current collector for an electrode has one or more of a chromate treatment layer, a benzotriazole treatment layer, a silane coupling treatment layer, a nickel treatment layer, a zinc treatment layer, and a tin treatment layer. The current collector for an electrode according to any one of 1 to 6 . 前記電極用集電体が、引っ張り強度450MPa以上であり、破断伸び率3%以上であり、180℃5分加熱後の破断伸び率3%以上であり、300℃1時間加熱後の引っ張り強度300MPa以上であることを特徴とする請求項1〜のいずれか1項に記載の電極用集電体。 The electrode current collector has a tensile strength of 450 MPa or more, a breaking elongation of 3% or more, a breaking elongation of 3% or more after heating at 180 ° C. for 5 minutes, and a tensile strength of 300 MPa after heating at 300 ° C. for 1 hour. electrode current collector according to any one of claims 1 to 7, characterized in that at least. 請求項1に記載の電極用集電体に、電極活物質と、水系バインダと、を含むスラリーを用いて活物質含有層を形成したことを特徴とする非水電解質二次電池用負極A negative electrode for a nonaqueous electrolyte secondary battery, wherein an active material-containing layer is formed using a slurry containing an electrode active material and an aqueous binder on the electrode current collector according to claim 1. 前記電極活物質がシリコンまたはスズを含むことを特徴とする請求項に記載の非水電解質二次電池用負極The negative electrode for a nonaqueous electrolyte secondary battery according to claim 9 , wherein the electrode active material contains silicon or tin . 請求項または10に記載の負極を用いた非水電解質二次電池。
A non-aqueous electrolyte secondary battery using the negative electrode according to claim 9 or 10 .
JP2013516862A 2011-11-29 2012-11-28 Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery Active JP5437536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516862A JP5437536B2 (en) 2011-11-29 2012-11-28 Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011260188 2011-11-29
JP2011260188 2011-11-29
PCT/JP2012/080695 WO2013080988A1 (en) 2011-11-29 2012-11-28 Collector for electrodes, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2013516862A JP5437536B2 (en) 2011-11-29 2012-11-28 Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP5437536B2 true JP5437536B2 (en) 2014-03-12
JPWO2013080988A1 JPWO2013080988A1 (en) 2015-04-27

Family

ID=48535439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013516862A Active JP5437536B2 (en) 2011-11-29 2012-11-28 Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JP5437536B2 (en)
TW (1) TWI584522B (en)
WO (1) WO2013080988A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282915B (en) * 2013-07-07 2016-06-22 山东润峰集团新能源科技有限公司 Manufacturing process of porous carrier of lithium ion battery
CN105164838B (en) * 2013-07-10 2018-01-26 日立金属株式会社 Lithium rechargeable battery collector and lithium ion secondary battery anode
KR102136784B1 (en) * 2015-07-24 2020-07-22 케이씨에프테크놀로지스 주식회사 Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same
TWI660541B (en) 2018-10-01 2019-05-21 長春石油化學股份有限公司 Copper foil for current collector of lithium secondary battery and negative electrode including the same
EP3957667A1 (en) 2020-08-20 2022-02-23 Covestro Deutschland AG Polyol formulations and a method for the preparation of pur/pir foams based on these polyol formulations
JPWO2023276757A1 (en) * 2021-06-30 2023-01-05
KR20230051978A (en) * 2021-10-12 2023-04-19 주식회사 엘지에너지솔루션 Negative electrode for secondary battery and electrode assembly containing the same
LU502546B1 (en) * 2022-07-21 2024-01-22 Circuit Foil Luxembourg Copper foil, secondary battery comprising the same and production method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313277B2 (en) * 1995-09-22 2002-08-12 古河サーキットフォイル株式会社 Electrodeposited copper foil for fine pattern and its manufacturing method
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
JP2000200610A (en) * 1999-01-08 2000-07-18 Hitachi Ltd Copper foil for lithium battery, lithium secondary battery, its manufacture, and manufacturing device for negative electrode material for lithium battery
JP2003223899A (en) * 2002-01-31 2003-08-08 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode plate and lithium secondary battery using the negative electrode plate
JP2006269362A (en) * 2005-03-25 2006-10-05 Hitachi Cable Ltd Negative electrode for lithium ion secondary battery
JP4797851B2 (en) * 2006-07-19 2011-10-19 三菱電機株式会社 COATING TYPE ELECTRODE SHEET, METHOD FOR PRODUCING COATING TYPE ELECTRODE SHEET, AND ELECTRIC DOUBLE LAYER CAPACITOR OR LITHIUM ION BATTERY USING COATING TYPE ELECTRODE SHEET
JP5129642B2 (en) * 2007-04-19 2013-01-30 三井金属鉱業株式会社 Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate
JP5186884B2 (en) * 2007-11-06 2013-04-24 株式会社豊田中央研究所 Lithium secondary battery electrode and lithium secondary battery
JP5204574B2 (en) * 2008-07-25 2013-06-05 日新製鋼株式会社 Bipolar lithium ion secondary battery
CN102725892A (en) * 2010-01-25 2012-10-10 吉坤日矿日石金属株式会社 Copper foil for secondary battery negative electrode power collector
JP5128695B2 (en) * 2010-06-28 2013-01-23 古河電気工業株式会社 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode

Also Published As

Publication number Publication date
TWI584522B (en) 2017-05-21
WO2013080988A1 (en) 2013-06-06
TW201330372A (en) 2013-07-16
JPWO2013080988A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5437536B2 (en) Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
TWI466367B (en) A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
JP5128695B2 (en) Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode
JP5313761B2 (en) Lithium ion battery
JPWO2014002996A1 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JPWO2010098043A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20110118129A (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP5435519B2 (en) Metal foil with coating layer for negative electrode of lithium ion secondary battery and method for producing the same, electrode for negative electrode of lithium ion secondary battery and method for producing the same, lithium ion secondary battery
KR101097269B1 (en) Negative electrode for lithium secondary battery and manufacturing method thereof
JP5981165B2 (en) Copper foil, negative electrode of secondary battery, secondary battery, and printed circuit board
JP6067256B2 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2002373647A (en) Electrode for lithium secondary battery and the lithium secondary battery
JP2010010093A (en) Manufacturing method of secondary battery electrode group and secondary battery
JP2018206602A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5873711B2 (en) Copper foil, secondary battery electrode, secondary battery, and printed circuit board
JP2012178309A (en) Lithium ion secondary battery anode and lithium ion secondary battery using the same
JP2013012450A (en) Metal foil for collector of lithium ion secondary battery electrode, method of manufacturing the metal foil, and lithium ion secondary battery using the metal foil as collector
JPWO2018062264A1 (en) Electrode and secondary battery
WO2023223581A1 (en) Battery
JP5916307B2 (en) Anode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode for nonaqueous electrolyte secondary battery
WO2023223582A1 (en) Battery and production method for battery
JP2022150408A (en) lithium ion secondary battery
JP2014009365A (en) Electrolytic copper foil, lithium ion secondary battery negative pole electrode, and lithium ion secondary battery
JP2011124052A (en) Nonaqueous electrolyte secondary battery and method for charging the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R151 Written notification of patent or utility model registration

Ref document number: 5437536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350