JPH0243811B2 - RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO - Google Patents

RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO

Info

Publication number
JPH0243811B2
JPH0243811B2 JP13024285A JP13024285A JPH0243811B2 JP H0243811 B2 JPH0243811 B2 JP H0243811B2 JP 13024285 A JP13024285 A JP 13024285A JP 13024285 A JP13024285 A JP 13024285A JP H0243811 B2 JPH0243811 B2 JP H0243811B2
Authority
JP
Japan
Prior art keywords
copper
annealing
rolled
lead frame
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13024285A
Other languages
Japanese (ja)
Other versions
JPS61288036A (en
Inventor
Naoyuki Kanehara
Mitsuhiro Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP13024285A priority Critical patent/JPH0243811B2/en
Publication of JPS61288036A publication Critical patent/JPS61288036A/en
Publication of JPH0243811B2 publication Critical patent/JPH0243811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はリードフレーム材用銅合金およびその
製造法に関する。 〔従来の技術〕 半導体技術は高集積化を基軸に長足の進歩をと
げており、これに伴つて集積回路に使用されるリ
ードフレーム材に要求される性能も一段と厳しく
なつている。従来より使用されたリードフレーム
材としては、代表的には、42合金、コバール等が
ある。ま鉄入り銅、Sn入り銅なども提案されて
いる。特開昭54−104597号公報にはZr入り銅を、
また特開昭57−70244号公報ではAg入り銅が提案
されている。 〔発明が解決しようとする問題点〕 42合金、コバール等は、電気伝導性および熱伝
導性が十分ではなく、また鉄入り銅、Sn入り銅
などでは、強度が十分ではない。Zr入り銅では
熱処理を行つてCu−Zr化合物を十分に析出させ
れば軟化温度および導電率は比較的高くなるが、
短時間の熱処理では軟化温度が低くなりまた導電
率も低くなる。またAg入り銅でもやはり軟化温
度が低く熱による強度の低下が問題となる。チツ
プがリードフレームに装着されるときまたは封止
されるときに、加熱工程を通常は経るが、このよ
うなときに導電率が低下したり強度や硬さが低す
ることは望ましくない。 本発明はこのような従来材の問題を解決するこ
とを目的とするものであり、強度、導電率が高く
且つ軟化温度が400℃以上で加工性も良好なリー
ドフレーム材用銅合金の提供を目的とするもので
ある。 〔問題点を解決する手段〕 本発明のリードフレーム材用銅合金は、重量%
において、Zr;0.04〜0.5%、Ag;0.05〜4.0%、
残部がCuおよび不可避的不純物からなる。そし
て、重量%において、Zr;0.04〜0.5%、Ag;
0.05〜4.0%、残部がCuおよび不可避的不純物か
らなる鋳片を熱間圧延し、次いで中間焼鈍を挟ん
で所望板厚まで冷間圧延し、最終冷間圧延のあ
と、450℃〜150℃の範囲内の温度で焼鈍すること
からなるリードフレーム材用銅合金の製造法を提
供するものである。 本発明をなすに至つた背景には、Zr入り銅に
Agを添加すると、Agが銅中に固溶していたZrの
析出を促進する作用を供することを本発明者らが
見出したことにある。 一般に、銅合金は溶質元素の種類によつてその
差はあるが、溶質元素量が少ないほど電気伝導性
が良好である。ZrはCu中への固溶限が小さい元
素である。例えば、rのCu中への固溶度は950℃
で0.124wt.%、850℃で0.068wt.%、700℃で
0.020wt.%とされており、適切な条件を選定する
とCuとZrとの金属間化合物をマトリツクス中に
微細に分散させることができる。この金属間化合
物の微細な析出分散によつて高強度、高耐熱性を
高導電率を維持したままで発現させることが可能
である。しかし、これには、溶体化処理と時効処
理を必要とする。 一方、Agは銅中に全率固溶体として合金化す
ることのできる元素であるが、比較的電気伝導度
の低下割合が小さい。本発明者らは、このAgを
Cu−Zr系に添加することを試みたところ、Zrの
析出が促進されることを見出した。したがつて特
殊な溶体化処理と時効処理を要することなく、導
電率、強度、加工性、硬さが良好で耐熱特性に優
れたリードフレーム材用銅合金が容易に製造でき
ることがわかつた。 Zrの添加量としては、後記比較例No.7に見ら
れるように、0.04wt.%未満では強度の向上効果
が十分ではない。一方、0.5wt.%を越えて含有さ
せても、強度は向上するものの導電率が低下し加
工性も低下する。このためにZrの添加量として
は0.04〜0.5wt.%の範囲とするのがよい。 Agの添加量としては、前記ようなZrの析出促
進効果を得るには少なくとも0.05wt.%を必要と
するので、0.05wt.%以上とする。しかし、4.0wt.
%を越えると加工性が悪化することが認められた
ので、その上限は4.0wt.%とする。 このようにして、銅中にZr;0.04〜0.5%と
Ag;0.05〜4.0%を配合した本発明のリードフレ
ーム材用銅合金は既述の目的を効果的に達成でき
るものであるが、このAgを複合添加した本発明
の合金は、その製造にあたつて、Cu−Zr二元系
の場合にはその特性を十分に発揮するために要す
る溶体化処理および時効処理をせずとも、十分な
物性を発現し得る点で有利である。すなわち通常
の条件で熱間圧延および冷間圧延して目標板厚の
冷延板を製造すればよく、このあと、冷延によつ
て生じた残留応力の除去を主目的とした低温の焼
鈍を行うことによつて伸びを著しく回復すること
ができる。この最終圧延後の焼鈍処理はZrとAg
の添加量によつても相違するが、一般には450℃
以下、場合によつては400℃以下の温度で行えば
よい。しかし、150℃未満の温度では伸びの回復
は十分ではない。この低温の最終焼鈍処理を実施
ると、電気伝導性も向上することが見出された。 好ましい製造法について述べると、Zr;0.04〜
0.5%とAg;0.05〜4.0%を含有する銅合金鋳塊を
製造し、これを熱間圧延したあと、表面酸化を防
ぐために水シヤワーで冷却し、冷間圧延を行う。
この冷間圧延では、中間焼鈍を挟んだ数回の冷延
によつて所望の板厚まで板厚減少を行うのがよ
い。この中間焼鈍は軟化温度よりやや高い温度で
行えばよく、あまり高温で行うと表面酸化を促進
させたり炉材を劣化させたりして経済的ではな
い。得られた最終冷延材は、450℃以下150℃以上
の温度で焼鈍を行うことにより、局部応力を除去
し伸びを回復することができる。そのさいに導電
率も向上する。生産性を考えた場合、この最終焼
鈍は400℃×30分程度の条件が望ましい。 〔実施例〕 無酸素銅を高周波炉を用いて溶解し、これに、
AgおよびCu−Zr母合金を第1表に示した配合量
で添加したうえ、約1200℃保持させたあと、減圧
下で黒鉛鋳型に鋳造して40mm×40mm×150mmの鋳
塊とした。この鋳塊の表面を面削した後、900℃
で厚さ10mmに熱間圧延し、ただちに水シヤワーで
冷却した。この熱延板を、表面の酸化スケールを
除去したあと、厚さ5mmに冷間圧延(一次)し
た。ついで、600℃×30分の焼鈍のあと酸洗し、
厚さ2mmにまで冷間圧延(二次)した。次に、
450℃×30分の焼鈍を行い酸洗を行つたあと、厚
さ0.5mmまで冷間圧延(三次)した。 得られた冷延ままの薄板から試料を切り出し、
導電率、強度、破断伸び、硬度および軟化温度を
測定した。引張試験はJIS−Z2241に従つて行い、
導電率の測定はJIS−H0505に従つた。軟化温度
は冷延ままの薄板の硬度の80%に達した加熱温度
をもつて表示した。ただしそのさいの加熱時間は
30分である。それらの結果を第1表に併記した。 また、前記の冷延ままの試料に対して、400℃
×30分の焼鈍を行つた。これらの焼鈍材の導電
率、強度、破断伸び、硬度を測定し、その結果も
第1表に示した。 また、前記の冷延ままの材に対して、150℃×
30分の焼鈍を行つた。これらの焼鈍材の導電率、
強度、破断伸び、硬度を測定し、その結果も第1
表に示した。
[Industrial Field of Application] The present invention relates to a copper alloy for lead frame materials and a method for producing the same. [Prior Art] Semiconductor technology has been making rapid progress with a focus on higher integration, and along with this, the performance requirements for lead frame materials used in integrated circuits have become even more stringent. Typical lead frame materials conventionally used include 42 alloy and Kovar. Copper containing iron and copper containing Sn have also been proposed. JP-A-54-104597 discloses Zr-containing copper,
Further, in Japanese Patent Application Laid-Open No. 57-70244, copper containing Ag is proposed. [Problems to be Solved by the Invention] 42 alloy, Kovar, etc., do not have sufficient electrical conductivity and thermal conductivity, and iron-containing copper, Sn-containing copper, etc. do not have sufficient strength. For Zr-containing copper, if heat treatment is performed to sufficiently precipitate the Cu-Zr compound, the softening temperature and conductivity will be relatively high.
A short heat treatment results in a lower softening temperature and lower electrical conductivity. Furthermore, Ag-containing copper also has a low softening temperature and a decrease in strength due to heat. When a chip is mounted on a lead frame or encapsulated, it typically undergoes a heating process, and it is undesirable to reduce conductivity or reduce strength or hardness during such a process. The purpose of the present invention is to solve these problems with conventional materials, and to provide a copper alloy for lead frame materials that has high strength and conductivity, has a softening temperature of 400°C or higher, and has good workability. This is the purpose. [Means for solving the problem] The copper alloy for lead frame material of the present invention has a weight %
In, Zr; 0.04-0.5%, Ag; 0.05-4.0%,
The remainder consists of Cu and unavoidable impurities. And in weight%, Zr; 0.04-0.5%, Ag;
A slab consisting of 0.05~4.0% Cu and unavoidable impurities is hot rolled, then cold rolled to the desired thickness with intermediate annealing in between, and after final cold rolling, it is heated at 450℃~150℃. The present invention provides a method for producing a copper alloy for lead frame material, which comprises annealing at a temperature within a range. The background to this invention is that Zr-containing copper
The present inventors have discovered that when Ag is added, Ag provides an effect of promoting the precipitation of Zr that has been dissolved in copper. In general, copper alloys have better electrical conductivity as the amount of solute elements is smaller, although there are differences depending on the type of solute element. Zr is an element with a small solid solubility limit in Cu. For example, the solid solubility of r in Cu is 950℃
0.124wt.% at 850℃, 0.068wt.% at 700℃
It is said to be 0.020wt.%, and if appropriate conditions are selected, the intermetallic compound of Cu and Zr can be finely dispersed in the matrix. This fine precipitation and dispersion of intermetallic compounds makes it possible to achieve high strength and high heat resistance while maintaining high electrical conductivity. However, this requires solution treatment and aging treatment. On the other hand, although Ag is an element that can be alloyed in copper as a solid solution, the rate of decrease in electrical conductivity is relatively small. The present inventors made this Ag
When we tried adding Zr to the Cu-Zr system, we found that the precipitation of Zr was promoted. Therefore, it has been found that a copper alloy for lead frame materials with good electrical conductivity, strength, workability, hardness, and excellent heat resistance properties can be easily produced without requiring special solution treatment and aging treatment. As shown in Comparative Example No. 7 below, if the amount of Zr added is less than 0.04 wt.%, the effect of improving strength is not sufficient. On the other hand, if the content exceeds 0.5 wt.%, the strength will improve, but the electrical conductivity will decrease and the workability will also decrease. For this reason, the amount of Zr added is preferably in the range of 0.04 to 0.5 wt.%. The amount of Ag added is 0.05 wt.% or more, since at least 0.05 wt.% is required to obtain the effect of promoting Zr precipitation as described above. However, 4.0wt.
It has been found that processability deteriorates when the content exceeds 4.0 wt.%. In this way, Zr; 0.04~0.5% in copper
The copper alloy for lead frame materials of the present invention containing 0.05 to 4.0% Ag can effectively achieve the above-mentioned objectives, but the alloy of the present invention containing Ag in a composite manner requires the manufacturing process. In the case of a Cu-Zr binary system, it is advantageous in that it can exhibit sufficient physical properties without the need for solution treatment and aging treatment, which are required to fully exhibit its properties. In other words, it is sufficient to produce a cold-rolled sheet with the target thickness by hot rolling and cold rolling under normal conditions, and then low-temperature annealing is performed with the main purpose of removing residual stress caused by cold rolling. By doing this, elongation can be significantly restored. This annealing treatment after final rolling is performed on Zr and Ag.
Although it varies depending on the amount of addition, generally 450℃
The following may be carried out at a temperature of 400°C or lower depending on the case. However, recovery of elongation is not sufficient at temperatures below 150°C. It has been found that carrying out this low temperature final annealing treatment also improves electrical conductivity. Regarding the preferred manufacturing method, Zr; 0.04~
A copper alloy ingot containing 0.5% and 0.05 to 4.0% Ag is produced, hot rolled, cooled with a water shower to prevent surface oxidation, and then cold rolled.
In this cold rolling, it is preferable to reduce the plate thickness to a desired plate thickness by performing several cold rollings with intermediate annealing in between. This intermediate annealing may be performed at a temperature slightly higher than the softening temperature; if it is performed at too high a temperature, surface oxidation will be promoted and the furnace material will deteriorate, which is not economical. The obtained final cold-rolled material can be annealed at a temperature of 450°C or lower and 150°C or higher to remove local stress and recover elongation. At the same time, the conductivity also improves. When considering productivity, it is desirable that this final annealing be performed at 400°C for approximately 30 minutes. [Example] Oxygen-free copper was melted using a high frequency furnace, and then
Ag and Cu-Zr master alloy were added in the amounts shown in Table 1, and after maintaining the mixture at approximately 1200°C, it was cast into a graphite mold under reduced pressure to form an ingot of 40 mm x 40 mm x 150 mm. After cutting the surface of this ingot, it is heated to 900℃.
It was hot rolled to a thickness of 10 mm and immediately cooled with a water shower. After removing the oxide scale on the surface of this hot-rolled sheet, it was cold-rolled (primary) to a thickness of 5 mm. Then, after annealing at 600℃ for 30 minutes, pickling was carried out.
It was cold rolled (secondary) to a thickness of 2 mm. next,
After annealing at 450°C for 30 minutes and pickling, it was cold rolled (tertiary) to a thickness of 0.5 mm. A sample was cut out from the obtained cold-rolled thin sheet,
Electrical conductivity, strength, elongation at break, hardness and softening temperature were measured. The tensile test was conducted according to JIS-Z2241.
The conductivity was measured in accordance with JIS-H0505. The softening temperature was expressed as the heating temperature at which the hardness of the as-cold rolled sheet reached 80%. However, the heating time is
It is 30 minutes. The results are also listed in Table 1. In addition, for the above-mentioned as-cold-rolled sample, 400°C
Annealing was performed for 30 minutes. The electrical conductivity, strength, elongation at break, and hardness of these annealed materials were measured, and the results are also shown in Table 1. In addition, for the as-cold-rolled material mentioned above,
Annealing was performed for 30 minutes. The electrical conductivity of these annealed materials,
The strength, elongation at break, and hardness were measured, and the results were also the first.
Shown in the table.

【表】【table】

〔作用効果〕[Function and effect]

第1表の結果から次のことがわかる。例えば、
No.3は、Agを含有しないNo.8に比べ、強度が高
くまた導電率が良好である。これは、本文にも述
べたように、Agが強度を向上させると共にAgが
Zrの出を促進させて導電率を向上させることを
示している。しかし、Ag量が本発明で規定する
量より少ないNo.7では、No.6と比べて硬度が劣る
ようになる。また、Zrを含有しないNo.9は軟化
が著しい。そして、ZrとAgを適用配合した本発
明合金はいずれも400℃×30分の焼鈍によつて導
電率が向上し且つ伸びを大きく回復することがわ
かる。
The following can be seen from the results in Table 1. for example,
No. 3 has higher strength and better conductivity than No. 8, which does not contain Ag. This is because, as mentioned in the main text, Ag improves strength and Ag
It has been shown that the release of Zr is promoted and the conductivity is improved. However, in No. 7, in which the amount of Ag is less than the amount prescribed in the present invention, the hardness is inferior to that in No. 6. Further, No. 9, which does not contain Zr, shows remarkable softening. It can be seen that all of the alloys of the present invention containing Zr and Ag have improved electrical conductivity and greatly recovered elongation by annealing at 400°C for 30 minutes.

Claims (1)

【特許請求の範囲】 1 重量%において、Zr;0.04〜0.5%、Ag;
0.05〜4.0%、残部がCuおよび不可避的不純物か
らなるリードフレーム材用銅合金。 2 重量%において、Zr;0.04〜0.5%、Ag;
0.05〜4.0%、残部がCuおよび不可避的不純物か
らなる鋳片を熱間圧延し、次いで中間焼鈍を挟ん
で所望板厚まで冷間圧延し、最終冷間圧延のあ
と、450℃〜150℃の範囲内の温度で焼鈍すること
からなるリードフレーム材用銅合金の製造法。
[Claims] 1% by weight, Zr; 0.04-0.5%, Ag;
A copper alloy for lead frame materials consisting of 0.05-4.0%, the balance being Cu and unavoidable impurities. 2 In weight%, Zr; 0.04-0.5%, Ag;
A slab consisting of 0.05 to 4.0% Cu and unavoidable impurities is hot rolled, then cold rolled to the desired thickness with intermediate annealing, and after final cold rolling, it is heated at 450℃ to 150℃. A method for producing copper alloys for lead frame materials, comprising annealing at temperatures within a range.
JP13024285A 1985-06-15 1985-06-15 RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO Expired - Lifetime JPH0243811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13024285A JPH0243811B2 (en) 1985-06-15 1985-06-15 RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13024285A JPH0243811B2 (en) 1985-06-15 1985-06-15 RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS61288036A JPS61288036A (en) 1986-12-18
JPH0243811B2 true JPH0243811B2 (en) 1990-10-01

Family

ID=15029528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13024285A Expired - Lifetime JPH0243811B2 (en) 1985-06-15 1985-06-15 RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0243811B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252722B2 (en) * 2009-03-26 2013-07-31 福田金属箔粉工業株式会社 High strength and high conductivity copper alloy and method for producing the same
JP6278812B2 (en) * 2014-04-21 2018-02-14 株式会社Shカッパープロダクツ Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle
CN111032892B (en) * 2018-03-20 2021-12-14 古河电气工业株式会社 Copper alloy wire rod and method for producing copper alloy wire rod
DE102018122574B4 (en) 2018-09-14 2020-11-26 Kme Special Products Gmbh Use of a copper alloy
US20240116110A1 (en) * 2022-10-04 2024-04-11 Iowa State University Research Foundation, Inc. Oxidation resistant high conductivity copper alloys

Also Published As

Publication number Publication date
JPS61288036A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
JPH0841612A (en) Copper alloy and its preparation
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPH0569888B2 (en)
JPH06264202A (en) Production of high strength copper alloy
JPH059619A (en) Production of high-strength copper alloy
JPH0480102B2 (en)
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JP4431741B2 (en) Method for producing copper alloy
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
JP2962139B2 (en) Copper alloy with excellent plating properties and conductivity and thin plate or strip made of this copper alloy
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPH0424420B2 (en)
JPH07113133B2 (en) Cu alloy for continuous casting mold
JPS62267456A (en) Manufacture of high strength copper alloy for lead frame having high electric conductivity
JPH0418016B2 (en)
JPS6142772B2 (en)
JPH09176805A (en) Production of aluminum fin material
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPH0314901B2 (en)
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
KR100366843B1 (en) copper alloy and method of manufacturing the same