JP5129642B2 - Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate - Google Patents

Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate Download PDF

Info

Publication number
JP5129642B2
JP5129642B2 JP2008110614A JP2008110614A JP5129642B2 JP 5129642 B2 JP5129642 B2 JP 5129642B2 JP 2008110614 A JP2008110614 A JP 2008110614A JP 2008110614 A JP2008110614 A JP 2008110614A JP 5129642 B2 JP5129642 B2 JP 5129642B2
Authority
JP
Japan
Prior art keywords
copper foil
value
surface area
rzjis
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008110614A
Other languages
Japanese (ja)
Other versions
JP2008285751A (en
Inventor
真一 小畠
隆司 橋口
拓也 山本
裕之 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008110614A priority Critical patent/JP5129642B2/en
Publication of JP2008285751A publication Critical patent/JP2008285751A/en
Application granted granted Critical
Publication of JP5129642B2 publication Critical patent/JP5129642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本件発明は、表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びに、その銅張積層板を用いて得られるプリント配線板に関する。   The present invention relates to a surface-treated copper foil, a copper-clad laminate obtained using the surface-treated copper foil, and a printed wiring board obtained using the copper-clad laminate.

表面処理銅箔は、絶縁樹脂基材と張り合わされ、プリント配線板製造の材料である銅張積層板が製造される。この表面処理銅箔とは、銅箔の表面に、前記絶縁樹脂基材との密着性の向上や保存性の付与を目的とした粗化処理や防錆処理等の表面処理を施したものである。ここで行う粗化処理とは、表面に粗化処理粒子を付着させたり、エッチングする等して凹凸形状を形成し、アンカー効果を利用して密着性を改善する処理である。そして、防錆処理とは、保存性の付与の他に、絶縁樹脂基材との張り合わせ面の化学的な接着効果を付与して密着性を改善する処理である。   The surface-treated copper foil is bonded to an insulating resin base material to produce a copper-clad laminate that is a material for producing a printed wiring board. This surface-treated copper foil is a surface of the copper foil that has been subjected to surface treatment such as roughening treatment or rust prevention treatment for the purpose of improving adhesion with the insulating resin substrate and imparting storage stability. is there. The roughening treatment performed here is a treatment for improving the adhesion by using the anchor effect by forming rough shapes by attaching roughening particles to the surface or etching. And a rust prevention process is a process which improves the adhesiveness by providing the chemical adhesive effect of the bonding surface with an insulating resin base material other than provision of preservability.

ところが、粗化処理で大きな凹凸形状を形成してアンカー効果を高めると、配線回路をエッチングで形成する際には、粗化処理の凸部分を溶解するために必要とされるオーバーエッチング時間を長くする必要がある。その結果、良好なエッチングファクターを備える微細な配線回路の形成が困難になる。この様な、配線回路のエッチングファクターが悪い配線回路では、部品の表面実装が困難になることが多い。また、化学的に安定した防錆処理を過剰に施すと、エッチング後の絶縁樹脂基材表面に防錆成分が残留し、表層マイグレーションによる回路ショートの原因になることがある。従って、粗化処理と防錆処理とは、最終製品であるプリント配線板の用途に適合した最適レベルに設定する必要がある。   However, when a large uneven shape is formed by the roughening process to enhance the anchor effect, the overetching time required for dissolving the convex part of the roughening process is increased when the wiring circuit is formed by etching. There is a need to. As a result, it becomes difficult to form a fine wiring circuit having a good etching factor. In such a wiring circuit having a poor etching factor of the wiring circuit, it is often difficult to surface-mount components. Moreover, if a chemically stable rust prevention treatment is applied excessively, a rust prevention component remains on the surface of the insulating resin substrate after etching, which may cause a circuit short circuit due to surface layer migration. Therefore, it is necessary to set the roughening treatment and the rust prevention treatment to optimum levels suitable for the use of the printed wiring board as the final product.

一方、プリント配線板が組み込まれる電子機器、電気製品等には、軽薄短小化の要求が著しく、同時に高機能化の要求もなされることが多い。そして、表面処理銅箔を用いて得られるプリント配線板に対しては、まず、エッチングファクターに優れた微細な配線回路を備えることが要求される。この要求に対し、表面処理銅箔は、ロープロファイル化で対応してきた。更に、ロープロファイル化すれば、配線回路端面の直線性が良好になり、電気特性では高周波特性、特にGHz帯の周波数域での伝送特性が改善される。即ち、CPU等の高クロック周波数化にとっても好ましいことであると認識されている。   On the other hand, electronic devices, electrical products, and the like in which printed wiring boards are incorporated are remarkably required to be light and thin, and at the same time, there are many requests for high functionality. And it is requested | required that the printed wiring board obtained using surface-treated copper foil should be equipped with the fine wiring circuit excellent in the etching factor first. In response to this requirement, the surface-treated copper foil has been responded by low profile. Furthermore, if the profile is made low, the linearity of the end face of the wiring circuit is improved, and the electrical characteristics improve the high frequency characteristics, particularly the transmission characteristics in the frequency band of the GHz band. That is, it is recognized that it is preferable for increasing the clock frequency of the CPU or the like.

ところで、近年の電子機器には多層プリント配線板を多用する傾向にあり、一旦形成した配線回路を薬液で処理する頻度が増加している。従って、表面処理銅箔と基材樹脂との界面の耐薬品性や、露出した基材樹脂の耐吸湿性も重要な特性である。そして、微細配線回路を備える配線板を用いる加工工程数が増えると、ハンドリング中に配線回路が剥がれる危険性も高くなる。従って、表面処理銅箔の絶縁樹脂基材との接着表面のロープロファイル化に際しては、引き剥がし強さや耐薬品性等の諸特性の低下を最小限に抑制する必要がある。   By the way, in recent electronic devices, there is a tendency to frequently use multilayer printed wiring boards, and the frequency of processing once formed wiring circuits with chemicals is increasing. Therefore, the chemical resistance at the interface between the surface-treated copper foil and the base resin and the moisture absorption resistance of the exposed base resin are also important characteristics. And if the number of processing steps using a wiring board provided with a fine wiring circuit increases, the risk of the wiring circuit peeling off during handling increases. Therefore, when making the low profile of the adhesion surface of the surface-treated copper foil with the insulating resin base material, it is necessary to minimize the deterioration of various properties such as the peel strength and chemical resistance.

そこで、特許文献1には、銅箔粗化面の粗度Rが低くても接着強度の高い銅箔及びその製造方法を提供することを目的として、銅箔試料(S)の粗化面の表面積をレーザー顕微鏡で3次元的に測定して得られる3次元的表面積A(S)及び該3次元的表面積A(S)の測定区域の面積である測定区域面積B(S)よりA(S)/B(S)で規定される面積係数C(S)と、触針式粗度計を用いて測定される前記銅箔試料Sの粗化面の粗度R(S)とが、0.5×R(S)+0.5≦C(S)[式中、R(S)は単位μmでの数値である。]の関係を有し、且つ前記粗度R(S)が1.0μm〜3.0μmである銅箔を採用する技術が開示されている。 Therefore, Patent Document 1, for the purpose of roughness R Z of Dohakuara of surface to provide a high copper foil and a method of manufacturing the adhesive strength be low, the roughened surface of the copper foil sample (S) From the three-dimensional surface area A (S) obtained by measuring the surface area of the three-dimensional surface with a laser microscope and the measurement area B (S) which is the area of the measurement area of the three-dimensional surface area A (S), A ( S) / B (S), the area coefficient C (S), and the roughness R Z (S) of the roughened surface of the copper foil sample S measured using a stylus type roughness meter. 0.5 × R Z (S) + 0.5 ≦ C (S) [wherein R Z (S) is a numerical value in the unit μm. ] And a technique of employing a copper foil having a roughness R Z (S) of 1.0 μm to 3.0 μm is disclosed.

この特許文献1に開示の表面処理電解銅箔は、その実施例によれば、18μm厚さでFR−4基材樹脂との接着強度が1.0kgf/cmを示している。即ち、プリント配線板用銅箔としてIPC規格に規定されているType−Vを超えるロープロファイルのレベルでありながら、表面処理銅箔と絶縁樹脂基材との間に一定レベルの接触面積を担保することによって接着強度を確保している。   According to the example, the surface-treated electrolytic copper foil disclosed in Patent Document 1 has a thickness of 18 μm and an adhesive strength with the FR-4 base resin of 1.0 kgf / cm. That is, a certain level of contact area is ensured between the surface-treated copper foil and the insulating resin base material, while having a low profile level exceeding Type-V defined in the IPC standard as a copper foil for printed wiring boards. This ensures the adhesive strength.

特開2005−290519号公報JP 2005-290519 A

しかしながら、引き剥がし強さの値は、プリント配線板の配線回路と絶縁樹脂基材との密着安定性を示す絶対的指標とはなりえない。なぜならば、プリント配線板の規格に示された試験方法では、密着安定性を保証することが困難であるからである。規格が示す試験方法では、配線回路と絶縁樹脂基材との接着強さは、絶縁樹脂基材から90℃方向に配線回路を引き剥がす際に必要な荷重として測定される。具体的な引き剥がし強さの測定は、万能試験機を用い、直線状の配線回路の一定距離を引き剥がした際に要した荷重を連続したチャートに記録する。ここで得られる測定チャートは、一定の振幅を持って記録されるが、引き剥がし強さには、測定チャートの記録から、異常値を除いたときの最低値を採用している。従って、最低値をクリアさえすれば、測定チャートの振幅の大きさや、振幅を持ったうねりの存在などについては、何ら問題にされることがなかった。   However, the value of the peel strength cannot be an absolute index indicating the adhesion stability between the wiring circuit of the printed wiring board and the insulating resin base material. This is because it is difficult to guarantee the adhesion stability by the test method shown in the standard for printed wiring boards. In the test method indicated by the standard, the adhesive strength between the wiring circuit and the insulating resin base material is measured as a load necessary for peeling the wiring circuit from the insulating resin base material in the 90 ° C. direction. Specifically, the peel strength is measured by using a universal testing machine and recording the load required when a certain distance of the linear wiring circuit is peeled off on a continuous chart. The measurement chart obtained here is recorded with a certain amplitude, but the minimum value when the abnormal value is removed from the measurement chart recording is adopted as the peel strength. Therefore, as long as the minimum value is cleared, there is no problem with respect to the amplitude of the measurement chart and the presence of undulation with amplitude.

ところが、実用上必要とされる特性を考えると、配線回路と絶縁樹脂基材との密着安定性とは、常態での引き剥がし強さだけでなく、薬品処理に対する密着安定性を示すための耐薬品性能、湿式のエッチング加工プロセス等における樹脂基材の吸湿に対する密着安定性を示すための耐吸湿性能等を含め議論されるべきものである。そして、本件発明者等の研究及び経験によれば、常態での引き剥がし強さの測定チャートに大きな振幅が見られ、最小値と最大値との差(振幅)が大きい配線回路では、当該配線回路の薬品処理後及び吸湿処理後の引き剥がし強さの測定チャートの振幅は、更に大きくなる傾向にある。即ち、この様な傾向を備える配線回路とは、薬品処理や吸湿処理による密着性の劣化が大きい配線回路であり、実用上好ましいものではない。   However, considering the characteristics required for practical use, the adhesion stability between the wiring circuit and the insulating resin substrate is not only the normal peel strength but also the resistance to exhibit adhesion stability against chemical treatment. It should be discussed including the hygroscopic performance to show the adhesion stability against the moisture absorption of the resin base material in chemical performance, wet etching process and the like. According to the research and experience of the inventors of the present invention, a large amplitude is seen in the measurement chart of the peel strength in the normal state, and in the wiring circuit where the difference (amplitude) between the minimum value and the maximum value is large, the wiring The amplitude of the measurement chart of peel strength after chemical treatment of the circuit and after moisture absorption treatment tends to be further increased. That is, the wiring circuit having such a tendency is a wiring circuit in which adhesion deterioration due to chemical treatment or moisture absorption treatment is large, and is not practically preferable.

そして、配線回路の電気特性のうち、高周波信号を伝送する際の伝送損失は、導体である配線回路と、誘電体である絶縁樹脂基材との両方の影響を明確に受ける。また、配線回路に起因する伝送損失は、信号の周波数、特性インピーダンス、透磁率、及び比抵抗の関数として表されることが知られている。しかし、配線回路形状が同じでも、マイクロストリップラインとストリップラインとでは、絶縁樹脂基材の配置が異なるため、特性インピーダンスが異なる。そのため、実際のプリント配線板の設計に当たっては、銅箔厚み、絶縁樹脂基材と配線回路形状等を指定したシミュレーションを実施している。しかし、実際の製造で所望の特性を備えるプリント配線板を得るためには、設計と試作評価とを複数回繰り返すことが多く、納期管理とコスト管理に対する大きな制約となっていた。   Of the electrical characteristics of the wiring circuit, the transmission loss when transmitting a high-frequency signal is clearly affected by both the wiring circuit as a conductor and the insulating resin substrate as a dielectric. Further, it is known that the transmission loss caused by the wiring circuit is expressed as a function of the signal frequency, characteristic impedance, magnetic permeability, and specific resistance. However, even if the wiring circuit shape is the same, the characteristic impedance differs between the microstrip line and the strip line because the arrangement of the insulating resin base material is different. Therefore, in designing an actual printed wiring board, a simulation is performed in which the copper foil thickness, the insulating resin base material, the wiring circuit shape, and the like are specified. However, in order to obtain a printed wiring board having desired characteristics in actual manufacturing, design and trial manufacture evaluation are often repeated a plurality of times, which is a great restriction on delivery date management and cost management.

従って、プリント配線板に形成した配線回路のエッジに良好な直線性が得られ、絶縁樹脂基材との密着性はもとより、耐薬品性や耐吸湿性も良好で、GHz帯の高周波信号の伝送損失や特性インピーダンスなどについて、設計値に近い電気特性の作り込みが可能な表面処理銅箔が求められていた。   Therefore, good linearity is obtained at the edge of the printed circuit formed on the printed wiring board, and the chemical resistance and moisture absorption resistance are good as well as adhesion to the insulating resin base material, and transmission of high frequency signals in the GHz band There has been a demand for a surface-treated copper foil that can make electrical characteristics close to design values, such as loss and characteristic impedance.

本件発明に係る表面処理銅箔: 本件発明に係る表面処理銅箔は、絶縁樹脂基材と張り合わせる接着表面は、表面粗さ(Rzjis)が2.5μm以下で、且つ、2次元表面積が6550μmの領域をレーザー法で測定したときの3次元表面積(A)μmと2次元表面積との比[(A)/(6550)]の値である表面積比(B)が1.2〜2.5であり、且つ、前記絶縁樹脂基材と張り合わせる接着表面は、未処理銅箔の粗化処理前の表面粗さ(Rzjis)が1.0μm未満の表面を粗化処理した接着表面であり、粗化処理前に2次元表面積が6550μm の領域をレーザー法で測定した3次元表面積を(a)μm としたとき、粗化処理後に2次元表面積が6550μm の領域をレーザー法で測定した前記3次元表面積の値(A)と値(a)との比[(A)/(a)]の値が1.15〜2.50であることを特徴としている。 Surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention has a surface roughness (Rzjis) of 2.5 μm or less and a two-dimensional surface area of 6550 μm. The surface area ratio (B), which is a value of the ratio [(A) / (6550)] of the three-dimensional surface area (A) μm 2 and the two-dimensional surface area when the region 2 is measured by a laser method, is 1.2 to 2 And the adhesive surface to be bonded to the insulating resin base material is an adhesive surface obtained by roughening the surface of the untreated copper foil with a surface roughness (Rzjis) before the roughening treatment of less than 1.0 μm. There, when the three-dimensional surface area 2-dimensional surface area measured by a laser method regions of 6550Myuemu 2 before roughening treatment with (a) [mu] m 2, after the roughening treatment two-dimensional surface area in the laser method an area of 6550Myuemu 2 The measured value of the three-dimensional surface area (A The value of the ratio of the value (a) [(A) / (a)] is characterized by a 1.15 to 2.50.

本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、10cm×10cmの2次元領域内の10箇所で測定した表面粗さ(Rzjis)の値が示す、粗化処理後の表面粗さ(Rzjis)の測定値の変動係数(CV)と、未処理銅箔の粗化処理前の表面粗さ(Rzjis)の測定値の変動係数(CV)とが、CV≦CVの関係を備える接着表面であることも好ましい。 In the surface-treated copper foil according to the present invention, the adhesive surface to be bonded to the insulating resin base material is indicated by a surface roughness (Rzjis) value measured at 10 points in a 10 cm × 10 cm two-dimensional region. The coefficient of variation (CV 1 ) of the measured value of the surface roughness (Rzjis) after the treatment and the coefficient of variation (CV 2 ) of the measured value of the surface roughness (Rzjis) before the roughening treatment of the untreated copper foil, It is also preferable that the bonding surface has a relationship of CV 1 ≦ CV 2 .

本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、10cm×10cmの2次元領域の評価において、亜鉛−ニッケル合金層が含む亜鉛とニッケルとの合計量(C)mg/mが40mg/m以上であることも好ましい。 In the surface-treated copper foil according to the present invention, the adhesive surface to be bonded to the insulating resin base material is a total amount of zinc and nickel contained in the zinc-nickel alloy layer (C) in a two-dimensional evaluation of 10 cm × 10 cm (C It is also preferable that mg / m 2 is 40 mg / m 2 or more.

本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、前記亜鉛−ニッケル合金層が含む亜鉛とニッケルとの合計量の値(C)と前記表面積比(B)との比[(C)/(B)]の値が30以上であることも好ましい。   In the surface-treated copper foil according to the present invention, the adhesive surface to be bonded to the insulating resin base material is the total amount of zinc and nickel contained in the zinc-nickel alloy layer (C) and the surface area ratio (B). The ratio [(C) / (B)] is preferably 30 or more.

本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、前記表面処理銅箔と絶縁樹脂基材とを張り合わせて得られるものであることを特徴としている。 Copper-clad laminate according to the present invention: A copper-clad laminate according to the present invention is obtained by bonding the surface-treated copper foil and an insulating resin base material.

本件発明に係るプリント配線板: 本件発明に係るプリント配線板は、前記銅張積層板を用いて得られるものであることを特徴としている。 Printed wiring board according to the present invention: The printed wiring board according to the present invention is obtained by using the copper-clad laminate.

本件発明に係る表面処理銅箔は、表面粗さ(Rzjis)が2.5μm以下で、且つ、2次元表面積が6550μmの領域をレーザー法で測定したときの3次元表面積(A)μmと2次元表面積との比[(A)/(6550)]の値である表面積比(B)が1.2〜2.5である絶縁樹脂基材との接着表面を備える。そして、未処理銅箔の粗化処理前の表面粗さ(Rzjis)が1.0μm未満の表面を粗化処理し、2次元表面積が6550μmの領域をレーザー法で測定したときの、粗化処理前の3次元表面積を(a)μmとしたとき、値(A)と値(a)との比[(A)/(a)]の値が1.15〜2.50であれば、周波数が10GHzを超える高周波信号の伝送損失は、従来のプリント配線板用銅箔を用いた場合と比べて小さくなり、バラツキも小さくなる。 Surface treatment copper foil according to the present invention, the surface roughness (Rzjis) is at 2.5μm or less, and, 2-dimensional surface area and the three-dimensional surface area (A) [mu] m 2 when measured by a laser method regions of 6550Myuemu 2 A surface area ratio (B), which is a value of the ratio [(A) / (6550)] to the two-dimensional surface area, is provided with an adhesive surface with an insulating resin substrate having a value of 1.2 to 2.5. Then, the surface roughness of the untreated copper foil before the roughening treatment (Rzjis) is less than 1.0 μm, and the surface roughness of the two-dimensional surface area of 6550 μm 2 is measured by the laser method. When the three-dimensional surface area before treatment is (a) μm 2 and the ratio of the value (A) to the value (a) [(A) / (a)] is 1.15 to 2.50 The transmission loss of a high-frequency signal having a frequency exceeding 10 GHz is smaller than that in the case of using a conventional copper foil for printed wiring boards, and variation is also reduced.

本件発明に係る表面処理銅箔の形態: 本件発明に係る表面処理銅箔は、「絶縁樹脂基材との接着表面の表面粗さ(Rzjis)が2.5μm以下で、且つ、2次元表面積が6550μmの領域をレーザー法で測定したときの3次元表面積(A)μmと2次元表面積との比[(A)/(6550)]の値である表面積比(B)が1.2〜2.5」という要件と、「前記絶縁樹脂基材と張り合わせる接着表面は、未処理銅箔の粗化処理前の表面粗さ(Rzjis)が1.0μm未満の表面を粗化処理した接着表面であり、粗化処理前に2次元表面積が6550μm の領域をレーザー法で測定した3次元表面積を(a)μm としたとき、粗化処理後に2次元表面積が6550μm の領域をレーザー法で測定した前記3次元表面積の値(A)と値(a)との比[(A)/(a)]の値が1.15〜2.50」という要件を満たすものである。 Form of surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention has a “surface roughness (Rzjis) of an adhesive surface with an insulating resin base material of 2.5 μm or less and a two-dimensional surface area. 3D surface area when the area of 6550Myuemu 2 was measured by a laser method (a) [mu] m 2 and the ratio between the two-dimensional surface area [(a) / (6550) ] surface area ratio is a value (B) is 1.2 to 2.5 "and" The adhesion surface to be bonded to the insulating resin base material is an adhesion obtained by roughening the surface of the untreated copper foil having a surface roughness (Rzjis) before the roughening treatment of less than 1.0 μm. a surface, when the three-dimensional surface area 2-dimensional surface area measured by a laser method regions of 6550Myuemu 2 before roughening treatment with (a) [mu] m 2, the laser region 2 dimensional surface area of 6550Myuemu 2 after the roughening treatment The value of the three-dimensional surface area (A The value of the ratio [(A) / (a) ] and the value (a) is one that meets the requirement of 1.15 to 2.50. "

上記表面粗さ(Rzjis)とは、JIS規格に定める10点平均粗さであり、本件発明に係る表面処理銅箔は、絶縁樹脂基材との接着表面が2.5μm以下の表面粗さ(Rzjis)を備える。平滑な未処理銅箔の表面に、粗化処理粒子を電解法で付着形成する粗化処理であっても、表面粗さ(Rzjis)の値が2.5μm以下であれば、電流が極端に集中して粗化処理粒子が形成された部分は少なく、粗化処理粒子同士が重なり合うように析出した部分も少ない。即ち、付着形成された粗化処理粒子の形状にはバラツキが少ない。そして、より安定した引き剥がし強さ、耐薬品性、耐吸湿性を保証するためには、当該表面粗さ(Rzjis)が、1.5μm〜2.4μmの接着表面とすることがより好ましい。   The surface roughness (Rzjis) is a 10-point average roughness defined in JIS standards, and the surface-treated copper foil according to the present invention has a surface roughness (adhesion surface with an insulating resin base material of 2.5 μm or less ( Rzjis). Even in the roughening treatment in which the roughened particles are adhered and formed on the surface of the smooth untreated copper foil by the electrolytic method, if the value of the surface roughness (Rzjis) is 2.5 μm or less, the current is extremely high. There are few portions where the roughened particles are formed in a concentrated manner, and there are also few portions where the roughened particles are deposited so as to overlap each other. In other words, there is little variation in the shape of the roughened particles formed by adhesion. And in order to ensure more stable peeling strength, chemical resistance, and moisture absorption resistance, it is more preferable that the surface roughness (Rzjis) is an adhesive surface of 1.5 μm to 2.4 μm.

更に、前記絶縁樹脂基材との接着表面の2次元表面積が6550μmの領域をレーザー法で測定したときの3次元表面積(A)μmと2次元表面積との比[(A)/(6550)]の値である表面積比(B)が1.2〜2.5である。銅箔をエッチングするサブトラクティブ法で微細配線回路を形成することを考えると、付着形成する粗化処理粒子は、少ない量で最大の接触面積を得ることが好ましい。この観点から、前記粗化処理粒子の形状は略球状であることが好ましい。この粗化処理粒子が真球であると仮定して、表面積をレーザー法で測定すると、上半球は球の表面積として計測され、下半球は円筒として計測されることになる。従って、真球が存在する部分における表面積は、投影面積の4倍になると考えられる。 Further, the ratio of the three-dimensional surface area (A) μm 2 to the two-dimensional surface area when the region having a two-dimensional surface area of 6550 μm 2 on the surface to be bonded to the insulating resin substrate is measured by a laser method [(A) / (6550 )] Is a surface area ratio (B) of 1.2 to 2.5. In consideration of forming a fine wiring circuit by a subtractive method of etching a copper foil, it is preferable to obtain a maximum contact area with a small amount of the roughening particles to be adhered and formed. From this viewpoint, it is preferable that the roughened particles have a substantially spherical shape. Assuming that the roughened particles are true spheres, when the surface area is measured by a laser method, the upper hemisphere is measured as the surface area of the sphere and the lower hemisphere is measured as a cylinder. Accordingly, it is considered that the surface area in the portion where the true sphere exists is four times the projected area.

しかし、接着表面を略球状の粗化処理粒子で埋め尽くすことは不可能であり、且つ、形成される粗化処理粒子の表面は平滑ではない。従って、粗化処理後の粗化処理粒子同士は、ある離間距離を備えた状態で分布する。しかし、表面積比の値(B)が1.2を下回る状態では、粗化処理粒子の離間距離が大きくて分布がまばらであったり、また、粗化処理粒子の形状がアンカー効果が得られにくい形状(例えば、円錐や半球など)を備える傾向が見られるようになる。その結果、この様な表面処理銅箔を用いたプリント配線板では、絶縁樹脂基材と配線回路の密着性、耐薬品性、耐吸湿性等を満足することが困難になるため好ましくない。   However, it is impossible to fill the adhesion surface with roughly spherical roughened particles, and the surface of the formed roughened particles is not smooth. Accordingly, the roughening particles after the roughening treatment are distributed with a certain distance. However, in a state where the surface area ratio value (B) is less than 1.2, the separation distance of the roughened particles is large and the distribution is sparse, and the shape of the roughened particles is difficult to obtain the anchor effect. There is a tendency to have shapes (eg, cones, hemispheres, etc.). As a result, a printed wiring board using such a surface-treated copper foil is not preferable because it becomes difficult to satisfy the adhesion, chemical resistance, moisture absorption resistance, etc. between the insulating resin substrate and the wiring circuit.

一方、表面積比の値(B)が2.5を超えると、付着形成された粗化処理粒子の粒径バラツキが大きく、粗化処理粒子同士が近接して形成されていたり、大きな粗化処理粒子の間に小さな粗化処理粒子が隠れてしまう状態が見られるようになる。個々の粗化処理粒子間で粒径のバラツキが大きいと、エッチングにより配線回路を形成する際には、オーバーエッチング時間の短縮が困難となるため好ましくない。上記観点から、より以上に安定した引き剥がし強さ、耐薬品性、耐吸湿性を保証するためには、当該値(B)が1.5〜2.4の接着表面とすることが、より好ましい。   On the other hand, when the surface area ratio value (B) exceeds 2.5, the particle size variation of the roughened particles formed by adhesion is large, and the roughened particles are formed close to each other, or a large roughening treatment is performed. A state in which small roughened particles are hidden between the particles can be seen. A large variation in particle size among the individual roughening particles is not preferable because it is difficult to shorten the overetching time when forming a wiring circuit by etching. From the above viewpoint, in order to guarantee more stable peeling strength, chemical resistance, and moisture absorption resistance, the value (B) should be an adhesive surface of 1.5 to 2.4. preferable.

上記粗化処理粒子として、金属銅の微細な粒子を付着形成するには、電気めっき法や無電解めっき法を用いることができる。電気めっき法を用いて付着形成する場合には、未処理銅箔表面へ微細粗化処理粒子を付着形成するための第1段処理と、当該微細粗化処理粒子の銅箔への付着を強固にする第2段処理とからなる2段階の銅めっきにより粗化処理粒子を付着形成するのが一般的である。   In order to deposit and form fine particles of metallic copper as the roughening particles, an electroplating method or an electroless plating method can be used. In the case of depositing using electroplating, the first stage treatment for depositing and forming fine roughened particles on the surface of the untreated copper foil and the adhesion of the finely roughened particles to the copper foil are strong. In general, the roughened particles are deposited and formed by two-stage copper plating including the second-stage treatment.

2段階銅めっきで銅の粗化処理粒子を形成するには、まず、第1段処理では、銅濃度を10g/L〜25g/L、フリー硫酸濃度を50g/L〜150g/Lとし、必要に応じ、添加剤としてゼラチンなどを添加した硫酸系銅電解液を用い、陽極にはDSAを用い、液温20℃〜30℃、陰極電流密度20A/dm〜50A/dmの条件で電解し、微細粗化処理粒子を未処理銅箔の表面に付着形成する。そして、第2段処理では、銅濃度を45g/L〜100g/L、フリー硫酸濃度を50g/L〜150g/Lとした硫酸系銅電解液を用い、陽極にはDSAを用い、液温30℃〜50℃、陰極電流密度20A/dm〜60A/dmで電解し、付着形成した前記微細粗化処理粒子を包み込むように銅を平滑めっきして形状を整え、狙いとする形状の粗化処理粒子とする。 To form copper roughening particles by two-stage copper plating, first, in the first stage treatment, the copper concentration is 10 g / L to 25 g / L, and the free sulfuric acid concentration is 50 g / L to 150 g / L. In accordance with the above, a sulfuric acid-based copper electrolytic solution to which gelatin or the like is added as an additive is used, DSA is used as an anode, and electrolysis is performed under conditions of a liquid temperature of 20 to 30 ° C. and a cathode current density of 20 A / dm 2 to 50 A / dm 2 Then, the fine roughened particles are formed on the surface of the untreated copper foil. In the second stage treatment, a sulfuric acid-based copper electrolyte with a copper concentration of 45 g / L to 100 g / L and a free sulfuric acid concentration of 50 g / L to 150 g / L is used, DSA is used for the anode, and the liquid temperature is 30. Electrolytically at 50 to 50 ° C. and a cathode current density of 20 A / dm 2 to 60 A / dm 2 , and smoothly plating copper so as to wrap around the finely-roughened particles that have been adhered and formed. Into treated particles.

そして、本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、未処理銅箔の粗化処理前の表面粗さ(Rzjis)が1.0μm未満の表面を粗化処理した接着表面であり、粗化処理前に2次元表面積が6550μmの領域をレーザー法で測定した3次元表面積を(a)μmとしたとき、粗化処理後に2次元表面積が6550μmの領域をレーザー法で測定した前記3次元表面積の値(A)と値(a)との比[(A)/(a)]の値が1.15〜2.50という条件を満たす必要がある。 In the surface-treated copper foil according to the present invention, the adhesive surface to be bonded to the insulating resin base material is a rough surface having a surface roughness (Rzjis) before roughening treatment of the untreated copper foil of less than 1.0 μm. a treated adhesive surfaced, when the three-dimensional surface area 2-dimensional surface area measured by a laser method regions of 6550Myuemu 2 before roughening treatment with (a) [mu] m 2, the two-dimensional surface area after roughening treatment 6550Myuemu 2 The ratio [(A) / (a)] of the value (A) to the value (a) of the three-dimensional surface area measured by the laser method must satisfy the condition of 1.15 to 2.50. is there.

上述のように、本件発明では、粗化処理は未処理銅箔が備える表面粗さ(Rzjis)が1.0μm未満の表面に施す。この粗化処理粒子を付着形成する面は、表面粗さ(Rzjis)が1μm未満であれば、析出面であっても、光沢面であっても良く、また、析出面を機械加工又は化学研磨して表面粗さを整えた面であっても構わない。表面粗さ(Rzjis)を1.0μm未満としたのは、電解反応における電流が未処理銅箔表面が備える異常突起や凸部等へ集中し、粗化処理粒子が肥大化したり、局部的に付着形成することの防止を第1の目的としている。   As described above, in the present invention, the roughening treatment is performed on the surface having an untreated copper foil with a surface roughness (Rzjis) of less than 1.0 μm. If the surface roughness (Rzjis) is less than 1 μm, the surface on which the roughened particles are adhered and formed may be a precipitation surface or a glossy surface, and the precipitation surface may be machined or chemically polished. Then, it may be a surface with a smooth surface. The reason why the surface roughness (Rzjis) is less than 1.0 μm is that the current in the electrolytic reaction is concentrated on abnormal protrusions and protrusions provided on the surface of the untreated copper foil, and the roughened particles are enlarged or locally. The first object is to prevent the formation of adhesion.

一般的な用途に用いられる表面処理銅箔では、電解銅箔の析出面に粗化処理を施しており、この析出面は山形の円錐形状に析出した形態を示し、粗化処理前でも表面粗さ(Rzjis)は2μm以上を示すのが通常である。この様な銅箔表面に粗化処理を施すと、円錐形状の頂点に肥大化した粗化処理粒子が付着形成され、円錐形状の底辺部分や稜線部分には、粗化処理粒子は形成され難い。この様な、表面粗さ(Rzjis)が1.0μmを超えると、粗化処理粒子は未処理銅箔の表面が備える異常突起や凸部等へ集中して形成されることになる。この上限を超える未処理銅箔の表面を走査型電子顕微鏡で観察すると、うねりや凹凸形状を備える表面状態が観察されることが多い。   In the surface-treated copper foil used for general purposes, the deposited surface of the electrolytic copper foil is roughened, and this deposited surface shows a form in which it is deposited in a chevron cone shape. The length (Rzjis) usually indicates 2 μm or more. When such a copper foil surface is subjected to a roughening treatment, the roughened roughening particles are attached and formed at the apex of the conical shape, and the roughening particles are hardly formed on the bottom and ridge portions of the conical shape. . When such a surface roughness (Rzjis) exceeds 1.0 μm, the roughened particles are concentrated and formed on abnormal protrusions or convex portions provided on the surface of the untreated copper foil. When the surface of the untreated copper foil exceeding the upper limit is observed with a scanning electron microscope, a surface state having undulations and irregular shapes is often observed.

そして、粗化処理を施す未処理銅箔の表面を滑らかで平坦なものとする第2の目的は、この表面処理銅箔を用いて製造されるプリント配線板の電気特性の安定化にある。プリント配線板に実装する電子部品の特性を最大限に発揮させるためには、前述のように、伝送損失の低減はもとより、クロストークの低減や特性インピーダンスの管理が重要である。また、高周波領域の信号は、表皮効果によって配線回路の外周部分に集中して伝播することが知られており、その厚さは1GHzで厚さ2.1μm、10GHzでは厚さ0.7μmと計算できる。即ち、10GHzを超える高周波信号を用いる場合には、表面粗さ(Rzjis)が1μmを超える未処理銅箔で形成した配線回路を伝播する際には伝播距離が長くなり、受信側では変形した信号波形が得られることになる。そして、クロストークは、配線回路端面の突起が果たすアンテナ効果の影響を受けるとも言われている。更に、配線回路の表面凹凸にバラツキが大きいことは、配線回路抵抗やインピーダンスのバラツキに直結する。従って、表面が平滑な未処理銅箔を用いることで、プリント配線板の電気特性安定化に大きく寄与できる。   A second object of making the surface of the untreated copper foil subjected to the roughening treatment smooth and flat is to stabilize the electrical characteristics of a printed wiring board manufactured using the surface-treated copper foil. In order to maximize the characteristics of the electronic components mounted on the printed wiring board, as described above, it is important to reduce crosstalk and manage characteristic impedance as well as transmission loss. In addition, it is known that signals in the high frequency region are concentrated and propagated to the outer periphery of the wiring circuit due to the skin effect, and the thickness is calculated to be 2.1 μm at 1 GHz and 0.7 μm at 10 GHz. it can. That is, when a high-frequency signal exceeding 10 GHz is used, the propagation distance becomes long when propagating through a wiring circuit formed of an untreated copper foil having a surface roughness (Rzjis) exceeding 1 μm, and a signal deformed on the receiving side. A waveform will be obtained. Crosstalk is also said to be affected by the antenna effect exerted by the protrusions on the end face of the wiring circuit. Furthermore, large variations in the surface irregularities of the wiring circuit are directly connected to variations in wiring circuit resistance and impedance. Therefore, the use of untreated copper foil with a smooth surface can greatly contribute to the stabilization of the electrical characteristics of the printed wiring board.

更に、2次元表面積が6550μmの領域をレーザー法で測定したときの粗化処理前の3次元表面積を(a)μmとし、粗化処理後の3次元表面積を(A)μmとしたとき、値(A)と値(a)との比[(A)/(a)]の値を1.15〜2.50としている。この指標は、粗化処理の強弱のレベルを示している。そして、[(A)/(a)]の値が1.15を下回っていると、粒状の良好な粗化処理が均一に行われていない状態である。即ち、粗化処理によるアンカー効果を大きくは期待できないため、好ましくない粗化処理状態である。一方、上記[(A)/(a)]の値が2.5を超えると、粗化処理が過剰であり、付着形成した粗化処理粒子の粒径にバラツキが大きくなるか、析出粗化処理粒子の析出状態が粗くなるか、又は、粒子形状が略球状からデンドライト状になるか、いずれかの傾向がある。その結果、サブトラクティブ法で配線回路を形成する際には、オーバーエッチング時間を長めに設定する必要があり、ファインピッチや直線性が良好なエッジを備える配線回路の形成が困難になるため好ましくない。 Furthermore, the three-dimensional surface area before roughening treatment when the 2-dimensional surface area measured by a laser method regions of 6550Myuemu 2 and (a) [mu] m 2, and a 3-dimensional surface area after roughening and (A) [mu] m 2 In this case, the ratio [(A) / (a)] between the value (A) and the value (a) is set to 1.15 to 2.50. This index indicates the level of roughening treatment. And when the value of [(A) / (a)] is less than 1.15, it is in the state where the favorable roughening process of a granularity is not performed uniformly. That is, since the anchor effect by the roughening process cannot be expected to be large, it is an undesirable roughening state. On the other hand, when the value of [(A) / (a)] exceeds 2.5, the roughening treatment is excessive, and the particle size of the roughening treatment particles that have been deposited increases or the precipitation roughening occurs. Either the deposited state of the treated particles becomes rough, or the particle shape tends to change from a substantially spherical shape to a dendritic shape. As a result, when forming a wiring circuit by the subtractive method, it is necessary to set a long over-etching time, which makes it difficult to form a wiring circuit having edges with good fine pitch and linearity, which is not preferable. .

ここで、表面粗さ(Rzjis)が1.0μm未満の表面を備える銅箔の製造方法に関して述べておく。なお、ここで言う銅箔とは、圧延銅箔や電解銅箔の全てを含むものとして記載しているが、圧延銅箔の場合の表面粗さ(Rzjis)は1.0μmを超えることが少ないため、電解銅箔に関してのみ製造方法の一例を簡単に述べておく。表面が平滑な電解銅箔は、銅濃度を60g/L〜100g/L、フリー硫酸濃度を50g/L〜150g/Lとし、添加剤として活性硫黄化合物のスルホン酸塩の濃度を5mg/L〜1g/L、環状構造を持つ4級アンモニウム塩重合体の濃度を5mg/L〜500mg/L、塩素濃度を10mg/L〜100mg/Lに調整した硫酸系銅電解液を用い、陽極にはDSAを用いて、電解液温40℃〜60℃、陰極電流密度30A/dm〜100A/dmで電解する等により得られる。ここで添加剤として用いる活性硫黄化合物のスルホン酸塩には、3−メルカプト−1−プロパンスルホン酸(以下、「MPS」と称する。)及びビス(3−スルホプロピル)ジスルフィド(以下、「SPS」と称する。)等を用いることができ、環状構造を持つ4級アンモニウム塩重合体には、ジアリルジメチルアンモニウムクロライド(以下、「DDAC」と称する。)重合体等を用いることができる。 Here, the manufacturing method of copper foil provided with the surface whose surface roughness (Rzjis) is less than 1.0 micrometer is described. The copper foil referred to here is described as including all rolled copper foil and electrolytic copper foil, but the surface roughness (Rzjis) in the case of rolled copper foil rarely exceeds 1.0 μm. Therefore, an example of the manufacturing method will be briefly described only with respect to the electrolytic copper foil. The electrolytic copper foil with a smooth surface has a copper concentration of 60 g / L to 100 g / L, a free sulfuric acid concentration of 50 g / L to 150 g / L, and an active sulfur compound sulfonate salt concentration of 5 mg / L to 1 g / L, a sulfuric acid-based copper electrolytic solution in which the concentration of a quaternary ammonium salt polymer having a cyclic structure is adjusted to 5 mg / L to 500 mg / L, and the chlorine concentration is adjusted to 10 mg / L to 100 mg / L. using, electrolyte temperature 40 ° C. to 60 ° C., is obtained such as by electrolysis at cathode current density 30A / dm 2 ~100A / dm 2 . The sulfonic acid salts of active sulfur compounds used as additives herein include 3-mercapto-1-propanesulfonic acid (hereinafter referred to as “MPS”) and bis (3-sulfopropyl) disulfide (hereinafter referred to as “SPS”). As the quaternary ammonium salt polymer having a cyclic structure, diallyldimethylammonium chloride (hereinafter referred to as “DDAC”) polymer or the like can be used.

更に、本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、10cm×10cmの2次元領域内の10箇所で測定した表面粗さ(Rzjis)の値が示す、粗化処理後の表面粗さ(Rzjis)の測定値の変動係数(CV)と、未処理銅箔の粗化処理前の表面粗さ(Rzjis)の測定値の変動係数(CV)とが、CV≦CVの関係を備える。上述してきた評価要素では、現実に使用されるプリント配線板の有効面積内でのバラツキを考慮していない、μmオーダーの領域を評価している。しかし、実際のプリント配線板は、数十cmレベルのサイズで加工される。従って、粗化処理や防錆処理等は、少なくとも10cm×10cmサイズで評価した場合のバラツキが小さくなければ、実用上の優劣の判断は困難である。一方、粗化処理前の銅箔であれば、10cm×10cmの単位に分割して評価した場合のいずれの場所においても、評価した諸特性にほとんど差がないように作り込める。 Furthermore, in the surface-treated copper foil according to the present invention, the adhesive surface to be bonded to the insulating resin base material has a surface roughness (Rzjis) value measured at 10 locations in a 10 cm × 10 cm two-dimensional region. Variation coefficient (CV 1 ) of the measured value of the surface roughness (Rzjis) after the roughening treatment, and variation coefficient (CV 2 ) of the measured value of the surface roughness (Rzjis) before the roughening treatment of the untreated copper foil However, it has a relationship of CV 1 ≦ CV 2 . In the evaluation element described above, an area on the order of μm is evaluated that does not consider variation within the effective area of a printed wiring board that is actually used. However, an actual printed wiring board is processed with a size of several tens of centimeters. Accordingly, it is difficult to determine whether the roughening treatment, the rust prevention treatment, and the like are practically superior or inferior unless the variation when evaluated at a size of at least 10 cm × 10 cm is small. On the other hand, if it is a copper foil before roughening treatment, it can be made so that there is almost no difference in the evaluated characteristics at any place when it is divided and evaluated in units of 10 cm × 10 cm.

ここで、粗化処理前の未処理銅箔の表面粗さ(Rzjis)が粗化処理によって変化する現象を考えてみる。まず、粗化処理工程で、未処理銅箔の表面形状に沿って、ほぼ同一形状の粒子を付着形成させたと仮定する。この仮定の下では、表面粗さ(Rzjis)が粗化処理粒子の付着に起因して増加するとすれば、10点で測定した表面粗さ(Rzjis)の測定値の平均値は上昇する。そして、10点で測定した表面粗さ(Rzjis)のバラツキ(標準偏差)も上昇する。しかし、ほぼ同一形状の粒子を付着形成したものであれば、標準偏差の上昇の程度は、平均値の上昇の程度と比べれば小さいはずである。即ち、バラツキを示す標準偏差と平均値との比[(標準偏差)/(平均値))]の値である変動係数(Coefficient of Variation:以下、「CV値」と称する。)は、未処理銅箔の10点を測定した表面粗さ(Rzjis)のCV値よりも小さくなるはずである。よって、粗化処理面の表面粗さ(Rzjis)のCV値(CV)が、未処理銅箔表面の粗さ(Rzjis)のCV値(CV)よりも小さくなっている場合には、均一な粗化処理が施されていると判断可能な指標となる。そして、本件発明に係る表面処理銅箔は、CV≦CVの関係を備える接着表面である。 Here, let us consider a phenomenon in which the surface roughness (Rzjis) of the untreated copper foil before the roughening treatment is changed by the roughening treatment. First, it is assumed that particles having substantially the same shape are adhered and formed along the surface shape of the untreated copper foil in the roughening treatment step. Under this assumption, if the surface roughness (Rzjis) increases due to the adhesion of the roughened particles, the average value of the measured values of the surface roughness (Rzjis) measured at 10 points increases. And the variation (standard deviation) of the surface roughness (Rzjis) measured at 10 points also increases. However, if particles having substantially the same shape are adhered and formed, the degree of increase in standard deviation should be smaller than the degree of increase in average value. That is, a coefficient of variation (hereinafter referred to as “CV value”), which is a value of a ratio between standard deviation and average [(standard deviation) / (average value))] indicating variation, is not processed. It should be smaller than the CV value of the surface roughness (Rzjis) measured at 10 points of the copper foil. Therefore, when the CV value (CV 1 ) of the surface roughness (Rzjis) of the roughened surface is smaller than the CV value (CV 2 ) of the roughness (Rzjis) of the untreated copper foil surface, It becomes an index that can be determined that uniform roughening treatment is performed. Then, the surface treatment copper foil according to the present invention, an adhesive surface with the relationship CV 1 ≦ CV 2.

そして、上記のように絶縁樹脂基材との接着表面の表面積比が所定範囲にある本件発明に係る表面処理銅箔を用いて得られるプリント配線板は、高周波信号の伝送損失が小さく、伝送損失のバラツキも減少する。前述のように、高周波信号の伝送損失は、表皮効果を抜きにして考察することはできない。そして、高周波信号は誘電率が大きな方向に寄って流れる性質がある。従って、マイクロストリップラインでは、高周波信号は絶縁樹脂基材側を主に伝播する。即ち、マイクロストリップラインにおける伝送損失に大きく影響する銅箔の特性では、まず、銅箔接着表面の表面形状への依存性が大きく、次に配線回路エッジの直線性への依存性が大きい。従って、マイクロストリップラインで伝送損失を評価すると、表面処理銅箔の接着表面の影響が最も明確に現れる。その上で、本件発明に係る表面処理銅箔は、後の実施例に示すように、本件発明に係る表面処理銅箔の粗化処理面を絶縁樹脂基板と接着することにより、呼称厚さ18μmの銅箔とFR−4基材との組み合わせにおいて、周波数が10GHzの信号を配線回路幅220μmのマイクロストリップライン経由で伝送する際の伝送損失を、3.9db/cm以下にできる。即ち、従来から使用されている一般銅箔とは明らかに異なるレベルを示す。この伝送損失は、接着表面が粗くなるほど大きくなる傾向を備えるものである。   As described above, the printed wiring board obtained by using the surface-treated copper foil according to the present invention in which the surface area ratio of the adhesion surface with the insulating resin base material is within a predetermined range has a low transmission loss of high-frequency signals and a transmission loss. The variation of the is also reduced. As described above, the transmission loss of high-frequency signals cannot be considered without taking the skin effect into account. The high-frequency signal has a property that the dielectric constant flows toward a large direction. Therefore, in the microstrip line, the high-frequency signal propagates mainly on the insulating resin base material side. That is, in the characteristics of the copper foil that greatly affects the transmission loss in the microstrip line, the dependence on the surface shape of the copper foil adhesion surface is large, and the dependence on the linearity of the wiring circuit edge is large. Therefore, when the transmission loss is evaluated by the microstrip line, the influence of the adhesive surface of the surface-treated copper foil appears most clearly. In addition, the surface-treated copper foil according to the present invention has a nominal thickness of 18 μm by adhering the roughened surface of the surface-treated copper foil according to the present invention to an insulating resin substrate as shown in a later example. In the combination of the copper foil and the FR-4 base material, the transmission loss when a signal having a frequency of 10 GHz is transmitted via a microstrip line having a wiring circuit width of 220 μm can be reduced to 3.9 db / cm or less. That is, it shows a level clearly different from that of a conventional copper foil that has been conventionally used. This transmission loss tends to increase as the adhesion surface becomes rougher.

そして、従来から周波数10GHzを超える領域でのプリント配線板の電気特性の評価は信頼性に欠けると言われていたが、最近では測定機器の信頼性が上がり、測定結果に対する信頼性も向上してきた。ここの測定結果の信頼性を考えてみると、同一部位を測定した結果の再現性と、複数の測定箇所から得られるデータのバラツキをもって判断することが多い。従って、このバラツキは、測定機器と試験クーポンが内在するバラツキとを総合したものである。この観点からは、前記一般的な多層プリント配線板に用いられてきたプリント配線板用銅箔を用いた場合、伝送損失の絶対値が大きいだけではなくバラツキも大きいため、試験クーポンの伝送特性などを評価した結果を信頼してプリント配線板を設計しても、設計品質通りのプリント配線板を現実に製造することが困難であった。実際に、接着表面の状態を示す指標として、従来のプリント配線板用銅箔の接着表面を評価する指標である表面粗さ(Rzjis)を用いると、表面粗さ(Rzjis)の上昇と共に伝送損失が大きくなる傾向は把握できても、表面粗さ(Rzjis)が2.5μmを超える付近で、表面粗さ(Rzjis)と伝送損失との相関は不明確になる傾向がある。しかし、本件発明に係る表面積比を指標として用いると、表面粗さ(Rzjis)が2.5μmを超える表面処理銅箔に対しても、表面積比−伝送損失の相関関係がほぼ直線的な相関を示す。即ち、本件発明に係る表面処理銅箔は、指標として用いる表面積比を適正な範囲としているため、測定用の試験クーポンを作製しても内部のバラツキが小さく、伝送損失の測定データの信頼性が向上する。従って、本件発明に係る表面処理銅箔は、シミュレーションをベースとして製作したプリント配線板に対して、当初の設計品質通りの安定した電気特性、例えば、特性インピーダンスや高周波の伝送特性の作り込みが可能な表面処理銅箔である。   Conventionally, it has been said that the evaluation of the electrical characteristics of a printed wiring board in a region exceeding the frequency of 10 GHz is unreliable, but recently, the reliability of measurement equipment has been improved and the reliability of measurement results has been improved. . Considering the reliability of the measurement result here, the determination is often made based on the reproducibility of the result of measuring the same part and the variation in data obtained from a plurality of measurement points. Therefore, this variation is a total of the variation of the measuring device and the test coupon. From this point of view, when using the copper foil for a printed wiring board that has been used for the general multilayer printed wiring board, not only the absolute value of the transmission loss is large but also the variation is large. Even if the printed wiring board is designed by trusting the evaluation result, it is difficult to actually manufacture the printed wiring board according to the design quality. Actually, when the surface roughness (Rzjis), which is an index for evaluating the adhesive surface of a conventional copper foil for printed wiring boards, is used as an index indicating the state of the adhesive surface, transmission loss increases as the surface roughness (Rzjis) increases. Even if the tendency to increase is grasped, the correlation between the surface roughness (Rzjis) and the transmission loss tends to be unclear near the surface roughness (Rzjis) exceeding 2.5 μm. However, when the surface area ratio according to the present invention is used as an index, the surface area ratio-transmission loss correlation is almost linear even for a surface-treated copper foil having a surface roughness (Rzjis) exceeding 2.5 μm. Show. In other words, since the surface-treated copper foil according to the present invention has a surface area ratio used as an index within an appropriate range, even if a test coupon for measurement is produced, the internal variation is small, and the reliability of measurement data of transmission loss is low. improves. Therefore, the surface-treated copper foil according to the present invention can create stable electrical characteristics according to the original design quality, for example, characteristic impedance and high-frequency transmission characteristics, with respect to a printed wiring board manufactured based on simulation. Surface-treated copper foil.

更に、本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、10cm×10cmの2次元領域の評価において、亜鉛−ニッケル合金層が含む亜鉛とニッケルとの合計量(C)mg/mが40mg/m以上である。当該亜鉛とニッケルとの合計量が40mg/m未満の場合には、亜鉛−ニッケル合金による銅箔表面の被覆が不十分な部分が存在し、この部分は絶縁樹脂基材との密着性や耐薬品性に劣るため好ましくない。亜鉛とニッケルとの合計量の40mg/mとは、完全にフラットな理想平面を、厚さ約40Åの亜鉛−ニッケル合金で被覆できる量である。そして、40Åの厚さで理想平面を覆う亜鉛−ニッケル合金量は、ほぼ平滑な表面に微細で形状のバラツキが小さい粗化処理粒子が存在する場合には、表面積比が2前後の粗化処理面の粗化処理粒子が備えるオーバーハング部分を含めて、十分に被覆可能な量である。 Furthermore, in the surface-treated copper foil according to the present invention, the adhesive surface bonded to the insulating resin base material is a total amount of zinc and nickel contained in the zinc-nickel alloy layer in the evaluation of a two-dimensional region of 10 cm × 10 cm. (C) mg / m 2 is 40 mg / m 2 or more. When the total amount of zinc and nickel is less than 40 mg / m 2 , there is a portion where the coating of the copper foil surface with the zinc-nickel alloy is insufficient, and this portion has adhesiveness with the insulating resin substrate or Since it is inferior to chemical resistance, it is not preferable. The total amount of zinc and nickel of 40 mg / m 2 is an amount capable of covering a completely flat ideal plane with a zinc-nickel alloy having a thickness of about 40 mm. The amount of the zinc-nickel alloy covering the ideal plane with a thickness of 40 mm is roughened with a surface area ratio of around 2 when there are finely-grained particles having a small shape variation on a substantially smooth surface. It is an amount that can be sufficiently covered, including the overhang portion provided in the surface roughening particles.

そして、前記亜鉛−ニッケル合金層は、ニッケルを65wt%〜90wt%、亜鉛を10wt%〜35wt%含有することが好ましい。ここの「wt%」表示は、亜鉛とニッケルとの合計を100wt%とし、不可避不純物の存在を考慮していないことを明記しておく。この亜鉛−ニッケル合金層が含むニッケルは、絶縁樹脂基材と金属銅との直接の接触を妨げ、絶縁樹脂基材と銅箔との密着性を安定させるように作用する。一般的に、金属銅と基材樹脂とが直接接触していると、加熱を受けた際に、貴金属である銅の触媒作用により、樹脂が変質(酸化)する。そして、樹脂の変質がおこると、接着強度、耐薬品性、耐吸湿性などほとんどの特性に悪影響を与えることになる。そこで、プリント配線板の加工工程で受ける熱履歴の範囲で、金属銅と合金化しにくいニッケルを含む亜鉛−ニッケル合金層を設け、銅と絶縁樹脂基材との直接接触を防止するバリアとして機能させる。   The zinc-nickel alloy layer preferably contains 65 wt% to 90 wt% nickel and 10 wt% to 35 wt% zinc. Here, “wt%” indicates that the total of zinc and nickel is 100 wt% and that the presence of inevitable impurities is not considered. The nickel contained in the zinc-nickel alloy layer acts to prevent direct contact between the insulating resin base material and the metallic copper and stabilize the adhesion between the insulating resin base material and the copper foil. Generally, when metallic copper and base resin are in direct contact, the resin is altered (oxidized) by the catalytic action of copper, which is a noble metal, when heated. When the resin changes in quality, it adversely affects most properties such as adhesive strength, chemical resistance and moisture absorption resistance. Therefore, a zinc-nickel alloy layer containing nickel that is difficult to be alloyed with metallic copper is provided within the range of the thermal history received in the processing process of the printed wiring board, and functions as a barrier that prevents direct contact between copper and the insulating resin substrate. .

しかし、ニッケル含有量が90%を超えると、配線回路を形成する際に銅エッチング液で処理しても、完全にニッケルを溶解除去することが困難になり、表層マイグレーションの発生原因となるため好ましくない。一方、亜鉛の含有割合が35wt%を超えると、形成した配線回路の耐薬品性が低下する傾向が見られ、錫めっきを行った場合等には、析出錫の潜り込み現象が発生しやすくなる。上記両方の現象を回避するためには、亜鉛−ニッケル合金層が含むニッケルを70wt%〜85wt%、亜鉛を30wt%〜15wt%とすることが好ましい。   However, if the nickel content exceeds 90%, it is difficult to completely dissolve and remove nickel even when treated with a copper etchant when forming a wiring circuit, which may cause surface layer migration. Absent. On the other hand, if the content ratio of zinc exceeds 35 wt%, the chemical resistance of the formed wiring circuit tends to be lowered, and when tin plating is performed, a phenomenon of precipitation of precipitated tin is likely to occur. In order to avoid both of the above phenomena, it is preferable that nickel contained in the zinc-nickel alloy layer be 70 wt% to 85 wt% and zinc be 30 wt% to 15 wt%.

上記亜鉛−ニッケル合金層を形成するには、例えば、硫酸ニッケルを用いてニッケル濃度が1g/L〜3.5g/L、ピロリン酸亜鉛を用いて亜鉛濃度が0.1g/L〜1g/L、ピロリン酸カリウム濃度が50g/L〜250g/Lで、水酸化カリウムを用いてpH8〜11に調製したニッケルめっき液等を用いることができる。この様なめっき液の組成であれば、めっき液温を20〜50℃とし、銅箔の粗化処理面を陰極、対極に不溶性陽極を用い、電流密度0.3〜10A/dmで電解することで亜鉛−ニッケル合金層を銅箔表面に形成できる。しかし、めっき装置によっては、上記条件内であっても、ニッケル濃度が高く亜鉛濃度が低い場合には、ニッケル含有量が増加して亜鉛含有量が低下する。また、亜鉛濃度が高くニッケル濃度が低い場合には、亜鉛含有量が増加してニッケル含有量が低下する傾向となり、最適な含有比率が得られない場合がある。従って、予察試験を行って、装置の特性を考慮した最適条件を選択すれば良い。 In order to form the zinc-nickel alloy layer, for example, nickel sulfate is used to have a nickel concentration of 1 g / L to 3.5 g / L, and zinc pyrophosphate is used to have a zinc concentration of 0.1 g / L to 1 g / L. A nickel plating solution having a potassium pyrophosphate concentration of 50 g / L to 250 g / L and adjusted to pH 8 to 11 using potassium hydroxide can be used. With such a composition of the plating solution, the temperature of the plating solution is set to 20 to 50 ° C., the roughened surface of the copper foil is used as a cathode, an insoluble anode is used as a counter electrode, and electrolysis is performed at a current density of 0.3 to 10 A / dm 2 . By doing so, a zinc-nickel alloy layer can be formed on the copper foil surface. However, depending on the plating apparatus, even within the above conditions, when the nickel concentration is high and the zinc concentration is low, the nickel content increases and the zinc content decreases. Further, when the zinc concentration is high and the nickel concentration is low, the zinc content tends to increase and the nickel content tends to decrease, and the optimal content ratio may not be obtained. Therefore, it is only necessary to conduct a preliminary test and select an optimum condition considering the characteristics of the apparatus.

そして、本件発明に係る表面処理銅箔においては、前記絶縁樹脂基材と張り合わせる接着表面は、前記亜鉛−ニッケル合金層が含む亜鉛とニッケルとの合計量の値(C)と前記表面積比(B)との比[(C)/(B)]の値が30以上である。前述のように、亜鉛とニッケルとの合計量は、亜鉛−ニッケル合金により銅箔表面を十分に被覆可能な量としなければならない。亜鉛−ニッケル合金層を形成する粗化処理面の表面積は、表面積比(B)の値に比例する。ここで、(B)の値が1.2〜2.5の範囲の場合、[(C)/(B)]の値を30以上とすれば、表面処理銅箔が備える粗化処理粒子の表面を、亜鉛−ニッケル合金層で完全に被覆した状態にできる。密着性や耐薬品性等のみを判断基準とすれば、[(C)/(B)]の値の上限に関しては、限定する意味合いはない。しかし、亜鉛とニッケルとの合計量が過剰になると、エッチングにより配線回路を形成する際に、オーバーエッチング時間をやや長めにすることが必要になる場合がある。表面マイグレーション等の発生を防止するためである。この観点から好ましい[(C)/(B)]の値の上限は50付近である。   And in the surface-treated copper foil which concerns on this invention, the adhesive surface bonded with the said insulating resin base material is the value (C) of the total amount of zinc and nickel which the said zinc-nickel alloy layer contains, and the said surface area ratio ( The value of the ratio [(C) / (B)] to B) is 30 or more. As described above, the total amount of zinc and nickel must be such that the copper foil surface can be sufficiently covered with the zinc-nickel alloy. The surface area of the roughened surface that forms the zinc-nickel alloy layer is proportional to the value of the surface area ratio (B). Here, when the value of (B) is in the range of 1.2 to 2.5, if the value of [(C) / (B)] is 30 or more, the surface-treated copper foil has the roughened particles. The surface can be completely covered with a zinc-nickel alloy layer. If only adhesiveness, chemical resistance, etc. are used as criteria, there is no meaning to limit the upper limit of the value of [(C) / (B)]. However, if the total amount of zinc and nickel is excessive, it may be necessary to slightly increase the overetching time when forming a wiring circuit by etching. This is to prevent the occurrence of surface migration or the like. The upper limit of the value of [(C) / (B)] that is preferable from this viewpoint is around 50.

また、前記亜鉛−ニッケル合金層の表面には、必要に応じてクロメート処理やシランカップリング剤処理を施すこともできる。クロメート層を形成するには、置換法や電解法等を採用できる。亜鉛−ニッケル合金層の表面にクロメート層を形成すれば、絶縁樹脂基材との密着性や耐薬品性が改善される。更に、シランカップリング剤を表面に吸着させれば、表面処理銅箔の表面と絶縁樹脂基材との濡れ性を改善できる。ここで用いるシランカップリング剤の種類は、絶縁樹脂基材の種類を勘案して適宜選択すれば良い。そして、樹脂と無機物との接着性を改善するために用いられる汎用のシランカップリング剤には、エポキシ官能性シランカップリング剤、オレフィン官能性シランカップリング剤、アクリル官能性シランカップリング剤等がある。しかし、ポリイミド樹脂の場合には、アミノ官能性シランカップリング剤又はメルカプト官能性シランカップリング剤を用いると、顕著な効果が得られるため好ましい。シランカップリング剤を表面処理銅箔の表面に吸着させるには、これらシランカップリング剤を含む水溶液を調製し、これを表面処理銅箔の表面と接触させれば良い。例えば、絶縁樹脂基材との接着表面のみにシランカップリング剤を吸着させるのであれば、シランカップリング剤を含む水溶液を粗化処理面にシャワーリングする方法等を用いることができる。   Further, the surface of the zinc-nickel alloy layer can be subjected to a chromate treatment or a silane coupling agent treatment as necessary. In order to form the chromate layer, a substitution method, an electrolytic method, or the like can be employed. If a chromate layer is formed on the surface of the zinc-nickel alloy layer, adhesion to the insulating resin substrate and chemical resistance are improved. Furthermore, if the silane coupling agent is adsorbed on the surface, the wettability between the surface of the surface-treated copper foil and the insulating resin substrate can be improved. The type of silane coupling agent used here may be selected as appropriate in consideration of the type of insulating resin substrate. General-purpose silane coupling agents used to improve the adhesion between the resin and the inorganic substance include epoxy functional silane coupling agents, olefin functional silane coupling agents, acrylic functional silane coupling agents, and the like. is there. However, in the case of a polyimide resin, it is preferable to use an amino-functional silane coupling agent or a mercapto-functional silane coupling agent because a remarkable effect can be obtained. In order to adsorb the silane coupling agent on the surface of the surface-treated copper foil, an aqueous solution containing these silane coupling agents may be prepared and brought into contact with the surface of the surface-treated copper foil. For example, if the silane coupling agent is adsorbed only on the adhesion surface with the insulating resin substrate, a method of showering an aqueous solution containing the silane coupling agent on the roughened surface can be used.

本件発明に係る銅張積層板の形態: 本件発明に係る銅張積層板は、本件発明に係る表面処理銅箔と絶縁樹脂基材とを張り合わせて得られる銅張積層板である。この銅張積層板は、前記表面処理銅箔が微細で均一に形成された粗化処理粒子を備えているため、プリント配線板を製造する際に、微細配線回路の形成が容易な銅張積層板となる。そして、形成された配線回路は、実用上十分な密着性を備え、耐薬品性や耐吸湿性にも優れ、電気特性も優れたものとなる。前述のように、高周波信号の伝送損失が小さく、特性インピーダンスの作り込みも容易であることからは、この銅張積層板は、クロック周波数が大きな半導体デバイスを直接搭載するパッケージ基板等の製造用途に好適である。 Form of the copper clad laminate according to the present invention: The copper clad laminate according to the present invention is a copper clad laminate obtained by laminating the surface-treated copper foil according to the present invention and an insulating resin substrate. This copper clad laminate has roughened particles in which the surface-treated copper foil is finely and uniformly formed. Therefore, when manufacturing a printed wiring board, the copper clad laminate is easy to form a fine wiring circuit. It becomes a board. The formed wiring circuit has practically sufficient adhesion, is excellent in chemical resistance and moisture absorption resistance, and has excellent electrical characteristics. As mentioned above, because of the low transmission loss of high-frequency signals and the easy creation of characteristic impedance, this copper-clad laminate is suitable for use in the manufacture of package boards and other devices that directly mount semiconductor devices with a high clock frequency. Is preferred.

本件発明に係るプリント配線板: 本件発明に係るプリント配線板は、前記銅張積層板を用いて得られるプリント配線板である。即ち、本件発明に係るプリント配線板は、前述の銅張積層板を用いた本件発明に係る表面処理銅箔の特徴を生かし、従来の一般的な多層プリント配線板と比べると、微細配線回路を備え、高周波信号の伝送損失が少なく、設計品質通りの特性インピーダンスを備えるプリント配線板となる。 Printed wiring board according to the present invention: The printed wiring board according to the present invention is a printed wiring board obtained using the copper-clad laminate. That is, the printed wiring board according to the present invention makes use of the characteristics of the surface-treated copper foil according to the present invention using the above-described copper-clad laminate, and compared with a conventional general multilayer printed wiring board, The printed wiring board has a characteristic impedance as designed quality with little transmission loss of high-frequency signals.

実施例1では、厚さ9μmの未処理銅箔の析出面に粗化処理と防錆処理とを施して5種類の表面処理銅箔(試料1−1〜試料1−5)を作成し、各種評価を行った。粗化処理及び防錆処理の条件は、比較例1で用いた条件と併せて、後の表1に示す。   In Example 1, five types of surface-treated copper foils (Sample 1-1 to Sample 1-5) were prepared by subjecting a deposition surface of an untreated copper foil having a thickness of 9 μm to a roughening treatment and an antirust treatment, Various evaluations were performed. The conditions for the roughening treatment and the rust prevention treatment are shown in Table 1 later together with the conditions used in Comparative Example 1.

未処理銅箔の製造: 厚さ9μmの未処理銅箔は、銅電解液として以下に示す組成の硫酸酸性硫酸銅溶液を用い、陰極にチタン製の回転電極を、陽極にはDSAを用いて、液温45℃、電流密度55A/dmで電解して製造した。 Production of untreated copper foil: An untreated copper foil having a thickness of 9 μm uses a sulfuric acid copper sulfate solution having the following composition as the copper electrolyte, a titanium rotating electrode as the cathode, and DSA as the anode. It was produced by electrolysis at a liquid temperature of 45 ° C. and a current density of 55 A / dm 2 .

銅濃度: 80g/L
フリー硫酸濃度: 140g/L
SPS濃度: 30mg/L
DDAC重合体濃度: 50mg/L
塩素濃度: 40mg/L
Copper concentration: 80 g / L
Free sulfuric acid concentration: 140 g / L
SPS concentration: 30 mg / L
DDAC polymer concentration: 50 mg / L
Chlorine concentration: 40mg / L

表面粗さ(Rzjis): 上記未処理銅箔の析出面の表面粗さ(Rzjis)は、先端のrが2μmのダイヤモンドスタイラスを備える、触針式の表面粗さ計(株式会社小坂研究所製、商品名:SEF−30D)を用い、JIS B 0601に準拠して測定した。その結果、表面粗さ(Rzjis)は、10箇所の測定結果の平均値は0.7μmであり、CV値(CV)は0.048であった。評価結果を、実施例1及び比較例1の評価結果を併せて、後の表2に示す。 Surface roughness (Rzjis): The surface roughness (Rzjis) of the deposition surface of the untreated copper foil is a stylus type surface roughness meter (manufactured by Kosaka Laboratory Co., Ltd.) equipped with a diamond stylus whose tip r is 2 μm. , Trade name: SEF-30D) and measured according to JIS B 0601. As a result, as for the surface roughness (Rzjis), the average value of 10 measurement results was 0.7 μm, and the CV value (CV 2 ) was 0.048. The evaluation results are shown in the following Table 2 together with the evaluation results of Example 1 and Comparative Example 1.

3次元表面積: 3次元表面積は、株式会社キーエンス製超深度カラー3D形状測定顕微鏡VK−9500(使用レーザー:可視光限界波長408nmのバイオレットレーザー)を用いて、未処理銅箔の析出面の、2次元表面積が6550μmの領域について測定した。その結果、3次元表面積は6588μmであった。評価結果を、実施例1及び後述する比較例の試料1−7の評価結果と併せて、後の表2に示す。 Three-dimensional surface area: The three-dimensional surface area is 2 of the deposition surface of untreated copper foil using an ultra-deep color 3D shape measuring microscope VK-9500 (used laser: violet laser with a visible light limit wavelength of 408 nm) manufactured by Keyence Corporation. Measurements were made on a region with a dimensional surface area of 6550 μm 2 . As a result, the three-dimensional surface area was 6588 μm 2 . The evaluation results are shown in Table 2 later together with the evaluation results of the sample 1-7 of Example 1 and a comparative example described later.

粗化処理: 粗化処理では、第1段処理で微細粗化処理銅粒子を付着形成し、第2段処理で平滑めっきし、粗化処理銅粒子の形状を整える2段階の電解銅めっきを実施した。まず、第1段処理では、銅濃度を10g/L、フリー硫酸濃度を100g/Lに調整し、液温を30℃とした第1銅電解液中で、未処理銅箔を陰極とし、未処理銅箔の析出面に対向させて陽極のDSAを配置して、後の表1に記載の各電流条件で未処理銅箔の析出面に微細粗化処理銅粒子を形成した。 Roughening treatment: In the roughening treatment, two-stage electrolytic copper plating is performed in which finely roughened copper particles are adhered and formed in the first stage treatment, smooth plating is performed in the second stage treatment, and the shape of the roughened copper particles is adjusted. Carried out. First, in the first stage treatment, an untreated copper foil is used as a cathode in a first copper electrolytic solution in which the copper concentration is adjusted to 10 g / L, the free sulfuric acid concentration is adjusted to 100 g / L, and the liquid temperature is 30 ° C. The anode DSA was placed facing the deposition surface of the treated copper foil, and finely roughened copper particles were formed on the deposition surface of the untreated copper foil under each current condition described in Table 1 below.

そして、第2段処理では、銅濃度を70g/L、フリー硫酸濃度を150g/Lに調整し、液温を45℃とした第2銅電解液中で、銅箔を陰極とし、銅箔の析出面側に対向させて陽極のDSAを配置して、後の表1に記載の各電流条件で、微細粗化処理粒子を付着形成した未処理銅箔の析出面に平滑めっきを施し、粗化処理銅粒子の形状を整えた。   In the second stage treatment, the copper concentration is adjusted to 70 g / L, the free sulfuric acid concentration is adjusted to 150 g / L, the liquid temperature is 45 ° C., the copper foil is used as the cathode, The anode DSA was placed facing the deposition surface side, and smooth plating was applied to the deposition surface of the untreated copper foil on which the fine-roughened particles were adhered and formed under each current condition shown in Table 1 below. The shape of the chemical treatment copper particles was adjusted.

上記にて粗化処理銅粒子を形成後、銅箔の両面に無機防錆処理を施した、具体的には、ピロリン酸カリウム濃度を80g/L、亜鉛濃度を0.2g/L、ニッケル濃度を2g/Lに調整し、液温を40℃としたピロリン酸塩防錆浴中で、銅箔を陰極として、陽極のSUS板を銅箔の両側に配置し、銅箔の粗化処理面側には後の表1に記載の各電流条件で亜鉛−ニッケル合金層を形成した。   After forming the roughened copper particles as described above, inorganic rust prevention treatment was performed on both sides of the copper foil. Specifically, the potassium pyrophosphate concentration was 80 g / L, the zinc concentration was 0.2 g / L, and the nickel concentration In a pyrophosphate rust-proof bath with a liquid temperature of 40 ° C., the copper foil as the cathode, and the SUS plates of the anode are arranged on both sides of the copper foil, and the copper foil is roughened. On the side, a zinc-nickel alloy layer was formed under each current condition described in Table 1 below.

更に、電解法でクロメート層を形成した。具体的には、クロム酸濃度が1g/LでpHを11とした25℃の溶液中で、銅箔を陰極として、SUS板を陽極として粗化処理面と対向配置して電流密度1A/dmで電解し、クロメート層を形成した。 Further, a chromate layer was formed by an electrolytic method. Specifically, in a 25 ° C. solution having a chromic acid concentration of 1 g / L and a pH of 11, a copper foil is used as a cathode, a SUS plate is used as an anode and the roughened surface is arranged to face a current density of 1 A / dm. 2 was electrolyzed to form a chromate layer.

クロメート処理が完了すると水洗し、直ちに析出面側の防錆処理層の上にシランカップリング剤を吸着させた。具体的には、γ−グリシドキシプロピルトリメトキシシランをイオン交換水に溶解して濃度が3g/Lの水溶液を調製し、この水溶液を析出面側の防錆層の全面が濡れるようにシャワーリングし、その後ロールと接触させて液膜厚さを均一にした。   When the chromate treatment was completed, it was washed with water, and a silane coupling agent was immediately adsorbed onto the rust preventive treatment layer on the precipitation surface side. Specifically, γ-glycidoxypropyltrimethoxysilane is dissolved in ion-exchanged water to prepare an aqueous solution having a concentration of 3 g / L, and this aqueous solution is showered so that the entire surface of the rust-preventing layer on the deposition surface is wet. Then, it was brought into contact with a roll to make the liquid film thickness uniform.

シランカップリング剤処理が終了すると、銅箔温度が150℃になる雰囲気に設定した乾燥炉内に4秒間保持して水分を気散させ、9μm厚さの5種類の表面処理銅箔、試料1−1〜試料1−5を得た。   When the silane coupling agent treatment is completed, the surface is kept in a drying furnace set to an atmosphere where the copper foil temperature becomes 150 ° C. for 4 seconds to disperse moisture, and 5 types of surface-treated copper foils having a thickness of 9 μm, Sample 1 -1 to Sample 1-5 were obtained.

接着表面の表面粗さ(Rzjis): 試料1−1〜試料1−5の接着表面の表面粗さ(Rzjis)は、未処理銅箔の析出面と同様にして測定した。その結果、10箇所の測定結果の平均値は1.5μm〜2.3μmであり、CV値(CV)は0.031〜0.041であった。 Surface roughness (Rzjis) of adhesion surface: The surface roughness (Rzjis) of the adhesion surface of Sample 1-1 to Sample 1-5 was measured in the same manner as the deposition surface of the untreated copper foil. As a result, the average value of the measurement results at 10 locations was 1.5 μm to 2.3 μm, and the CV value (CV 1 ) was 0.031 to 0.041.

3次元表面積: 未処理銅箔と同様にして、試料1〜試料5の、接着表面側の3次元表面積を測定した。その結果、3次元表面積は、8216μm〜11735μmであった。従って、2次元表面積が6550μmの測定領域との比であるBの値は1.25〜1.79であり、未処理銅箔の3次元表面積6588μmとの比である[(A)/(a)]の値は、1.25〜1.78であった。 Three-dimensional surface area: Similarly to the untreated copper foil, the three-dimensional surface area on the adhesion surface side of Samples 1 to 5 was measured. As a result, the three-dimensional surface area was 8216 μm 2 to 11735 μm 2 . Therefore, the value of B, which is the ratio to the measurement region having a two-dimensional surface area of 6550 μm 2 , is 1.25 to 1.79, which is the ratio to the three-dimensional surface area of 6588 μm 2 of the untreated copper foil [(A) / The value of (a)] was 1.25 to 1.78.

合金層の組成: 亜鉛−ニッケル合金層の組成は、光沢面側が溶解しないようにドライフィルムレジストで保護し、接着表面の5cm×10cm領域を酸化性の酸溶液で溶解後、純水を加えて定容とし、この水溶液が含む合金成分濃度をICP発光分光分析装置を用いて分析した。合金成分量は、分析結果の成分濃度を換算し、1mの単位面積が含む量として算出した。前記分析の結果、合金層が含む亜鉛の量は10mg/m〜13mg/m、ニッケルの量は39mg/m〜46mg/m、亜鉛とニッケルとの合計量(C)は、49mg/m〜59mg/mであった。更に、この防錆量(C)を用い、3次元表面積あたりの防錆量[(C)/(B)]の値を算出したところ、(C)/(B)の値は31〜41であった。評価結果を、比較例1の評価結果と併せて、後の表3に示す。 Composition of the alloy layer: The composition of the zinc-nickel alloy layer is protected with a dry film resist so that the glossy surface side does not dissolve, and after dissolving the 5 cm × 10 cm region of the adhesion surface with an oxidizing acid solution, pure water is added. The volume of the alloy component contained in the aqueous solution was analyzed using an ICP emission spectroscopic analyzer. The alloy component amount was calculated as the amount contained in a unit area of 1 m 2 by converting the component concentration of the analysis result. The analysis results, the total amount of the amount of the zinc containing alloy layer is 10mg / m 2 ~13mg / m 2 , the amount of nickel 39mg / m 2 ~46mg / m 2 , zinc and nickel (C) is, 49 mg / M 2 to 59 mg / m 2 . Furthermore, when the value of the rust prevention amount [(C) / (B)] per three-dimensional surface area was calculated using this rust prevention amount (C), the value of (C) / (B) was 31 to 41. there were. The evaluation results are shown in Table 3 later together with the evaluation results of Comparative Example 1.

密着性: 試料1〜試料5の絶縁樹脂基材との密着性は、厚さ約1.0mmのFR−4銅張積層板を作成して評価した。具体的には、厚さ0.18mmのFR−4プリプレグを5枚重ねた上に、上記表面処理銅箔の粗化処理面が上記FR−4プリプレグ側に接するようにして重ねたブックとし、このブックを20kgf/cm、165℃で60分間加熱加圧成形して、片面銅張積層板を作製した。 Adhesiveness: The adhesiveness of Sample 1 to Sample 5 with the insulating resin base material was evaluated by preparing an FR-4 copper clad laminate having a thickness of about 1.0 mm. Specifically, it is a book in which five FR-4 prepregs having a thickness of 0.18 mm are stacked and the roughened surface of the surface-treated copper foil is stacked so as to be in contact with the FR-4 prepreg side, This book was heat-press molded at 20 kgf / cm 2 and 165 ° C. for 60 minutes to produce a single-sided copper-clad laminate.

次に、上記片面銅張積層板の銅箔面を整面後、全面にネガ型ドライフィルムをラミネートした。このドライフィルム上に評価用の配線回路形状を形成するためのマスクフィルムを載せて露光、現像して、露光されていない部分のドライフィルムを除去し、エッチングレジストを形成した。次に、塩化第二銅エッチング液を用いて、エッチングレジストで被覆されていない部分の銅箔をエッチングした。更に、エッチングレジストをNaOH水溶液を噴霧して剥離し、密着性評価用の幅0.2mmの直線状の配線回路を備える試験クーポンを得た。   Next, after adjusting the copper foil surface of the single-sided copper-clad laminate, a negative dry film was laminated on the entire surface. A mask film for forming a wiring circuit shape for evaluation was placed on the dry film, exposed and developed, and the dry film in an unexposed portion was removed to form an etching resist. Next, the copper foil of the part which is not coat | covered with the etching resist was etched using the cupric chloride etching liquid. Further, the etching resist was peeled off by spraying with an aqueous NaOH solution to obtain a test coupon having a linear wiring circuit having a width of 0.2 mm for adhesion evaluation.

上記試験クーポンの常態引き剥がし強さ(Peel Strength as Recieved:以下、「P/S−A」と称する)は、万能試験機を用い、JIS C 6481に準拠して測定した。その結果、P/S−Aは0.81kgf/cm〜0.96kgf/cmであり、実用上十分な値であった。評価結果を、比較例1の評価結果と併せて、後の表4に示す。   The normal peel strength (hereinafter referred to as “P / SA”) of the test coupon was measured according to JIS C 6481 using a universal testing machine. As a result, P / SA was 0.81 kgf / cm to 0.96 kgf / cm, which was a practically sufficient value. The evaluation results are shown in Table 4 later together with the evaluation results of Comparative Example 1.

耐薬品性: 耐薬品性の評価は、上記にて得られた試験クーポンを、希塩酸(水:濃塩酸=1:1)に室温で60分間の浸漬前後の引き剥がし強さの変化から求める耐塩酸性で評価した。具体的な試験方法では、試験クーポンを希塩酸に攪拌しながら浸漬し、60分間経過後試験クーポンを取り出してすぐに水洗して風乾し、規定時間以内にP/S−Aと同様の方法で、塩酸処理後の引き剥がし強さを測定した。耐塩酸性の指標である耐塩酸劣化率(%)は、塩酸処理後の引き剥がし強さとP/S−Aとの差の値をP/S−Aで除して算出した。その結果、耐塩酸劣化率は0%〜4.0%であり、良好な値であった。評価結果を、比較例1の評価結果と併せて、後の表4に示す。 Chemical resistance: Evaluation of chemical resistance is based on the test coupon obtained above based on the change in peel strength before and after immersion in dilute hydrochloric acid (water: concentrated hydrochloric acid = 1: 1) at room temperature for 60 minutes. The acidity was evaluated. In a specific test method, the test coupon is immersed in dilute hydrochloric acid while being stirred, and after 60 minutes, the test coupon is taken out, immediately washed with water and air-dried, within the specified time, in the same manner as P / SA, The peel strength after hydrochloric acid treatment was measured. The hydrochloric acid resistance deterioration rate (%), which is an index of hydrochloric acid resistance, was calculated by dividing the difference between the peel strength after treatment with hydrochloric acid and P / SA by P / SA. As a result, the hydrochloric acid resistance deterioration rate was 0% to 4.0%, which was a good value. The evaluation results are shown in Table 4 later together with the evaluation results of Comparative Example 1.

耐吸湿性: 耐吸湿性の評価は、上記にて得られた試験クーポンを、120分間イオン交換水中で煮沸した前後の引き剥がし強さの変化から求める耐湿性で評価した。具体的な試験方法では、試験クーポンをイオン交換水中で煮沸し、120分後に試験クーポンを取り出して水洗して風乾、冷却し、規定時間内にP/S−Aと同様の方法で、煮沸後の引き剥がし強さを測定した。耐吸湿性の指標である耐湿劣化率(%)は、煮沸後の引き剥がし強さとP/S−Aとの差の値をP/S−Aで除して算出した。その結果、耐湿劣化率は0%〜3.0%であり、良好な値であった。評価結果を、比較例1の評価結果と併せて、後の表4に示す。 Hygroscopic resistance: The hygroscopic resistance was evaluated based on the moisture resistance obtained from the change in peel strength before and after boiling the test coupon obtained above in ion-exchanged water for 120 minutes. In a specific test method, the test coupon is boiled in ion-exchanged water. After 120 minutes, the test coupon is taken out, washed with water, air-dried and cooled, and after boiling in the same manner as P / SA within a specified time. The peel strength was measured. The moisture deterioration rate (%), which is an index of moisture absorption resistance, was calculated by dividing the difference between the peel strength after boiling and P / SA by P / SA. As a result, the moisture deterioration rate was 0% to 3.0%, which was a good value. The evaluation results are shown in Table 4 later together with the evaluation results of Comparative Example 1.

実施例2では、本件発明に係る粗化処理面を形成した18μm厚さの表面処理銅箔の伝送損失を、10GHzの高周波信号を用いて評価した。表面処理銅箔は、実施例1と同様にして18μmの未処理銅箔を製造し、未処理銅箔の析出面(Rzjis:0.6μm)に、実施例1の試料1−4と同様の条件で表面処理を施して作成した。表面処理後の表面粗さ(Rzjis)は2.0μm、表面積比(B)は1.61であり、試料1−4とほぼ同等であった。   In Example 2, the transmission loss of the surface-treated copper foil having a thickness of 18 μm on which the roughened surface according to the present invention was formed was evaluated using a high frequency signal of 10 GHz. The surface-treated copper foil produced an untreated copper foil of 18 μm in the same manner as in Example 1, and the same treatment as Sample 1-4 of Example 1 was performed on the deposition surface (Rzjis: 0.6 μm) of the untreated copper foil. The surface treatment was performed under conditions. The surface roughness (Rzjis) after the surface treatment was 2.0 μm, and the surface area ratio (B) was 1.61, which was almost the same as Sample 1-4.

伝送損失の評価は、上記表面処理銅箔をFR−4基材(三菱瓦斯化学(株)製GEPL−230TNT)と推奨条件で張り合わせた15cm×15cmサイズで板厚が0.1mmの両面銅張積層板を用いて実施した。評価用の試験クーポン2には、実施例1と同様、ドライフィルムをエッチングレジストとして用い、塩化第二銅エッチング液で不要部分の銅箔をエッチング除去して220μm幅で長さ150mmの配線回路を形成した。伝送損失は、アンリツ株式会社製のネットワークアナライザーを用いて評価した。その結果、10GHzの高周波信号を用いた場合の伝送損失は3.7db/cmであった。   Transmission loss is evaluated by double-sided copper-clad with a 15cm x 15cm size and 0.1mm plate thickness obtained by bonding the surface-treated copper foil to an FR-4 base material (GEPL-230TNT manufactured by Mitsubishi Gas Chemical Co., Ltd.) under recommended conditions. It implemented using the laminated board. In the test coupon 2 for evaluation, as in Example 1, a dry film was used as an etching resist, an unnecessary portion of the copper foil was etched away with a cupric chloride etching solution, and a wiring circuit having a width of 220 μm and a length of 150 mm was formed. Formed. The transmission loss was evaluated using a network analyzer manufactured by Anritsu Corporation. As a result, the transmission loss when using a high frequency signal of 10 GHz was 3.7 db / cm.

比較例Comparative example

[比較例1]
比較例1では、実施例1と同じ未処理銅箔を用いた試料1−6と、未処理銅箔として三井金属鉱業(株)製9μm厚さのVLP銅箔を用いた試料1−7とを、表1に記載の条件で表面処理を施して作成し、実施例1と同様の評価を行った。試料1−7の作製に用いたVLP銅箔の、析出面10箇所の表面粗さ(Rzjis)測定結果の平均値は2.0μmであり、CV値(CV)は0.052であった。また、2次元表面積が6550μmの領域について測定した3次元表面積は8512μmであった。この表面処理銅箔の、比較例1の処理条件を、実施例1の処理条件と併せて以下の表1に、接着面に関わる評価結果を実施例1の評価結果と併せて、後の表2に示す。
[Comparative Example 1]
In Comparative Example 1, Sample 1-6 using the same untreated copper foil as in Example 1, and Sample 1-7 using 9 μm-thick VLP copper foil manufactured by Mitsui Metal Mining Co., Ltd. as the untreated copper foil Was prepared by performing a surface treatment under the conditions described in Table 1, and the same evaluation as in Example 1 was performed. The average value of the surface roughness (Rzjis) measurement results of 10 precipitation surfaces of the VLP copper foil used for the production of Sample 1-7 was 2.0 μm, and the CV value (CV 2 ) was 0.052. . Further, 2-dimensional surface area three-dimensional surface area measured for the area of 6550Myuemu 2 was 8512Myuemu 2. The processing conditions of Comparative Example 1 of this surface-treated copper foil are shown in the following Table 1 together with the processing conditions of Example 1, and the evaluation results related to the adhesive surface are combined with the evaluation results of Example 1 in the following table. It is shown in 2.

Figure 0005129642
Figure 0005129642

上記にて得られた試料1−6を評価した結果、表面処理後の3次元表面積は7300μmであり、2次元表面積が6550μmの測定領域との比であるBの値は1.11、未処理銅箔の3次元表面積6588μmとの比である[(A)/(a)]の値は、1.11であった。この表面処理銅箔の、絶縁樹脂基材との接着表面10箇所の表面粗さ(Rzjis)の測定結果の平均値は1.3μmであり、CV値(CV)は0.045であった。接着表面の合金層の分析では、合金層が含む亜鉛の量は12mg/m、ニッケルの量は38mg/m、亜鉛とニッケルとの合計量(C)は50mg/mであり、同一条件で防錆処理を施した実施例1とほぼ同等であった。この防錆量(C)を用い、3次元表面積あたりの防錆量[(C)/(B)]の値を算出したところ、(C)/(B)の値は45であった。そして、FR−4基材におけるP/S−Aは0.66kgf/cm、耐塩酸劣化率は0.0%、耐湿劣化率は1.4%であった。評価結果を、実施例1及び試料1−7の評価結果と併せて、後の表2〜表4に示す。 As a result of evaluating the sample 1-6 obtained above, the three-dimensional surface area after the surface treatment is 7300 μm 2 , and the value of B, which is the ratio to the measurement region where the two-dimensional surface area is 6550 μm 2 , is 1.11. The value of [(A) / (a)], which is the ratio of the untreated copper foil to the three-dimensional surface area of 6588 μm 2 , was 1.11. The average value of the measurement results of the surface roughness (Rzjis) of 10 surfaces of the surface-treated copper foil bonded to the insulating resin base material was 1.3 μm, and the CV value (CV 1 ) was 0.045. . In the analysis of the alloy layer on the bonding surface, the amount of zinc contained in the alloy layer is 12 mg / m 2 , the amount of nickel is 38 mg / m 2 , and the total amount (C) of zinc and nickel is 50 mg / m 2 , the same It was almost equivalent to Example 1 which performed the antirust process on conditions. When this rust prevention amount (C) was used to calculate the value of the rust prevention amount per three-dimensional surface area [(C) / (B)], the value of (C) / (B) was 45. Further, P / SA in the FR-4 base material was 0.66 kgf / cm, the hydrochloric acid deterioration rate was 0.0%, and the moisture deterioration rate was 1.4%. The evaluation results are shown in Tables 2 to 4 later together with the evaluation results of Example 1 and Sample 1-7.

そして、試料1−7を評価した結果、表面処理後の3次元表面積は13099μmであり、2次元表面積が6550μmの測定領域との比であるBの値は2.00、未処理銅箔の3次元表面積8512μmとの比である[(A)/(a)]の値は、1.54であった。また、この表面処理銅箔の、絶縁樹脂基材との接着表面10箇所の表面粗さ(Rzjis)測定結果の平均値は3.2μmであり、CV値(CV)は0.056であった。接着表面の合金層の分析では、合金層が含む亜鉛の量は11mg/m、ニッケルの量は46mg/m、亜鉛とニッケルとの合計量(C)は57mg/mであった。この防錆量(C)を用い、3次元表面積あたりの防錆量[(C)/(B)]の値を算出したところ、(C)/(B)の値は29であった。そして、FR−4基材におけるP/S−Aは1.03kgf/cm、耐塩酸劣化率は6.4%、耐湿劣化率は9.4%であった。評価結果は、実施例1と試料1−6の評価結果と併せて、以下の表3〜表4に示す。 And as a result of evaluating sample 1-7, the three-dimensional surface area after the surface treatment is 13099 μm 2 , and the value of B, which is the ratio of the two-dimensional surface area to the measurement region of 6550 μm 2 , is 2.00, untreated copper foil The value of [(A) / (a)], which is the ratio to the three-dimensional surface area of 8512 μm 2 , was 1.54. Moreover, the average value of the surface roughness (Rzjis) measurement result of 10 surfaces of the surface-treated copper foil bonded to the insulating resin base material was 3.2 μm, and the CV value (CV 1 ) was 0.056. It was. In the analysis of the alloy layer on the adhesion surface, the amount of zinc contained in the alloy layer was 11 mg / m 2 , the amount of nickel was 46 mg / m 2 , and the total amount (C) of zinc and nickel was 57 mg / m 2 . When this rust prevention amount (C) was used to calculate the value of the rust prevention amount per three-dimensional surface area [(C) / (B)], the value of (C) / (B) was 29. Further, P / SA of the FR-4 base material was 1.03 kgf / cm, the hydrochloric acid deterioration rate was 6.4%, and the moisture deterioration rate was 9.4%. The evaluation results are shown in Tables 3 to 4 below together with the evaluation results of Example 1 and Sample 1-6.

Figure 0005129642
Figure 0005129642

Figure 0005129642
Figure 0005129642

Figure 0005129642
Figure 0005129642

[比較例2]
比較例2では、市場に流通している無粗化銅箔を含む表面処理銅箔8種類を用い、実施例2と同様にして伝送損失を評価した。比較例2で評価した表面処理銅箔の表面粗さ(Rzjis)は0.4μm〜4.3μm、表面積比は1.0〜2.36であった。そして、10GHzの高周波信号の伝送損失は、3.2db/cm〜4.2db/cmであった。
[Comparative Example 2]
In Comparative Example 2, transmission loss was evaluated in the same manner as in Example 2 using 8 types of surface-treated copper foils including non-roughened copper foils distributed in the market. The surface-treated copper foil evaluated in Comparative Example 2 had a surface roughness (Rzjis) of 0.4 μm to 4.3 μm and a surface area ratio of 1.0 to 2.36. And the transmission loss of the 10 GHz high frequency signal was 3.2 db / cm-4.2 db / cm.

<実施例1と比較例1との対比>
表2から明らかなように、実施例で得られた表面処理銅箔は、粗化処理面の表面粗さ(Rzjis)の評価結果のCV値(CV)が未処理銅箔の表面粗さの(Rzjis)評価結果のCV値(CV)よりも小さい。即ち、実施例の粗化処理面には粗化処理粒子が均一に付着形成されていることを示している。また、表4に見られるように、FR−4基材におけるP/S−Aも実用上十分であり、プリント配線板用途に好適に用いることができるレベルである。これに対し、表4に見られるように、比較例1の試料1−6はP/S−Aが低レベルである。そして、表2によれば、この表面処理銅箔の3次元表面積は7300μmと小さく、低P/S−Aは、粗化処理における粒子の形成が不十分であることに起因していることがわかる。また、試料1−7は、表2に見られるように、粗化処理面の表面粗さ(Rzjis)評価におけるCV値(CV)は0.056であり、未処理銅箔であるVLP箔のCV値(CV)の0.052よりもやや大きく、実施例と比較例とを通じた中で最大である。そして、表面粗さ(Rzjis)の絶対値も3.2μmと大きく、粗化処理面には粒子形状のバラツキが大きいことが明らかである。その結果、FR−4基材におけるP/S−Aを上昇させる効果が十分に得られていないと判断できる。更に、表3と表4とを対比すると、試料1−7ではC/Bの値が30を下回っていることから、亜鉛−ニッケル合金による表面被覆が不十分な部分が存在し、耐薬品性及び耐吸湿性に劣っていることがわかる。
<Contrast between Example 1 and Comparative Example 1>
As is clear from Table 2, the surface-treated copper foil obtained in the example has a surface roughness of the untreated copper foil in which the CV value (CV 1 ) of the evaluation result of the surface roughness (Rzjis) of the roughened surface is untreated. (Rzjis) is smaller than the CV value (CV 2 ) of the evaluation result. That is, it is shown that the roughened particles are uniformly deposited on the roughened surface of the example. Moreover, as seen in Table 4, P / SA in the FR-4 base material is also practically sufficient, and is a level that can be suitably used for printed wiring board applications. On the other hand, as can be seen in Table 4, Sample 1-6 of Comparative Example 1 has a low level of P / SA. And according to Table 2, the three-dimensional surface area of this surface-treated copper foil is as small as 7300 μm 2, and the low P / SA results from insufficient formation of particles in the roughening treatment. I understand. Sample 1-7, as seen in Table 2, has a CV value (CV 1 ) of 0.056 in the evaluation of the surface roughness (Rzjis) of the roughened surface, and is a VLP foil that is an untreated copper foil This is slightly larger than 0.052 of the CV value (CV 2 ), and is the largest among the examples and comparative examples. The absolute value of the surface roughness (Rzjis) is also as large as 3.2 μm, and it is clear that there is a large variation in particle shape on the roughened surface. As a result, it can be determined that the effect of increasing P / SA in the FR-4 base material is not sufficiently obtained. Further, when Table 3 and Table 4 are compared, in Sample 1-7, the value of C / B is less than 30, so there is a portion where the surface coating with the zinc-nickel alloy is insufficient, and the chemical resistance It can also be seen that the moisture absorption resistance is poor.

<実施例2と比較例2との対比>
ここでは、表面処理銅箔の接着表面の評価指標である表面粗さ(Rzjis)と表面積比とが示す伝送損失との相関を対比する。表面積比と伝送損失との関係を図1に、表面粗さ(Rzjis)と伝送損失との関係を図2に示す。まず、表面積比を指標とした場合には、評価した表面処理銅箔の全体に亘って表面積比−伝送損失の相関関係が直線的な相関を示す。ところが、表面粗さ(Rzjis)を指標とした場合には、表面粗さ(Rzjis)が2.5μmを超えるとバラツキが大きくなり、良好な相関は見られていない。即ち、IPC規格に定めるプロファイルがType−Vのプリント配線板用銅箔を用いても、10GHzの高周波では必ずしも伝送特性が良好な配線回路を形成できるとは限らないことがわかる。従って、本対比からは、プリント配線板の電気特性は、本件発明に係る表面積比を指標として設計する方法に優位性があることが明らかである。
<Contrast between Example 2 and Comparative Example 2>
Here, the correlation between the transmission loss indicated by the surface roughness (Rzjis), which is an evaluation index of the adhesion surface of the surface-treated copper foil, and the surface area ratio is compared. The relationship between the surface area ratio and the transmission loss is shown in FIG. 1, and the relationship between the surface roughness (Rzjis) and the transmission loss is shown in FIG. First, when the surface area ratio is used as an index, the correlation between the surface area ratio and the transmission loss shows a linear correlation over the entire surface-treated copper foil evaluated. However, when the surface roughness (Rzjis) is used as an index, the variation becomes large when the surface roughness (Rzjis) exceeds 2.5 μm, and no good correlation is observed. That is, it can be seen that even when a copper foil for a printed wiring board whose profile defined in the IPC standard is Type-V is used, a wiring circuit having good transmission characteristics cannot always be formed at a high frequency of 10 GHz. Therefore, it is clear from this comparison that the electrical characteristics of the printed wiring board are superior in the method of designing using the surface area ratio according to the present invention as an index.

本件発明に係る表面処理銅箔は、表面粗さ(Rzjis)が2.5μm以下で、且つ、2次元表面積が6550μmの領域をレーザー法で測定したときの3次元表面積(A)μmと2次元表面積との比[(A)/(6550)]の値である表面積比(B)が1.2〜2.5である絶縁樹脂基材との接着表面を備える。そして、未処理銅箔の粗化処理前の表面粗さ(Rzjis)が1.0μm未満の表面を粗化処理し、2次元表面積が6550μmの領域をレーザー法で測定したときの、粗化処理前の3次元表面積を(a)μmとし、粗化処理後の3次元表面積を(A)μmとしたとき、値(A)と値(a)との比[(A)/(a)]の値が1.15〜2.50であれば、高周波信号の伝送損失の予測が容易になる。従って、半導体デバイスを直接搭載するパッケージ用途等では、誘電率及び誘電正接が更に小さな絶縁樹脂基材と本件発明に係る表面処理銅箔とを張り合わせれば、より高周波の信号を処理する際の伝送損失も小さくすることが可能である。更に、プリント配線板用銅箔を上記表面積比を指標として選択しプリント配線板を設計すれば、その電気特性は、設計値と実際の製品との乖離を小さくできる。その結果、少ない試作回数で電気特性が作り込まれたプリント配線板の製造が可能になる。 Surface treatment copper foil according to the present invention, the surface roughness (Rzjis) is at 2.5μm or less, and, 2-dimensional surface area and the three-dimensional surface area (A) [mu] m 2 when measured by a laser method regions of 6550Myuemu 2 A surface area ratio (B), which is a value of the ratio [(A) / (6550)] to the two-dimensional surface area, is provided with an adhesive surface with an insulating resin substrate having a value of 1.2 to 2.5. Then, the surface roughness of the untreated copper foil before the roughening treatment (Rzjis) is less than 1.0 μm, and the surface roughness of the two-dimensional surface area of 6550 μm 2 is measured by the laser method. When the three-dimensional surface area before the treatment is (a) μm 2 and the three-dimensional surface area after the roughening treatment is (A) μm 2 , the ratio of the value (A) to the value (a) [(A) / ( If the value of a)] is 1.15 to 2.50, it is easy to predict the transmission loss of the high-frequency signal. Therefore, in packaging applications where semiconductor devices are directly mounted, transmission when processing higher frequency signals is possible if the insulating resin base material having a smaller dielectric constant and dielectric loss tangent is bonded to the surface-treated copper foil according to the present invention. Loss can also be reduced. Furthermore, if the printed circuit board is designed by selecting the copper foil for the printed circuit board as an index of the surface area ratio, the electrical characteristics can reduce the difference between the design value and the actual product. As a result, it is possible to manufacture a printed wiring board in which electrical characteristics are incorporated with a small number of prototypes.

表面積比と伝送損失との関係を示す図である。It is a figure which shows the relationship between a surface area ratio and transmission loss. 表面粗さ(Rzjis)と伝送損失との関係を示す図である。It is a figure which shows the relationship between surface roughness (Rzjis) and transmission loss.

Claims (6)

プリント配線板用の表面処理銅箔であって、
絶縁樹脂基材と張り合わせる接着表面は、表面粗さ(Rzjis)が2.5μm以下で、且つ、2次元表面積が6550μmの領域をレーザー法で測定したときの3次元表面積(A)μmと当該2次元表面積との比[(A)/(6550)]の値である表面積比(B)が1.2〜2.5であり、
且つ、前記絶縁樹脂基材と張り合わせる接着表面は、未処理銅箔の粗化処理前の表面粗さ(Rzjis)が1.0μm未満の表面を粗化処理した接着表面であり、粗化処理前に2次元表面積が6550μm の領域をレーザー法で測定した3次元表面積を(a)μm としたとき、粗化処理後に2次元表面積が6550μm の領域をレーザー法で測定した前記3次元表面積の値(A)と値(a)との比[(A)/(a)]の値が1.15〜2.50であることを特徴とする表面処理銅箔。
A surface-treated copper foil for printed wiring boards,
Adhesive surface of laminating the insulating resin base material, the surface roughness (Rzjis) is at 2.5μm or less, and a three-dimensional surface area when the two-dimensional surface area measured by a laser method an area of 6550μm 2 (A) μm 2 The surface area ratio (B) which is the value of the ratio [(A) / (6550)] to the two-dimensional surface area is 1.2 to 2.5 ,
In addition, the adhesive surface to be bonded to the insulating resin base material is an adhesive surface obtained by roughening the surface of the untreated copper foil with a surface roughness (Rzjis) before the roughening treatment of less than 1.0 μm. when the three-dimensional surface area 2-dimensional surface area measured by a laser method regions of 6550Myuemu 2 before the (a) [mu] m 2, said 3-dimensional two-dimensional surface area measured by a laser method regions of 6550Myuemu 2 after the roughening treatment A surface-treated copper foil , wherein the ratio [(A) / (a)] of the surface area value (A) to the value (a) is 1.15 to 2.50 .
前記絶縁樹脂基材と張り合わせる接着表面は、10cm×10cmの2次元領域内の10箇所で測定した表面粗さ(Rzjis)の値が示す、粗化処理後の表面粗さ(Rzjis)の測定値の変動係数(CV)と、未処理銅箔の粗化処理前の表面粗さ(Rzjis)の測定値の変動係数(CV)とが、CV≦CVの関係を備える接着表面である請求項1に記載の表面処理銅箔。 Measurement of the surface roughness (Rzjis) after the roughening treatment indicated by the value of the surface roughness (Rzjis) measured at 10 points in a 10 cm × 10 cm two-dimensional region on the adhesive surface to be bonded to the insulating resin substrate Bonding surface in which the coefficient of variation (CV 1 ) of the value and the coefficient of variation (CV 2 ) of the measured value of the surface roughness (Rzjis) before the roughening treatment of the untreated copper foil have a relationship of CV 1 ≦ CV 2 The surface-treated copper foil according to claim 1 . 前記絶縁樹脂基材と張り合わせる接着表面は、10cm×10cmの2次元領域の評価において、亜鉛−ニッケル合金層が含む亜鉛とニッケルとの合計量(C)mg/mが40mg/m以上である請求項1又は請求項2に記載の表面処理銅箔。 In the evaluation of a two-dimensional region of 10 cm × 10 cm, the adhesive surface to be bonded to the insulating resin base material has a total amount (C) mg / m 2 of zinc and nickel contained in the zinc-nickel alloy layer of 40 mg / m 2 or more. The surface-treated copper foil according to claim 1 or 2 . 前記絶縁樹脂基材と張り合わせる接着表面は、前記亜鉛−ニッケル合金層が含む亜鉛とニッケルとの合計量の値(C)と前記表面積比(B)との比[(C)/(B)]の値が30以上である請求項1〜請求項3のいずれかに記載の表面処理銅箔。 The adhesive surface to be bonded to the insulating resin base material is a ratio of the total amount of zinc and nickel contained in the zinc-nickel alloy layer (C) to the surface area ratio (B) [(C) / (B). ] The surface-treated copper foil in any one of Claims 1-3 whose value of is 30 or more. 請求項1〜請求項4のいずれかに記載の表面処理銅箔と絶縁樹脂基材とを張り合わせて得られたことを特徴とする銅張積層板。 A copper clad laminate obtained by bonding the surface-treated copper foil according to any one of claims 1 to 4 and an insulating resin base material. 請求項5に記載の銅張積層板を用いて得られたことを特徴とするプリント配線板。 A printed wiring board obtained by using the copper-clad laminate according to claim 5 .
JP2008110614A 2007-04-19 2008-04-21 Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate Active JP5129642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110614A JP5129642B2 (en) 2007-04-19 2008-04-21 Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007110888 2007-04-19
JP2007110888 2007-04-19
JP2008110614A JP5129642B2 (en) 2007-04-19 2008-04-21 Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate

Publications (2)

Publication Number Publication Date
JP2008285751A JP2008285751A (en) 2008-11-27
JP5129642B2 true JP5129642B2 (en) 2013-01-30

Family

ID=40145766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110614A Active JP5129642B2 (en) 2007-04-19 2008-04-21 Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate

Country Status (1)

Country Link
JP (1) JP5129642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009379A1 (en) * 2018-07-06 2020-01-09 주식회사 포스코 Manufacturing method of surface-treated zinc-nickel alloy electroplated steel sheet having excellent corrosion resistivity and paintability

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927963B2 (en) * 2010-01-22 2012-05-09 古河電気工業株式会社 Surface-treated copper foil, method for producing the same, and copper-clad laminate
JP5634103B2 (en) * 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
KR101623713B1 (en) 2011-11-02 2016-05-25 제이엑스 킨조쿠 가부시키가이샤 Copper foil for printing circuit
KR101623667B1 (en) * 2011-11-04 2016-05-23 제이엑스 킨조쿠 가부시키가이샤 Copper foil for printed circuit
JP5437536B2 (en) * 2011-11-29 2014-03-12 古河電気工業株式会社 Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5497808B2 (en) * 2012-01-18 2014-05-21 Jx日鉱日石金属株式会社 Surface-treated copper foil and copper-clad laminate using the same
JP5475897B1 (en) * 2012-05-11 2014-04-16 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5481577B1 (en) * 2012-09-11 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5481591B1 (en) * 2012-09-11 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
KR101954051B1 (en) * 2012-11-20 2019-03-05 제이엑스금속주식회사 Copper foil with carrier
JP5286443B1 (en) * 2012-11-20 2013-09-11 Jx日鉱日石金属株式会社 Copper foil with carrier
TWI503454B (en) * 2012-11-20 2015-10-11 Jx Nippon Mining & Metals Corp Method for manufacturing copper foil, attached copper foil, printed wiring board, printed circuit board, copper clad sheet, and printed wiring board
CN104812945B (en) * 2012-11-26 2018-08-28 Jx日矿日石金属株式会社 Surface-treated electro-deposited copper foil, laminated plates, printing distributing board and e-machine
JP6360659B2 (en) * 2013-04-02 2018-07-18 Jx金属株式会社 Copper foil with carrier, method of producing a printed wiring board using the copper foil with carrier, method of producing a copper clad laminate using the copper foil with carrier, and method of producing a printed wiring board
WO2015012327A1 (en) * 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP6166614B2 (en) * 2013-07-23 2017-07-19 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP5470493B1 (en) * 2013-07-23 2014-04-16 Jx日鉱日石金属株式会社 Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
TWI515342B (en) * 2013-09-05 2016-01-01 三井金屬鑛業股份有限公司 Surface-treated copper foil, and copper clad laminate and printed wiring board obtained by using the same
JP5710737B1 (en) * 2013-11-29 2015-04-30 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
JP5876182B1 (en) 2014-09-30 2016-03-02 太陽インキ製造株式会社 Curable resin composition, dry film and cured product thereof, and printed wiring board having the same
JP2016121394A (en) * 2014-12-23 2016-07-07 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil, and fccl and ccl including the same
CN107614760B (en) 2015-07-03 2018-07-13 三井金属矿业株式会社 Roughening treatment copper foil, copper-clad laminated board and printed circuit board
WO2018047933A1 (en) * 2016-09-12 2018-03-15 古河電気工業株式会社 Copper foil and copper-clad laminate comprising same
WO2018110579A1 (en) 2016-12-14 2018-06-21 古河電気工業株式会社 Surface treated copper foil and copper-clad laminate
CN111655908B (en) * 2017-12-05 2022-03-29 古河电气工业株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
KR102382750B1 (en) 2018-03-27 2022-04-08 미쓰이금속광업주식회사 Method for producing surface-treated copper foil, copper clad laminate and printed wiring board
TWI669032B (en) * 2018-09-26 2019-08-11 金居開發股份有限公司 Micro-rough electrolytic copper foil and copper foil substrate
CN111031663B (en) * 2018-10-09 2023-05-05 金居开发股份有限公司 Copper foil substrate
TWI695898B (en) * 2018-11-05 2020-06-11 金居開發股份有限公司 Micro-roughened electrolytic copper foil and copper clad laminate using the same
JP7273883B2 (en) * 2021-04-09 2023-05-15 福田金属箔粉工業株式会社 Surface-treated copper foil and copper-clad laminate and printed wiring board using the surface-treated copper foil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984456B2 (en) * 2002-05-13 2006-01-10 Mitsui Mining & Smelting Co., Ltd. Flexible printed wiring board for chip-on flexibles
JP4567360B2 (en) * 2004-04-02 2010-10-20 三井金属鉱業株式会社 Copper foil manufacturing method and copper foil obtained by the manufacturing method
JP2006103189A (en) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk Surface-treated copper foil and circuit board
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009379A1 (en) * 2018-07-06 2020-01-09 주식회사 포스코 Manufacturing method of surface-treated zinc-nickel alloy electroplated steel sheet having excellent corrosion resistivity and paintability
KR20200005168A (en) * 2018-07-06 2020-01-15 주식회사 포스코 A Manufacturing Method of Surface-treated Zn-Ni Alloy Electroplated Steel Sheet Having Excellent Corrosion Resistivity and Paintability
KR102098475B1 (en) 2018-07-06 2020-04-07 주식회사 포스코 A Manufacturing Method of Surface-treated Zn-Ni Alloy Electroplated Steel Sheet Having Excellent Corrosion Resistivity and Paintability
US11396712B2 (en) 2018-07-06 2022-07-26 Posco Manufacturing method of surface-treated zinc-nickel alloy electroplated steel sheet having excellent corrosion resistivity and paintability

Also Published As

Publication number Publication date
JP2008285751A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP5129642B2 (en) Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate
KR101129471B1 (en) Surface treatment copper foil and circuit board
US8142905B2 (en) Copper foil for printed circuit board and copper clad laminate for printed circuit board
KR100941219B1 (en) Electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
TWI434965B (en) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
US9028972B2 (en) Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board
KR101853519B1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
CN107923047B (en) Roughened copper foil, copper-clad laminate, and printed wiring board
JP6893572B2 (en) Surface-treated copper foil manufacturing method
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
WO2007105635A1 (en) Surface treated elctrolytic copper foil and process for producing the same
JP2006103189A (en) Surface-treated copper foil and circuit board
JP2005161840A (en) Ultra-thin copper foil with carrier and printed circuit
TW202028484A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
US11622445B2 (en) Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same
JP4955104B2 (en) Method for forming an electronic circuit
TWI756038B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP6379055B2 (en) Surface-treated copper foil and laminate
WO2022176648A1 (en) Surface-treated copper foil
TWI805902B (en) Surface treated copper foil, copper clad laminate and printed circuit board
JP4872257B2 (en) Two-layer plated substrate and manufacturing method thereof
CN111757607A (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
TW202001000A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP2005159239A (en) High frequency copper foil and copper clad laminate using the same
CN118592097A (en) Surface-treated copper foil for high-frequency circuit and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5129642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250