JPS62267456A - Manufacture of high strength copper alloy for lead frame having high electric conductivity - Google Patents

Manufacture of high strength copper alloy for lead frame having high electric conductivity

Info

Publication number
JPS62267456A
JPS62267456A JP10912986A JP10912986A JPS62267456A JP S62267456 A JPS62267456 A JP S62267456A JP 10912986 A JP10912986 A JP 10912986A JP 10912986 A JP10912986 A JP 10912986A JP S62267456 A JPS62267456 A JP S62267456A
Authority
JP
Japan
Prior art keywords
temperature
copper alloy
hot rolling
strength
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10912986A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakajima
安啓 中島
Motohisa Miyato
宮藤 元久
Akitoshi Saito
斎藤 明敏
Masato Watari
渡 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10912986A priority Critical patent/JPS62267456A/en
Publication of JPS62267456A publication Critical patent/JPS62267456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the strength and electric conductivity by hot rolling and annealing a Cu alloy ingot contg. specified amounts of Fe, P and Sn under prescribed conditions. CONSTITUTION:A Cu alloy consisting of 0.15-2% Fe, 0.05-0.6% P, <=0.5% Sn and the balance Cu is melted. An ingot of the Cu alloy is subjected to the 1st hot rolling at <=714 deg.C and the 2nd hot rolling. It is cooled from >=600 deg.C at >=5 deg.C/sec cooling rate, cold worked and annealed at 400-600 deg.C for 5min-4hr. Temper finish rolling and annealing at 300-600 deg.C for 5sec-4hr are then carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高強度、高導電性リードフレーム用銅合金の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a high-strength, high-conductivity copper alloy for lead frames.

[従来技術] 従来より使用されている半導体用リードフレーム材とし
ては、素子およびセラミックスと線膨弔係数が近似し、
さらに高い強度を有する42合金か多く使用されてきて
いる。
[Prior art] Conventionally used lead frame materials for semiconductors have linear expansion coefficients similar to those of elements and ceramics.
42 alloy, which has even higher strength, has been widely used.

しかし、近年になって、素子の接着技術および封着(オ
の改善に伴い、42合金にかわって熱放散性に浸れ、か
つ、価格も安い銅系材料か使用されろようになってきて
いる。特に、集積回路用リードフレーム材には最近の素
子の高集積化の傾向から、素子で発生するジュール熱を
効率良く放散さ仕るたるに、より熱伝導性の、即ち、導
電性の高いリードフレーム材が要求されろようになって
きている。
However, in recent years, with the improvement of element adhesion technology and sealing (e), copper-based materials, which have good heat dissipation properties and are cheap, are being used instead of 42 alloy. In particular, lead frame materials for integrated circuits are required to have higher thermal conductivity, that is, higher electrical conductivity, in order to efficiently dissipate the Joule heat generated by the elements due to the recent trend towards higher integration of elements. Lead frame materials are increasingly required.

一方、集積回路の高密度実装化に伴う集積回路の小型化
の傾向から、リードフレーム材らRV化され、さらに高
い強度ら同時に求められている。
On the other hand, due to the trend toward miniaturization of integrated circuits due to the high density packaging of integrated circuits, lead frame materials are being made into RV materials, and higher strength is also required.

従って、高い導電性と共に・t2合金と同様の高い強度
ら併せ持つ銅系材料かリードフレーム材料として要求さ
れている。
Therefore, it is required as a copper-based material or lead frame material that has both high conductivity and high strength similar to T2 alloy.

しかして、このように高い導電性と高い強度とを併せ持
つ銅合金としては、Cu−Fe−P系またはCu−Fe
−P−Sn系の合金が知られている。
However, copper alloys that have both high conductivity and high strength are Cu-Fe-P or Cu-Fe.
-P-Sn based alloys are known.

そして、この合金系はFe−Pの化合物の析出により、
マトリックスの有する高い導電性を損なうことなく高い
強度を出現させたものであり、特性的には、上記の要求
を満足する乙のである。
This alloy system is formed by precipitation of Fe-P compounds.
It exhibits high strength without impairing the high conductivity of the matrix, and in terms of characteristics, it satisfies the above requirements.

この合金系に属する合金として、C19600(Cu−
+wt%Fe−0,3wt%P)かあり線材として使用
されているが、しかし、条または板としては一般には製
造されていない。この理由としてはこの合金系の合金は
熱間圧延が困難なためであり、即ち、熱間押出しによる
線材を除き、商業的に条または板を量産することは極め
て困難であり、また一方では、熱間圧延以外にこの合金
系の条または仮を量産する方法として、水平連続鋳造と
冷間圧延による方法が考えられるか、製造費用が熱間圧
延方法に比較して、極めて高くなることからコストダウ
ンを要求されているリードフレーム材にこの方法を適用
することは不適当である。
An alloy belonging to this alloy system is C19600 (Cu-
+wt%Fe-0,3wt%P) is used as wire rod, but is not generally produced as strip or plate. The reason for this is that this alloy type is difficult to hot-roll, which means that it is extremely difficult to mass-produce strips or plates commercially, except for wire rods by hot extrusion. In addition to hot rolling, horizontal continuous casting and cold rolling may be considered as a method for mass producing strips or temporary strips of this alloy. It is inappropriate to apply this method to lead frame materials that are required to be down.

[発明が解決しようとする間運点コ 本発明は上記に説明したように、従来におけるリードフ
レーム材料としての鋼合金やその製造法の種々の問題点
に鑑み、本発明者が鋭意研究を行い、検討を重ねた結果
、Cu−Fe−P系、Cu−Fe−P−Sn系合金の熱
間圧延を可能として条または板を製造することができろ
ことを知見し、高強度、高導電性リードフレーム用鋼合
金の製造方法を開発したのである。
[Problems to be Solved by the Invention] As explained above, the present inventor has conducted extensive research in view of various problems with conventional steel alloys as lead frame materials and their manufacturing methods. As a result of repeated studies, it was discovered that it was possible to hot-roll Cu-Fe-P and Cu-Fe-P-Sn alloys to produce strips or plates, and developed high-strength, high-conductivity alloys. The company developed a method for manufacturing steel alloys for lead frames.

[問題点を解決するための手段] 本発明に係る高強度、高導電性リードフレーム用銅合金
の製造方法の特徴とするところは、Fe 0.15〜2
.ht%、P 0.05〜0.6wt%、Sn 0.5
wt%以下 を含有し、残部実質的にCuよりなる銅合金鋳塊を71
4℃を越えない温度で1回目の熱間圧延を行い、次いで
、2回目の熱間圧延を行った後、600℃以上の温度か
ら5℃/抄以上の速度で冷却し、冷間加工後400〜6
00℃の温度で5分〜4時間の焼鈍を行った後、調質仕
上げ圧延を行ってから、300〜600℃の温度で5秒
〜4時間の焼鈍を行うことにある。
[Means for Solving the Problems] The method for producing a high-strength, high-conductivity copper alloy for lead frames according to the present invention is characterized by Fe 0.15 to 2
.. ht%, P 0.05-0.6wt%, Sn 0.5
A copper alloy ingot containing 71 wt% or less and the remainder substantially consisting of Cu.
After performing the first hot rolling at a temperature not exceeding 4°C, and then performing the second hot rolling, the product is cooled from a temperature of 600°C or higher at a rate of 5°C/sheet or higher, and after cold working. 400-6
After annealing at a temperature of 00°C for 5 minutes to 4 hours, temper finish rolling is performed, and then annealing is performed at a temperature of 300 to 600°C for 5 seconds to 4 hours.

本発明に係る高強度、高導電性リードフレーム用鋼合金
の製造方法について以下詳細に説明する。
A method for manufacturing a high-strength, high-conductivity steel alloy for lead frames according to the present invention will be described in detail below.

先ず、本発明に係る高強度、高導電性リードフレーム用
銅合金の製造方法において使用する銅合金の含有成分お
よび含有割合について説明する。
First, the components and content ratios of the copper alloy used in the method for manufacturing a high-strength, high-conductivity copper alloy for lead frames according to the present invention will be explained.

PはFeと共に燐化鉄(主としてFetP)を形成する
ことにより、強度および耐熱性を向上させる元素であり
、含有量が0.05wt%未満ではFeが0.15〜2
0w(%含有されていてもこのような効果は少なく、ま
た、0.6wt%を越えて含aされるとFeの0,15
〜2.Ovt%に相当する分は燐化鉄が形成され、上記
したような効果に寄与するが、それ以外のPは固溶し導
電性を低下さけろのみならず、熟間圧延性を著しく害す
るようになるので、P含有量は005〜0.6wt%と
する。
P is an element that improves strength and heat resistance by forming iron phosphide (mainly FetP) with Fe, and when the content is less than 0.05 wt%, Fe is 0.15 to 2
Even if the content is 0w(%), this effect is small, and if the content exceeds 0.6wt%, 0.15% of Fe
~2. Iron phosphide is formed in an amount equivalent to Ovt% and contributes to the above-mentioned effects, but other P is dissolved in solid solution and not only reduces conductivity but also significantly impairs deep rolling properties. Therefore, the P content is set to 0.05 to 0.6 wt%.

Feは上記したPの説明から明らかなように、燐化鉄の
形成を考慮して、P含有量0.05〜Q、6wt%に対
応してFe含a量は0.15〜2.0wt%とする。
As is clear from the above explanation of P, in consideration of the formation of iron phosphide, Fe content is 0.05 to Q, corresponding to 6 wt%, Fe content is 0.15 to 2.0 wt%. %.

また、FeとPとの好ましい含有量は原子%の比率でF
e対Pが2対1になる比率である。
Further, the preferable content of Fe and P is F in the ratio of atomic %.
The ratio of e to P is 2 to 1.

Snら強度を向上させる元素であり、含有量が0.5w
t%を越えて含有されると導電性を低下させるようにな
る。よって、Sn含存量は0.5wt%以下とする。
Sn is an element that improves strength, and the content is 0.5w
If the content exceeds t%, the conductivity will be lowered. Therefore, the Sn content is set to 0.5 wt% or less.

上記に説明した必須成分以外に、Mg、Ti、Zr%C
r、 Mn、 Co、Ni、Ag、Zn1Al、5i1
1n、Pbを0.01wt%未満の量で含有されても、
本発明に係る高強度、高導電性リードフレーム用銅合金
の製造方法に影響はなく最終特性について乙影響はない
In addition to the essential components explained above, Mg, Ti, Zr%C
r, Mn, Co, Ni, Ag, Zn1Al, 5i1
1n, even if Pb is contained in an amount of less than 0.01 wt%,
There is no effect on the manufacturing method of the high-strength, high-conductivity copper alloy for lead frames according to the present invention, and there is no effect on the final properties.

次ぎに、本発明に係る高強度、高導電性リードフレーム
用銅合金の製造方法の製造工程について説明する。
Next, the manufacturing process of the method for manufacturing a high-strength, high-conductivity copper alloy for lead frames according to the present invention will be explained.

本発明に係る高強度、高導電性リードフレーム用銅合金
の製造方法において使用する銅合金は、熱間圧延を行う
ことが困難である。そして、通常の熱間圧延条件、例え
ば、850℃の温度に加熱して菌量圧延を行うと、粒界
から割れが発生し圧延不能となる。この原因は、割れは
粒界に偏析したPに起因するものであり、即ち、粒界に
偏析したPが1.74nt%を越えると、銅と燐の二元
状態図から明らかなように714℃において、α+Cu
5P→L の反応が起こり、粒界に液相が生じることになる。
The copper alloy used in the method for producing a high-strength, high-conductivity copper alloy for lead frames according to the present invention is difficult to hot-roll. If bacteria mass rolling is performed under normal hot rolling conditions, for example, heating to a temperature of 850° C., cracks will occur at the grain boundaries and rolling will become impossible. The reason for this is that the cracks are caused by P segregated at the grain boundaries. In other words, when the amount of P segregated at the grain boundaries exceeds 1.74 nt%, as is clear from the binary phase diagram of copper and phosphorus, 714 At °C, α+Cu
A 5P→L reaction occurs, resulting in the formation of a liquid phase at the grain boundaries.

通常の造塊方法によればこの上うな偏析は避は難く、従
って、714℃を越える温度で熱間圧延を行なえば割れ
が発生することになる。
Such segregation is unavoidable by ordinary ingot-forming methods, and therefore, cracking will occur if hot rolling is performed at a temperature exceeding 714°C.

このような理由から1回目の熱間圧延は714℃の温度
を越えない温度とする。そして、熱間圧延の下限の温度
は圧延荷重を低くするという観点から600℃以上の温
度で、なるべく714℃に近い温度とするのか好ましい
For this reason, the first hot rolling is carried out at a temperature not exceeding 714°C. The lower limit temperature of hot rolling is preferably 600° C. or higher, preferably as close to 714° C., from the viewpoint of lowering the rolling load.

さらに、2回目の熱間圧延を行なった後、600℃以上
の温度から5℃/秒以上の速度で冷却するのは、溶体化
処理を行うためであり、600℃未満の温度では5℃/
秒以上の速度で冷却しても既に析出が起こっており、溶
体化処理の効果は不充分であり、また、冷却速度が5℃
/秒未満では600℃以上の温度から冷却しても冷却途
中に析出が起こり、溶体化処理の効果が不充分となる。
Furthermore, after the second hot rolling, cooling is performed at a rate of 5°C/second or more from a temperature of 600°C or higher to perform solution treatment, and at a temperature of less than 600°C, cooling is performed at a rate of 5°C/second or more.
Even if it is cooled at a rate of 5°C or more, precipitation has already occurred, and the effect of solution treatment is insufficient.
If the temperature is less than 600° C./second, precipitation will occur during cooling even when cooling from a temperature of 600° C. or higher, and the effect of the solution treatment will be insufficient.

しかして、2回目の圧延を行なうのは上記の目的を達成
するためであり、従って、2回目の熱間圧延温度は圧延
終了後に上記した条件を満たす温度を下限とし、上限は
省エネルギーの観点から950℃以下とするのが好まし
い。
Therefore, the second hot rolling is performed in order to achieve the above purpose, and therefore, the lower limit of the second hot rolling temperature is the temperature that satisfies the above conditions after the completion of rolling, and the upper limit is set from the viewpoint of energy saving. The temperature is preferably 950°C or less.

冷間加工後、400〜600℃の温度で5分〜4時間の
焼鈍を行なうのは燐化鉄の析出を行なうためであり、析
出により導電率が向上し、強度ら向上する。そして、4
00℃未満の温度では5分〜4時間の焼鈍を行なっても
析出は不充分であり、また、600℃の温度を越えると
析出物の再固溶が始まる。よって、温度は400〜60
0℃とする。時間は5分未満では400〜600℃の温
度で焼鈍しても析出は不充分であり、4時間を越えると
省エネルギーの観点から好ましくない。よって、焼鈍時
間は5分〜4時間とする。
After cold working, annealing is performed at a temperature of 400 to 600° C. for 5 minutes to 4 hours in order to precipitate iron phosphide, which improves electrical conductivity and strength. And 4
At a temperature below 00°C, precipitation is insufficient even if annealing is performed for 5 minutes to 4 hours, and when the temperature exceeds 600°C, solid solution of the precipitates begins again. Therefore, the temperature is 400-60
The temperature shall be 0°C. If the time is less than 5 minutes, precipitation will be insufficient even if annealed at a temperature of 400 to 600°C, and if it exceeds 4 hours, it is not preferred from the viewpoint of energy saving. Therefore, the annealing time is 5 minutes to 4 hours.

調質仕上げ圧延を行なった後、300〜600℃の温度
で5秒〜4時間の焼鈍を行なうのは、冷間圧延により低
下した伸びの回復と残留応力の除去を行なうためであり
、300°C未満の温度ではこの効果は少なく、また、
600℃を越える温度では析出物の再固溶が起こる。よ
って、温度は300〜600℃とする。時間は5秒未満
では上記した効果は少なく、また、4時間を越えると省
エネルギーの観点から好ましくない。よって、5秒〜4
時間とする。
After performing temper finish rolling, annealing is performed at a temperature of 300 to 600°C for 5 seconds to 4 hours in order to recover the elongation decreased by cold rolling and remove residual stress. At temperatures below C, this effect is small, and
At temperatures exceeding 600°C, solid solution of the precipitates occurs again. Therefore, the temperature is set at 300 to 600°C. If the time is less than 5 seconds, the above-mentioned effects will be small, and if it exceeds 4 hours, it is not preferable from the viewpoint of energy saving. Therefore, 5 seconds to 4
Time.

[実 施 例] 本発明に係る高強度、高導電性リードフレーム用銅合金
の製造方法について実施例を説明する。
[Example] Examples of the method for manufacturing a high-strength, high-conductivity copper alloy for lead frames according to the present invention will be described.

実施例 第1表に示す含有成分および含有割合の銅合金を大気溶
解し、半連続鋳造法により幅410mmX厚さ150m
mX長さ4000開の鋳塊を造塊した。
Example A copper alloy having the ingredients and proportions shown in Table 1 was melted in the atmosphere and cast into a piece with a width of 410 mm and a thickness of 150 m using a semi-continuous casting method.
An ingot with a length of 4000 m× was formed.

この鋳塊を第2表に示す条件で熱間圧延を行ない厚さ1
0mmとした後、600℃以上の温度から水冷し、表裏
両面を0 、5 amずつ面前後、厚さ0 、5 mm
まで冷間圧延を行なっ1こ後、450°Cの温度におい
て120分間焼鈍し、さらに、冷間圧延により厚さQ、
25m+nにした後、500℃の温度において20秒間
の焼鈍を行なった。
This ingot was hot rolled under the conditions shown in Table 2 to a thickness of 1
After setting it to 0 mm, it was cooled with water from a temperature of 600°C or higher, and the front and back sides were made with a thickness of 0 and 5 mm, front and back, respectively.
After cold rolling to
After setting the temperature to 25 m+n, annealing was performed at a temperature of 500° C. for 20 seconds.

このように、作成された材料により試験を行ない、その
結果を第2表に示す。
Tests were conducted using the materials thus prepared, and the results are shown in Table 2.

試験方法 (1)引張試験は圧延方向に平行に切り出したJISl
a号B試験片を使用した。
Test method (1) Tensile test was performed using JIS I cut parallel to the rolling direction.
A No. B test piece was used.

(2)導電率は幅SOx長さ300の試験片を使用しダ
ブルブリッジにより測定した。
(2) Electrical conductivity was measured using a double bridge using a test piece with a width of SOx and a length of 300 mm.

第2表から明らかなように、本発明に係る高強度、高導
電性リードフレーム用銅合金の製造方法による場合は、
良好な圧延結果が得られ、最終特性ら高強度、高導電性
が得られることかわかる。
As is clear from Table 2, when using the method for producing a high-strength, high-conductivity copper alloy for lead frames according to the present invention,
Good rolling results were obtained, and the final properties showed that high strength and high conductivity were obtained.

また、850℃の温度1回の熱間圧延では割れが発生し
、700°Cの温度1回の熱間圧延では、熱間圧延結果
は問題はなかったが、溶体化処理が不充分なため、最終
特性は引張強さ、導電性共に低い値となっている。
In addition, cracking occurred when hot rolling was carried out once at a temperature of 850°C, and when hot rolling was carried out once at a temperature of 700°C, there were no problems in the hot rolling results, but due to insufficient solution treatment. As for the final properties, both tensile strength and electrical conductivity are low.

第1表 第2表 *・・熱間圧延で割れたため、次工程を進められなかっ
た。
Table 1 Table 2 *: The next step could not be carried out because it cracked during hot rolling.

[発明の効果] 以上説明したように、本発明に係る高強度、高導電性リ
ードフレーム用銅合金の製造方法は上記の構成であるか
ら、熱間圧延性は良好であり、かつ、高強度であり、さ
らに、高導電性であるり一トフレーム用の銅合金を効率
良く製造することができろという優れた効果を有するも
のである。
[Effects of the Invention] As explained above, since the method for producing a high-strength, high-conductivity copper alloy for lead frames according to the present invention has the above-described configuration, it has good hot rollability and high strength. Furthermore, it has excellent effects such as being highly conductive and allowing for efficient production of copper alloys for frame use.

Claims (1)

【特許請求の範囲】 Fe0.15〜2.0wt%、P0.05〜0.6wt
%、Sn0.5wt%以下 を含有し、残部実質的にCuよりなる銅合金鋳塊を71
4℃を越えない温度で1回目の熱間圧延を行い、次いで
、2回目の熱間圧延を行った後、600℃以上の温度か
ら5℃/秒以上の速度で冷却し、冷間加工後400〜6
00℃の温度で5分〜4時間の焼鈍を行った後、調質仕
上げ圧延を行ってから、300〜600℃の温度で5秒
〜4時間の焼鈍を行うことを特徴とする高強度、高導電
性リードフレーム用銅合金の製造方法。
[Claims] Fe0.15-2.0wt%, P0.05-0.6wt
%, Sn 0.5 wt% or less, and the remainder substantially consists of Cu.
After performing the first hot rolling at a temperature not exceeding 4°C, and then performing the second hot rolling, cooling from a temperature of 600°C or higher at a rate of 5°C/second or higher, and after cold working. 400-6
High strength, characterized by performing annealing at a temperature of 00°C for 5 minutes to 4 hours, followed by temper finish rolling, and then annealing at a temperature of 300 to 600°C for 5 seconds to 4 hours, A method for manufacturing a copper alloy for highly conductive lead frames.
JP10912986A 1986-05-13 1986-05-13 Manufacture of high strength copper alloy for lead frame having high electric conductivity Pending JPS62267456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10912986A JPS62267456A (en) 1986-05-13 1986-05-13 Manufacture of high strength copper alloy for lead frame having high electric conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10912986A JPS62267456A (en) 1986-05-13 1986-05-13 Manufacture of high strength copper alloy for lead frame having high electric conductivity

Publications (1)

Publication Number Publication Date
JPS62267456A true JPS62267456A (en) 1987-11-20

Family

ID=14502308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10912986A Pending JPS62267456A (en) 1986-05-13 1986-05-13 Manufacture of high strength copper alloy for lead frame having high electric conductivity

Country Status (1)

Country Link
JP (1) JPS62267456A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112003A (en) * 1986-10-30 1988-05-17 Furukawa Electric Co Ltd:The Production of copper lead material for semiconductor
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
JP2006316320A (en) * 2005-05-12 2006-11-24 Kobe Steel Ltd Copper alloy sheet with deformed cross-section, and method for producing the same
JP2009263690A (en) * 2008-04-22 2009-11-12 Kobe Steel Ltd Copper alloy sheet for electrical/electronic component excellent in heat resistance
DE102005002763B4 (en) * 2004-01-23 2012-04-26 Kabushiki Kaisha Kobe Seiko Sho (Trading Also As Kobe Steel Ltd.) Copper alloy with high strength and high conductivity
JP2016211053A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy excellent in heat resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112003A (en) * 1986-10-30 1988-05-17 Furukawa Electric Co Ltd:The Production of copper lead material for semiconductor
JPH0418027B2 (en) * 1986-10-30 1992-03-26 Furukawa Electric Co Ltd
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
US6132529A (en) * 1995-10-09 2000-10-17 Dowa Mining Co., Ltd. Leadframe made of a high-strength, high-electroconductivity copper alloy
DE102005002763B4 (en) * 2004-01-23 2012-04-26 Kabushiki Kaisha Kobe Seiko Sho (Trading Also As Kobe Steel Ltd.) Copper alloy with high strength and high conductivity
JP2006316320A (en) * 2005-05-12 2006-11-24 Kobe Steel Ltd Copper alloy sheet with deformed cross-section, and method for producing the same
JP2009263690A (en) * 2008-04-22 2009-11-12 Kobe Steel Ltd Copper alloy sheet for electrical/electronic component excellent in heat resistance
JP2016211053A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy excellent in heat resistance

Similar Documents

Publication Publication Date Title
JPS6239213B2 (en)
JPH0841612A (en) Copper alloy and its preparation
JP2004225060A (en) Copper alloy, and production method therefor
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JPH02221344A (en) High strength cu alloy having hot rollability and heating adhesiveness in plating
CA1119920A (en) Copper based spinodal alloys
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JPS62267456A (en) Manufacture of high strength copper alloy for lead frame having high electric conductivity
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPH02277735A (en) Copper alloy for lead frame
JPS62133050A (en) Manufacture of high strength and high conductivity copper-base alloy
JPS6250426A (en) Copper alloy for electronic appliance
JPH09316569A (en) Copper alloy for lead frame and its production
JPS60114556A (en) Production of copper-base alloy
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPS63293147A (en) Production of iron-copper-chromium alloy strip for high-strength lead frame
JP2651122B2 (en) Method for producing Cu-Ni-Si alloy for electric / electronic device parts
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPS628491B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH1068032A (en) Copper alloy having high electric conductivity and high softening point, for use in field of electronics