JP2001279351A - Rolled copper alloy foil and its production method - Google Patents

Rolled copper alloy foil and its production method

Info

Publication number
JP2001279351A
JP2001279351A JP2000089858A JP2000089858A JP2001279351A JP 2001279351 A JP2001279351 A JP 2001279351A JP 2000089858 A JP2000089858 A JP 2000089858A JP 2000089858 A JP2000089858 A JP 2000089858A JP 2001279351 A JP2001279351 A JP 2001279351A
Authority
JP
Japan
Prior art keywords
foil
copper alloy
thickness
annealing
rolled copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000089858A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
元久 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000089858A priority Critical patent/JP2001279351A/en
Publication of JP2001279351A publication Critical patent/JP2001279351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain inexpensive copper alloy rolled foil high in tensile strength, having ductility, high in electric conductivity and also excellent in heat resistance. SOLUTION: This rolled copper alloy foil has a composition containing one or more selected from Co, Ni and Fe of, by mass, 0.005 to 0.05% in total, one or two of 0.005 to 0.025% P and 0.005 to 0.025% B in >=0.005 to 0.025% in total, if required, containing 0.005 to 0.15% Ag, and the balance Cu with inevitable impurities. Co and P are desirably contained therein. The rolled copper alloy foil can be produced by performing annealing in a thickness of 150 to 400% of the foil thickness of the product, next performing cold rolling to a thickness of <=103% of the thickness of the product foil, thereafter performing annealing as well and subsequently performing finish rolling or/and flattening treatment with applied tension.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池、詳しく
はリチウムイオン二次電池、ポリマー電池などの負極側
集電体電極材料として使用し得る銅合金圧延箔に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled copper alloy foil which can be used as a negative electrode current collector electrode material for a secondary battery, more specifically, a lithium ion secondary battery or a polymer battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池やポリマー電池
の負極側集電体は厚さ10〜20μm程度のタフピッチ
銅圧延箔又は電解銅箔上に、ポリフッ化ビニリデン(P
VDF)をN−メチルピロリドンに溶かし、さらに負極
活物質となる粉末状黒鉛を混合したペーストを#60の
バーコータで厚さ90μm程度塗布した後、130℃で
3分間乾燥して製造されている。
2. Description of the Related Art A negative electrode current collector of a lithium ion secondary battery or a polymer battery is formed on a tough pitch rolled copper foil or an electrolytic copper foil having a thickness of about 10 to 20 μm by forming polyvinylidene fluoride (P).
VDF) is dissolved in N-methylpyrrolidone, and a paste obtained by mixing powdered graphite as the negative electrode active material with a # 60 bar coater is applied to a thickness of about 90 μm, and then dried at 130 ° C. for 3 minutes.

【0003】タフピッチ銅圧延箔又は電解銅箔が負極側
集電体として使用される理由は、熱伝導率が大であり充
電時に発生する熱を速やかに除去できること、強度の高
いものが比較的容易に得られ、活物質塗布工程や乾燥工
程において銅箔に負荷される引張り応力に耐えられるこ
と、及びイオン化傾向などによる。このようにして製造
された負極側集電体は、間にセパレーターを介して正極
側集電体(アルミ箔に正極活物質を塗布)と重ねてプレ
スにより一体化し、巻回される(詳細は省略)。
The reason why tough pitch rolled copper foil or electrolytic copper foil is used as the negative electrode current collector is that heat conductivity is large, heat generated during charging can be quickly removed, and high strength steel is relatively easy. In the active material application step and the drying step, which can withstand the tensile stress applied to the copper foil, and the ionization tendency. The negative electrode-side current collector manufactured in this manner is overlapped with a positive electrode-side current collector (a positive electrode active material is coated on an aluminum foil) with a separator interposed therebetween, integrated by pressing, and wound (for details). Omitted).

【0004】タフピッチ銅は熱伝導率が高く(導電率9
8%IACS以上)、冷延の圧下率を上げることで引張
強さ450〜475N/mm、耐力420〜450N
/mm、伸び0.4〜2%のものが比較的容易に得ら
れる。しかし、タフピッチ銅は酸素を含有して銅箔中に
亜酸化銅及び不純物元素の酸化物の粒子を含み、マトリ
ックスに固溶している元素が非常に少なく、また亜酸化
銅や不純物の酸化物の界面において回復・再結晶が起り
やすいことなどから、無酸素銅やりん脱酸銅と比べても
耐熱性がかなり低下する。このため、箔の製造工程にお
いて圧下率を上げ、高強度のタフピッチ銅を製造しても
室温で長時間保管すると回復・再結晶が起り、経時的な
強度低下・伸びの増大などの現象が発生する。このよう
な軟化現象は保管雰囲気の温度が高くなる春〜夏の季節
において特に顕著である。
[0004] Tough pitch copper has a high thermal conductivity (conductivity of 9).
8% IACS or more), increasing the rolling reduction of cold rolling to increase the tensile strength to 450 to 475 N / mm 2 and the yield strength to 420 to 450 N.
/ Mm 2 and an elongation of 0.4 to 2 % can be obtained relatively easily. However, tough pitch copper contains oxygen and contains particles of cuprous oxide and oxides of impurity elements in the copper foil, and very few elements are dissolved in the matrix. Since the recovery and recrystallization are likely to occur at the interface of, the heat resistance is considerably reduced as compared with oxygen-free copper or phosphorous deoxidized copper. For this reason, even if the draft rate is increased in the foil manufacturing process and high strength tough pitch copper is manufactured, recovery and recrystallization occur when stored at room temperature for a long time, and phenomena such as a decrease in strength over time and an increase in elongation occur. I do. Such a softening phenomenon is particularly remarkable in the spring to summer season when the temperature of the storage atmosphere increases.

【0005】このように軟化をおこしたタフピッチ銅圧
延箔では、引張り強さが低下しているため、軟化の度合
いに応じ、活物質の塗布及び乾燥工程において箔に負荷
する張力を変えてやる必要がある。そのため、塗布工程
に適用する際に事前に強度確認などの作業が新たに発生
し、非常に煩雑である。また、軟化の激しい箔を用いる
場合には前記工程における箔の切れや箔の伸びが起きや
すく、生産性の低下を招く。さらに、電池に組込まれた
後の充放電にともなう発熱によって経時的にタフピッチ
銅圧延箔が軟化すると、活物質の膨張収縮による箔の破
断、活物質の剥離などが発生し、電池性能を低下させて
しまう。そこで、例えば特開平11−86873号公報
では銅にAgを微量添加することにより、特開平11−
86872号公報では銅に含まれる酸素量を低減するこ
とにより、いずれも室温程度での保管中に回復・再結晶
が起こるのを抑制して軟化を防止することが提案されて
いる。
[0005] Since the tough pitch copper rolled foil thus softened has a low tensile strength, it is necessary to change the tension applied to the foil in the application and drying steps of the active material according to the degree of softening. There is. For this reason, when applying to the coating process, work such as strength confirmation is newly generated in advance, which is very complicated. In addition, when a foil having a high degree of softening is used, the foil is likely to be cut or stretched in the above-mentioned step, which causes a decrease in productivity. Furthermore, if the tough pitch copper rolled foil is softened over time due to heat generated by charging and discharging after being incorporated in the battery, the foil may break due to expansion and contraction of the active material, the active material may peel off, and the battery performance may deteriorate. Would. Therefore, for example, in JP-A-11-86873, a small amount of Ag is added to copper to obtain
No. 86872 proposes to reduce the amount of oxygen contained in copper, thereby suppressing recovery / recrystallization during storage at about room temperature to prevent softening.

【0006】[0006]

【発明が解決しようとする課題】保管中に軟化の発生し
ていないタフピッチ銅圧延箔を用いる場合においても、
活物質塗布後の乾燥工程における加熱(130℃)によ
って軟化が発生しやすく、乾燥後の箔を巻き取る場合に
箔の伸び、箔の切れが起きることがあり、歩留まり・生
産性を低下させる。また、活物質塗布及び乾燥などの工
程はコイル状の銅箔を巻戻しながら連続的に処理が行わ
れるが、製造工程中において箔の切断、ラインの動作不
良などが発生するとライン停止を余儀なくされることが
あり、そのような場合には塗布した活物質の乾燥時間が
30分以上となることがある。乾燥工程における工程ト
ラブルにより、乾燥させようとする箔が炉中で長時間滞
留すると軟化がより大きくなり、この部分が製品として
使えなくなることがある。また、タフピッチ銅圧延箔の
場合、箔の延性低下により、圧延工程及びリチウムイオ
ン二次電池製作時において箔の切れが起き、生産性・歩
留りの低下を招くことがあった。
In the case of using a rolled tough pitch copper foil that has not been softened during storage,
Softening is likely to occur due to heating (130 ° C.) in the drying step after application of the active material, and when the dried foil is wound up, the foil may be stretched and the foil may be cut, thereby lowering yield and productivity. In addition, processes such as active material application and drying are continuously performed while rewinding the coil-shaped copper foil, but if the cutting of the foil or the malfunction of the line occurs during the manufacturing process, the line must be stopped. In such a case, the drying time of the applied active material may be 30 minutes or more. If the foil to be dried stays in the furnace for a long time due to a process trouble in the drying process, the softening becomes larger, and this portion may become unusable as a product. Further, in the case of tough pitch copper rolled foil, the ductility of the foil is reduced, so that the foil may be cut during the rolling process and during the production of the lithium ion secondary battery, which may lead to a reduction in productivity and yield.

【0007】このような現状に鑑み、くり返し充放電に
よっても高性能が保たれるリチウムイオン二次電池を歩
留まり・生産性よく製造するために、負極集電体として
用いられる銅箔には、引張り強さが大きく、延性があ
り、導電率が高いというだけでなく、保管、電極製造工
程及び使用時において軟化が起りにくいという特性がよ
り強く求められるようになってきた。一方、電解銅箔
は、引張り強さ320N/mm、耐力250N/mm
、伸び12%を示し、130℃で30分加熱後も初期
の機械的性質をほぼ維持でき、タフピッチ銅圧延箔と比
べると耐熱性にも優れるが、価格が圧延銅箔より高価と
いう問題がある。
In view of the above situation, in order to manufacture a lithium ion secondary battery having high performance even by repeated charging and discharging with high yield and high productivity, a copper foil used as a negative electrode current collector is required to have a tensile strength. In addition to high strength, ductility, and high electrical conductivity, there has been a growing demand for characteristics such that softening hardly occurs during storage, electrode manufacturing process, and use. On the other hand, the electrolytic copper foil has a tensile strength of 320 N / mm 2 and a proof stress of 250 N / mm.
2. It shows an elongation of 12%, can maintain almost the initial mechanical properties even after heating at 130 ° C. for 30 minutes, and is superior in heat resistance as compared with the tough pitch copper rolled foil, but has a problem that the price is higher than the rolled copper foil. is there.

【0008】従って、本発明は、引張強さが大きく、延
性があり、導電率が高く、さらに耐熱性に優れ、かつ安
価な銅合金圧延箔を得ることを目的とする。
Accordingly, an object of the present invention is to provide a rolled copper alloy foil having high tensile strength, ductility, high electrical conductivity, excellent heat resistance, and low cost.

【0009】[0009]

【課題を解決するための手段】本発明に係る圧延銅合金
箔は、Co、Ni及びFeより選択した1種又は2種以
上を総量で0.005〜0.05%、P:0.005〜
0.025%とB:0.005〜0.025%の1種又
は2種を総量で0.005〜0.025%含有し、残部
Cu及び不可避不純物からなる。この圧延銅合金箔の特
に望ましい組成は、Co:0.005〜0.05%、
P:0.005〜0.025%を含有し、かつCoとP
の総量が0.02%を越え0.06%以下、S:0.0
01%以下、残部Cu及び不可避不純物である。また、
上記圧延銅合金箔は、さらにAg:0.005〜0.1
5%を含有することができる。上記圧延銅合金箔は、製
品の箔厚さの150〜400%の厚さにおいて焼鈍を行
い、次いで製品箔の厚さの103%以下の厚さまで冷間
圧延後さらに焼鈍を行い、その後仕上げ圧延又は/及び
張力を加えた平坦化処理を行って製造することができ
る。これにより、引張強さ300N/mm、伸び8%
以上、導電率85%IACS以上、かつ130℃で30
分〜2時間加熱後においても、その機械的特性をほぼ維
持できるようになる。
The rolled copper alloy foil according to the present invention comprises one or more selected from Co, Ni and Fe in a total amount of 0.005 to 0.05%, P: 0.005%. ~
0.025% and B: One or two of 0.005 to 0.025% are contained in a total amount of 0.005 to 0.025%, with the balance being Cu and unavoidable impurities. A particularly desirable composition of the rolled copper alloy foil is Co: 0.005 to 0.05%,
P: 0.005 to 0.025%, Co and P
Is more than 0.02% and 0.06% or less, S: 0.0
Less than 01% is Cu and unavoidable impurities. Also,
The rolled copper alloy foil further contains Ag: 0.005 to 0.1.
5% can be contained. The rolled copper alloy foil is annealed at a thickness of 150 to 400% of the product foil thickness, then cold rolled to a thickness of 103% or less of the product foil, further annealed, and then finish rolled And / or by performing a flattening treatment with tension. Thereby, tensile strength 300N / mm 2 , elongation 8%
As described above, the conductivity is 85% IACS or more and 30 at 130 ° C.
Even after heating for minutes to 2 hours, the mechanical properties can be almost maintained.

【0010】[0010]

【発明の実施の形態】次に、本発明に係る圧延銅合金箔
の組成の限定理由を説明する。 (Co、Ni、Fe)これらの元素は銅マトリクスに固
溶し、あるいはPと金属間化合物を生成して析出し、圧
延銅合金箔の引張強さ及び耐熱性を向上させる。しか
し、これらの元素の含有量が0.005%未満の場合
は、目標とする引張強さ及び耐熱性が得られず、0.0
5%を越えて含有されると導電率が低下する。従って、
これらの元素の含有量は、1種又は2種以上を総量で
0.005〜0.05%とする。これらの元素をPと共
添するとき、Pとの合計量を0.02%を越え0.06
%以下の範囲とするのが望ましい。その下限は強度及び
耐熱性、上限は導電率をそれぞれ安定的に確保するため
である。なお、Coは正極側活物質(LiCoO)に
含まれる元素であり、銅箔から活物質に溶け出しても悪
影響を与えないことから、強化の主体としてCoを用い
ることが望ましい。
Next, the reasons for limiting the composition of the rolled copper alloy foil according to the present invention will be described. (Co, Ni, Fe) These elements form a solid solution in the copper matrix or generate and precipitate intermetallic compounds with P to improve the tensile strength and heat resistance of the rolled copper alloy foil. However, when the content of these elements is less than 0.005%, the target tensile strength and heat resistance cannot be obtained, and
If the content exceeds 5%, the electrical conductivity decreases. Therefore,
The content of one or more of these elements is 0.005 to 0.05% in total. When these elements are added together with P, the total amount of P and P exceeds 0.02% to 0.06%.
% Is desirable. The lower limit is for ensuring strength and heat resistance, and the upper limit is for ensuring stable electrical conductivity. Note that Co is an element contained in the positive electrode side active material (LiCoO 2 ), and does not adversely affect the active material dissolved out of the copper foil. Therefore, it is desirable to use Co as the main component of reinforcement.

【0011】(P)Pは脱酸作用があり、鋳造前に溶湯
中に投入され溶湯中に吸収された酸素を除去するととも
に、Co、Ni、Feとともに金属間化合物を形成して
強度及び耐熱性を向上させる。しかし、鋳塊中に含まれ
る残存Pが0.005%未満の場合は、脱酸不足でOが
0.002%を越えることがあり、その場合、Co、N
i、Feが酸化物を形成し、これらの元素による強化作
用が失われる。Pが0.025%を越えて含まれると、
固溶するCo、Ni、Feとともに導電率を低下させ、
目標とする導電率が得られなくなる。従って、Pの含有
量は0.005〜0.025%とする。なお、Bも脱酸
作用を有するが、PはCo、Ni、Feと金属間化合物
を形成すること、電解質がLiPFを主成分とするこ
と、及び脱酸不足を防止するために、P単独又はPとB
の共添が望ましい。
(P) P has a deoxidizing action, removes oxygen introduced into the molten metal before casting and absorbed in the molten metal, and forms an intermetallic compound together with Co, Ni and Fe to form a metal having strength and heat resistance. Improve the performance. However, when the residual P contained in the ingot is less than 0.005%, O may exceed 0.002% due to insufficient deoxidation. In this case, Co, N
i and Fe form an oxide, and the strengthening action of these elements is lost. When P exceeds 0.025%,
Lowers the conductivity together with solid solution Co, Ni, Fe,
The target conductivity cannot be obtained. Therefore, the content of P is set to 0.005 to 0.025%. Note that B also has a deoxidizing effect, but P forms an intermetallic compound with Co, Ni, and Fe, the electrolyte contains LiPF 6 as a main component, and P alone contains P to prevent insufficient deoxidation. Or P and B
Is desirable.

【0012】(B)Bは溶湯中の酸素を除去する作用を
有し、Pの代わりに又はPとともに添加される。BはP
に比べて圧延銅合金箔の導電率を低下させず、また大気
中焼鈍時に内部酸化を抑制する。0.005%という微
量の添加で上記効果が得られるが、0.025%を越え
ると導電率が低下するため、Bの含有量は0.005〜
0.025%とする。B単独では溶湯が脱酸不足となる
場合、Pと共添することで脱酸が達成されるが、その場
合の添加量はB:0.005〜0.025%及びP:
0.005〜0.025%の範囲内で総量を0.005
%以上、0.025%以下とする。
(B) B has an action of removing oxygen in the molten metal, and is added instead of or together with P. B is P
In comparison with the above, the conductivity of the rolled copper alloy foil is not reduced, and the internal oxidation is suppressed during annealing in the atmosphere. The above effect can be obtained by adding a very small amount of 0.005%, but if it exceeds 0.025%, the electrical conductivity is reduced.
0.025%. When the melt becomes insufficiently deoxidized with B alone, deoxidation is achieved by co-adding with P. In this case, the added amount is B: 0.005 to 0.025% and P:
0.005 to 0.025% in the total amount of 0.005
% Or more and 0.025% or less.

【0013】(Ag)Agは導電率をほとんど低下させ
ることなく、銅合金圧延箔の強度と耐熱性を向上させる
ため、必要に応じて添加する。しかし、Agの含有量が
0.005%未満ではその効果が小さく、0.25%を
越えて含有させると価格上昇が大きくなるため、その含
有量を0.005〜0.25%とする。
(Ag) Ag is added as necessary to improve the strength and heat resistance of the rolled copper alloy foil without substantially lowering the conductivity. However, if the Ag content is less than 0.005%, the effect is small, and if the Ag content exceeds 0.25%, the price rise becomes large, so the content is made 0.005 to 0.25%.

【0014】(不純物元素) (S)Sは地金、原料、炉材、酸化防止の木炭及びフラ
ックス等から必然的に混入する。Sが0.001%を越
えて含まれると、主としてCuS又はCuSとなる
が、このSはフリーとなりやすく、粒界及び欠陥部に偏
析する。この場合には、特に箔状態では伸びが低下した
り、応力付加時に切断しやすくなる。従って、Sの含有
量は0.001%以下とする。Sの除去は、溶湯の組成
を調整後、P又は/及びBで脱酸し、直にMgあるいは
Caを添加して硫化物を形成させ、浮上した硫化物を他
のスラグとともに除去することで対応できる。
(Impurity Element) (S) S is inevitably mixed from metal, raw material, furnace material, anti-oxidation charcoal, flux and the like. When S is contained in excess of 0.001%, it becomes mainly CuS or Cu 2 S, but this S tends to be free and segregates at the grain boundaries and defects. In this case, the elongation is reduced particularly in a foil state, and the sheet is easily cut when a stress is applied. Therefore, the content of S is set to 0.001% or less. S is removed by adjusting the composition of the molten metal, deoxidizing with P and / or B, adding Mg or Ca directly to form sulfide, and removing the floating sulfide together with other slag. Can respond.

【0015】(酸素、水素)本発明に係る銅合金圧延箔
においては、酸素含有量を0.003%未満とすること
が望ましい。酸素含有量が0.003%以上になると、
箔中に存在する酸化物の界面で割れが発生して箔の展伸
性低下や切れが起こり易くなり、また、その界面におい
て回復・再結晶が起こり、本発明の目的とする耐熱性が
得られなくなるためである。また、水素含有量は0.0
002%未満とすることが望ましい。水素含有量が0.
0002%以上になると、箔の加工熱処理工程において
膨れ、表面クラック、はがれなどの欠陥となり、箔の歩
留り・生産性を悪くする。また、リチウム二次電池の集
電体として電池に組込まれた後も充電時の温度上昇など
によって水素が粒界に移動して粒界強度を低下させ、そ
の結果電池寿命を低下させてしまう。このような理由か
ら、水素の含有量は0.0002%以下であることが望
ましく、0.0001%以下であることが更に望まし
い。水素含有量を0.0002%未満とするには、使用
原料の乾燥、溶解鋳造工程における炉材、鋳型の十分な
乾燥、雰囲気制御、脱ガス処理(Arガスバブリング)
などが重要である。
(Oxygen, hydrogen) In the rolled copper alloy foil according to the present invention, the oxygen content is desirably less than 0.003%. When the oxygen content becomes 0.003% or more,
Cracks are generated at the interface of the oxides present in the foil, and the ductility of the foil is likely to be reduced or cut, and the recovery / recrystallization occurs at the interface, and the heat resistance intended for the present invention is obtained. This is because it will not be possible. The hydrogen content is 0.0
It is desirable to make it less than 002%. Hydrogen content is 0.
If it exceeds 0002%, the foil will swell in the processing and heat treatment step, resulting in defects such as surface cracks and peeling, resulting in poor foil yield and productivity. Further, even after being incorporated in a battery as a current collector of a lithium secondary battery, hydrogen moves to a grain boundary due to a rise in temperature during charging or the like, and the strength of the grain boundary is reduced, resulting in a reduction in battery life. For these reasons, the content of hydrogen is preferably 0.0002% or less, and more preferably 0.0001% or less. In order to reduce the hydrogen content to less than 0.0002%, drying of the raw materials used, furnace material in the melting and casting process, sufficient drying of the mold, atmosphere control, degassing (Ar gas bubbling)
Is important.

【0016】(他の不純物)本発明に係る銅合金圧延箔
における不可避的不純物元素は、原料あるいは溶解鋳造
工程において不可避的にCuに含有される元素であり、
前記S、O、H以外では、Li、Be、Al、Si、T
i、Cr、Mn、Zn、As、Se、Zr、Cd、I
n、Sn、Sb、Te、Au、Pbなどである。本発明
の銅合金箔においては、マトリックスに固溶、晶出、析
出又は酸化物として存在しているこれら他の不純物元素
の含有量が合計で0.02%以下であれば、本発明に係
る銅合金圧延箔において強度、耐熱性などに影響を及ぼ
さない。ただし、P、Si、As、Sbなどの元素は微
量でも導電率を低下させるので、導電率を高く保つには
これらの元素はそれぞれ0.005%未満、計0.01
%未満とすることが必要である。
(Other Impurities) The unavoidable impurity elements in the rolled copper alloy foil according to the present invention are elements which are unavoidably contained in Cu in the raw material or in the melting and casting step.
Except for S, O and H, Li, Be, Al, Si, T
i, Cr, Mn, Zn, As, Se, Zr, Cd, I
n, Sn, Sb, Te, Au, Pb and the like. In the copper alloy foil of the present invention, if the total content of these other impurity elements present in the matrix as solid solution, crystallization, precipitation or oxide is 0.02% or less, the present invention relates to the present invention. Does not affect the strength, heat resistance, etc. of the rolled copper alloy foil. However, since elements such as P, Si, As, and Sb reduce the conductivity even in a very small amount, each of these elements is less than 0.005% in order to keep the conductivity high.
%.

【0017】次に、本発明に係る圧延銅合金箔の製造方
法について説明する。 (溶解鋳造)本発明に係る銅合金圧延箔を製造するため
の鋳塊は、電気銅、無酸素銅及びこれらのスクラップを
銅の溶解原料とすることができる。AgはCuより低融
点であり、Ag地金を用いても、Cu−Ag中間合金を
用いてもよい。B及びPの添加には、添加歩留りをよく
するためにCu−2%B、Cu−15%Pなどの中間合
金を用いるとよい。Co、Ni、Feは、その地金を用
いてもよいし、これらの元素とCuとの中間合金を用い
てもよい。
Next, a method for producing a rolled copper alloy foil according to the present invention will be described. (Melting Casting) Ingots for producing the rolled copper alloy foil according to the present invention can be made of electrolytic copper, oxygen-free copper and scraps thereof as raw materials for melting copper. Ag has a lower melting point than Cu, and Ag base metal or a Cu-Ag intermediate alloy may be used. For the addition of B and P, an intermediate alloy such as Cu-2% B or Cu-15% P may be used in order to improve the addition yield. For Co, Ni, and Fe, the metal may be used, or an intermediate alloy of these elements and Cu may be used.

【0018】本発明に係る銅合金圧延箔において、酸素
の含有量を0.003%以下とする場合には、無酸素銅
の溶解方法(CO−CO混合雰囲気にて溶解鋳造、真
空溶解など)の適用、あるいはシャフト炉、電気保持
炉、コアレス炉などを用いる通常の溶解鋳造設備におい
て、溶湯の脱酸処理後、溶解炉、樋、鋳型の溶湯表面を
フラックス、黒鉛粒子、木炭、不活性ガスなどでカバー
することによって可能である。なお、溶湯の脱酸のため
にはCu−2%B、Cu−15%Pなどを、脱硫にはM
g、Cu−Mg中間合金、Ca、Cu−Ca中間合金な
どを適宜用いればよい。水素の含有量を0.0002%
以下とするには、溶解原料、炉、樋、鋳型などの乾燥、
雰囲気の露点管理などによって可能である。水素の分析
は例えば、鋳塊よりサンプルを採取し、JIS−Z26
14に規定の方法で行うとよい。鋳造においては、通常
の竪型連続鋳造、横形連続鋳造、薄スラブ連続鋳造など
の連続鋳造、及びダービル鋳造、金型鋳造などの鋳造方
法を適用して造塊が可能である。
In the rolled copper alloy foil according to the present invention, when the oxygen content is 0.003% or less, a method for dissolving oxygen-free copper (for example, melting and casting in a CO-CO 2 mixed atmosphere, vacuum melting, etc.) ) Or in ordinary melting and casting facilities using shaft furnaces, electric holding furnaces, coreless furnaces, etc., after deoxidizing the molten metal, the surface of the molten metal of the melting furnace, gutter, mold is fluxed, graphite particles, charcoal, inert. This is possible by covering with gas or the like. In addition, Cu-2% B, Cu-15% P, etc. are used for deoxidation of molten metal, and M is used for desulfurization.
g, a Cu-Mg intermediate alloy, Ca, a Cu-Ca intermediate alloy, or the like may be used as appropriate. 0.0002% hydrogen content
In order to make the following, drying of melting raw materials, furnaces, gutters, molds, etc.,
This is possible by controlling the dew point of the atmosphere. For analysis of hydrogen, for example, a sample is taken from an ingot and JIS-Z26
It is good to carry out by the method prescribed in 14. In casting, ingot casting can be performed by applying a normal casting method such as vertical continuous casting, horizontal continuous casting, thin slab continuous casting or the like, or a casting method such as Darville casting or die casting.

【0019】(箔地の加工熱処理)上述の方法で造塊さ
れた本発明に係る圧延銅合金箔用の鋳塊は、熱間圧延
性、冷間圧延性共に良好であり、竪型連続鋳造、ダービ
ル鋳造などの方法で製造された鋳塊を熱延し、その後冷
延と熱処理を組合せて箔地とすることも、横形連続鋳
造、薄スラブ連続鋳造などの方法で製造された鋳塊(厚
さ数mm〜30mm程度)を冷延と熱処理を組合せて箔
地とすることも可能である。例えば、鋳塊を700〜9
50℃で加熱後、熱間圧延を行って厚さ15〜25mm
とした後、冷間圧延と焼鈍を組合せて所定の厚さの圧延
箔地とする。冷延途中、厚さ0.5〜1.5mm、又は
/及び0.15〜0.3mm程度で焼鈍を行った後、製
品の箔厚さの150〜400%の厚さになるまで冷間圧
延を行う。なお、箔地の焼鈍においては連続焼鈍炉又は
ベル型焼鈍炉など連続式、バッチ式いずれの焼鈍炉を用
いても良い。
(Heat treatment of foil) The ingot for rolled copper alloy foil according to the present invention, which has been formed by the above-described method, has good hot rollability and cold rollability, and has a vertical continuous casting. , Ingots manufactured by methods such as Darville casting are hot rolled, and then cold rolling and heat treatment are combined to form a foil, or ingots manufactured by methods such as horizontal continuous casting and thin slab continuous casting ( It is also possible to form a foil by combining cold rolling and heat treatment for a thickness of several mm to about 30 mm). For example, 700 to 9
After heating at 50 ° C, hot rolling is performed to obtain a thickness of 15 to 25 mm.
After that, cold rolling and annealing are combined to obtain a rolled foil having a predetermined thickness. In the middle of cold rolling, after annealing at a thickness of about 0.5 to 1.5 mm and / or about 0.15 to 0.3 mm, cold-roll until the thickness of the product becomes 150 to 400% of the foil thickness. Perform rolling. In the annealing of the foil, any continuous or batch type annealing furnace such as a continuous annealing furnace or a bell-type annealing furnace may be used.

【0020】(箔の加工熱処理)本発明に係る銅合金箔
は、製品の箔厚さの150〜400%の厚さにおいて
焼鈍→製品箔の厚さの103%以下の厚さまで冷間圧
延→焼鈍後製品箔の厚さまで仕上げ圧延、’焼鈍後
製品箔の厚さまで冷間圧延後張力を加えた平坦化処理、
又は”焼鈍後張力を加えた平坦化処理(この場合は、
の工程で製品箔の厚さまで冷間圧延することにな
る)、の工程により製造される。なお、のように箔地
が製品箔厚の数倍になった時点で中間焼鈍すること自体
は、特開平10−230303号公報に記載されている
ように公知である。
(Foil processing heat treatment) The copper alloy foil according to the present invention is annealed at a thickness of 150 to 400% of the product foil thickness → cold rolled to a thickness of 103% or less of the product foil thickness → Finish rolling to the thickness of the product foil after annealing, 'flattening treatment by applying tension after cold rolling to the thickness of the product foil after annealing,
Or "flattening treatment with tension after annealing (in this case,
Cold rolling is performed to the thickness of the product foil in the step of (2)). The intermediate annealing itself at the time when the foil material becomes several times the product foil thickness as described above is known as described in JP-A-10-230303.

【0021】において、焼鈍を行う厚さが製品箔の厚
さの400%を越えると、その後の冷延加工率が大きく
なるため、最終焼鈍(、’”)における軟化が激
しく、目的とする引張強さと伸びの良好な組み合せを達
成できない。また、焼鈍を行う厚さが150%未満であ
ると、その後の冷延加工率が小さくなるため冷延後の引
張強さが得られず、またその後最終焼鈍(、’
”)を行うと引張強さがさらに低下してしまう。従っ
て、製品箔厚さの150〜400%の厚さにおいて焼鈍
することが望ましい。この焼鈍は、銅合金箔地を軟化さ
せることが目的であり、バッチ式の焼鈍炉又は連続式焼
鈍炉のいずれを用いてもよい。バッチ式の焼鈍炉を用い
た焼鈍の例を挙げると、炉内の材料が250〜650℃
になった後30分〜2時間程度保持すればよい。連続焼
鈍炉を用いる場合は、焼鈍後の硬さがバッチ炉によって
得られた値となるように条件を設定すればよい。
In the case where the thickness to be annealed exceeds 400% of the thickness of the product foil, the subsequent cold-rolling rate becomes large, so that the final annealing (, ′ ″) is severely softened and the desired tensile strength is reduced. If a good combination of strength and elongation cannot be achieved, and if the thickness to be annealed is less than 150%, the subsequent cold-rolling reduction rate becomes small, so that tensile strength after cold-rolling cannot be obtained. Final annealing (, '
)), The tensile strength is further reduced. Therefore, it is desirable to anneal at a thickness of 150 to 400% of the product foil thickness. The purpose of this annealing is to soften the copper alloy foil ground. Either a batch annealing furnace or a continuous annealing furnace may be used.Taking an example of annealing using a batch annealing furnace, the material in the furnace is 250 to 650 ° C.
And then hold for about 30 minutes to 2 hours. When using a continuous annealing furnace, conditions may be set so that the hardness after annealing becomes a value obtained by the batch furnace.

【0022】また、及び(’、”)の工程は銅
合金箔にバランスのよい引張強さ、伸び及び耐熱性の組
み合せ、あるいはさらに良好な平坦性を持たすために必
要な工程である。の工程において冷延を製品箔の厚さ
の103%を越える厚さで修了すると、又は’の圧
延により伸びの減少が大きくなる。従って、の冷延は
製品箔の厚さの103%以下の厚さまで行うことが望ま
しい。、’、”における焼鈍は材料が半軟化する
焼鈍とすることが望ましい。この半軟化焼鈍により、冷
間圧延で本発明銅合金に導入された転位は、熱運動によ
って消滅しやすいものから消滅し、転位の再配列が起こ
るため延性が回復し、転位組織の安定化が達成される。
なお、この半軟化とは、焼鈍前の材料の硬さ(箔の場
合、ヌープ硬さ)をH、材料が完全に再結晶(例えば
400〜600℃×2時間加熱)したときの硬さを
、ΔH=H−Hとしたとき、材料の焼鈍後の硬
さがおよそH=H+0.5×ΔHとなる状態である。
半軟化焼鈍は、バッチ炉による低温焼鈍又は連続焼鈍炉
により行うことができる。バッチ式の焼鈍炉を用いた場
合、例えば炉内の材料が150〜400℃になった後、
30分〜2時間程度保持すればよい。連続焼鈍炉を用い
る場合は、焼鈍後の硬さがバッチ炉によって得られた値
となるように条件を設定すればよい。
Steps (and) are necessary for providing a well-balanced combination of tensile strength, elongation and heat resistance, or even better flatness to the copper alloy foil. When the cold rolling is completed at a thickness exceeding 103% of the thickness of the product foil, or the rolling of 'increases the reduction in elongation. Therefore, the cold rolling is performed to a thickness of less than 103% of the thickness of the product foil. It is desirable to perform the annealing in “,” in which the material is semi-softened. Due to this semi-softening annealing, the dislocations introduced into the copper alloy of the present invention by cold rolling are extinguished from those that easily disappear by thermal motion, and the rearrangement of the dislocations causes ductility to recover, stabilizing the dislocation structure. Achieved.
The semi-softening means that the hardness (Knoop hardness in the case of foil) of the material before annealing is H 1 , and the hardness when the material is completely recrystallized (for example, heated at 400 to 600 ° C. × 2 hours). Is H 0 and ΔH = H 1 −H 0 , the hardness of the material after annealing is approximately H = H 0 + 0.5 × ΔH.
The semi-softening annealing can be performed by a low-temperature annealing using a batch furnace or a continuous annealing furnace. When a batch type annealing furnace is used, for example, after the material in the furnace reaches 150 to 400 ° C.,
What is necessary is just to hold for about 30 minutes to 2 hours. When using a continuous annealing furnace, conditions may be set so that the hardness after annealing becomes a value obtained by the batch furnace.

【0023】[0023]

【実施例】以下に本発明を実施例に基づいて説明する
が、本発明がこの実施例に限定されるものではない。 (実施例1)木炭被覆下において、電気銅(純度99.
95%以上)を溶解し、Agショット(純度99.99
%以上)、Cu−50%Co、Cu−30%Ni、Cu
−10%Fe、Cu−15%Pなどの中間合金を原料と
して、表1に示す組成の銅合金鋳塊(幅60mm、厚さ
60mm、長さ200mm)を金型に鋳造した。また、
比較例13として、タフピッチ銅連鋳塊より直方体のブ
ロックを切り出し、旋盤加工によって前記の寸法とし
た。なお、比較例No.10は溶湯脱酸後のCa及びM
g添加による脱硫を行っていない。なお、表1に示した
組成は、銅箔とした後の測定値である。各元素の含有量
は、JISに規定の方法、ICP−MS、GD−MS、
原子吸光法などの方法によって、酸素含有量は不活性ガ
ス融解赤外線吸収法(JISH1067)によって、水
素含有量はJISZ2614によって行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments, but the present invention is not limited to these embodiments. (Example 1) Under a charcoal coating, electrolytic copper (purity 99.
95% or more) and Ag shot (purity 99.99)
%), Cu-50% Co, Cu-30% Ni, Cu
Using an intermediate alloy such as -10% Fe and Cu-15% P as a raw material, a copper alloy ingot (width 60 mm, thickness 60 mm, length 200 mm) having the composition shown in Table 1 was cast in a mold. Also,
As Comparative Example 13, a rectangular parallelepiped block was cut out of a tough pitch copper continuous ingot and the above dimensions were obtained by lathing. Note that Comparative Example No. 10 is Ca and M after melt deoxidation
Desulfurization by adding g was not performed. In addition, the composition shown in Table 1 is a measured value after forming a copper foil. The content of each element is determined by the method specified in JIS, ICP-MS, GD-MS,
According to a method such as an atomic absorption method, the oxygen content was measured by an inert gas melting infrared absorption method (JISH1067), and the hydrogen content was measured by JISZ2614.

【0024】[0024]

【表1】 [Table 1]

【0025】No.1〜12の鋳塊は以下の工程によ
り、厚さ0.015mmの箔に加工した。(1)800
℃で1時間加熱後熱延(60mmt→15mmt)、
(2)冷延(→1.0mmt)、(3)500のソルト
バス中で20秒間加熱焼鈍、(4)酸洗後冷延(→0.
2mmt)、(5)500℃のソルトバス中で20秒間
加熱焼鈍、(6)酸洗後冷延(→0.055mmt)、
(7)不活性ガス中、400℃で2時間加熱焼鈍、
(8)酸洗後冷延(→0.0151mmt)、(9)不
活性ガス中、300〜400℃で2時間加熱し焼鈍、
(10)張力を加えながらスキンパス圧延(→0.01
50mmt)。なお、No.13のタフピッチ銅のみ
は、上記(5)、(7)、(9)の工程において、加熱
温度をそれぞれ600℃、150℃、120℃とし、他
の工程は同じとした。
No. The ingots 1 to 12 were processed into a foil having a thickness of 0.015 mm by the following steps. (1) 800
After heating at 1 ° C for 1 hour, hot rolling (60mmt → 15mmt)
(2) Cold rolling (→ 1.0 mmt); (3) Heat annealing in a 500 salt bath for 20 seconds; (4) Cold rolling after pickling (→ 0.
2 mmt), (5) annealing for 20 seconds in a 500 ° C. salt bath, (6) cold rolling after pickling (→ 0.055 mmt),
(7) annealing at 400 ° C. for 2 hours in an inert gas;
(8) cold rolling after pickling (→ 0.0151 mmt); (9) annealing at 300 to 400 ° C. for 2 hours in an inert gas;
(10) Skin pass rolling while applying tension (→ 0.01
50 mmt). In addition, No. In the case of only 13 tough pitch copper, the heating temperature was set to 600 ° C., 150 ° C., and 120 ° C. in the steps (5), (7), and (9), respectively, and the other steps were the same.

【0026】製造された各圧延箔より、引張方向が圧延
方向に平行となるように、引張試験片(JIS5号、n
=3)及び導電率の測定試験片(JISH0505、幅
10mm、長さ300mm、n=2)を加工し、引張強
さ、伸び及び導電率を測定した。これらの結果を表2に
示す。なお、表2に示した最終焼鈍条件の温度は、先に
定義した半軟化温度である。
From each of the manufactured rolled foils, a tensile test piece (JIS No. 5, n
= 3) and a test piece (JISH0505, width 10 mm, length 300 mm, n = 2) was processed, and tensile strength, elongation and conductivity were measured. Table 2 shows the results. The temperature of the final annealing condition shown in Table 2 is the semi-softening temperature defined above.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すように、No.1〜7の銅合金
箔は、引張り強さ、伸び及び導電率がいずれも目標とす
る値を満足する。また半軟化温度(最終焼鈍の温度)が
高く、これは、銅合金箔への活物質形成工程におけるラ
イン停止(130℃に保持)においても軟化せず、箔の
伸び、箔の切れなどの問題が生じないことを意味する。
一方、No.8はCo含有量が少ないため、引張強さが
目標値に達せず、No.9はCo含有量が多いため、導
電率が低くなっている。No.10はS含有量が0.0
018%と多いため、伸びが低い。No.11及びN
o.12はNi、Feが過剰なため、導電率が低い。タ
フピッチ銅のNo.13は伸びが小さく、かつ半軟化温
度が120℃と低い。従って、ライン停止において13
0℃に保持されると軟化し、箔の伸び、箔の切れなどの
問題が生じやすい。
As shown in Table 2, Each of the copper alloy foils 1 to 7 satisfies target values in tensile strength, elongation and electrical conductivity. Further, the semi-softening temperature (final annealing temperature) is high, which is not softened even when the line is stopped (maintained at 130 ° C.) in the step of forming the active material on the copper alloy foil, causing problems such as foil elongation and foil breakage. Does not occur.
On the other hand, No. No. 8 has a low Co content, so the tensile strength does not reach the target value. 9 has a low Co conductivity because of a large Co content. No. 10 has an S content of 0.0
Since it is as large as 018%, the elongation is low. No. 11 and N
o. Sample No. 12 has a low conductivity because of excessive amounts of Ni and Fe. No. of tough pitch copper No. 13 has a small elongation and a low semi-softening temperature of 120 ° C. Therefore, when the line stops, 13
When it is kept at 0 ° C., it is softened, and problems such as elongation of the foil and breakage of the foil are likely to occur.

【0029】[0029]

【発明の効果】本発明に係る圧延銅合金圧延箔は、適切
な製造工程を選定することにより、引張強さ300N/
mm以上、伸び8%以上、導電率85%IACS以上
の特性を備えることが可能であり、また、半軟化温度が
高いので、例えば130℃で30分〜4時間加熱保持さ
れた程度では軟化せず、引張強さ300N/mm
上、伸び8%以上の特性を維持できる。従って、リチウ
ムイオン二次電池などの負極集電体の製造工程における
乾燥工程において軟化することが少なく、生産性の向上
に大きく寄与し、かつ電池に組込まれた後の充電放電サ
イクルにおいても箔の切断、活物質の剥離などが起きに
くく、リチウムイオン二次電池の高性能化、長寿命化に
も大きく寄与する。
The rolled copper alloy rolled foil according to the present invention has a tensile strength of 300 N /
mm 2 or more, 8% or more elongation, may comprise an electrical conductivity 85% IACS or more characteristics, since half-softening temperature is high, the degree being heated for 30 minutes to 4 hours, for example 130 ° C. softening Without maintaining the properties, a tensile strength of 300 N / mm 2 or more and an elongation of 8% or more can be maintained. Therefore, it is less likely to be softened in a drying step in a manufacturing process of a negative electrode current collector such as a lithium ion secondary battery, greatly contributing to an improvement in productivity, and even in a charge / discharge cycle after being incorporated in a battery. Cutting and peeling of the active material are unlikely to occur, which greatly contributes to higher performance and longer life of the lithium ion secondary battery.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 650 C22F 1/00 650A 661 661C 682 682 685 685Z 686 686B 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat 参考 (Reference) C22F 1/00 650 C22F 1/00 650A 661 661C 682 682 682 685 686 686 686B 694 694A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Co、Ni及びFeより選択した1種又
は2種以上を総量で0.005〜0.05%(質量%、
以下同じ)、P:0.005〜0.025%とB:0.
005〜0.025%の1種又は2種を総量で0.00
5%以上、0.025%以下含有し、残部Cu及び不可
避不純物からなる圧延銅合金箔。
1. One or more selected from Co, Ni and Fe in a total amount of 0.005 to 0.05% (% by mass,
The same applies hereinafter), P: 0.005 to 0.025% and B: 0.
005-0.025% of one or two kinds in a total amount of 0.00
A rolled copper alloy foil containing 5% or more and 0.025% or less, with the balance being Cu and unavoidable impurities.
【請求項2】 Co:0.005〜0.05%、P:
0.005〜0.025%を含有し、かつCoとPの総
量が0.02%を越え0.06%以下、S:0.001
%以下、残部Cu及び不可避不純物からなる圧延銅合金
箔。
2. Co: 0.005 to 0.05%, P:
0.005 to 0.025%, and the total amount of Co and P exceeds 0.02% to 0.06% or less, S: 0.001%
% Or less, a rolled copper alloy foil comprising the balance Cu and inevitable impurities.
【請求項3】 さらにAg:0.005〜0.15%を
含有する請求項1又は2に記載された圧延銅合金箔。
3. The rolled copper alloy foil according to claim 1, further comprising 0.005 to 0.15% of Ag.
【請求項4】 箔製造工程において、製品の箔厚さの1
50〜400%の厚さにおいて焼鈍を行い、次いで製品
箔の厚さの103%以下の厚さまで冷間圧延後さらに焼
鈍を行い、その後仕上げ圧延又は/及び張力を加えた平
坦化処理を行うことを特徴とする請求項1〜3のいずれ
かに記載された圧延銅合金箔の製造方法。
4. The method of manufacturing a foil according to claim 1, wherein the thickness of the foil of the product is 1%.
Annealing at a thickness of 50 to 400%, then cold rolling to a thickness of 103% or less of the product foil, further annealing, and then performing finish rolling or / and flattening treatment with tension The method for producing a rolled copper alloy foil according to any one of claims 1 to 3, wherein
JP2000089858A 2000-03-28 2000-03-28 Rolled copper alloy foil and its production method Pending JP2001279351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089858A JP2001279351A (en) 2000-03-28 2000-03-28 Rolled copper alloy foil and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089858A JP2001279351A (en) 2000-03-28 2000-03-28 Rolled copper alloy foil and its production method

Publications (1)

Publication Number Publication Date
JP2001279351A true JP2001279351A (en) 2001-10-10

Family

ID=18605556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089858A Pending JP2001279351A (en) 2000-03-28 2000-03-28 Rolled copper alloy foil and its production method

Country Status (1)

Country Link
JP (1) JP2001279351A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087973A1 (en) * 2003-04-03 2004-10-14 Outokumpu Oyj Copper alloy containing phosphides and having a low oxygen content
EP1630239A1 (en) 2004-08-30 2006-03-01 Dowa Mining Co., Ltd. Copper alloy and method of manufacturing the same
JP2008255382A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Copper alloy tube
JP2008544858A (en) * 2005-07-07 2008-12-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and finish line for producing copper or copper alloy metal strip
JP2009028746A (en) * 2007-07-25 2009-02-12 Nippon Steel Materials Co Ltd Solder alloy, solder ball and electronic member having solder bump
US20100323214A1 (en) * 2009-06-22 2010-12-23 Hitachi Cable, Ltd. Rolled copper foil
US8501088B2 (en) 2007-07-25 2013-08-06 Nippon Steel & Sumikin Materials Co., Ltd. Solder alloy, solder ball and electronic member having solder bump
CN115786750A (en) * 2022-12-28 2023-03-14 江苏亨通精密铜业有限公司 Production process of copper strip for ocean cable

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087973A1 (en) * 2003-04-03 2004-10-14 Outokumpu Oyj Copper alloy containing phosphides and having a low oxygen content
EP1630239A1 (en) 2004-08-30 2006-03-01 Dowa Mining Co., Ltd. Copper alloy and method of manufacturing the same
US7563408B2 (en) 2004-08-30 2009-07-21 Dowa Metaltech Co., Ltd. Copper alloy and method of manufacturing the same
JP2008544858A (en) * 2005-07-07 2008-12-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and finish line for producing copper or copper alloy metal strip
JP2008255382A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Copper alloy tube
JP2009028746A (en) * 2007-07-25 2009-02-12 Nippon Steel Materials Co Ltd Solder alloy, solder ball and electronic member having solder bump
US8501088B2 (en) 2007-07-25 2013-08-06 Nippon Steel & Sumikin Materials Co., Ltd. Solder alloy, solder ball and electronic member having solder bump
US20100323214A1 (en) * 2009-06-22 2010-12-23 Hitachi Cable, Ltd. Rolled copper foil
CN115786750A (en) * 2022-12-28 2023-03-14 江苏亨通精密铜业有限公司 Production process of copper strip for ocean cable

Similar Documents

Publication Publication Date Title
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
EP2171782B1 (en) Method for producing lead-base alloy grid for lead-acid battery
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
US10056166B2 (en) Copper-cobalt-silicon alloy for electrode material
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
JP4743977B2 (en) Rolled copper alloy foil and manufacturing method thereof
JP2001152267A (en) Copper alloy rolled foil
JP2011026656A (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP2001011550A (en) Copper alloy rolled foil
JP2001279351A (en) Rolled copper alloy foil and its production method
JP3760668B2 (en) Secondary battery current collector
JP5530865B2 (en) Aluminum alloy foil for lithium ion battery electrode material and electrode material using the same
JP2012241232A (en) Rolled copper alloy foil and current collector for secondary battery using the same
CN115323216B (en) High-performance copper alloy strip and preparation method thereof
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2002194461A (en) Copper alloy for lead frame and its production method
CN112170484B (en) Preparation method of copper-magnesium alloy strip for automobile relay
CN115198133A (en) High-strength heat-resistant conductive copper alloy pipe and preparation method thereof
JP7042961B1 (en) Rolled copper foil for secondary batteries, and secondary battery negative electrodes and secondary batteries using it
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JP6769727B2 (en) Aluminum alloy foil for battery current collector and its manufacturing method
JP5623960B2 (en) Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same