JP4431741B2 - Method for producing copper alloy - Google Patents

Method for producing copper alloy Download PDF

Info

Publication number
JP4431741B2
JP4431741B2 JP2004092874A JP2004092874A JP4431741B2 JP 4431741 B2 JP4431741 B2 JP 4431741B2 JP 2004092874 A JP2004092874 A JP 2004092874A JP 2004092874 A JP2004092874 A JP 2004092874A JP 4431741 B2 JP4431741 B2 JP 4431741B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
less
rolling
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004092874A
Other languages
Japanese (ja)
Other versions
JP2005281714A (en
Inventor
維林 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2004092874A priority Critical patent/JP4431741B2/en
Publication of JP2005281714A publication Critical patent/JP2005281714A/en
Application granted granted Critical
Publication of JP4431741B2 publication Critical patent/JP4431741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクタ、リードフレーム、リレー、スイッチなどの電気電子部品用材料として好適な強度、導電性、耐応力緩和特性、曲げ加工性、せん断加工性などを有し、さらに熱間加工性やコストに優れた銅合金およびその製造方法に関するものである。   The present invention has strength, conductivity, stress relaxation resistance, bending workability, shearing workability, etc. suitable as a material for electrical and electronic parts such as connectors, lead frames, relays, switches, etc. The present invention relates to a copper alloy excellent in cost and a manufacturing method thereof.

近年のエレクトロニクスの発達に伴い、コネクタなどの電気電子部品の高集積化、小型化、高信頼性化および低コスト化が強く要求されている。これらの要求を満たすために、銅合金材料の強度、導電性、耐応力緩和性、曲げ加工性およびせん断加工性が良好でなければならない。   With the recent development of electronics, there is a strong demand for high integration, miniaturization, high reliability, and low cost of electrical and electronic parts such as connectors. In order to meet these requirements, the copper alloy material must have good strength, electrical conductivity, stress relaxation resistance, bending workability and shear workability.

従来、黄銅は低コストの材料として使用され、成形加工性には優れているが、引張強さの点で十分満足できず、また、耐食性、耐応力腐食割れ性および耐応力緩和特性にも劣っている。一方、りん青銅は、強度、曲げ加工性、耐応力腐食割れ性および耐応力緩和特性のバランスに優れているが、例えば、ばね用りん青銅の場合、導電率が12%IACSと低く、且つ熱間加工することができず、また、せん断加工性に劣り、コスト的にも不利である。
また、コネクタ用の材料は、Snめっきされる機会が多くなり、合金にSnを含んでいる方が原料としての利用度が高まる。さらに、黄銅に代表されるように、Znを含むと、強度、加工性およびコストのバランスに優れた合金が得られ易い。このような見地から、Cu−Zn−Sn合金は注目に値する合金系である。しかしながら、上記の要求される諸特性を維持するためには、一定量以上のZnとSnを含有する必要がある。しかし、Zn量とSn量が増加すると、熱間割れを生じ易く、歩留まりの低下によるコストアップの問題がある。
Conventionally, brass has been used as a low-cost material and has excellent moldability, but it is not fully satisfactory in terms of tensile strength, and is inferior in corrosion resistance, stress corrosion cracking resistance and stress relaxation characteristics. ing. On the other hand, phosphor bronze is excellent in the balance of strength, bending workability, stress corrosion cracking resistance and stress relaxation resistance. In addition, it cannot be machined, and is inferior in shear workability, which is disadvantageous in terms of cost.
Moreover, the opportunity for Sn plating of the material for connectors increases, and the use of Sn in the alloy increases the utilization as a raw material. Further, as represented by brass, when Zn is contained, an alloy having an excellent balance of strength, workability, and cost is easily obtained. From such a viewpoint, the Cu—Zn—Sn alloy is a remarkable alloy system. However, in order to maintain the required properties, it is necessary to contain a certain amount of Zn and Sn. However, when the Zn content and Sn content increase, hot cracking is likely to occur, and there is a problem of cost increase due to a decrease in yield.

このような現状から、適量のZnとSnを含有させ、適切な製造方法を採ることにより、諸特性のバランスに優れているCu−Zn−Sn合金が提案されている(例えば、特許文献1参照。)。また、耐応力腐食割れ性を向上するために、Siなどを含有させたCu−Zn−Sn−Si合金が提案され(例えば、特許文献2参照。)、さらに、打抜加工性を改善するために、Pb、Bi、Se、Te、Caなどを添加しPd層で被覆したCu−Zn−Sn系合金が提案された(例えば、特許文献3参照。)。
特開2001−294957号公報 特開2002−088428号公報 特許第3014673号公報
Under such circumstances, a Cu—Zn—Sn alloy having an excellent balance of various properties has been proposed by containing appropriate amounts of Zn and Sn and adopting an appropriate manufacturing method (see, for example, Patent Document 1). .) Further, in order to improve the stress corrosion cracking resistance, a Cu—Zn—Sn—Si alloy containing Si or the like has been proposed (for example, see Patent Document 2), and in order to further improve the punching workability. In addition, a Cu—Zn—Sn alloy in which Pb, Bi, Se, Te, Ca and the like are added and covered with a Pd layer has been proposed (for example, see Patent Document 3).
JP 2001-294957 A JP 2002-088428 A Japanese Patent No. 3014673

まず、引張強さが700N/mm2以上であることが要求されている。また、通電によるジュ−ル熱の発生を抑えるために、導電率が20%IACS以上であることが好ましい。さらに、耐食性や耐応力腐食割れ性に優れていることが必要である。また、熱的負荷が加わるため、耐応力緩和特性にも優れていなければならない。具体的には、応力腐食割れ寿命が従来の黄銅一種の3倍以上であり、応力緩和率が150℃において黄銅一種の半分以下、好ましくは25%以下、さらに好ましくは20%以下であることが必要である。さらに、形状と寸法精度を確保するために、曲げ加工性及びせん断加工性が良好でなければならない。
さらに、黄銅とりん青銅の特長を兼備し、黄銅に近い価格で、引張強さが700N/mm2以上、導電率が20%IACS以上、耐応力腐食割れ性、耐応力緩和特性およびせん断加工性とも良好な材料が望まれている。
しかしながら、従来の方法では、Zn量、Sn量、不純物量及び熱間圧延条件の制御が非常に厳しく、また、微細なひび割れによる歩留まりの低下を生じる場合があるため、熱間圧延性にも優れた銅合金を提供することが望まれている。
特に近年、環境重視および省資源の見地から銅スクラップの大量使用が進み、それに伴ってCu−Zn−Sn合金にBi、Se、Te、Sb、Pb、As、Ge、Sなどの元素が混入する機会が大きくなった。これらの元素は合金のせん断加工性(打抜加工性)や半田付け性などを向上する効果があるが、Snと低融点共晶組織を形成しやすく、Snの粒界への偏析を助長し、極微量(数ppm程度)でも合金の熱間加工性に大きい影響を与えるという問題があった。
本発明は、このような従来の問題点に鑑み、エレクトロニクスの発達に伴ってコネクタなどの電気電子部品用材料に要求される上記のような諸特性を兼備した銅合金、すなわち、引張強さ、導電率、耐応力緩和特性、曲げ加工性、せん断加工性、熱間加工性およびコストに優れた銅合金およびその製造方法を提供することを目的とする。
First, the tensile strength is required to be 700 N / mm 2 or more. Moreover, in order to suppress generation | occurrence | production of the Joule heat by electricity supply, it is preferable that electrical conductivity is 20% IACS or more. Furthermore, it is necessary to be excellent in corrosion resistance and stress corrosion cracking resistance. Further, since a thermal load is applied, the stress relaxation resistance must be excellent. Specifically, the stress corrosion cracking life is at least three times that of a conventional brass, and the stress relaxation rate is not more than half that of a kind of brass at 150 ° C., preferably not more than 25%, more preferably not more than 20%. is necessary. Furthermore, in order to ensure shape and dimensional accuracy, bending workability and shear workability must be good.
In addition, it combines the features of brass and phosphor bronze, at a price close to brass, with a tensile strength of 700 N / mm 2 or more, an electrical conductivity of 20% IACS or more, stress corrosion cracking resistance, stress relaxation characteristics, and shear processability. A good material is desired.
However, in the conventional method, control of Zn amount, Sn amount, impurity amount, and hot rolling conditions is very strict, and the yield may be reduced due to fine cracks, so that hot rolling property is also excellent. It is desirable to provide a copper alloy.
In particular, in recent years, a large amount of copper scrap has been used from the viewpoint of environmental consideration and resource saving, and accordingly, elements such as Bi, Se, Te, Sb, Pb, As, Ge, and S are mixed in the Cu—Zn—Sn alloy. The opportunity has grown. These elements have the effect of improving the alloy's shear workability (punching workability) and solderability, but tend to form a low melting point eutectic structure with Sn and promote the segregation of Sn to grain boundaries. However, there is a problem that even a very small amount (about several ppm) has a great influence on the hot workability of the alloy.
In view of such conventional problems, the present invention is a copper alloy that has the above-mentioned properties required for materials for electrical and electronic parts such as connectors with the development of electronics, that is, tensile strength, It is an object of the present invention to provide a copper alloy excellent in electrical conductivity, stress relaxation resistance, bending workability, shear workability, hot workability and cost, and a method for producing the same.

本発明者は、上記課題を解決するために鋭意研究した結果、本発明をなすに至ったものである。すなわち、本発明は第1に、Znを20〜41重量%、Snを0.5〜1.9重量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2重量%含有し、残部がCuおよび不可避的不純物からなる銅合金;第2に、Znを20〜41重量%、Snを0.5〜1.9重量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2重量%、Ti、V、Cr、Mn、Fe、Co、Ni、Zrのうち少なくとも1種以上の元素を総量で0.05〜2.0重量%含有し、残部がCuおよび不可避的不純物からなる銅合金;第3に、Znを20〜41重量%、Snを0.5〜1.9重量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2重量%、B、C、Mg、Sc、Y、La、Ceのうち少なくとも1種以上の元素を総量で0.005〜0.5重量%含有し、残部がCuおよび不可避的不純物からなる銅合金;第4に、Znを20〜41重量%、Snを0.5〜1.9重量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2重量%、Ti、V、Cr、Mn、Fe、Co、Ni、Zrのうち少なくとも1種以上の元素を総量で0.05〜2.0重量%、B、C、Mg、Sc、Y、La、Ceのうち少なくとも1種以上の元素を総量で0.005〜0.5重量%含有し、残部がCuおよび不可避的不純物からなる銅合金;第5に、前記銅合金が、引張強さが700N/mm2以上、導電率が20%IACS以上、熱間圧延による割れ深さが0.3mm以下、せん断加工後の破壊面割合が50%以上、応力緩和率が20%以下である、第1〜4のいずれかに記載の銅合金である。 As a result of intensive studies to solve the above problems, the present inventor has made the present invention. That is, according to the present invention, first, Zn is 20 to 41% by weight, Sn is 0.5 to 1.9% by weight, and at least one of Bi, Se, Te, Sb, Pb, As, Ge, and S. A copper alloy containing 0.01 to 0.2% by weight of the total amount of elements, the balance being Cu and inevitable impurities; second, 20 to 41% by weight of Zn and 0.5 to 1.9 Sn The total amount of at least one element selected from wt%, Bi, Se, Te, Sb, Pb, As, Ge, and S is 0.01 to 0.2 wt%. Ti, V, Cr, Mn, Fe, Co A copper alloy containing at least one element of Ni, Zr in a total amount of 0.05 to 2.0% by weight with the balance being Cu and unavoidable impurities; third, 20 to 41% by weight of Zn Sn: 0.5 to 1.9% by weight, Bi, Se, Te, Sb, Pb, As, Ge, S Contains the above elements in a total amount of 0.01 to 0.2% by weight, and contains at least one element of B, C, Mg, Sc, Y, La, and Ce in a total amount of 0.005 to 0.5% by weight. A copper alloy consisting of Cu and inevitable impurities; fourth, Zn is 20 to 41% by weight, Sn is 0.5 to 1.9% by weight, Bi, Se, Te, Sb, Pb, As, A total amount of at least one element of Ge and S is 0.01 to 0.2% by weight, and a total amount of at least one element of Ti, V, Cr, Mn, Fe, Co, Ni, and Zr. 0.05 to 2.0% by weight, containing at least one element of B, C, Mg, Sc, Y, La and Ce in a total amount of 0.005 to 0.5% by weight, with the balance being Cu and Copper alloy composed of inevitable impurities; Fifth, the copper alloy has a tensile strength of 700 N / mm 2 or more and a conductivity of 20%. The copper alloy according to any one of 1 to 4, wherein the IACS or more, the crack depth by hot rolling is 0.3 mm or less, the fracture surface ratio after shearing is 50% or more, and the stress relaxation rate is 20% or less. It is.

さらに、上記本発明に係る銅合金の製造方法として、第6に、前記組成の銅合金の原料を溶解し、液相線温度から600℃までの温度域において50℃/分以上の冷却速度で冷却して鋳塊を得た後、900℃以下の温度で熱間圧延を行い、次いで冷間圧延と300〜650℃の温度域における焼鈍を繰り返すことによって焼鈍後の結晶粒径を25μm以下にし、次いで30%以上の加工率の最終冷間圧延と450℃以下の低温焼鈍を行う、第1〜5のいずれかに記載の銅合金を製造する方法;第7に、前記熱間圧延において、1パス目の熱間圧延における圧下率を5〜30%とし、次のパスの熱間圧延における圧下率を5〜40%とし、最終パス目の熱間圧延における圧下率を25%以上とする、第6記載の製造方法;第8に、前記1パス目の熱間圧延における圧下率を10〜20%とする、第7記載の製造方法;第9に、前記焼鈍後の結晶粒径を15μm以下とする、第6〜8のいずれかに記載の製造方法;第10に、前記最終冷間圧延の加工率を60%以上とする、第6〜9のいずれかに記載の製造方法である。   Furthermore, as a method for producing a copper alloy according to the present invention, sixthly, a raw material of the copper alloy having the above composition is dissolved, and at a cooling rate of 50 ° C./min or more in a temperature range from the liquidus temperature to 600 ° C. After cooling to obtain an ingot, hot rolling is performed at a temperature of 900 ° C. or less, and then the cold-rolling and annealing in a temperature range of 300 to 650 ° C. are repeated to reduce the crystal grain size after annealing to 25 μm or less. Then, a method for producing a copper alloy according to any one of 1 to 5, wherein final cold rolling at a processing rate of 30% or higher and low temperature annealing at 450 ° C. or lower are performed; seventhly, in the hot rolling, The rolling reduction in the first pass hot rolling is 5-30%, the rolling reduction in the next pass hot rolling is 5-40%, and the rolling reduction in the final pass hot rolling is 25% or more. , Sixth manufacturing method; eighth, the first pass The manufacturing method according to 7, wherein the rolling reduction in hot rolling is 10 to 20%; ninth, the manufacturing method according to any of 6 to 8, wherein the crystal grain size after annealing is 15 μm or less. 10thly, the production method according to any one of 6th to 9th, wherein a processing rate of the final cold rolling is 60% or more.

本発明に係る銅合金は、コネクタなどの電気電子部品用材料に要求される諸特性を兼備した銅合金であって、従来の黄銅やりん青銅などと比較して、0.2%耐力、引張強さ、導電率、曲げ加工性およびせん断加工性のバランスや、耐応力緩和率特性および耐応力腐食割れ性などに優れ、さらに熱間加工性が良い。
また本発明に係る製造方法によれば、銅より安価な成分を添加することにより、すなわち、Snメッキ屑、快削黄銅屑などの大量使用によって、低コスト化を図りつつ、優れたコネクタなどの電気電子部品用材料に最適な銅合金を提供することができる。
The copper alloy according to the present invention is a copper alloy having various properties required for materials for electrical and electronic parts such as connectors, and 0.2% proof stress and tensile strength compared to conventional brass and phosphor bronze. Excellent balance of strength, electrical conductivity, bending workability and shear workability, stress relaxation resistance characteristics and stress corrosion cracking resistance, and good hot workability.
Moreover, according to the manufacturing method according to the present invention, by adding a component cheaper than copper, that is, by using a large amount of Sn plating scraps, free-cutting brass scraps, etc., while reducing costs, such as excellent connectors It is possible to provide a copper alloy that is optimal for materials for electric and electronic parts.

本発明による銅合金の実施の形態は、Znを20〜41重量%、Snを0.5〜1.9重量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2重量%含有し、さらに必要に応じて、Ti、V、Cr、Mn、Fe、Co、Ni、Zrのうち少なくとも1種以上の元素を総量で0.05〜2.0重量%、および/または、B、C、Mg、Sc、Y、La、Ceのうち少なくとも1種以上の元素を総量で0.005〜0.5重量%含有し、残部がCuおよび不可避的不純物からなるものである。このように銅合金の成分の量を限定した理由は以下の通りである。
Znを添加すると、銅合金の強度やばね性が向上し、また、ZnはCuより安価であるため、Znを多量に添加することが望ましい。しかし、Zn量が41重量%を超えると、Snとの共存下で粒界偏析が激しくなり、銅合金の熱間加工性が著しく低下する。また、銅合金の冷間加工性、耐食性および耐応力腐食割れ性も低下する。一方、Zn量が20重量%より少ないと、銅合金の強度やばね性が不足し、さらに、Snを表面処理したスクラップを原料とする場合には、銅合金原料の溶解時の水素ガス吸蔵が多くなり、インゴットのブローホールが発生し易くなる。また、安価なZnの量が少なく、経済的にも不利になる。したがって、Zn量は20〜41重量%の範囲、好ましくは24〜35重量%の範囲、更に好ましくは24〜30重量%の範囲である。
Embodiments of the copper alloy according to the present invention include 20 to 41 wt% Zn, 0.5 to 1.9 wt% Sn, at least one of Bi, Se, Te, Sb, Pb, As, Ge, and S. The total amount of elements of at least one species is 0.01 to 0.2% by weight. If necessary, the total amount of at least one element of Ti, V, Cr, Mn, Fe, Co, Ni, and Zr is included. 0.05 to 2.0% by weight and / or at least one element selected from B, C, Mg, Sc, Y, La, and Ce in a total amount of 0.005 to 0.5% by weight. The balance is made of Cu and inevitable impurities. The reason why the amount of the copper alloy component is limited is as follows.
When Zn is added, the strength and springiness of the copper alloy are improved, and Zn is cheaper than Cu. Therefore, it is desirable to add a large amount of Zn. However, if the amount of Zn exceeds 41% by weight, grain boundary segregation becomes severe in the presence of Sn, and the hot workability of the copper alloy is remarkably reduced. In addition, the cold workability, corrosion resistance and stress corrosion cracking resistance of the copper alloy are also reduced. On the other hand, if the amount of Zn is less than 20% by weight, the strength and springiness of the copper alloy are insufficient, and further, when the scrap with the surface treatment of Sn is used as the raw material, hydrogen gas occlusion during the dissolution of the copper alloy raw material is not possible. This increases the number of ingot blowholes. In addition, the amount of inexpensive Zn is small, which is economically disadvantageous. Accordingly, the Zn content is in the range of 20 to 41% by weight, preferably in the range of 24 to 35% by weight, and more preferably in the range of 24 to 30% by weight.

Snは、強度や弾性などの機械的特性を向上させる効果を有する。また、SnめっきなどのSnで表面処理した材料の再利用の点からも、銅合金が添加元素としてSnを含有するのが好ましい。しかし、Sn含有量が増加すると、銅合金の導電率が急激に低下し、また、Znとの共存下で粒界偏析が激しくなり、熱間加工性が著しく低下する。熱間加工性を確保するためには、Sn含有量は1.9重量%を超えない範囲でなければならない。一方、Sn含有量が0.5重量%より少ないと、銅合金の機械的特性向上の効果が少なく、また、Snめっきなどを施したプレスくずなどを原料として利用し難くなる。したがって、Sn含有量は0.5〜1.9重量%の範囲であり、0.6〜1.6重量%の範囲が好ましい。
Bi、Se、Te、Sb、Pb、As、Ge、Sはせん断加工性を向上する効果がある。その総量が0.01重量%より少ないと、上記効果が十分に得られず、また、これらの元素を含有する黄銅屑を原料として大量に使用し難くなる。一方その総量が0.2重量%を超えると、これらの元素はSnと低融点共晶組織を形成しやすく、Snの粒界への偏析を助長し、熱間加工性を著しく低下させる。したがって、その総量は0.01〜0.2重量%の範囲、好ましくは0.01〜0.1重量%の範囲である。
Sn has an effect of improving mechanical properties such as strength and elasticity. Moreover, it is preferable that a copper alloy contains Sn as an additive element also from the point of reuse of the material surface-treated with Sn, such as Sn plating. However, when Sn content increases, the electrical conductivity of a copper alloy will fall rapidly, and grain boundary segregation will become intense in coexistence with Zn, and hot workability will fall remarkably. In order to ensure hot workability, the Sn content must be in a range not exceeding 1.9% by weight. On the other hand, if the Sn content is less than 0.5% by weight, the effect of improving the mechanical properties of the copper alloy is small, and it becomes difficult to use press scraps and the like subjected to Sn plating as raw materials. Therefore, the Sn content is in the range of 0.5 to 1.9% by weight, and preferably in the range of 0.6 to 1.6% by weight.
Bi, Se, Te, Sb, Pb, As, Ge, and S have an effect of improving the shear workability. When the total amount is less than 0.01% by weight, the above effect cannot be obtained sufficiently, and it becomes difficult to use a large amount of brass scrap containing these elements as a raw material. On the other hand, when the total amount exceeds 0.2% by weight, these elements easily form a low melting point eutectic structure with Sn, promote the segregation of Sn to the grain boundary, and significantly reduce the hot workability. Therefore, the total amount is in the range of 0.01 to 0.2% by weight, preferably in the range of 0.01 to 0.1% by weight.

Ti、V、Cr、Mn、Fe、Co、Ni及びZrは、合金強度を高め、かつ応力緩和を小さくする作用をそれぞれ有する。特に、Bi、Se、Te、Sb、Pb、As、Ge、Sと高融点化合物を形成しやすく、熱間加工性を向上する作用を有する。その総量を0.05重量%未満にすると、前記作用が十分に発揮されず、2.0重量%を超えると熱間加工性及び冷間加工性が低下する。また、経済的にも不利になる。したがって、その総量は0.05〜2.0重量%の範囲、好ましくは0.1〜1.0重量%の範囲、更に好ましくは0.2〜1.0重量%の範囲である。
B、C、Mg、Sc、Y、La及びCeは、SnおよびBi、Se、Te、Sb、Pb、As、Ge、Sの粒界析出並びに粒界酸化を抑制する効果を有し、熱間加工性及び冷間加工性を向上する作用を有する。その総量を0.005重量%未満にすると、前記作用が十分に発揮されず、0.5重量%を超えると逆に熱間加工性及び冷間加工性が低下する。したがって、その総量は0.005〜0.5重量%の範囲、好ましくは0.01〜0.2重量%の範囲である。
Ti, V, Cr, Mn, Fe, Co, Ni, and Zr have functions of increasing the alloy strength and reducing the stress relaxation, respectively. In particular, Bi, Se, Te, Sb, Pb, As, Ge, S and high melting point compounds are easily formed, and the hot workability is improved. When the total amount is less than 0.05% by weight, the above-described effect is not sufficiently exhibited, and when it exceeds 2.0% by weight, hot workability and cold workability are deteriorated. It is also economically disadvantageous. Accordingly, the total amount is in the range of 0.05 to 2.0% by weight, preferably in the range of 0.1 to 1.0% by weight, and more preferably in the range of 0.2 to 1.0% by weight.
B, C, Mg, Sc, Y, La and Ce have the effect of suppressing grain boundary precipitation and grain boundary oxidation of Sn and Bi, Se, Te, Sb, Pb, As, Ge, S, Has the effect of improving workability and cold workability. When the total amount is less than 0.005% by weight, the above-mentioned effect is not sufficiently exhibited, and when it exceeds 0.5% by weight, hot workability and cold workability are deteriorated. Therefore, the total amount is in the range of 0.005 to 0.5% by weight, preferably in the range of 0.01 to 0.2% by weight.

また、以上のように限定された成分であれば、引張強さが700N/mm2以上、好ましくは800N/mm2以上、導電率が20%IACS以上、応力緩和率が20%以下、好ましくは15%以下であり、さらに他の必要な諸特性、具体的には、耐食性、耐応力腐食割れ性(アンモニア蒸気中での割れ寿命が黄銅一種の3倍以上)、耐応力緩和特性(150℃における緩和率が黄銅一種の半分以下でりん青銅並)、せん断加工性(プレス打ち抜き性)などを満足する銅合金を作成することができる。
上記の銅合金がさらに、0.01〜5重量%のAl、0.01〜1重量%のCa、0.01〜3重量%のSi、0.01〜3重量%のCd、0.01〜3重量%のBe、0.01〜1重量%のBa、0.01〜5重量%のAu、0.01〜5重量%のAg、0.005〜0.5重量%のPのうち少なくとも1種以上の元素を総量で0.01〜5重量%含有しても良い。
これらの元素は、導電率、ヤング率および成形加工性を大きく損なうことなく、強度をさらに向上させることができる。また、各種の銅合金屑を原料として使用する場合にも有利である。各元素の含有範囲からはずれると、所望の効果を得られないか、または、熱間加工性、冷間加工性、導電率およびコスト面などにおいて不利になる。
Further, if the limited component as described above, a tensile strength of 700 N / mm 2 or more, preferably 800 N / mm 2 or more, conductivity of 20% IACS or more, the stress relaxation ratio of 20% or less, preferably 15% or less, and other necessary characteristics, specifically, corrosion resistance, stress corrosion cracking resistance (crack life in ammonia vapor is more than three times that of brass), stress relaxation resistance (150 ° C. A copper alloy having a relaxation rate less than half of that of a kind of brass and equivalent to phosphor bronze), shear workability (press punchability), and the like can be produced.
The copper alloy further comprises 0.01 to 5 wt% Al, 0.01 to 1 wt% Ca, 0.01 to 3 wt% Si, 0.01 to 3 wt% Cd, 0.01. ~ 3 wt% Be, 0.01-1 wt% Ba, 0.01-5 wt% Au, 0.01-5 wt% Ag, 0.005-0.5 wt% P A total amount of at least one element may be 0.01 to 5% by weight.
These elements can further improve the strength without significantly impairing the electrical conductivity, Young's modulus, and moldability. Moreover, it is advantageous also when using various copper alloy scraps as a raw material. If it is out of the content range of each element, a desired effect cannot be obtained, or it is disadvantageous in terms of hot workability, cold workability, conductivity and cost.

次に、本発明に係る銅合金の製造方法の実施の形態を説明する。
最初に、本発明による銅合金の原料を溶解して鋳造する。雰囲気は大気雰囲気で十分であるが、不活性ガスでシ−ルした方が酸化防止の面から好ましい。ただし、還元ガス雰囲気では、高温になると水分の分解による水素の吸収や拡散によって不利になる。
次に、原料の溶解後、インゴットを連続鋳造によって鋳造するのが望ましい。この連続鋳造は、縦型と横型のいずれでも構わない。ただし、液相線温度から600℃まで温度域において50℃/分以上の冷却速度で冷却する。冷却速度が50℃/分未満では、粒界にSnおよびBi、Se、Te、Sb、Pb、As、Ge、Sの偏析が生じ易く、その後の熱間加工性を悪化させ、歩留まりの低下を引き起こす。冷却速度を規定する温度域は、液相線温度から600℃までの温度域で良い。液相線以上の温度域を規定しても効果がなく、一方、600℃より低温域では、鋳造時の冷却工程の時間程度では粒界へのSnおよびBi、Se、Te、Sb、Pb、As、Ge、Sの過度な偏析を生じないので、冷却速度を規定する温度域は、液相線温度から600℃までの温度域とする。
Next, an embodiment of a method for producing a copper alloy according to the present invention will be described.
First, the copper alloy raw material according to the present invention is melted and cast. An atmospheric atmosphere is sufficient as the atmosphere, but sealing with an inert gas is preferable in terms of preventing oxidation. However, in a reducing gas atmosphere, when the temperature is high, it is disadvantageous due to absorption and diffusion of hydrogen due to decomposition of moisture.
Next, after melting the raw material, it is desirable to cast the ingot by continuous casting. This continuous casting may be either a vertical type or a horizontal type. However, cooling is performed at a cooling rate of 50 ° C./min or more in the temperature range from the liquidus temperature to 600 ° C. When the cooling rate is less than 50 ° C./min, segregation of Sn and Bi, Se, Te, Sb, Pb, As, Ge, S is likely to occur at the grain boundary, and the subsequent hot workability is deteriorated, resulting in a decrease in yield. cause. The temperature range that defines the cooling rate may be a temperature range from the liquidus temperature to 600 ° C. Even if the temperature range above the liquidus is defined, there is no effect. On the other hand, in the temperature range lower than 600 ° C., Sn and Bi, Se, Te, Sb, Pb, Since excessive segregation of As, Ge, and S does not occur, the temperature range that defines the cooling rate is the temperature range from the liquidus temperature to 600 ° C.

溶解鋳造後に熱間圧延を行う。熱間圧延の加熱温度は900℃以下とする。900℃を超える温度では、SnとBi、Se、Te、Sb、Pb、As、Ge、Sの共晶組織による熱間割れが生じ、歩留まりが低下する。900℃以下の温度で1パス目の熱間圧延を行う際の圧下率を好ましくは5〜30%とする。圧下率が30%を超えると、鋳造結晶粒界に沿って割れが発生し易い。一方、圧下率が5%未満であると、動的再結晶またはパス間の静的再結晶が発生し難く、2パス目の圧延時に熱間割れが発生する場合もある。また、圧延パス回数が多くなり効率的ではない。2〜3パス後に動的再結晶することによって、鋳造時のミクロな偏析および鋳造組織の消失により、本発明による銅合金の組成のZn量およびSn量を含んでも、組織的に均質な材料を得ることができる。さらに好ましくは1パス目の圧下率を10〜20%とする。次のパスでは、圧下率が5〜40%が好ましく、熱間割れの発生を防止し、続いて効率良く圧延することができる。さらに、最終パス目の圧下率はできるだけ大きくなることが好ましく、具体的には圧下率25%以上が好ましい。これにより、熱間圧延後の結晶粒径を好ましくは35μm以下、さらに好ましくは15μm以下に制御することができる。熱間圧延後の結晶粒径が35μmを越えると、その後の冷間加工率や焼鈍条件の管理幅が狭く、少しでも逸脱すると、結晶粒が混粒になり易く、特性が劣化する。   Hot rolling is performed after melt casting. The heating temperature of hot rolling is 900 ° C. or less. If the temperature exceeds 900 ° C., hot cracking occurs due to the eutectic structure of Sn and Bi, Se, Te, Sb, Pb, As, Ge, and S, and the yield decreases. The rolling reduction during the first pass hot rolling at a temperature of 900 ° C. or lower is preferably 5 to 30%. If the rolling reduction exceeds 30%, cracks are likely to occur along the cast grain boundaries. On the other hand, if the rolling reduction is less than 5%, dynamic recrystallization or static recrystallization between passes hardly occurs, and hot cracking may occur during the second pass rolling. In addition, the number of rolling passes increases, which is not efficient. By dynamically recrystallizing after 2 to 3 passes, a microscopic segregation at the time of casting and disappearance of the cast structure makes it possible to obtain a structurally homogeneous material even if the amount of Zn and Sn of the composition of the copper alloy according to the present invention is included. Obtainable. More preferably, the rolling reduction of the first pass is 10 to 20%. In the next pass, the rolling reduction is preferably 5 to 40%, and it is possible to prevent the occurrence of hot cracking and subsequently to efficiently roll. Further, it is preferable that the rolling reduction of the final pass is as large as possible, and specifically, a rolling reduction of 25% or more is preferable. Thereby, the crystal grain size after hot rolling can be controlled to preferably 35 μm or less, and more preferably 15 μm or less. If the crystal grain size after hot rolling exceeds 35 μm, the subsequent cold work rate and the control range of annealing conditions are narrow, and if it deviates even a little, the crystal grains tend to be mixed and the characteristics deteriorate.

熱間圧延後に必要に応じて表面を面削する。その後、冷間圧延と300〜650℃の温度域における焼鈍を繰り返し、焼鈍後の結晶粒径を25μm以下とする。300℃未満の温度では、結晶粒の制御に要する時間が長くなって不経済であり、650℃を越えると、短時間で結晶粒が粗大化する。焼鈍後の結晶粒径が25μmを越えると、0.2%耐力などの機械特性や加工性が低下する。焼鈍後の結晶粒径は、好ましくは15μm以下、さらに好ましくは10μm以下である。
このようにして得られた焼鈍材を、30%以上の加工率による最終冷間圧延と450℃以下の低温焼鈍を行うことによって、0.2%耐力が650N/mm2以上、引張強さが700N/mm2以上、導電率が20%IACS以上、応力緩和率が20%以下である銅合金を得る。最終冷間加工率が30%未満では、加工硬化による強度の向上が不十分であり、機械特性の向上が不十分であり、好ましくは60%以上の加工率とする。低温焼鈍は、0.2%耐力、引張強さ、ばね限界値および耐応力緩和特性をさらに向上させるために必要である。450℃を越える温度では短時間で軟化し、また、バッチ式と連続式のいずれの場合でもワ−ク内における特性ばらつきが発生し易くなる。したがって、低温焼鈍の温度条件を450℃以下とする。
このようにして得られた材料を端子にプレスした後に、100〜280℃の温度で1〜180分間熱処理しても良い。この熱処理によって、プレス加工によって低下したばね限界値や耐応力緩和特性が改善され、さらに、ウイスカ対策を実現することができる。100℃未満の温度では、このような効果が十分でなく、280℃を超えると、拡散や酸化により、接触抵抗、はんだ付け性および加工性が低下する。また、熱処理時間が1分未満では効果が十分でなく、180分を超えると拡散や酸化による前述の特性の低下が起こり、また経済的でもない。
The surface is chamfered as necessary after hot rolling. Then, cold rolling and annealing in a temperature range of 300 to 650 ° C. are repeated, and the crystal grain size after annealing is set to 25 μm or less. If the temperature is less than 300 ° C., the time required for controlling the crystal grains becomes long and uneconomical, and if it exceeds 650 ° C., the crystal grains become coarse in a short time. When the grain size after annealing exceeds 25 μm, mechanical properties such as 0.2% proof stress and workability deteriorate. The crystal grain size after annealing is preferably 15 μm or less, more preferably 10 μm or less.
The annealed material thus obtained is subjected to final cold rolling at a processing rate of 30% or more and low temperature annealing at 450 ° C. or less, so that the 0.2% proof stress is 650 N / mm 2 or more and the tensile strength is A copper alloy having 700 N / mm 2 or more, electrical conductivity of 20% IACS or more, and stress relaxation rate of 20% or less is obtained. If the final cold work rate is less than 30%, the strength improvement by work hardening is insufficient, and the mechanical properties are not sufficiently improved, and the work rate is preferably 60% or more. Low temperature annealing is necessary to further improve the 0.2% yield strength, tensile strength, spring limit and stress relaxation resistance. When the temperature exceeds 450 ° C., it softens in a short time, and in both the batch type and the continuous type, characteristic variations easily occur in the work. Therefore, the temperature condition of the low temperature annealing is set to 450 ° C. or less.
After the material thus obtained is pressed on a terminal, it may be heat-treated at a temperature of 100 to 280 ° C. for 1 to 180 minutes. By this heat treatment, the spring limit value and the stress relaxation resistance lowered by the press working are improved, and further, whisker countermeasures can be realized. If the temperature is lower than 100 ° C., such an effect is not sufficient. If the temperature exceeds 280 ° C., contact resistance, solderability, and workability deteriorate due to diffusion and oxidation. Further, if the heat treatment time is less than 1 minute, the effect is not sufficient, and if it exceeds 180 minutes, the above-described characteristics are deteriorated due to diffusion or oxidation, and it is not economical.

以下、本発明による銅合金およびその製造方法についてさらに詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。   Hereinafter, although the copper alloy by this invention and its manufacturing method are demonstrated in detail, the technical scope of this invention is not limited to this.

[実施例1〜15、比較例1〜14] 表1に化学成分組成(重量%)を示す各銅合金原料を、液相線温度より70℃高い温度で溶解した後、縦型の小型連続鋳造機を用いて、30×70×1000(mm、最初の厚さは30mmである。)の鋳塊に鋳造した。ただし、鋳型による一次冷却と水シャワ−による二次冷却を調整することにより、液相線から600℃までの冷却速度は50℃/分を大きく上回る条件であった(冷却速度は熱電対を鋳塊に一緒に鋳込みながら測定した。具体的には冷却速度範囲は70〜90℃/分であった)。
その後、各鋳塊を800〜860℃に加熱した後、厚さ5mmにまで熱間圧延し、表面やエッジの割れによって熱間加工性を評価した。但し、熱間圧延は10パス行い、1パス当たりの圧下率を15%として、最終パスの圧下率を25%とした。酸洗後に50倍の光学顕微鏡により割れが全く確認されないものを◎、割れ深さが0.3mm以下(すなわち、片面0.3mmで面削またはミ−リングした後に割れが全く確認されない)のものを○、割れ深さが0.3mmを超えるものを×とした。さらに、熱間圧延終了温度を600℃とし、熱間圧延後の急冷によって結晶粒径が約20μmになるように制御した。
次に、冷間圧延によって厚さ1mmまで圧延し、450〜520℃の温度で熱処理し、結晶粒径が約10μmになるように調整した。酸洗後に、厚さ0.25mmまで最終冷間圧延し、最終工程で230℃の低温焼鈍を施した。このようにして得られた条材から試験片を採取した。
[Examples 1 to 15 and Comparative Examples 1 to 14] After each copper alloy raw material having the chemical composition (wt%) shown in Table 1 was melted at a temperature 70 ° C higher than the liquidus temperature, a vertical compact continuous Using a casting machine, it was cast into an ingot of 30 × 70 × 1000 (mm, initial thickness is 30 mm). However, by adjusting the primary cooling by the mold and the secondary cooling by the water shower, the cooling rate from the liquidus to 600 ° C. was a condition that greatly exceeded 50 ° C./min (the cooling rate was obtained by casting a thermocouple). It was measured while casting together in the lump, specifically the cooling rate range was 70-90 ° C./min).
Then, after heating each ingot to 800-860 degreeC, it hot-rolled to thickness 5mm, and evaluated hot workability by the crack of the surface or edge. However, hot rolling was performed for 10 passes, and the reduction rate per pass was 15%, and the reduction rate of the final pass was 25%. Those with no cracks confirmed by an optical microscope of 50 times after pickling, with crack depth of 0.3 mm or less (that is, no cracks are confirmed after chamfering or milling at 0.3 mm on one side) ◯, and those having a crack depth exceeding 0.3 mm were evaluated as x. Furthermore, the hot rolling end temperature was set to 600 ° C., and the crystal grain size was controlled to about 20 μm by rapid cooling after hot rolling.
Next, it was rolled to a thickness of 1 mm by cold rolling, heat-treated at a temperature of 450 to 520 ° C., and adjusted so that the crystal grain size was about 10 μm. After pickling, it was finally cold-rolled to a thickness of 0.25 mm, and subjected to low-temperature annealing at 230 ° C. in the final step. A test piece was collected from the strip thus obtained.

以上のようにして得られた条材を用いて、引張強さ、導電率、応力緩和率、せん断加工性および応力腐食割れ寿命の測定を行った。引張強さの測定はJIS−Z−2241、導電率はJIS−H−0505に従って行った。応力緩和試験は、試料表面に0.2%耐力の80%に当たる曲げ応力を加え、150℃で500時間保持し、曲げぐせを測定することによって行った。応力緩和率は下記の式によって計算した。
応力緩和率(%)=[(L1−L2)/(L1−L0)]×100
[L0:治具の長さ(mm)、L1:開始時の試料の長さ(mm)、L2:処理後の試料端間の水平距離(mm)]
せん断加工性の評価はJCBA−T310(伸銅協会標準規格、銅および銅合金薄板条のせん断試験方法)に従って行った。せん断加工後の破面を観察することで行い、破断面割合(破断部厚さ/板厚×100)が大きい程、せん断加工性は良好である。
応力腐食割れ試験は、0.2%耐力の80%に当たる曲げ応力を加え、12.5%のアンモニア水を入れたデシケ−タ内に保持することによって行った。暴露時間は、10分単位とし、150分まで試験した。暴露後に各時間の試験片を取り出し、必要に応じて皮膜を酸洗除去し、光学顕微鏡で100倍の倍率で割れを観察した。そして、割れを確認した10分前の時間を応力腐食割れ寿命とした。
これらの結果を表1に示す。
Using the strips obtained as described above, tensile strength, electrical conductivity, stress relaxation rate, shear workability, and stress corrosion cracking life were measured. Tensile strength was measured according to JIS-Z-2241 and conductivity was measured according to JIS-H-0505. The stress relaxation test was performed by applying a bending stress equivalent to 80% of 0.2% proof stress to the sample surface, holding the sample at 150 ° C. for 500 hours, and measuring the bending distortion. The stress relaxation rate was calculated by the following formula.
Stress relaxation rate (%) = [(L1-L2) / (L1-L0)] × 100
[L0: Jig length (mm), L1: Length of sample at start (mm), L2: Horizontal distance between sample ends after processing (mm)]
Evaluation of shear workability was performed in accordance with JCBA-T310 (Copper Society Standard Standard, Shear Test Method for Copper and Copper Alloy Sheet Strips). This is done by observing the fracture surface after shearing. The greater the fracture surface ratio (fracture thickness / plate thickness x 100), the better the shearing workability.
The stress corrosion cracking test was performed by applying a bending stress equivalent to 80% of 0.2% proof stress and holding it in a desiccator containing 12.5% ammonia water. The exposure time was 10 minutes and tested up to 150 minutes. After the exposure, the test piece at each time was taken out, the film was pickled and removed as necessary, and cracks were observed with an optical microscope at a magnification of 100 times. The time 10 minutes before the crack was confirmed was defined as the stress corrosion crack life.
These results are shown in Table 1.

Figure 0004431741
Figure 0004431741

表1に示す結果から、規定した成分範囲内の実施例1〜15の銅合金は、熱間加工性に優れ、製造面でも有利であり、且つ、せん断加工性、引張強さおよび導電率のバランスに優れ、また、耐応力緩和特性および耐応力腐食割れ性も良好である。したがって、実施例1〜15の銅合金は、コネクタなどの電気電子用材料として極めて優れた特性を有する銅合金である。
これに対して、Bi、Se、Te、Sb、Pb、As、Ge、Sなどの含有量が少ない(または含有されない)比較例1〜5の銅合金はいずれも破断部割合が50%未満であってせん断加工性が劣っている。また、Sn含有量が多い比較例4と比較例5の銅合金は熱間加工性が悪く、Sn含有量が少ない比較例1と比較例2の銅合金は、熱間加工性は劣っていないが、引張強さおよび耐応力緩和特性が劣り、せん断加工性も上記のとおり劣っている。
From the results shown in Table 1, the copper alloys of Examples 1 to 15 within the specified component range are excellent in hot workability, advantageous in production, and have shear workability, tensile strength, and conductivity. The balance is excellent, and the stress relaxation resistance and stress corrosion cracking resistance are also good. Therefore, the copper alloys of Examples 1 to 15 are copper alloys having extremely excellent characteristics as electrical and electronic materials such as connectors.
On the other hand, all the copper alloys of Comparative Examples 1 to 5 having a small content (or not contained) such as Bi, Se, Te, Sb, Pb, As, Ge, and S have a fracture portion ratio of less than 50%. Therefore, shear workability is inferior. Moreover, the copper alloys of Comparative Examples 4 and 5 having a high Sn content have poor hot workability, and the copper alloys of Comparative Examples 1 and 2 having a low Sn content are not inferior in hot workability. However, the tensile strength and stress relaxation resistance are inferior, and the shear processability is also inferior as described above.

比較例6〜10のBi、Se、Te、Sb、Pb、As、Ge、Sなどの含有量が多い銅合金は、せん断加工性に優れるが、熱間加工性に劣っており、歩留まり低下によるコストアップの問題がある。
さらに、Ti、Mn、FeおよびBの含有量の多い比較例11〜13の銅合金は、引張強さ、耐応力緩和特性およびせん断加工性に劣っていないが、熱間圧延の途中で割れが入り、その後の冷間加工との兼ね合いで最終板厚まで歩留まり良く製造することができなかった。また、Sn、Bの含有量の少ない比較例14の銅合金は、引張強さ、せん断加工性、耐応力緩和特性、応力腐食割れ寿命に劣っている。
Copper alloys having a large content of Bi, Se, Te, Sb, Pb, As, Ge, S, etc. in Comparative Examples 6 to 10 are excellent in shear workability, but are inferior in hot workability, resulting in a decrease in yield. There is a problem of cost increase.
Further, the copper alloys of Comparative Examples 11 to 13 having a large content of Ti, Mn, Fe and B are not inferior in tensile strength, stress relaxation resistance and shear workability, but cracks are caused during hot rolling. In the balance with the subsequent cold working, it was not possible to manufacture with good yield up to the final thickness. Further, the copper alloy of Comparative Example 14 having a small Sn and B content is inferior in tensile strength, shear workability, stress relaxation resistance, and stress corrosion cracking life.

[実施例16、比較例15、16] 表1に示す実施例11の銅合金と同じ銅合金(実施例16)と、市販の黄銅1種(C26000−H08、比較例15)と、ばね用りん青銅(C52100−H08、比較例16)について、実施例1〜15と同様の方法により、引張強さ、導電率、破断面割合、応力緩和率および応力腐食割れ寿命を測定した。これらの結果を表2に示す。なお、これらの市販の材料は、質別がH08(ばね材用)であり、同一成分の中でも高強度な質別である。   [Example 16, Comparative Examples 15 and 16] The same copper alloy as Example 11 shown in Table 1 (Example 16), commercially available brass (C26000-H08, Comparative Example 15), and spring For phosphor bronze (C52100-H08, Comparative Example 16), tensile strength, electrical conductivity, fracture surface ratio, stress relaxation rate, and stress corrosion cracking life were measured by the same methods as in Examples 1-15. These results are shown in Table 2. In addition, these commercially available materials are classified into H08 (for spring material), and are of high strength among the same components.

Figure 0004431741
Figure 0004431741

表2に示す結果から、実施例16の銅合金は、従来の代表的なコネクタなどの電気電子用材料である黄銅(比較例15)と比較して、引張強さ、耐応力緩和特性、破断面割合、耐応力腐食割れ性などが向上していることがわかる。また、ばね用りん青銅(比較例16)と比較しても、導電率に優れている。また、ばね用りん青銅は、高価なSnを8%も含有し、原料費が高騰し易く、且つ熱間圧延できないため、製法が限定され、製造費を含めたト−タルコスト面で劣っている。したがって、実施例16の銅合金は、従来の黄銅やりん青銅と比較して十分に優れているといえる。   From the results shown in Table 2, the copper alloy of Example 16 is higher in tensile strength, stress relaxation resistance, breakage than brass (Comparative Example 15), which is a conventional material for electrical and electronic use such as a connector. It can be seen that the cross-sectional ratio, stress corrosion cracking resistance, etc. are improved. Moreover, it is excellent in electrical conductivity even compared with phosphor bronze for spring (Comparative Example 16). Moreover, the phosphor bronze for spring contains 8% of expensive Sn, the raw material cost is likely to increase rapidly, and it cannot be hot-rolled, so the manufacturing method is limited and the total cost including the manufacturing cost is inferior. . Therefore, it can be said that the copper alloy of Example 16 is sufficiently superior to conventional brass and phosphor bronze.

[実施例17、18、19、比較例17、18] 表1に示す実施例1と11の銅合金を、熱間圧延時の加熱温度を変えることによって、熱間圧延後の表面とエッジの割れ状況を観察した。この結果、860℃以下(具体的には800〜850℃)の加熱温度で(実施例17、18)、熱間割れが全く生じなかった。特に、0.12%B含有の実施例11の銅合金は、熱間圧延温度を900℃に上げても(実施例19)熱間割れが全く生じなかった。これに対して表1に示す実施例1と11の銅合金であっても、920℃の加熱温度(比較例17、18)では、熱間割れが発生し、適切な成分範囲であっても、加熱温度によっては熱間割れを生じることがあり、歩留まり低下をもたらす場合があることがわかった。   [Examples 17, 18, 19 and Comparative Examples 17 and 18] By changing the heating temperature during hot rolling of the copper alloys of Examples 1 and 11 shown in Table 1, the surface and edge after hot rolling were changed. The cracking situation was observed. As a result, no hot cracking occurred at the heating temperature of 860 ° C. or lower (specifically, 800 to 850 ° C.) (Examples 17 and 18). In particular, the copper alloy of Example 11 containing 0.12% B exhibited no hot cracking even when the hot rolling temperature was raised to 900 ° C. (Example 19). On the other hand, even in the copper alloys of Examples 1 and 11 shown in Table 1, hot cracking occurs at a heating temperature of 920 ° C. (Comparative Examples 17 and 18), and even in an appropriate component range. It has been found that depending on the heating temperature, hot cracking may occur and yield may be reduced.

[実施例20、比較例19、20] 表1に示す実施例11と同じ組成の銅合金の鋳塊を840℃に加熱し、熱間圧延を2パス行った。各パスの圧延直後に水冷して得たサンプルをリン酸と蒸留水(1:1)の溶液中で電解研磨して腐食させた後、光学顕微鏡により300倍の倍率で結晶粒組織を観察した。但し、1パス目の圧下率をそれぞれ15%(実施例20)、4%(比較例19)、35%(比較例20)として、2パス目の圧下率をいずれも25%とした。
実施例20の銅合金の組織では、1パス目の圧延後にすべての結晶粒界に沿って動的再結晶粒が生じ、2パス目の圧延後にほぼ全域にわたって動的再結晶粒組織が観察された。これに対し、比較例19の組織では、1パス目の圧延後に動的再結晶粒がほとんど観察されず、2パス目の圧延後に一部の結晶粒界に沿ってクラックが観察された。また、比較例20の組織では、1パス目の圧延後に動的再結晶粒が不均一に分布して、一部の結晶粒界に沿ってクラックが観察され、2パス目の圧延後にこれらのクラックがさらに拡大した。したがって、1パス目の圧下率によっては熱延割れを生じることがあり、歩留まり低下をもたらす場合があることがわかった。
[Example 20, Comparative Examples 19 and 20] An ingot of a copper alloy having the same composition as that of Example 11 shown in Table 1 was heated to 840 ° C, and hot rolling was performed for two passes. Samples obtained by water cooling immediately after rolling in each pass were corroded by electrolytic polishing in a solution of phosphoric acid and distilled water (1: 1), and then the crystal grain structure was observed with an optical microscope at a magnification of 300 times. . However, the rolling reduction in the first pass was 15% (Example 20), 4% (Comparative Example 19), and 35% (Comparative Example 20), respectively, and the rolling reduction in the second pass was 25%.
In the structure of the copper alloy of Example 20, dynamic recrystallized grains were generated along all crystal grain boundaries after rolling in the first pass, and dynamic recrystallized grain structures were observed over almost the entire area after rolling in the second pass. It was. On the other hand, in the structure of Comparative Example 19, almost no dynamic recrystallized grains were observed after the first pass rolling, and cracks were observed along some crystal grain boundaries after the second pass rolling. Further, in the structure of Comparative Example 20, the dynamic recrystallized grains are unevenly distributed after the first pass rolling, and cracks are observed along some crystal grain boundaries. The crack further expanded. Therefore, it has been found that hot rolling cracks may occur depending on the rolling reduction ratio in the first pass, which may lead to a decrease in yield.

引張強さ、導電率、耐応力緩和特性、曲げ加工性、せん断加工性、熱間加工性およびコストなどを兼備した銅合金を提供するものであって、コネクタなどの電気電子部品用材料に適用することができる。   Providing copper alloys with tensile strength, electrical conductivity, stress relaxation resistance, bending workability, shear workability, hot workability and cost, etc., and applied to materials for electrical and electronic parts such as connectors can do.

Claims (2)

Znを24〜30質量%、Snを0.5〜1.9質量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2質量%含有し、残部がCuおよび不可避的不純物からなり、引張強さが700N/mm 2 以上、導電率が20%IACS以上、熱間圧延による割れ深さが0.3mm以下、せん断加工後の破壊面割合が50%以上、応力緩和率が20%以下である銅合金、
Znを24〜30質量%、Snを0.5〜1.9質量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2質量%、Ti、V、Cr、Mn、Fe、Co、Ni、Zrのうち少なくとも1種以上の元素を総量で0.05〜2.0質量%含有し、残部がCuおよび不可避的不純物からなり、引張強さが700N/mm 2 以上、導電率が20%IACS以上、熱間圧延による割れ深さが0.3mm以下、せん断加工後の破壊面割合が50%以上、応力緩和率が20%以下である銅合金、
Znを24〜30質量%、Snを0.5〜1.9質量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2質量%、B、C、Mg、Sc、Y、La、Ceのうち少なくとも1種以上の元素を総量で0.005〜0.5質量%含有し、残部がCuおよび不可避的不純物からなり、引張強さが700N/mm 2 以上、導電率が20%IACS以上、熱間圧延による割れ深さが0.3mm以下、せん断加工後の破壊面割合が50%以上、応力緩和率が20%以下である銅合金、または
Znを24〜30質量%、Snを0.5〜1.9質量%、Bi、Se、Te、Sb、Pb、As、Ge、Sのうち少なくとも1種以上の元素を総量で0.01〜0.2質量%、Ti、V、Cr、Mn、Fe、Co、Ni、Zrのうち少なくとも1種以上の元素を総量で0.05〜2.0質量%、B、C、Mg、Sc、Y、La、Ceのうち少なくとも1種以上の元素を総量で0.005〜0.5質量%含有し、残部がCuおよび不可避的不純物からなり、引張強さが700N/mm 2 以上、導電率が20%IACS以上、熱間圧延による割れ深さが0.3mm以下、せん断加工後の破壊面割合が50%以上、応力緩和率が20%以下である銅合金、のいずれかの銅合金の製造方法であって、
前記組成の銅合金の原料を溶解し、液相線温度から600℃までの温度域において50℃/分以上の冷却速度で冷却して鋳塊を得た後、900℃以下の温度で熱間圧延を行い、次いで冷間圧延と300〜650℃の温度域における焼鈍を繰り返すことによって焼鈍後の結晶粒径を15μm以下にし、次いで60%以上の加工率の最終冷間圧延と450℃以下の低温焼鈍を行う製造方法であり、前記熱間圧延において1パス目の熱間圧延における圧下率を10〜20%とし、次のパスの熱間圧延における圧下率を5〜40%とし、最終パス目の熱間圧延における圧下率を25%以上とする銅合金の製造方法
Zn is 24 to 30% by mass , Sn is 0.5 to 1.9 % by mass , Bi, Se, Te, Sb, Pb, As, Ge, and at least one element among S in a total amount of 0.01 to containing 0.2 wt%, the balance Ri Do Cu and inevitable impurities, tensile strength of 700 N / mm 2 or more, conductivity of 20% IACS or more, 0.3mm or less crack depth by hot rolling, fracture surface ratio after shearing is at least 50%, stress relaxation ratio of 20% or less der Ru copper alloy,
Zn is 24 to 30% by mass , Sn is 0.5 to 1.9 % by mass , Bi, Se, Te, Sb, Pb, As, Ge, and at least one element among S in a total amount of 0.01 to 0.2 % by mass , containing at least one element of Ti, V, Cr, Mn, Fe, Co, Ni, Zr in a total amount of 0.05 to 2.0 % by mass with the balance being Cu and inevitable Ri Do from impurities, tensile strength of 700 N / mm 2 or more, conductivity of 20% IACS or more, cracking depth by hot rolling 0.3mm or less, fracture surface ratio after shearing is at least 50%, stress relaxation rate of 20% or less der Ru copper alloy,
Zn is 24 to 30% by mass , Sn is 0.5 to 1.9 % by mass , Bi, Se, Te, Sb, Pb, As, Ge, and at least one element among S in a total amount of 0.01 to 0.2 mass% , containing at least one element of B, C, Mg, Sc, Y, La, and Ce in a total amount of 0.005 to 0.5 mass%, with the balance being Cu and inevitable impurities Do Ri, a tensile strength of 700 N / mm 2 or more, conductivity of 20% IACS or more, 0.3mm or less crack depth by hot rolling, fracture surface ratio after shearing is at least 50%, stress relaxation rate than 20% der Ru copper alloy,
Zn is 24 to 30% by mass , Sn is 0.5 to 1.9 % by mass , Bi, Se, Te, Sb, Pb, As, Ge, and at least one element among S in a total amount of 0.01 to 0.2 % by mass , Ti, V, Cr, Mn, Fe, Co, Ni, Zr, 0.05 to 2.0 % by mass in total of at least one element selected from B, C, Mg, Sc, Y, La, containing 0.005 to 0.5 wt% in total of at least one element of Ce, the balance Ri Do Cu and inevitable impurities, tensile strength of 700 N / mm 2 or more, conductive rate is 20% IACS or more, cracking depth by hot rolling 0.3mm or less, shearing after fracture surface ratio of 50% or more, Ru der stress relaxation rate more than 20% copper alloy, or copper An alloy manufacturing method comprising:
After melting the raw material of the copper alloy having the above composition and cooling at a cooling rate of 50 ° C./min or more in the temperature range from the liquidus temperature to 600 ° C., an ingot is obtained, and then hot at a temperature of 900 ° C. or less. Rolling is performed, and then cold rolling and annealing in a temperature range of 300 to 650 ° C. are repeated to reduce the crystal grain size after annealing to 15 μm or less , then final cold rolling with a processing rate of 60% or more and 450 ° C. or less. This is a manufacturing method for performing low-temperature annealing, in which the rolling reduction in the hot rolling of the first pass in the hot rolling is 10 to 20% , the rolling reduction in the hot rolling of the next pass is 5 to 40%, and the final pass A method for producing a copper alloy, wherein the rolling reduction in hot rolling is 25% or more.
前記銅合金のZn含有量が24.3〜28.6質量%である、請求項1記載の製造方法 The manufacturing method of Claim 1 whose Zn content of the said copper alloy is 24.3-28.6 mass% .
JP2004092874A 2004-03-26 2004-03-26 Method for producing copper alloy Expired - Lifetime JP4431741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092874A JP4431741B2 (en) 2004-03-26 2004-03-26 Method for producing copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092874A JP4431741B2 (en) 2004-03-26 2004-03-26 Method for producing copper alloy

Publications (2)

Publication Number Publication Date
JP2005281714A JP2005281714A (en) 2005-10-13
JP4431741B2 true JP4431741B2 (en) 2010-03-17

Family

ID=35180437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092874A Expired - Lifetime JP4431741B2 (en) 2004-03-26 2004-03-26 Method for producing copper alloy

Country Status (1)

Country Link
JP (1) JP4431741B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084928A (en) * 2005-08-26 2007-04-05 Hitachi Cable Ltd Backing plate made of copper alloy, and method for producing the copper alloy
US8349097B2 (en) * 2009-09-17 2013-01-08 Modern Islands Co., Ltd. Dezincification-resistant copper alloy and method for producing product comprising the same
US9050651B2 (en) * 2011-06-14 2015-06-09 Ingot Metal Company Limited Method for producing lead-free copper—bismuth alloys and ingots useful for same
CN110923500A (en) * 2012-10-31 2020-03-27 株式会社开滋 Brass alloy, machined part and water contact part
TWI554355B (en) * 2013-09-26 2016-10-21 三菱伸銅股份有限公司 Brazed jointed structure
CN105296791A (en) * 2015-11-03 2016-02-03 顾建 High-conductivity copper alloy material
CN105908012A (en) * 2016-05-13 2016-08-31 四川鑫炬矿业资源开发股份有限公司 Environment-friendly lead-free easily-cutting anti-heat-cracking brass alloy material and preparation method thereof
CN113684393B (en) * 2020-05-22 2022-06-17 信承瑞技术有限公司 Preparation process of high-strength high-conductivity copper-selenium alloy contact wire
CN117686291B (en) * 2022-09-02 2024-08-09 山东众标企信检测科技有限公司 Copper and copper alloy spectral analysis standard substance and preparation method thereof

Also Published As

Publication number Publication date
JP2005281714A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JP4441669B2 (en) Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
JP2006152392A (en) High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
PL196643B1 (en) Silver containing copper alloy
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP4431741B2 (en) Method for producing copper alloy
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP5557761B2 (en) Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPH1143731A (en) High strength copper alloy excellent in stamping property and suitable for silver plating
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Ref document number: 4431741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term