JP5845413B2 - Electronic device with thin battery - Google Patents

Electronic device with thin battery Download PDF

Info

Publication number
JP5845413B2
JP5845413B2 JP2012023612A JP2012023612A JP5845413B2 JP 5845413 B2 JP5845413 B2 JP 5845413B2 JP 2012023612 A JP2012023612 A JP 2012023612A JP 2012023612 A JP2012023612 A JP 2012023612A JP 5845413 B2 JP5845413 B2 JP 5845413B2
Authority
JP
Japan
Prior art keywords
thin battery
electronic device
current collector
thin
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012023612A
Other languages
Japanese (ja)
Other versions
JP2013161691A (en
Inventor
裕也 浅野
裕也 浅野
智博 植田
智博 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012023612A priority Critical patent/JP5845413B2/en
Publication of JP2013161691A publication Critical patent/JP2013161691A/en
Application granted granted Critical
Publication of JP5845413B2 publication Critical patent/JP5845413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、曲げ変形に対する耐久性を向上させた薄型電池搭載電子デバイスに関する。   The present invention relates to a thin battery-equipped electronic device with improved durability against bending deformation.

電子機器の小型化・薄型化・軽量化に伴い、自由に折り曲げが可能である電子デバイスが開発されている。さらに、近年ではこれらの薄型電子デバイスに搭載可能な柔軟な薄型電池も開発されることにより、薄型電子デバイスの使用用途は拡大している。   As electronic devices become smaller, thinner, and lighter, electronic devices that can be bent freely have been developed. Further, in recent years, flexible thin batteries that can be mounted on these thin electronic devices have also been developed, and the usage applications of the thin electronic devices are expanding.

例えば、電池式印刷広告、製品包装およびトレーディングカードなど消費者の関心を引きつける新鮮且つ効果的なコンセプトの薄型電池搭載電子デバイスが開発されている(例えば、特許文献1参照)。   For example, a thin battery-equipped electronic device with a fresh and effective concept that attracts the interest of consumers, such as battery-operated printing advertisements, product packaging, and trading cards, has been developed (for example, see Patent Document 1).

薄型電池を搭載した電子デバイスに関して、特に近年では、生体に接触した状態で作動するデバイスが最近増えつつある。例えば、体温、血圧、脈拍等の生体情報を測定する測定回路と、測定された生体情報を監視して健康上の異変を示すような生体情報が得られた場合に電波信号を病院、消防、その他の施設へ送信する無線送信回路とをシート状に構成して利用者の被服に取り付けておき、利用者に健康の異変が生じた場合に自動的に電波信号により通報するようにした生体情報発信装置が開発されている。また、電位を与えることにより生体外皮を通して、薬剤等を供給する生体貼付型装置も開発されている(例えば、特許文献2参照)。   With regard to electronic devices equipped with thin batteries, in particular, in recent years, devices that operate while in contact with a living body are increasing. For example, a measurement circuit that measures biological information such as body temperature, blood pressure, pulse, and the like, and when biological information that indicates a health change is obtained by monitoring the measured biological information, a radio signal is sent to a hospital, fire department, Biological information that is configured with a wireless transmission circuit that transmits to other facilities in the form of a sheet and is attached to the user's clothes so that a user can be automatically notified by radio signal when a health change occurs. Transmitting devices have been developed. In addition, a biological sticking type device that supplies a drug or the like through a living body skin by applying a potential has been developed (see, for example, Patent Document 2).

このような背景のもと、薄型電池搭載電子デバイスは、それに電力を供給する薄型電池とともに数多く開発されている。   Against this background, a large number of electronic devices equipped with thin batteries have been developed together with thin batteries that supply electric power thereto.

特に、薄型電池のフレキシブル性能の向上に関しては数多く開発が行われている。例えば、薄型電池の外装ラミネートフィルムの外側にさらに柔軟性の高いゴム外装を設けることにより、電池の柔軟性を向上させたもの(特許文献3)や、あるいは、正極集電体層の一面に設けられた正極活物質が、一定間隔ごとに複数の活物質単位に分割されるように、正極を構成することにより、電池の曲げ柔軟性を向上させたもの(特許文献4)等がある。   In particular, many developments have been made on improving the flexible performance of thin batteries. For example, by providing a rubber sheath with higher flexibility on the outside of the outer laminate film of a thin battery, the battery has improved flexibility (Patent Document 3) or provided on one surface of the positive electrode current collector layer. There is one that improves the bending flexibility of the battery by configuring the positive electrode so that the obtained positive electrode active material is divided into a plurality of active material units at regular intervals (Patent Document 4).

さらに、薄くて容量が大きく、繰り返しの曲げ変形に対して耐久性のある薄型電池を得るために、正極板あるいは負極板の一部に溝部を形成することで、極板の曲げ耐久性を向上させる開発が行われている(特許文献5)。   Furthermore, in order to obtain a thin battery that is thin, has a large capacity, and is durable against repeated bending deformation, a groove is formed in a part of the positive electrode plate or the negative electrode plate to improve the bending durability of the electrode plate. Development has been carried out (Patent Document 5).

薄型電子デバイス、及びそれに搭載される薄型電池のフレキシブル性能・曲げ耐久性の向上が望まれる一方で、薄型電子デバイスの過度な曲げにより生じる問題の解決が不可欠となる。しかし、薄型電子デバイス、及び、それに搭載される薄型電池に関する開発の多くは、その柔軟性の向上に着目したものが多く、曲げ耐久性に関してはあまり記述されていない。また、曲げ耐久性が検証されている場合も、その試験における曲げ曲率は小さく、ゆるやかに繰り返し曲げることで耐久性を試験されていることが多い。つまり、薄型電子デバイスを180°に折り曲げるほどの過度な変形を想定した薄型電子デバイスの開発は行われていない。   While improvement in the flexible performance and bending durability of a thin electronic device and a thin battery mounted thereon is desired, it is indispensable to solve a problem caused by excessive bending of the thin electronic device. However, many of the developments relating to thin electronic devices and thin batteries mounted thereon are focused on improving flexibility, and little is described regarding bending durability. Even when the bending durability is verified, the bending curvature in the test is small, and the durability is often tested by repeatedly bending gently. In other words, no thin electronic device has been developed assuming an excessive deformation enough to bend the thin electronic device at 180 °.

特開2010−508181号公報JP 2010-508181 A 特開2007−209428号公報JP 2007-209428 A 特開2004−199994号公報Japanese Patent Laid-Open No. 2004-199994 特開2002−343340号公報JP 2002-343340 A 特開2003−59486号公報JP 2003-59486 A

内部に薄型電池を搭載した柔軟な電子デバイスを誤って踏みつけてしまった場合、電子デバイスのフレキシブル性能により大きく屈曲するが、踏みつけのような過度な折り曲げ変形の場合、デバイス内部の薄型電池の電極群が断線・破壊してしまい、電子デバイスの機能が低下するという課題があった。   If a flexible electronic device with a thin battery inside is accidentally stepped on, it will bend greatly due to the flexible performance of the electronic device, but in the case of excessive bending deformation such as trampling, the electrodes of the thin battery inside the device However, there is a problem that the function of the electronic device is degraded due to disconnection / breakage.

本発明は、上記課題を解決するもので、薄型電池搭載電子デバイスに構造上起こりうる最大の曲げ変形を発生させた際にも、搭載した薄型電池に起因した機能低下が生じない構成を実現することを目的とする。   The present invention solves the above-described problem, and realizes a configuration that does not cause a functional deterioration due to a mounted thin battery even when the maximum bending deformation that may occur structurally occurs in the electronic device mounted with a thin battery. For the purpose.

上記目的を達成するために本発明は、正極、負極、および前記正極と前記負極との間に介在し、電解質層を具備するシート状の電極群と、前記電極群を密閉する外装体を具備した薄型電池を弾性シート材からなる電子デバイス構成体の内部に搭載して構成される薄型電池搭載電子デバイスであって、前記電極群の厚みhが、700μm以下であり、前記電極群の上面から薄型電池搭載電子デバイス上面までの距離H1、前記電極群下面から薄型
電池搭載電子デバイス下面までの距離H2が、H1≦34mm、かつH2≦34mmであり、10≦H1/h、かつ10≦H2/hの関係を満たし、前記正極は正極活物質、および正極集電体を有し、前記負極は負極活物質、および負極集電体を有し、前記正極集電体と前記負極集電体の厚みがともに8〜30μmであり、前記正極集電体と前記負極集電体の引張り強度が100〜1200MPaであり、かつ縦弾性係数が7〜220GPaであり、前記弾性シート材は、シリコーンゴム、ブチルゴム、ポリミド、ナイロン、ビニール、ポリエステル、およびポリエチレンからなる群から選ばれる少なくとも1種から構成されることを特徴とする薄型電池搭載電子デバイスである。
To achieve the above object, the present invention comprises a positive electrode, a negative electrode, a sheet-like electrode group that is interposed between the positive electrode and the negative electrode and includes an electrolyte layer, and an outer package that seals the electrode group. A thin battery-mounted electronic device configured by mounting the thin battery inside an electronic device structure made of an elastic sheet material, wherein the thickness h of the electrode group is 700 μm or less, and from the upper surface of the electrode group The distance H1 from the upper surface of the thin battery-mounted electronic device, and the distance H2 from the lower surface of the electrode group to the lower surface of the thin battery-mounted electronic device are H1 ≦ 34 mm and H2 ≦ 34 mm, 10 ≦ H1 / h, and 10 ≦ H2 / satisfy a relationship of h, the positive electrode has a positive electrode active material, and a positive electrode current collector, the negative electrode is the negative electrode active material, and has a negative electrode current collector, the positive electrode current collector of the negative electrode current collector Thickness An 8 to 30 m, the tensile strength of the positive electrode current collector and the negative electrode current collector is 100~1200MPa, and a longitudinal elastic modulus Ri 7~220GPa der, the elastic sheet member, silicone rubber, butyl rubber, A thin battery-equipped electronic device comprising at least one selected from the group consisting of polyamide, nylon, vinyl, polyester, and polyethylene .

本発明によれば、薄型電池搭載電子デバイスに構造上起こりうる最大の曲げ変形を加えた際にも、内部に搭載される薄型電池の電極板が断線・損傷しない薄型電池搭載電子デバイスを提供することができる。これにより、デバイス使用者がデバイスに不本意に過度な曲げ変形を加えた際にも、電池起因のデバイスの機能低下は発生せず、使用者がデバイスを継続して使用することができる。   According to the present invention, there is provided a thin battery-mounted electronic device in which the electrode plate of the thin battery mounted therein is not disconnected or damaged even when the maximum bending deformation that may occur structurally is applied to the thin battery-mounted electronic device. be able to. Thereby, even when the device user unintentionally applies excessive bending deformation to the device, the function of the device due to the battery does not deteriorate, and the user can continue to use the device.

本発明の一実施の形態に係る薄型電池搭載電子デバイスを示す斜視図The perspective view which shows the thin battery mounting electronic device which concerns on one embodiment of this invention 薄型電池搭載電子デバイスの一例である生体情報測定装置を示す斜視図The perspective view which shows the biological information measuring device which is an example of an electronic device mounted with a thin battery 薄型電池搭載電子デバイスの一例であるイオントフォレシス経皮投薬装置を示す斜視図The perspective view which shows the iontophoresis transdermal medication apparatus which is an example of an electronic device mounted with a thin battery 本発明の一実施の形態に係る薄型電池搭載電子デバイスに搭載される薄型電池の斜視図The perspective view of the thin battery mounted in the thin battery mounting electronic device which concerns on one embodiment of this invention 本発明の一実施の形態に係る薄型電池搭載電子デバイスに搭載される薄型電池内部の電極群の断面図Sectional drawing of the electrode group inside the thin battery mounted in the thin battery mounting electronic device which concerns on one embodiment of this invention 図1に示した薄型電池搭載電子デバイスのX−Yでの断面図Sectional drawing in XY of the electronic device with a thin battery shown in FIG. 図1に示した薄型電池搭載電子デバイスをX−Yで折り曲げた状態の断面図Sectional drawing of the state which bent the thin battery mounting electronic device shown in FIG. 1 by XY 図3に示すイオントフォレス経皮投薬装置の作製方法を説明する模式的投影図FIG. 3 is a schematic projection diagram for explaining a method for producing the iontophoretic transdermal administration device shown in FIG.

本発明における第1の発明は、正極、負極、および前記正極と前記負極との間に介在し、電解質層を具備するシート状の電極群と、前記電極群を密閉する外装体を具備した薄型電池を搭載した薄型電池搭載電子デバイスであって、前記電極群の厚みhと、前記電極群の上面から薄型電池搭載電子デバイス上面までの距離H1、前記電極群下面から薄型電池
搭載電子デバイス下面までの距離H2が、10≦H1/h、かつ10≦H2/hの関係を満たすことを特徴とする薄型電池搭載電子デバイスである。この構成により、薄型電池搭載電子デバイスに構造上起こりうる最大の曲げ変形を加えた際にも、内部に搭載される薄型電池の電極板が断線・損傷しない薄型電池搭載電子デバイスを得ることができる。
The first invention in the present invention is a thin film comprising a positive electrode, a negative electrode, a sheet-like electrode group having an electrolyte layer interposed between the positive electrode and the negative electrode, and an outer package for sealing the electrode group. A thin battery-mounted electronic device mounted with a battery, wherein the thickness h of the electrode group, the distance H1 from the upper surface of the electrode group to the upper surface of the thin battery-mounted electronic device, from the lower surface of the electrode group to the lower surface of the thin battery-mounted electronic device Is a thin battery-equipped electronic device characterized by satisfying the relationship of 10 ≦ H1 / h and 10 ≦ H2 / h. With this configuration, it is possible to obtain a thin battery mounted electronic device in which the electrode plate of the thin battery mounted therein is not broken or damaged even when the maximum bending deformation that may occur structurally is applied to the thin battery mounted electronic device. .

本発明における第2の発明は、第1の発明において、上記電極群の厚みが92〜630μmであることを特徴としている。電極群の厚みは、薄型電池の曲げ柔軟性に影響し、電極群が薄型であるほど、薄型電池の柔軟性は高い。さらに、電極群の厚みは、曲げ耐久性に影響し、電極群が薄型であるほど、薄型電池の曲げ耐久性は高い。この構成によれば、上記電極群の柔軟性と曲げ耐久性が維持でき、柔軟性と耐屈曲性に優れた薄型電池搭載電子デバイスを提供することができる。   According to a second aspect of the present invention, in the first aspect, the electrode group has a thickness of 92 to 630 μm. The thickness of the electrode group affects the bending flexibility of the thin battery, and the thinner the electrode group, the higher the flexibility of the thin battery. Furthermore, the thickness of the electrode group affects the bending durability. The thinner the electrode group, the higher the bending durability of the thin battery. According to this configuration, it is possible to provide a thin battery-mounted electronic device that can maintain the flexibility and bending durability of the electrode group and is excellent in flexibility and bending resistance.

本発明における第3の発明は、第1または第2の発明において、上記正極は正極活物質、および正極集電体を有し、上記負極は負極活物質、および負極集電体を有し、上記正極集電体と上記負極集電体の厚みがともに8〜30μmであることを特徴としている。薄型電池電極群の柔軟性は主に金属材料である電極集電体の柔軟性に起因する割合が多い。よって、薄型電池電極群の柔軟性の向上のためには、電極集電体の厚みは薄いことが望ましい。さらに、過度な曲げ変形に伴う薄型電池の電極群の損傷は、電極集電体の断線である場合が多いが、電極集電体の厚みが薄いほど、電極集電体の断線は起りにくい。この構成によれば、よりいっそう、柔軟性と曲げ耐久性に優れた薄型電池を提供することができ、薄型電池搭載電子デバイスの柔軟性と耐屈曲性を向上させることができる。   According to a third invention of the present invention, in the first or second invention, the positive electrode has a positive electrode active material and a positive electrode current collector, the negative electrode has a negative electrode active material and a negative electrode current collector, Both the positive electrode current collector and the negative electrode current collector have a thickness of 8 to 30 μm. The flexibility of the thin battery electrode group is mainly due to the flexibility of the electrode current collector that is a metal material. Therefore, in order to improve the flexibility of the thin battery electrode group, it is desirable that the electrode current collector is thin. Further, the damage to the electrode group of the thin battery accompanying excessive bending deformation is often the disconnection of the electrode current collector, but the thinner the electrode current collector, the less likely the electrode current collector is disconnected. According to this configuration, a thin battery excellent in flexibility and bending durability can be provided, and the flexibility and bending resistance of an electronic device equipped with a thin battery can be improved.

本発明における第4の発明は、第1〜第3の発明において、上記正極集電体と上記負極集電体の引張り強度が100〜1200MPaであり、かつ縦弾性係数が7〜220GPaであることを特徴としている。この構成によれば、上記電極群の電極集電体の曲げ屈曲耐久性が維持でき、薄型電池搭載電子デバイスを曲げた際の内部に搭載される薄型電池電極群の電極集電体の断線・損傷を抑制することができる。   According to a fourth invention of the present invention, in the first to third inventions, the positive electrode current collector and the negative electrode current collector have a tensile strength of 100 to 1200 MPa and a longitudinal elastic modulus of 7 to 220 GPa. It is characterized by. According to this configuration, it is possible to maintain the bending and bending durability of the electrode current collector of the electrode group, and the disconnection / disconnection of the electrode current collector of the thin battery electrode group mounted inside the thin battery mounted electronic device Damage can be suppressed.

以下、本発明の実施の形態について図を用いて詳細に説明する。なお、以下に示す実施の形態は本発明を具現化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiment described below is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1に、本発明による薄型電池搭載電子デバイスの一例を示す。図1に示すように、薄型電池搭載電子デバイス1は、少なくとも電子部品等が組み込まれた弾性シート材等の部材からなる電子デバイス構成体2と、一つ以上の薄型電池3により構成される。図1では電子部品等は省略している。   FIG. 1 shows an example of an electronic device with a thin battery according to the present invention. As shown in FIG. 1, the electronic device 1 with a thin battery is composed of an electronic device structure 2 made of a member such as an elastic sheet material in which at least an electronic component or the like is incorporated, and one or more thin batteries 3. In FIG. 1, electronic components and the like are omitted.

薄型電池搭載電子デバイスとしては、例えば、生体外皮に接触させた状態で作動する生体情報測定装置、イオントフォレシス経皮投薬装置、あるいは、電池式印刷広告、製品包装、トレーディングカード、RFID内蔵電子タグ等が挙げられる。   Examples of thin battery-equipped electronic devices include a biological information measuring device that operates in contact with a living skin, an iontophoresis transdermal administration device, or a battery-type printed advertisement, product packaging, trading card, RFID built-in electronic tag Etc.

生体情報測定装置は、例えば、体温、血圧、脈拍等の生体情報を測定する測定回路と、測定された生体情報を監視して健康上の異変を示すような生体情報が得られた場合に電波信号を病院、消防、その他の施設へ送信する無線送信回路とが柔軟性を有するシート状の保持部材に構成されている。この場合、図2示すように、生体情報測定装置5には、柔軟性を有するシート状の保持部材6の厚み方向内部に薄型電池7に加えて、例えば、温度センサ8、感圧素子9、記憶部10、スピーカ11、アンテナ12、押しボタンスイッチ13、制御IC14等を有する回路部が設けられていることがある。本発明の薄型電子デバイスは内部に電池以外の、他の剛直もしくは柔軟な部品を有していても良い。   The biological information measuring device includes, for example, a measurement circuit that measures biological information such as body temperature, blood pressure, and pulse, and radio waves when the measured biological information is monitored and biological information indicating a health change is obtained. A wireless transmission circuit that transmits a signal to a hospital, a fire department, or other facilities is configured as a flexible sheet-like holding member. In this case, as shown in FIG. 2, the biological information measuring device 5 includes, for example, a temperature sensor 8, a pressure sensitive element 9, and the like in addition to the thin battery 7 in the thickness direction of the flexible sheet-like holding member 6. There may be a circuit unit including the storage unit 10, the speaker 11, the antenna 12, the push button switch 13, the control IC 14, and the like. The thin electronic device of the present invention may have other rigid or flexible parts other than the battery.

イオントフォレシス経皮投薬装置は、電気エネルギーを利用することにより生体膜透過を促進させる装置である。図3に示すように、イオントフォレシス経皮投薬装置15は弾性シート材16とその内部に搭載された薄型電池17を備える。さらに、その内部にアニオン性薬物が貯蔵される陰極槽18とカチオン性薬物が貯蔵される陽極槽19とを備える。陰極槽18及び陽極槽19は弾性シート材16の表面に露出している。薄型電池17の正極は陽極槽19と、薄型電池の負極は陰極槽18に電気的に接続されている。そして、イオントフォレシス経皮投薬装置を生体に張り合わせ、薄型電池17により、陰極槽18及び陽極槽19に、数Vの電圧を付与する。これにより薬物が生体の皮膚に移行する。一方、薬物と対をなす内因性イオンが皮膚から陽極槽19中に抽出される。また、陰極槽18の中でも、アニオン性薬物のイオン交換が引き起こされることにより、電気回路が成立する。   An iontophoretic transdermal administration device is a device that promotes permeation of a biological membrane by utilizing electrical energy. As shown in FIG. 3, the iontophoresis transdermal administration device 15 includes an elastic sheet material 16 and a thin battery 17 mounted therein. Furthermore, a cathode tank 18 in which an anionic drug is stored and an anode tank 19 in which a cationic drug is stored are provided. The cathode chamber 18 and the anode chamber 19 are exposed on the surface of the elastic sheet material 16. The positive electrode of the thin battery 17 is electrically connected to the anode tank 19 and the negative electrode of the thin battery is electrically connected to the cathode tank 18. The iontophoresis transdermal administration device is attached to the living body, and a voltage of several volts is applied to the cathode tank 18 and the anode tank 19 by the thin battery 17. As a result, the drug is transferred to the skin of the living body. On the other hand, endogenous ions paired with the drug are extracted from the skin into the anode tank 19. In the cathode chamber 18, an electric circuit is established by causing ion exchange of the anionic drug.

薄型電子デバイスの内部に搭載される薄型電池に関して以下に記述する。図4に示すように薄型電池3は電極群21と、電極群21を内部に収納する外装体22、電流を外部に取り出す負極リード23a、正極リード23bにより構成されている。   The thin battery mounted inside the thin electronic device will be described below. As shown in FIG. 4, the thin battery 3 includes an electrode group 21, an exterior body 22 that houses the electrode group 21, a negative electrode lead 23 a that extracts current to the outside, and a positive electrode lead 23 b.

電極群21は図5に示すように、正極34、負極35、および正極34と負極35との間に介在する電解質層24で構成される。正極34は、シート状の正極集電体25と正極集電体25の一方または両方に設けられた正極活物質26で形成される。また、負極35はシート状の負極集電体27と負極集電体27の一方または両方に設けられた負極活物質28で形成される。そして、正極34と負極35は電解質層24を介して、正極活物質26と負極活物質28が向かい合うように配置されている。負極集電体27は厚み方向側面から外方に延びる突出部を有しており、その突出部に負極リード23aが接続されている。同様に、正極集電体25には厚み方向側面から外方に延びる突出部を有しており、その突出部に正極リード23bが接続されている。負極リード23aと正極リード23bの一部は、外装体22から外部へ露出しており、その露出部には負極端子および正極端子として作用する。   As shown in FIG. 5, the electrode group 21 includes a positive electrode 34, a negative electrode 35, and an electrolyte layer 24 interposed between the positive electrode 34 and the negative electrode 35. The positive electrode 34 is formed of a positive electrode active material 26 provided on one or both of the sheet-like positive electrode current collector 25 and the positive electrode current collector 25. The negative electrode 35 is formed of a negative electrode active material 28 provided on one or both of the sheet-like negative electrode current collector 27 and the negative electrode current collector 27. The positive electrode 34 and the negative electrode 35 are arranged so that the positive electrode active material 26 and the negative electrode active material 28 face each other through the electrolyte layer 24. The negative electrode current collector 27 has a protrusion extending outward from the side surface in the thickness direction, and the negative electrode lead 23a is connected to the protrusion. Similarly, the positive electrode current collector 25 has a protrusion extending outward from the side surface in the thickness direction, and a positive electrode lead 23b is connected to the protrusion. Part of the negative electrode lead 23a and the positive electrode lead 23b is exposed to the outside from the exterior body 22, and the exposed portion acts as a negative electrode terminal and a positive electrode terminal.

図6は、図1で示される薄型電池搭載電子デバイス1のX−Yでの断面図を示す。また、図7は図1に示される薄型電池搭載電子デバイス1が、X−Yを折り目として、構造上起こりうる最大の曲げ変形が生じた際の、屈曲部における薄型電池搭載電子デバイス1の変形状態を示したものである。但し、図6及び図8においては、図5に示した電極群21を単純化して電極群4として図示した。   FIG. 6 is a cross-sectional view taken along the line XY of the thin battery-mounted electronic device 1 shown in FIG. FIG. 7 shows the deformation of the thin battery-equipped electronic device 1 at the bent portion when the thin battery-equipped electronic device 1 shown in FIG. It shows the state. However, in FIG.6 and FIG.8, the electrode group 21 shown in FIG.

図6において、電極群4の厚みをh、電極群上面から薄型電池搭載電子デバイス上面までの距離をH1、電極群下面から薄型電池搭載電子デバイス下面までの距離をH2とする。   In FIG. 6, the thickness of the electrode group 4 is h, the distance from the upper surface of the electrode group to the upper surface of the thin battery-mounted electronic device is H1, and the distance from the lower surface of the electrode group to the lower surface of the electronic device with the thin battery is H2.

ここで、薄型電池搭載電子デバイス1に構造上起こりうる最大の曲げ変形とは、図7に示すように、電子デバイス構成体2の最外表面が少なくとも曲げ端部において、互いに密着している状態をいうものとする。このとき、薄型電池搭載電子デバイス1とその内部に搭載される薄型電池3、及び薄型電池内部の電極群4は一定の曲率で変形するとしてよい。このときの曲率は薄型電池搭載電子デバイス1の厚み、薄型電池3の厚み、および薄型電池内部の電極群4の厚みによって決まる。つまり、これらの厚みが大きいほど、最大曲げ変形が生じた際の曲率は小さく、緩やかに曲がる。   Here, the maximum bending deformation that can occur structurally in the thin battery-equipped electronic device 1 is a state in which the outermost surfaces of the electronic device component 2 are in close contact with each other at least at the bending end as shown in FIG. It shall be said. At this time, the thin battery-mounted electronic device 1, the thin battery 3 mounted therein, and the electrode group 4 inside the thin battery may be deformed with a certain curvature. The curvature at this time is determined by the thickness of the electronic device 1 with a thin battery, the thickness of the thin battery 3, and the thickness of the electrode group 4 inside the thin battery. In other words, the greater the thickness, the smaller the curvature when the maximum bending deformation occurs, and the more gently it bends.

さらに、電極群4が、ある曲率で曲がる際、電極群4の一方の表面は「伸長」、他方の表面では「収縮」の伸縮変形が生じる。これらの伸縮度は電極群4の厚みが大きいほど大きい。つまり、電極群4がある一定の曲率で曲がる際、電極群4の厚みが大きいほど、電極群4の表面に生じる応力は大きくなる。加えて、電極群4の断線は、電極群4に生じる
応力が許容値を越えた際に発生する。したがって、薄型電池搭載電子デバイス1に過度な曲げ変形を加えた際に生じる搭載電池内部の電極群4の破壊を防止するためには、電極群4の厚みは薄型であることが好ましい。
Furthermore, when the electrode group 4 bends with a certain curvature, one surface of the electrode group 4 is stretched and the other surface is stretched and contracted. The degree of expansion / contraction increases as the thickness of the electrode group 4 increases. That is, when the electrode group 4 bends with a certain curvature, the stress generated on the surface of the electrode group 4 increases as the thickness of the electrode group 4 increases. In addition, the disconnection of the electrode group 4 occurs when the stress generated in the electrode group 4 exceeds an allowable value. Therefore, the thickness of the electrode group 4 is preferably thin in order to prevent the destruction of the electrode group 4 inside the mounted battery that occurs when excessive bending deformation is applied to the thin battery mounted electronic device 1.

以上のような考え方により、本発明では、電極群4の厚みhと、電極群上面から薄型電池搭載電子デバイス上面までの距離H1、電極群下面から薄型電池搭載電子デバイス下面までの距離H2が10≦H1/h、かつ10≦H2/hの関係を満たすことにより、薄型電池搭載電子デバイス1に折りたたみ変形のような、構造上起こりうる最大限の曲げ変形が生じた際にも、電極群4が断線・損傷しない薄型電池搭載電子デバイス1が提供できることを見出したものである。   Based on the above concept, in the present invention, the thickness h of the electrode group 4, the distance H1 from the upper surface of the electrode group to the upper surface of the thin battery mounted electronic device, and the distance H2 from the lower surface of the electrode group to the lower surface of the thin battery mounted electronic device are 10 By satisfying the relationship of ≦ H1 / h and 10 ≦ H2 / h, the electrode group 4 can be formed even when the thin battery-equipped electronic device 1 undergoes the maximum possible bending deformation such as a folding deformation. It has been found that a thin battery-equipped electronic device 1 that does not break or damage can be provided.

H1/h、あるいは、H2/hが10より小さい場合は、薄型電池搭載電子デバイス1に最大限の曲げ変形を加えた際に、内部に搭載される薄型電池内部の電極群4の曲げ曲率が大きくなるため、これに伴い、電極群表面に生じる応力が過剰に大きくなり、電極群4が断線・損傷することがある。さらに、より高い信頼性が求められる場合には、H1/h、あるいは、H2/hは、より大きいほうが好ましく、20≦H1/h、かつ20≦H2/hであれば、より確実に曲げ変形により搭載電池内部の電極群4の断線しない薄型電池搭載電子デバイス1を提供することができる。   When H1 / h or H2 / h is smaller than 10, when the maximum bending deformation is applied to the thin battery-mounted electronic device 1, the bending curvature of the electrode group 4 inside the thin battery mounted inside is small. Accordingly, the stress generated on the surface of the electrode group becomes excessively large and the electrode group 4 may be disconnected or damaged. Furthermore, when higher reliability is required, H1 / h or H2 / h is preferably larger. If 20 ≦ H1 / h and 20 ≦ H2 / h, bending deformation is more reliably performed. Thus, it is possible to provide the thin battery-mounted electronic device 1 in which the electrode group 4 inside the mounted battery is not disconnected.

さらに、電極群4は一般に正極・負極集電体等に金属材料を用いる場合が多いが、これらの物質は剛直である。よって、薄型電池搭載電子デバイス1の柔軟性を考慮に入れれば、電極群4は薄型であることが望ましい。さらに、先述のとおり、曲げ変形に伴う電極群4の断線を防止するには、電極群4の厚みは薄型であることが好ましい。したがって、以上のような考え方により、電極群4の厚みは92〜630μmであることがより好ましい。柔軟な薄型電池3の電極群4の厚みは構成部材の厚みの限界値を踏まえれば、92μm以上である。一方、電極群4の厚みが630μm以上になると柔軟性が著しく低下し、これを無理やりに曲げようとした際には、電極群4の表面に過度な応力が発生し、この応力より、電極群4が断線する。   Furthermore, the electrode group 4 generally uses a metal material for the positive electrode / negative electrode current collector and the like, but these substances are rigid. Therefore, considering the flexibility of the thin battery-mounted electronic device 1, it is desirable that the electrode group 4 be thin. Furthermore, as described above, in order to prevent disconnection of the electrode group 4 due to bending deformation, the thickness of the electrode group 4 is preferably thin. Therefore, the thickness of the electrode group 4 is more preferably 92 to 630 μm based on the above concept. The thickness of the electrode group 4 of the flexible thin battery 3 is 92 μm or more in consideration of the limit value of the thickness of the constituent members. On the other hand, when the thickness of the electrode group 4 is 630 μm or more, the flexibility is remarkably reduced. When the electrode group 4 is forcibly bent, an excessive stress is generated on the surface of the electrode group 4. 4 breaks.

薄型電池搭載電子デバイス1が過度な曲げ変形をした際に生じる薄型電池3の機能低下の主要因として、電池内部の電極群4の断線・損傷が考えられるが、これらは、電極群4の過度な曲げ変形に伴って発生する正極集電体25と負極集電体27の断線によるもの多い。これは、電極集電体の断線は電極集電体の表面に生じる過度な応力によるものである。正極・負極集電体が、ある一定の曲率で曲がるとき、電極集電体の表面に生じる応力は電極集電体の厚みが厚いほど、大きい。したがって、薄型電池搭載電子デバイス1の過度な曲げ変形に伴う搭載電池内部の電極群4の断線・損傷を防止するためには、正極・負極集電体は薄型であることが好ましい。一方、正極集電体25、及び、負極集電体27は一般に剛直な金属材料からなる場合が多く、集電体の厚型化は薄型電池3の柔軟性を考慮に入れれば好ましくない。以上のような考え方から、正極集電体25、及び負極集電体27の厚みは8〜30μmであることがより好ましい。電極集電体の厚みが8μm未満であると大電流を流した際の集電性が低下し、電極集電体の厚みが30μmより大きいと電極群4の柔軟性が著しく低下し、これを無理やりに曲げようとした際には、電極集電体が断線するので好ましくない。   As a main cause of the functional deterioration of the thin battery 3 that occurs when the electronic device 1 mounted with the thin battery undergoes excessive bending deformation, disconnection / damage of the electrode group 4 inside the battery can be considered. This is often caused by disconnection of the positive electrode current collector 25 and the negative electrode current collector 27 that are generated due to various bending deformations. This is because the disconnection of the electrode current collector is caused by excessive stress generated on the surface of the electrode current collector. When the positive electrode / negative electrode current collector bends with a certain curvature, the stress generated on the surface of the electrode current collector increases as the thickness of the electrode current collector increases. Therefore, in order to prevent disconnection / damage of the electrode group 4 inside the mounted battery due to excessive bending deformation of the thin battery mounted electronic device 1, the positive electrode / negative electrode current collector is preferably thin. On the other hand, the positive electrode current collector 25 and the negative electrode current collector 27 are generally made of a rigid metal material, and it is not preferable to increase the thickness of the current collector in view of the flexibility of the thin battery 3. From the above view, the positive electrode current collector 25 and the negative electrode current collector 27 are more preferably 8 to 30 μm in thickness. When the thickness of the electrode current collector is less than 8 μm, the current collecting ability when a large current is passed is reduced, and when the thickness of the electrode current collector is greater than 30 μm, the flexibility of the electrode group 4 is significantly reduced. When trying to forcibly bend, the electrode current collector is disconnected, which is not preferable.

さらに、正極・負極集電体が曲げ変形に対して脆弱な材料であるほど、これらはより緩やかな曲げ変形によって、断線・損傷する。一般に、曲げ変形に伴う電極集電体の表面に生じる応力は、電極集電体の縦弾性係数と、電極集電体の厚みと、電極集電体の曲げ曲率の3つの積に比例して大きくなる。さらに、電極集電体に生じる応力が電極集電体の引張り強度を越えた際に、電極集電体は断線する。したがって、薄型電池搭載電子デバイスの過度な曲げ変形に伴う搭載電池内部の電極群の断線・損傷を防止するためには、電極集電
体の縦弾性係数は小さく、引張り強度は大きいほうが好ましい。以上のような考え方から、正極・負極集電体の縦弾性係数が7〜220GPaであり、引張り強度が100〜1200MPaであることがより好ましい。
Furthermore, the more the positive electrode / negative electrode current collector is more vulnerable to bending deformation, the more they are broken or damaged by gentler bending deformation. In general, the stress generated on the surface of the electrode current collector due to bending deformation is proportional to the product of the longitudinal elastic modulus of the electrode current collector, the thickness of the electrode current collector, and the bending curvature of the electrode current collector. growing. Furthermore, when the stress generated in the electrode current collector exceeds the tensile strength of the electrode current collector, the electrode current collector is disconnected. Therefore, in order to prevent disconnection / damage of the electrode group inside the mounted battery due to excessive bending deformation of the thin battery mounted electronic device, it is preferable that the electrode current collector has a small longitudinal elastic modulus and a high tensile strength. From the above view, it is more preferable that the positive and negative electrode current collectors have a longitudinal elastic modulus of 7 to 220 GPa and a tensile strength of 100 to 1200 MPa.

さらに、縦弾性係数が220GPaより大きな電極集電体を用いれば、柔軟な薄型電池を作製することは困難である。上記を満たす材料として、具体的には、銅、アルミニウム(合金)、ニッケル、ステンレス、チタン、白金、金、カーボン等が挙げられる。   Furthermore, if an electrode current collector having a longitudinal elastic modulus larger than 220 GPa is used, it is difficult to produce a flexible thin battery. Specific examples of the material that satisfies the above include copper, aluminum (alloy), nickel, stainless steel, titanium, platinum, gold, and carbon.

次に薄型電池搭載電子デバイス1の内部に搭載される薄型電池3に関して、その構成要素について詳細に説明する。   Next, the components of the thin battery 3 mounted inside the thin battery-mounted electronic device 1 will be described in detail.

外装体22は、ガス透過率がより低く、柔軟性が高いフィルム材料で構成されるのが好ましい。具体的には、バリア層の両面または片面に形成された樹脂層を含むのが好ましく、強度および、ガスバリア性能の観点から、アルミニウム、ニッケル、ステンレス鋼、無機化合物がバリア層として用いられていることが好ましい。一般に、バリア層は厚いほどガス透過率小さく、逆に、薄いほどガス透過率は大きい。しかし、バリア層が金属材料である外装フィルムは金属材料のもつ高い縦弾性係数に起因し、外装フィルムの縦弾性係数も低下する。さらに、曲げ剛性に関しては、一般に厚い外装フィルムほど大きく、または、薄いフィルムほど小さい。曲げ剛性および、バリア性能の観点から、外装フィルムのバリア層の厚みは5〜50μm、樹脂の厚みは5〜100μmであることが望ましい。具体的には、外装体としては、酸変性PP/PET/Al層/PETのラミネートフィルム、酸変性PE/PA/Al層/PETのラミネートフィルム、アイオノマー樹脂/Ni層/PE/PETのラミネートフィルム、エチレンビニルアセテート/PE/Al層/PETのラミネートフィルム、アイオノマー樹脂/PET/Al層/PETのラミネートフィルムが挙げられる。また、Al層のかわりに、Al層、SiO層など無機化合物層を用いてもよい。 The outer package 22 is preferably made of a film material having lower gas permeability and higher flexibility. Specifically, it is preferable to include a resin layer formed on both sides or one side of the barrier layer, and aluminum, nickel, stainless steel, or an inorganic compound is used as the barrier layer from the viewpoint of strength and gas barrier performance. Is preferred. In general, the thicker the barrier layer, the smaller the gas permeability. Conversely, the thinner the barrier layer, the greater the gas permeability. However, the exterior film whose barrier layer is a metal material is caused by the high longitudinal elastic modulus of the metal material, and the longitudinal elastic modulus of the exterior film is also lowered. Furthermore, regarding the bending rigidity, generally, the thicker the exterior film is, the smaller the thinner the film is. From the viewpoints of bending rigidity and barrier performance, the thickness of the barrier layer of the exterior film is preferably 5 to 50 μm, and the thickness of the resin is preferably 5 to 100 μm. Specifically, as the outer package, an acid-modified PP / PET / Al layer / PET laminate film, an acid-modified PE / PA / Al layer / PET laminate film, an ionomer resin / Ni layer / PE / PET laminate film , Ethylene vinyl acetate / PE / Al layer / PET laminate film, and ionomer resin / PET / Al layer / PET laminate film. In place of the Al layer, an inorganic compound layer such as an Al 2 O 3 layer or an SiO 2 layer may be used.

電解質層24としては、ポリマーマトリックスに電解質塩を含有させたドライポリマー電解質、ポリマーマトリックスに溶媒と電解質塩を含浸させたゲルポリマー電解質、無機固体電解質、溶媒に電解質塩が溶解された液体電解質のいずれも用いることができる。   Examples of the electrolyte layer 24 include a dry polymer electrolyte in which an electrolyte salt is contained in a polymer matrix, a gel polymer electrolyte in which a polymer matrix is impregnated with a solvent and an electrolyte salt, an inorganic solid electrolyte, and a liquid electrolyte in which an electrolyte salt is dissolved in a solvent. Can also be used.

電解質層24には短絡防止のためにセパレータを設けることができる。セパレータ材料も各種公知の材料を用いることができ、ポリエチレン、ポリプロピレン、セルロースなどからなる多孔性シート、不織布、所定のイオン透過度、機械的強度、および絶縁性を有する多孔質シート等が挙げられる。   A separator can be provided on the electrolyte layer 24 to prevent a short circuit. Various known materials can be used as the separator material, and examples thereof include a porous sheet made of polyethylene, polypropylene, cellulose and the like, a nonwoven fabric, a porous sheet having a predetermined ion permeability, mechanical strength, and insulation.

負極活物質28は、高容量活物質であるリチウムまたはリチウム合金(以下、リチウム系負極と表記)が特に好ましい。リチウム合金としては、例えば、Li−Si合金、Li−Sn合金、Li−Al合金、Li−Ga合金、Li−Mg合金、またはLi−In合金が用いられる。負極容量の観点から、リチウム合金中にて、Li以外の元素が存在する割合は、0.1〜10重量%が好ましい。負極活物質28は、公知の材料および組成を適宜選択することができるが、リチウム系負極、天然および人造の各種黒鉛、シリサイド、ケイ素酸化物、各種合金材料などを用いると高エネルギー密度の薄型電池とすることができる。これらの中でもより高容量、高エネルギー密度の薄型電池を実現できるという点から、リチウム系負極が好ましい。   The negative electrode active material 28 is particularly preferably lithium or a lithium alloy (hereinafter referred to as lithium negative electrode) which is a high capacity active material. As the lithium alloy, for example, a Li—Si alloy, a Li—Sn alloy, a Li—Al alloy, a Li—Ga alloy, a Li—Mg alloy, or a Li—In alloy is used. From the viewpoint of negative electrode capacity, the proportion of elements other than Li in the lithium alloy is preferably 0.1 to 10% by weight. A known material and composition can be appropriately selected for the negative electrode active material 28. However, when a lithium-based negative electrode, various natural and artificial graphite, silicide, silicon oxide, various alloy materials, etc. are used, a thin battery having a high energy density. It can be. Among these, a lithium-based negative electrode is preferable because a thin battery having a higher capacity and a higher energy density can be realized.

負極集電体27は、電解法により得られる電解金属箔でもよく、圧延法により得られる圧延金属箔でもよい。電解法は、量産性に優れ、比較的製造コストが低いという利点を有する。一方、圧延法は、薄型化が容易であり、軽量化の点で有利である。圧延金属箔は、圧延方向に沿って結晶配向し、耐屈曲性に優れているため、薄型電池に好適に用いられる
。負極集電体27としては、例えば、銅箔、ニッケル箔、あるいは、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム金属、リチウム合金等が挙げられる。
The negative electrode current collector 27 may be an electrolytic metal foil obtained by an electrolytic method or a rolled metal foil obtained by a rolling method. The electrolytic method has the advantages that it is excellent in mass productivity and relatively low in production cost. On the other hand, the rolling method is easy in thickness reduction and is advantageous in terms of weight reduction. The rolled metal foil is suitably used for a thin battery because it has a crystal orientation along the rolling direction and is excellent in bending resistance. Examples of the negative electrode current collector 27 include copper foil, nickel foil, aluminum, aluminum alloy, magnesium alloy, lithium metal, and lithium alloy.

負極集電体27に負極活物質28を圧着、蒸着、または塗布した後に圧延することなどの方法で、負極集電体27と負極活物質28とを密着させることにより負極34が得られる。   The negative electrode 34 is obtained by bringing the negative electrode current collector 27 and the negative electrode active material 28 into close contact with each other by, for example, rolling after the negative electrode active material 28 is pressure-bonded, vapor-deposited or coated on the negative electrode current collector 27.

正極活物質26は、正極集電体25の一方の面に形成され、正極活物質、結着剤、および必要に応じて導電剤を含む合剤層である。   The positive electrode active material 26 is a mixture layer formed on one surface of the positive electrode current collector 25 and including a positive electrode active material, a binder, and, if necessary, a conductive agent.

正極活物質26には、例えば、二酸化マンガン、フッ化カーボン類、硫化物、リチウム含有複合酸化物、バナジウム酸化物とそのリチウム化合物、ニオブ酸化物とそのリチウム化合物、有機導電性物質を含有する共役系ポリマー、シェブレル相化合物、オリビン系化合物が用いられる。これらの中でも、二酸化マンガン、フッ化カーボン類、硫化物、リチウム含有複合酸化物が好ましく、二酸化マンガンが特に好ましい。   The positive electrode active material 26 includes, for example, manganese dioxide, carbon fluorides, sulfides, lithium-containing composite oxides, vanadium oxides and lithium compounds thereof, niobium oxides and lithium compounds thereof, and conjugates containing organic conductive substances. Polymers, chevrel phase compounds, and olivine compounds are used. Among these, manganese dioxide, fluorocarbons, sulfides, and lithium-containing composite oxides are preferable, and manganese dioxide is particularly preferable.

フッ化カーボン類としては、例えば、(CF(式中、mは1以上の整数であり、0<w≦1)で表されるフッ化黒鉛が挙げられる。硫化物としては、例えば、TiS、MoS、FeSが挙げられる。リチウム含有複合酸化物としては、例えば、LixaCoO、LixaNiO、LixaMnO、LixaCoNi1−y、LixaCo1−y、LixaNi1−y、LixbMn、LixbMn2−yが挙げられる。上記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選ばれる少なくとも1つの元素であり、xa=0〜1.2、xb=0〜2.0、y=0〜0.9、z=2.0〜2.3である。xaおよびxbは、充放電開始前の値であり、充放電により増減する。 Examples of the carbon fluorides include fluorinated graphite represented by (CF w ) m (wherein m is an integer of 1 or more and 0 <w ≦ 1). Examples of the sulfide include TiS 2 , MoS 2 , and FeS 2 . Examples of the lithium-containing composite oxide include Li xa CoO 2 , Li xa NiO 2 , Li xa MnO 2 , Li xa Co y Ni 1-y O 2 , Li xa Co y M 1-y O z , Li xa Ni 1-y M y O z, Li xb Mn 2 O 4, Li xb Mn 2-y M y O 4 and the like. In the above formulas, M is at least one element selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B, and xa = 0 to 1.2, xb = 0 to 2.0, y = 0 to 0.9, z = 2.0 to 2.3. xa and xb are values before the start of charge / discharge, and increase / decrease due to charge / discharge.

正極集電体25には、金属フィルム、金属箔、および金属繊維の不織布のような金属材料が用いられる。金属材料としては、例えば、銀、ニッケル、チタン、金、白金、アルミニウム、またはステンレス鋼が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。   For the positive electrode current collector 25, a metal material such as a metal film, a metal foil, and a metal fiber non-woven fabric is used. Examples of the metal material include silver, nickel, titanium, gold, platinum, aluminum, and stainless steel. These may be used alone or in combination of two or more.

薄型電子デバイスに搭載される薄型電池は一次電池でも二次電池でも良い。   The thin battery mounted on the thin electronic device may be a primary battery or a secondary battery.

本発明の実施例を以下で説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(1)薄型電池
電子デバイス内部に搭載される薄型電池を以下で説明する。薄型電池としては図4、図5に示す構造のものを作製した。
(1) Thin battery A thin battery mounted inside an electronic device will be described below. A thin battery having the structure shown in FIGS. 4 and 5 was produced.

(1−1)負極
負極活物質であるリチウム金属箔(44.5mm×59.0mm、厚み20μm)を、銅箔を12mm×5mmの突出部を有する44.5mm×59.0mmのサイズに打抜いた負極集電体27の一方の面(表面粗さ2.6μm)に100N/cmの線圧で圧着し、負極を得た。その後、突出部に幅3.0mm、長さ20mmの銅製の負極リード23aを超音波溶接した。
(1-1) Negative Electrode A lithium metal foil (44.5 mm × 59.0 mm, thickness 20 μm), which is a negative electrode active material, is struck into a size of 44.5 mm × 59.0 mm having a 12 mm × 5 mm protrusion. A negative electrode was obtained by pressure bonding to one surface (surface roughness 2.6 μm) of the extracted negative electrode current collector 27 with a linear pressure of 100 N / cm. Thereafter, a copper negative electrode lead 23a having a width of 3.0 mm and a length of 20 mm was ultrasonically welded to the protruding portion.

(1−2)正極
正極活物質である350℃で加熱した電解二酸化マンガンと、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデン(PVDF)を含むN−メチル−2−ピロリドン(NMP)の溶液とを、二酸化マンガン:アセチレンブラック:PVDFの重量比が100:5:5となるように混合した後、NMPを適量加え、ペースト状の正極合剤を得た。
(1-2) Positive Electrode N-methyl-2-pyrrolidone containing electrolytic manganese dioxide heated at 350 ° C. as a positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder ( NMP) solution was mixed so that the weight ratio of manganese dioxide: acetylene black: PVDF was 100: 5: 5, and then an appropriate amount of NMP was added to obtain a paste-like positive electrode mixture.

正極集電体25の一方の面に正極合剤を塗布し、85℃で10分乾燥し、正極活物質26を形成した後、それをロールプレス機にて12000N/cmの線圧で圧縮し、正極を得た。ただし、ここでは、正極集電体としてアルミニウムを用いた。   A positive electrode mixture is applied to one surface of the positive electrode current collector 25, dried at 85 ° C. for 10 minutes to form the positive electrode active material 26, and then compressed with a roll press at a linear pressure of 12000 N / cm. A positive electrode was obtained. However, here, aluminum was used as the positive electrode current collector.

正極を幅12mm、長さ5mmのタブ部を有する42.5mm×57.0mmのサイズに切り抜いた後、120℃で2時間減圧乾燥した。その後、突出部に幅5mm、長さ20mmのアルミニウムの正極リード23bを超音波溶接した。   The positive electrode was cut out to a size of 42.5 mm × 57.0 mm having a tab portion having a width of 12 mm and a length of 5 mm, and then dried under reduced pressure at 120 ° C. for 2 hours. Thereafter, an aluminum positive electrode lead 23b having a width of 5 mm and a length of 20 mm was ultrasonically welded to the protruding portion.

(1−3)ゲルポリマー電解質の含浸
プロピレンカーボネート(PC):ジメトキシエタン(DME)=6:4(重量比)の割合で混合して得られた非水溶媒に、電解質塩としての過塩素酸リチウム(LiClO)を1mol/kgとなるように溶解させて、液体電解質を作製した。
(1-3) Impregnation of gel polymer electrolyte Perchloric acid as an electrolyte salt in a nonaqueous solvent obtained by mixing in a ratio of propylene carbonate (PC): dimethoxyethane (DME) = 6: 4 (weight ratio) Lithium (LiClO 4 ) was dissolved at 1 mol / kg to produce a liquid electrolyte.

マトリクス高分子としてヘキサフルオロプロピレンとポリフッ化ビニリデンの共重合体(ヘキサフルオロプロピレン含有量:7%)を用い、マトリクス高分子:液体電解質=1:10(重量比)の割合で混合し、溶剤としてジメチルカーボネート(DMC)を用いてゲルポリマー電解質の溶液を作製した。   As a matrix polymer, a copolymer of hexafluoropropylene and polyvinylidene fluoride (hexafluoropropylene content: 7%) is used and mixed at a ratio of matrix polymer: liquid electrolyte = 1: 10 (weight ratio) as a solvent. A gel polymer electrolyte solution was prepared using dimethyl carbonate (DMC).

得られたゲルポリマー電解質溶液を、厚み9μmの多孔質ポリエチレンから成るセパレータの両面及び正極活物質に均一に塗布し、溶剤を揮発させて、正極及びセパレータにゲルポリマー電解質を含浸させた。   The obtained gel polymer electrolyte solution was uniformly applied to both sides of the separator made of porous polyethylene having a thickness of 9 μm and the positive electrode active material, the solvent was volatilized, and the positive electrode and the separator were impregnated with the gel polymer electrolyte.

(1−4)電極群の作製
負極とゲル状の非水電解質層を含浸させた正極とを、セパレータを介して正極活物質26と負極活物質28が対向するように積層し、その後90℃、0.1MPaで30秒間熱プレスすることにより電極群21を作製した。
(1-4) Preparation of electrode group A negative electrode and a positive electrode impregnated with a gel-like nonaqueous electrolyte layer were laminated so that the positive electrode active material 26 and the negative electrode active material 28 face each other with a separator interposed therebetween, and then 90 ° C. The electrode group 21 was produced by hot pressing at 0.1 MPa for 30 seconds.

(1−5)薄型電池の組み立て
バリア層として、アルミニウム箔(厚み15μm)、シール層(厚み50μm)と保護層(厚み50μm)としてポリエチレンを備えた60.0mm×70.0mmの袋状の外装体22の内部にフィルムの開口部から正負リードの一部が外部へ露出するように電極群21を配置し、その後、電極群4が挿入された状態のフィルム材を圧力660mmHgに調整された雰囲気中に置き、この雰囲気内において開口部を熱融着した。これにより、大きさが60.0mm×70.0mmの柔軟な薄型電池を作製した。
(1-5) Assembly of thin battery 60.0 mm × 70.0 mm bag-shaped exterior equipped with aluminum foil (thickness 15 μm) as a barrier layer, polyethylene as a sealing layer (thickness 50 μm) and protective layer (thickness 50 μm) The electrode group 21 is disposed in the body 22 so that a part of the positive and negative leads is exposed to the outside from the opening of the film, and then the atmosphere in which the film material in which the electrode group 4 is inserted is adjusted to a pressure of 660 mmHg The opening was heat sealed in this atmosphere. Thereby, a flexible thin battery having a size of 60.0 mm × 70.0 mm was produced.

(2)薄型電池搭載電子デバイスの作製方法
ここでは、図3に示すイオントフォレシス経皮投薬装置の作製方法について説明する。図8の(A)〜(F)はイオントフォレシス経皮投薬装置の作製工程を説明するために、図3のイオントフォレシス経皮投薬装置を矢印Aの方向から見た投影図である。
(2) Manufacturing Method of Thin Battery Mounted Electronic Device Here, a manufacturing method of the iontophoresis transdermal administration device shown in FIG. 3 will be described. FIGS. 8A to 8F are projection views of the iontophoretic transdermal dosage device of FIG. 3 as viewed from the direction of arrow A in order to explain the production process of the iontophoretic transdermal dosage device.

はじめに、図8の(A)に示すような形状の弾性シート材ユニット16aを用意する。弾性シート材ユニット16aは陰極槽18及び、陽極槽19を嵌合するための貫通口18a、19aを備える。このような形状の弾性シート材ユニット16aは熱可塑性エラストマーを用いた射出成型や、液状エラストマーを所定の型に注入して硬化させることにより
得られる。弾性シート材ユニットの材料としては、例えば、シリコーンゴム、ブチルゴム、ポリミド、ナイロン、ビニール、ポリエステル、テフロン(登録商標)、ポリエチレン等が挙げられる。
First, an elastic sheet material unit 16a having a shape as shown in FIG. The elastic sheet material unit 16 a includes through holes 18 a and 19 a for fitting the cathode tank 18 and the anode tank 19. The elastic sheet material unit 16a having such a shape can be obtained by injection molding using a thermoplastic elastomer or by injecting a liquid elastomer into a predetermined mold and curing it. Examples of the material for the elastic sheet material unit include silicone rubber, butyl rubber, polyimide, nylon, vinyl, polyester, Teflon (registered trademark), and polyethylene.

次に、図8の(B)に示すように、配線29、及び配線29で接続された電極端子30、及び配線31及び配線31に接続された電極端子32をそれぞれ、貫通口18a、及び19aに挿入する。   Next, as shown in FIG. 8B, the wiring 29, the electrode terminal 30 connected by the wiring 29, and the wiring 31 and the electrode terminal 32 connected to the wiring 31 are respectively connected to the through holes 18a and 19a. Insert into.

次に、陽極槽19、及び陰極槽18をその薬剤抽出口が貫通口19a、及び貫通口18aを通じて弾性シート材ユニット16aの外側に露出するように、貫通口18a、及び貫通口19aに嵌合する。これにより、図8の(C)に示す構成体33を得る。   Next, the anode tank 19 and the cathode tank 18 are fitted into the through-hole 18a and the through-hole 19a so that the drug extraction port is exposed to the outside of the elastic sheet material unit 16a through the through-hole 19a and the through-hole 18a. To do. Thereby, the structure 33 shown in FIG. 8C is obtained.

次に、図8の(D)に示すように、構成体33を、配線29及び、31の一部が外部へ露出した状態を維持するように、弾性シート材ユニット16bにより封止する。弾性シート材ユニット16bによる封止は、構成体33を所定の位置に配置し、液状エラストマーを型内に注入して硬化させる方法や、熱可塑性エラストマーを用いた射出インサート成形等が用いられうる。   Next, as shown in FIG. 8D, the structure 33 is sealed by the elastic sheet material unit 16b so that the wirings 29 and 31 are partially exposed to the outside. For sealing with the elastic sheet material unit 16b, a method of placing the structural body 33 in a predetermined position and injecting and curing a liquid elastomer into the mold, injection insert molding using a thermoplastic elastomer, or the like can be used.

さらに、前記手法により作製した薄型電池17を図8の(E)に示すように、弾性シート材ユニット16bの上部に置き、陽極槽19と正極、陰極槽18と負極が電気的に接続するように、配線29及び、31を接続する。   Further, as shown in FIG. 8E, the thin battery 17 manufactured by the above method is placed on the elastic sheet material unit 16b so that the anode tank 19 and the positive electrode, and the cathode tank 18 and the negative electrode are electrically connected. Further, the wirings 29 and 31 are connected.

最後に、図8の(F)に示すように、薄型電池が完全に弾性シート材ユニット16cに収納されるように、弾性シート材ユニット16cにより封止する。この際、弾性シート材ユニット16cによる封止は、構成体を所定の位置に配置し、液状エラストマーを型内に注入して硬化させる方法や、熱可塑性エラストマーを用いた射出インサート成形等が用いられうる。   Finally, as shown in FIG. 8F, the thin sheet battery is sealed by the elastic sheet material unit 16c so that the thin battery is completely accommodated in the elastic sheet material unit 16c. At this time, sealing by the elastic sheet material unit 16c uses a method in which the structural body is placed at a predetermined position and liquid elastomer is injected into the mold and cured, or injection insert molding using a thermoplastic elastomer is used. sell.

以上の工程により、内部に薄型電池を搭載した電子デバイスであるイオントフォレシス経皮投薬装置15を作製した。   Through the above steps, an iontophoresis transdermal administration device 15, which is an electronic device having a thin battery mounted therein, was produced.

(3)薄型電池搭載電子デバイスの評価
以下では、前記作製方法で作製されたイオントフォレシス経皮投薬装置15を用いて、本発明における薄型電池搭載電子デバイスの評価を行う。
(3) Evaluation of electronic device mounted with thin battery In the following, the electronic device mounted with a thin battery according to the present invention is evaluated using the iontophoresis transdermal administration device 15 manufactured by the above manufacturing method.

そこで、説明の簡略化のため、図8の(F)に示すイオントフォレシス経皮投薬装置15において、陽極槽19及び、陰極槽18が露出している表面を下面、その反対の表面を上面と呼ぶものとする。さらに、内部の薄型電池の上下面もそれに順ずるものとする。ここで、薄型電池の上面からイオントフォレシス経皮投薬装置の上面までの距離をH1とし、薄型電池の下面からイオントフォレシス経皮投薬装置の下面までの距離をH2と呼ぶものとする。   Therefore, for simplification of description, in the iontophoresis transdermal administration device 15 shown in FIG. 8F, the surface where the anode tank 19 and the cathode tank 18 are exposed is the lower surface, and the opposite surface is the upper surface. Shall be called. Furthermore, the upper and lower surfaces of the internal thin battery shall follow that. Here, the distance from the upper surface of the thin battery to the upper surface of the iontophoresis transdermal administration device is referred to as H1, and the distance from the lower surface of the thin battery to the lower surface of the iontophoresis transdermal administration device is referred to as H2.

さらに、曲げ変形において、イオントフォレシス経皮投薬装置の上面が曲げ変形の内側にくるものを、曲げタイプAと呼ぶものとする。また、イオントフォレシス経皮投薬装置の下面が曲げ変形の内側にくるものを、曲げタイプBと呼ぶものとする。   Furthermore, in bending deformation, the one in which the upper surface of the iontophoretic transdermal administration device is located inside the bending deformation is referred to as bending type A. In addition, the iontophoresis transdermal administration device having the lower surface inside the bending deformation is referred to as a bending type B.

作製した薄型電子デバイスの過度な曲げに対する屈曲耐久性能を評価する。本実施例では、過度な曲げに対する電子デバイスの対屈曲性能を、内部に搭載される薄型電池の容量維持率、および曲げ屈曲耐久性能を用いて以下のように評価する。   The bending durability performance against excessive bending of the manufactured thin electronic device is evaluated. In this example, the anti-bending performance of the electronic device against excessive bending is evaluated as follows using the capacity retention rate of the thin battery mounted inside and the bending / bending durability performance.

(3−1)電池放電容量維持率の評価
まず、薄型電子デバイスに搭載される薄型電池を取り出し、下記条件で放電試験を実施し、屈曲試験前の搭載電池の放電容量を求めた。
(3-1) Evaluation of battery discharge capacity maintenance rate First, a thin battery mounted on a thin electronic device was taken out, a discharge test was performed under the following conditions, and a discharge capacity of the mounted battery before the bending test was obtained.

環境温度 : 25℃
放電電流密度 : 250μA/cm2(正極の単位面積あたりの電流値)
放電終止電圧 : 1.8V
続いて、別の電池を搭載した薄型電子デバイスをプレス機を用いて、180℃に折り曲げる。この際、プレス機の圧力は0.5MPa、加圧時間は10秒とした。プレス後、薄型電池を下記放電条件試験することにより、プレス試験後の搭載電池の放電容量を求めた。そして、下記式にて、プレス試験後の容量維持率(%)を導出した。
Ambient temperature: 25 ° C
Discharge current density: 250 μA / cm 2 (current value per unit area of positive electrode)
End-of-discharge voltage: 1.8V
Subsequently, a thin electronic device equipped with another battery is bent at 180 ° C. using a press. At this time, the press machine pressure was 0.5 MPa, and the pressurization time was 10 seconds. After the press, the discharge capacity of the mounted battery after the press test was determined by performing the following discharge condition test on the thin battery. And the capacity | capacitance maintenance factor (%) after a press test was derived | led-out by the following formula.

屈曲試験後の容量維持率(%)=(屈曲試験後の放電容量/屈曲試験前の放電容量)×100
なお、試験は曲げタイプAと曲げタイプBに関してそれぞれ5個ずつの薄型電池を用いて行い、それぞれの曲げのタイプにおける5個の平均値を導出した。
Capacity maintenance rate after bending test (%) = (discharge capacity after bending test / discharge capacity before bending test) × 100
The test was performed using five thin batteries each for bending type A and bending type B, and an average value of five for each bending type was derived.

(3−2)電極群曲げ屈曲耐久性能の評価
前記薄型電子デバイスに対し、放電容量維持率の評価と同様のプレス試験を行った。プレス試験後の薄型電子デバイスから搭載電池を取り出し、分解することで電極群が断線・損傷しているセルの数量を確認した。
(3-2) Evaluation of electrode group bending / bending durability performance A press test similar to the evaluation of the discharge capacity retention rate was performed on the thin electronic device. The mounted battery was taken out of the thin electronic device after the press test and disassembled to confirm the number of cells in which the electrode group was disconnected or damaged.

なお、試験は曲げタイプAと曲げタイプBに関してそれぞれ5個ずつの薄型電池を用いて行い、それぞれの曲げのタイプにおける5個の平均値を導出した。   The test was performed using five thin batteries each for bending type A and bending type B, and an average value of five for each bending type was derived.

[実施例1]
正極集電体が厚み8μmのアルミニウム(縦弾性係数70GPa、引張り強度150MPa)、負極集電体が厚み8μmの銅(縦弾性係数150GPa、引張り強度250MPa)からなる厚み170μmの電極群からなる薄型電池を前記作製手順に基づき作製した。さらに、作製した薄型電池を用いて、イオントフォレシス経皮投薬装置を上記作製手順に基づき作製した。この際、上記の距離H1が1700μm、H2が3400μmとなるように、弾性シート材ユニットの注入量を調節することにより、薄型電池搭載電子デバイスを作製した。
[Example 1]
A thin battery comprising a 170 μm thick electrode group in which the positive electrode current collector is made of aluminum having a thickness of 8 μm (longitudinal elastic modulus 70 GPa, tensile strength 150 MPa) and the negative electrode current collector is made of copper having a thickness of 8 μm (longitudinal elastic modulus 150 GPa, tensile strength 250 MPa). Was produced based on the production procedure. Furthermore, an iontophoresis transdermal administration device was produced based on the above production procedure using the produced thin battery. At this time, a thin battery-mounted electronic device was manufactured by adjusting the injection amount of the elastic sheet material unit so that the distance H1 was 1700 μm and H2 was 3400 μm.

[実施例2]
正極集電体の厚みが30μm、負極集電体の厚みが30μm、電極群の厚みが630μmであり、かつ、上記の距離H1が6300μm、H2が6300μmであること以外は実施例1と同様にして、薄型電池搭載電子デバイスを作製した。
[Example 2]
Example 1 except that the thickness of the positive electrode current collector is 30 μm, the thickness of the negative electrode current collector is 30 μm, the thickness of the electrode group is 630 μm, and the distance H1 is 6300 μm and H2 is 6300 μm. Thus, an electronic device with a thin battery was produced.

[実施例3]
正極集電体の厚みが8μmのニッケル(縦弾性係数200GPa、引張り強度450MPa)、負極集電体の厚みが8μmのアルミニウム(縦弾性係数70GPa、引張り強度150MPa)、電極群の厚みが170μmであり、かつ、上記の距離H1が1700μm、H2が3400μmであること以外は実施例1と同様にして、薄型電池搭載電子デバイスを作製した。
[Example 3]
The positive electrode current collector has a thickness of 8 μm nickel (longitudinal elastic modulus 200 GPa, tensile strength 450 MPa), the negative electrode current collector has a thickness of 8 μm aluminum (longitudinal elastic modulus 70 GPa, tensile strength 150 MPa), and the electrode group has a thickness of 170 μm. A thin battery-mounted electronic device was manufactured in the same manner as in Example 1 except that the distance H1 was 1700 μm and H2 was 3400 μm.

[実施例4]
上記の距離H1が34000μm、H2が34000μmであること以外は実施例1と同様にして、薄型電池搭載電子デバイスを作製した。
[Example 4]
A thin battery-mounted electronic device was fabricated in the same manner as in Example 1 except that the distance H1 was 34000 μm and H2 was 34000 μm.

[実施例5]
正極集電体の厚みが30μm、負極集電体の厚みが30μm、電極群の厚みが700μmであり、かつ、上記の距離H1が7000μm、H2が7000μmであること以外は実施例1と同様にして、薄型電池搭載電子デバイスを作製した。
[Example 5]
Example 1 except that the thickness of the positive electrode current collector is 30 μm, the thickness of the negative electrode current collector is 30 μm, the thickness of the electrode group is 700 μm, and the distance H1 is 7000 μm and H2 is 7000 μm. Thus, an electronic device with a thin battery was produced.

[実施例6]
正極集電体の厚みが35μm、負極集電体の厚みが35μm、電極群の厚みが400μmであり、かつ、上記の距離H1が4000μm、H2が4000μmであること以外は実施例1と同様にして、薄型電池搭載電子デバイスを作製した。
[Example 6]
Example 1 except that the thickness of the positive electrode current collector is 35 μm, the thickness of the negative electrode current collector is 35 μm, the thickness of the electrode group is 400 μm, and the distance H1 is 4000 μm and H2 is 4000 μm. Thus, an electronic device with a thin battery was produced.

[比較例1]
正極集電体の厚みが30μm、負極集電体の厚みが30μm、電極群の厚みが200μmであり、かつ、上記の距離H1が1000μm、H2が2000μmであること以外は実施例1と同様にして、薄型電池搭載電子デバイスを作製した。
[Comparative Example 1]
Example 1 except that the thickness of the positive electrode current collector is 30 μm, the thickness of the negative electrode current collector is 30 μm, the thickness of the electrode group is 200 μm, and the distance H1 is 1000 μm and H2 is 2000 μm. Thus, an electronic device with a thin battery was produced.

実施例1〜6、比較例1で作製した薄型電池搭載電子デバイスの試料条件を(表1)に、評価結果を(表2)に示す。
Sample conditions of the thin battery-mounted electronic devices produced in Examples 1 to 6 and Comparative Example 1 are shown in (Table 1), and the evaluation results are shown in (Table 2).

(表2)に示すように、実施例1〜6で作製した薄型電池搭載電子デバイスは、比較例
1で作製した薄型電池搭載電子デバイスと比較して、プレス試験後の放電容量維持率が優れている。さらに、比較例1で作製した薄型電池搭載電子デバイスはプレス試験後の電池の電極群に断線しているものが見られたが、実施例1〜6で作製した薄型電池搭載電子デバイスはプレス試験後も電池の電極群に断線しているものは見られなかった。
As shown in Table 2, the thin battery-mounted electronic devices produced in Examples 1 to 6 are superior in discharge capacity maintenance ratio after the press test as compared with the thin battery-mounted electronic devices produced in Comparative Example 1. ing. Furthermore, although the thin battery mounted electronic device produced in Comparative Example 1 was found to be disconnected in the battery electrode group after the press test, the thin battery mounted electronic device produced in Examples 1 to 6 was subjected to the press test. Even after that, no disconnection was found in the electrode group of the battery.

実施例4はH1/h、およびH2/hが200であり、電極群の厚みhに対して電極群表面からデバイス表面までの距離H1およびH2が過度に大きい場合であり、実施例4の場合、プレス試験後も電極群に断線・損傷は見られなかった。しかし、実施例4のように、H1およびH2を過度に大きくすることは、デバイスの厚みを過度に大きくすることにつながり、これは、薄型電池搭載電子デバイスのフレキシブル性を阻害するため好ましくなく、H1/hおよびH2/hは100以下とすることがより好ましい。   In Example 4, H1 / h and H2 / h are 200, and the distances H1 and H2 from the electrode group surface to the device surface are excessively large with respect to the thickness h of the electrode group. After the press test, no breakage or damage was observed in the electrode group. However, as in Example 4, excessively increasing H1 and H2 leads to excessively increasing the thickness of the device, which is undesirable because it hinders the flexibility of the thin battery-equipped electronic device, More preferably, H1 / h and H2 / h are 100 or less.

実施例5と実施例6はそれぞれ、電極群の厚みが630μm以上、あるいは電極集電体の厚みが30μm以上である場合であるが、実施例5と実施例6の場合、プレス試験後も電極群の断線は生じなかったが、過度な曲げによる電極群の損傷に起因した放電容量劣化が生じている。したがって、より確実に電極群の断線・損傷を防止するためには、電極群と電極集電体の厚みは薄型であることが好ましく、電極群の厚みを630μm以下、電極集電体の厚みを30μm以下とすることで、より確実に電極群の断線・損傷を防止することができる。   Example 5 and Example 6 are cases where the thickness of the electrode group is 630 μm or more, or the thickness of the electrode current collector is 30 μm or more. In the case of Example 5 and Example 6, the electrodes were also tested after the press test. No disconnection of the group occurred, but the discharge capacity was deteriorated due to the damage of the electrode group due to excessive bending. Therefore, in order to more reliably prevent disconnection / damage of the electrode group, the thickness of the electrode group and the electrode current collector is preferably thin. The thickness of the electrode group is 630 μm or less, and the thickness of the electrode current collector is reduced. By setting the thickness to 30 μm or less, disconnection / damage of the electrode group can be more reliably prevented.

比較例1におけるプレス試験後の電池の放電容量の劣化は、プレス試験による搭載電池電極群の断線・損傷によると考えられる。   It is considered that the deterioration of the discharge capacity of the battery after the press test in Comparative Example 1 is due to disconnection / damage of the mounted battery electrode group by the press test.

以上の結果より、薄型電子搭載電子デバイスが過度に折れ曲がった際の電池電極群の断線・損傷に起因したデバイスの機能低下を防止するためには、電極群の厚みhと、前記電極群の上面から薄型電池搭載電子デバイス上面までの距離H1、前記電極群下面から薄型電池搭載電子デバイス下面までの距離H2が、10≦H1/h、かつ10≦H2/hの関係を満たす必要があることが分かる。   From the above results, the thickness h of the electrode group and the upper surface of the electrode group are prevented in order to prevent deterioration of the function of the device due to disconnection / damage of the battery electrode group when the thin electronic electronic device is excessively bent. The distance H1 from the upper surface of the electronic device with a thin battery and the distance H2 from the lower surface of the electrode group to the lower surface of the electronic device with a thin battery must satisfy the relationship of 10 ≦ H1 / h and 10 ≦ H2 / h. I understand.

本発明の電池搭載薄型電子デバイスは、デバイスに構造上起こりうる最大の曲げ変形が生じた際も、電池電極群の断線・損傷に起因したデバイスの機能低下は生じない。これにより、薄型電池搭載電子デバイス使用者がデバイスを踏みつける等しても、薄型電池搭載電子デバイスの機能低下は生じず、これにより、薄型電池搭載電子デバイスの信頼性が向上する。   In the battery-mounted thin electronic device of the present invention, even when the maximum bending deformation that may occur in the structure occurs in the device, the function of the device does not deteriorate due to disconnection / damage of the battery electrode group. Thereby, even if the user of the thin battery-equipped electronic device steps on the device, the function of the thin battery-equipped electronic device does not deteriorate, thereby improving the reliability of the thin battery-equipped electronic device.

1 薄型電池搭載電子デバイス
2 電子デバイス構成体
3,7,17 薄型電池
4 電極群
5 生体情報測定装置
6 保持部材
8 温度センサ
9 感圧素子
10 記憶部
11 スピーカ
12 アンテナ
13 押しボタンスイッチ
14 制御IC
15 イオントフォレシス経皮投薬装置
16 弾性シート材
18 陰極槽
19 陽極槽
21 電極群
22 外装体
23a 負極リード
23b 正極リード
24 電解質層
25 正極集電体
26 正極活物質
27 負極集電体
28 負極活物質
29,31 配線
30,32電極端子
33 構成体
DESCRIPTION OF SYMBOLS 1 Thin battery mounting electronic device 2 Electronic device structure 3, 7, 17 Thin battery 4 Electrode group 5 Biological information measuring device 6 Holding member 8 Temperature sensor 9 Pressure sensitive element 10 Memory | storage part 11 Speaker 12 Antenna 13 Pushbutton switch 14 Control IC
DESCRIPTION OF SYMBOLS 15 Iontophoresis transdermal administration device 16 Elastic sheet material 18 Cathode tank 19 Anode tank 21 Electrode group 22 Exterior body 23a Negative electrode lead 23b Positive electrode lead 24 Electrolyte layer 25 Positive electrode collector 26 Positive electrode active material 27 Negative electrode collector 28 Negative electrode active Substance 29, 31 Wiring 30, 32 Electrode terminal 33 Structure

Claims (2)

正極、負極、および前記正極と前記負極との間に介在し、電解質層を具備するシート状の電極群と、前記電極群を密閉する外装体を具備した薄型電池を弾性シート材からなる電子デバイス構成体の内部に搭載して構成される薄型電池搭載電子デバイスであって、前記電極群の厚みhが、700μm以下であり、
前記電極群の上面から薄型電池搭載電子デバイス上面までの距離H1、前記電極群下面から薄型電池搭載電子デバイス下面までの距離H2が、
H1≦34mm、かつH2≦34mmであり、
10≦H1/h、かつ10≦H2/hの関係を満たし、
前記正極は正極活物質、および正極集電体を有し、前記負極は負極活物質、および負極集電体を有し、
前記正極集電体と前記負極集電体の厚みがともに8〜30μmであり、
前記正極集電体と前記負極集電体の引張り強度が100〜1200MPaであり、かつ縦弾性係数が7〜220GPaであり、
前記弾性シート材は、シリコーンゴム、ブチルゴム、ポリミド、ナイロン、ビニール、ポリエステル、およびポリエチレンからなる群から選ばれる少なくとも1種から構成されることを特徴とする薄型電池搭載電子デバイス。
An electronic device comprising a positive electrode, a negative electrode, and a thin battery that is interposed between the positive electrode and the negative electrode and includes a sheet-like electrode group including an electrolyte layer and an exterior body that seals the electrode group. A thin battery-mounted electronic device configured to be mounted inside a structure, wherein the electrode group has a thickness h of 700 μm or less,
A distance H1 from the upper surface of the electrode group to the upper surface of the thin battery mounted electronic device, and a distance H2 from the lower surface of the electrode group to the lower surface of the thin battery mounted electronic device are:
H1 ≦ 34 mm and H2 ≦ 34 mm,
Satisfying the relationship of 10 ≦ H1 / h and 10 ≦ H2 / h,
The positive electrode has a positive electrode active material and a positive electrode current collector, the negative electrode has a negative electrode active material and a negative electrode current collector,
Both the positive electrode current collector and the negative electrode current collector have a thickness of 8 to 30 μm,
The tensile strength of the positive electrode current collector and the negative electrode current collector is 100~1200MPa, and a longitudinal elastic modulus Ri 7~220GPa der,
The thin battery-equipped electronic device , wherein the elastic sheet material is composed of at least one selected from the group consisting of silicone rubber, butyl rubber, polyimide, nylon, vinyl, polyester, and polyethylene .
前記電極群の厚みが92〜630μmである請求項1記載の薄型電池搭載電子デバイス。 The thin battery-mounted electronic device according to claim 1, wherein the electrode group has a thickness of 92 to 630 μm.
JP2012023612A 2012-02-07 2012-02-07 Electronic device with thin battery Expired - Fee Related JP5845413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023612A JP5845413B2 (en) 2012-02-07 2012-02-07 Electronic device with thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023612A JP5845413B2 (en) 2012-02-07 2012-02-07 Electronic device with thin battery

Publications (2)

Publication Number Publication Date
JP2013161691A JP2013161691A (en) 2013-08-19
JP5845413B2 true JP5845413B2 (en) 2016-01-20

Family

ID=49173777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023612A Expired - Fee Related JP5845413B2 (en) 2012-02-07 2012-02-07 Electronic device with thin battery

Country Status (1)

Country Link
JP (1) JP5845413B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273107B2 (en) 2013-08-02 2018-01-31 デンカ生研株式会社 Method for enhancing detection light using light reflector in immunochromatography
JP6675216B2 (en) 2015-02-27 2020-04-01 株式会社半導体エネルギー研究所 Power storage device
US20180131042A1 (en) * 2015-05-29 2018-05-10 Panasonic Intellectual Property Management Co. Ltd. Film exterior body for batteries, and battery having same
JP2017126538A (en) * 2016-01-15 2017-07-20 Fdk株式会社 Laminate type power storage element
JP6932523B2 (en) 2017-03-09 2021-09-08 昭和電工パッケージング株式会社 Exterior materials for power storage devices and power storage devices
US20220352507A1 (en) * 2021-04-29 2022-11-03 GM Global Technology Operations LLC Method and apparatus for fabricating an electrode for a battery
US20240088364A1 (en) * 2022-08-31 2024-03-14 Lg Energy Solution, Ltd. Negative Electrode for a Lithium Secondary Battery, a Method for Preparing the Same and a Lithium Secondary Battery Comprising the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508997A (en) * 1995-07-05 1999-08-03 モトローラ・インコーポレイテッド Conformal power supply
JPH11274735A (en) * 1998-03-25 1999-10-08 Toshiba Battery Co Ltd Multilayer printed wiring board
FR2946461B1 (en) * 2009-06-09 2011-07-22 Commissariat Energie Atomique DEVICE FOR FLEXIBLE ENCAPSULATION OF A MICRO-BATTERY
JP5416077B2 (en) * 2009-12-07 2014-02-12 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Also Published As

Publication number Publication date
JP2013161691A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5845413B2 (en) Electronic device with thin battery
JP5753258B2 (en) Flexible battery and manufacturing method thereof
EP2631962B1 (en) Thin battery
US9088050B2 (en) Electrode group for thin batteries, thin battery, and electronic device
JP6667509B2 (en) Flexible battery, method of manufacturing the same, auxiliary battery including flexible battery, and mobile electronic device
US9281538B2 (en) Thin battery and battery device
CN102656729B (en) Thin flexible battery
JP3937422B2 (en) Lithium ion battery and manufacturing method thereof
JP5838323B2 (en) Battery packaging
US20160344060A1 (en) Thin battery and battery-mounted device
JP6032628B2 (en) Thin battery
US20170214026A1 (en) Flexible battery
US20150207167A1 (en) Thin battery and production method thereof
KR20180132686A (en) A battery module, a method of manufacturing a battery module, and an electronic device
JP7133802B2 (en) Thin batteries and electronics
US10147914B2 (en) Thin battery and battery-mounted device
JP2016072015A (en) Flexible battery
JP5728647B2 (en) Battery device and operation method thereof
KR102359777B1 (en) Bracelet type watch strap and wrist wearable type electronic apparatus having the same
JP2020024783A (en) Flexible battery
JPWO2019176553A1 (en) Non-aqueous electrolyte secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5845413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees