JPS63112003A - Production of copper lead material for semiconductor - Google Patents
Production of copper lead material for semiconductorInfo
- Publication number
- JPS63112003A JPS63112003A JP25690586A JP25690586A JPS63112003A JP S63112003 A JPS63112003 A JP S63112003A JP 25690586 A JP25690586 A JP 25690586A JP 25690586 A JP25690586 A JP 25690586A JP S63112003 A JPS63112003 A JP S63112003A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- temperature
- copper alloy
- minutes
- leads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 20
- 239000004065 semiconductor Substances 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000010949 copper Substances 0.000 title claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 5
- 229910052802 copper Inorganic materials 0.000 title claims description 5
- 238000000137 annealing Methods 0.000 claims abstract description 34
- 238000005096 rolling process Methods 0.000 claims abstract description 14
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 abstract description 12
- 239000000956 alloy Substances 0.000 abstract description 6
- 238000012733 comparative method Methods 0.000 description 7
- 238000005097 cold rolling Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体用銅系リード材の製造法に関し、特に成
形加工性の優れたリード材を提供するものでおる。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a copper-based lead material for semiconductors, and particularly provides a lead material with excellent moldability.
一般に半導体リード材には銅合金が用いられ、従来は熱
間圧延後、冷間圧延と焼鈍を繰り返す仕上げ調質圧延に
より所望の寸法のものを1qていた。近年電子機器部品
の小型化、高集積度化から半導体用リード材においても
薄肉化が進み、更に高強度で歪の少ないフラットな材料
が要求されるようになった。また最近は2方向リードを
持つ実装方式から4方向リードを持つ実装方式に進展し
、リード材にはより優れた成形加工性と加工時の等方性
が要求されるようになった。Copper alloy is generally used for semiconductor lead materials, and conventionally, after hot rolling, 1q of desired dimensions have been obtained by finish temper rolling, which involves repeating cold rolling and annealing. In recent years, lead materials for semiconductors have become thinner due to the miniaturization and higher integration of electronic device parts, and flat materials with even higher strength and less distortion are now required. Furthermore, recently there has been a shift from a mounting method with leads in two directions to a mounting method with leads in four directions, and lead materials are now required to have better moldability and isotropy during processing.
仕上げ調質圧延を行なった材料は成形加工性、特に曲げ
加工性が劣るという欠点が必る。即ち方向によって曲げ
加工時にスプリングバックの異方性が生じ、PLCC等
のリードフレームのように4方向にリードが出ているも
のでは曲げたときに角度が異なると、基盤に実装する際
位置がずれたり、基盤につかない部分が生じるため、半
導体の信頼性を著しく低下させている。Materials subjected to finish temper rolling inevitably have the disadvantage of poor formability, especially poor bending workability. In other words, springback anisotropy occurs during bending depending on the direction, and in lead frames such as PLCC where leads come out in four directions, if the angle is different when bent, the position may shift when mounting on the board. The reliability of semiconductors is significantly reduced because some parts do not stick to the substrate.
(問題点を解決するための手段)
本発明はこれに鑑み種々検討の結果、歪が少なくフラッ
トな、即ち形状的に優れ、かつ曲げ加工時の異方性の少
ない半導体用銅系リード材の製造法を開発したものであ
る。(Means for Solving the Problems) In view of this, the present invention has been developed as a result of various studies to create a copper-based lead material for semiconductors that has less distortion, is flat, that is, has an excellent shape, and has less anisotropy during bending. A manufacturing method was developed.
即ち本発明製造法の一つは、リード用銅合金を仕上げ調
質圧延した後、150〜600℃の温度で5〜300分
の低温焼鈍を行なうか、又は300〜800℃の温度で
10秒〜5分の連続焼鈍を行なうことを特徴とするもの
でおり、他の一つはリード用銅合金を仕上げ調質圧延し
た後、150〜600℃の温度で5〜300分低温焼鈍
を行なうか、又は300〜800℃の温度で10秒〜5
分の連続焼鈍を行ない、しかる後伸び率0.3%未満の
テンションレベラー又はローラーレベラーにより整直す
ることを特徴とするものでおる。That is, one of the manufacturing methods of the present invention is to finish-pass-roll the copper alloy for the lead, and then perform low-temperature annealing at a temperature of 150 to 600°C for 5 to 300 minutes, or perform low-temperature annealing at a temperature of 300 to 800°C for 10 seconds. One is characterized by performing continuous annealing for ~5 minutes, and the other is by performing low temperature annealing at a temperature of 150 to 600°C for 5 to 300 minutes after finish-pass rolling the copper alloy for the lead. , or at a temperature of 300 to 800°C for 10 seconds to 5
It is characterized by carrying out continuous annealing for several minutes, and then realigning it with a tension leveler or roller leveler with an elongation rate of less than 0.3%.
〔作 用〕
本発明はリード用銅合金を仕上げ調質圧延した後、調質
圧延により粒界に蓄積された歪を低温焼鈍又は連続焼鈍
で解放し、異方性を改善するものである。更に低温焼鈍
又は連続焼鈍後に必まり歪をかけずにテンションレベラ
ーをかけることによりコイルの巻きぐせをとるものでお
る。[Function] The present invention is to improve the anisotropy by finish-pass-rolling a copper alloy for leads, and then releasing the strain accumulated in the grain boundaries due to the temper-rolling by low-temperature annealing or continuous annealing. Furthermore, after low-temperature annealing or continuous annealing, the winding irregularities in the coil can be removed by applying a tension leveler without necessarily applying strain.
しかして仕上げ調質圧延後に、150〜Boo ℃の温
度で5〜300分の低温焼鈍を行なうのは、150℃未
満の一度では300分を超える焼鈍を行なっても粒界に
蓄積された歪は解放されず、異方性が大きく、600℃
を超える温度では材料の強度が低下してしまう。また5
分未満では材料全体に十分量とりが行なわれず、300
分を超える焼鈍では効果が飽和してしまい、コストが大
きくなり工業的でないためである。However, performing low-temperature annealing for 5 to 300 minutes at a temperature of 150 to Boo ℃ after finish skin-pass rolling is because even if annealing is performed for more than 300 minutes at a temperature of less than 150 ℃, the strain accumulated at the grain boundaries will be reduced. No release, large anisotropy, 600℃
If the temperature exceeds 100%, the strength of the material will decrease. Also 5
If it is less than 300 minutes, sufficient amount will not be taken over the entire material, and
This is because annealing for more than a minute will saturate the effect and increase the cost, making it unsuitable for industrial use.
また上記低温焼鈍に代えて、300〜800℃の温度で
10秒〜5分の連続焼鈍を行なうのは、300℃未満の
温度では歪とりが不十分で異方性が大きく、800℃を
超える温度では強度が低下してしまう。また10秒未満
では歪が解放されず、5分以上では生産性が著しく低下
し、工業的でなくなるためである。In addition, instead of the above-mentioned low-temperature annealing, continuous annealing at a temperature of 300 to 800°C for 10 seconds to 5 minutes is recommended because at temperatures below 300°C, strain relief is insufficient and anisotropy is large; Strength decreases at high temperatures. In addition, if it takes less than 10 seconds, the strain will not be released, and if it takes more than 5 minutes, the productivity will drop significantly, making it unsuitable for industrial use.
次に上記夫々の焼鈍後、伸び率0.3%未満のテンショ
ンレベラーをかけるのは、0.3%以上では曲げ加工時
に異方性が生じるようになるためである。Next, after each of the above annealing steps, a tension leveler with an elongation rate of less than 0.3% is applied because an elongation rate of 0.3% or more causes anisotropy during bending.
なおテンションレベラーの代りに条材に張力を加えない
通常のローラーレベラー等の工業上使われている各種の
整直装置を用いることができる。さらにレベラーは製造
工程途中の幅広の条材又は最終板幅にスリットされた後
のいずれにおいて実施してもよい。Note that instead of the tension leveler, it is possible to use various straightening devices used in industry, such as a normal roller leveler that does not apply tension to the strip. Furthermore, the leveler may be applied either to the wide strip material during the manufacturing process or after it has been slit to the final sheet width.
3no、iwt%、 CrO,15wt%、残部CUか
らなる合金を常法に従って溶解・鋳造し、鋳塊を面側し
てから熱間圧延を加え、これに冷間圧延と焼鈍を繰り返
す仕上げ調質圧延により板厚0.2mの銅合金条を製作
した。この銅合金条に第1表に示すように焼鈍やテンシ
ョンレベラー等を加え、これら材料について引張り強度
1曲げ加工性を調べ、その結果を第1表に併記する。An alloy consisting of 3NO, iwt%, CrO, 15wt%, and the balance CU is melted and cast according to a conventional method, and the ingot is face-faced and then hot rolled, followed by finishing tempering by repeating cold rolling and annealing. A copper alloy strip with a thickness of 0.2 m was produced by rolling. These copper alloy strips were subjected to annealing, a tension leveler, etc. as shown in Table 1, and the tensile strength and bending workability of these materials were investigated, and the results are also listed in Table 1.
また従来方法、即ちSn0.1wt%、Oro、15w
t%、残部Cuから成る合金塊を熱間圧延後、冷間圧延
と焼鈍を繰り返す調質圧延により仕上げたものについて
の引張り強度2曲げ加工性の測定結果を第1表に併記す
る。なお曲げ加工性は圧延方向と平行及び直角にサンプ
ルを採取し、両サンプルについてJIS Z 2248
に準じたVブロック法により90’に曲げた後、両サン
プルの角度を測定して、その角度差の絶対値を示した。In addition, the conventional method, namely Sn0.1wt%, Oro, 15w
Table 1 also shows the measurement results of tensile strength and bending workability of an alloy ingot consisting of t% and the balance Cu, which was finished by hot rolling and then temper rolling, which involves repeating cold rolling and annealing. For bending workability, samples were taken parallel and perpendicular to the rolling direction, and JIS Z 2248 was used for both samples.
After bending the sample to 90' using the V-block method similar to the above, the angles of both samples were measured, and the absolute value of the angular difference was shown.
第1表から明らかなように、本発明方法Nα1〜Nα1
0により製造した材料は、従来方法Nα18〜Nα19
による材料と比べて曲げ加工性がはるかに優れているこ
とが判る。As is clear from Table 1, the methods of the present invention Nα1 to Nα1
The materials produced by the conventional method Nα18 to Nα19
It can be seen that the bending workability is far superior to that of the material made by
これに対しテンションレベラーの伸び率が0.3%を超
える比較法Nα11.低温焼鈍の温度が150℃未満の
比較法Nα12.低温焼鈍の保持時間が5分未満の比較
法Nα13.連続焼鈍の温度が300 ℃未満の比較法
Nα15及び連続焼鈍の保持時間が10秒未満の比較法
Nα16では何れも曲げ加工性が劣っている。また低温
焼鈍の温度が600℃を超える比較法Nα14及び連続
焼鈍の温度が800℃を超える比較法Nα17では何れ
も強度低下が著しいことが判る。On the other hand, comparative method Nα11 in which the elongation rate of the tension leveler exceeds 0.3%. Comparative method Nα12 in which the temperature of low-temperature annealing is less than 150°C. Comparative method Nα13 where the holding time of low temperature annealing is less than 5 minutes. Comparative method Nα15 in which the continuous annealing temperature is less than 300° C. and comparative method Nα16 in which the continuous annealing holding time is less than 10 seconds are both inferior in bending workability. Furthermore, it can be seen that both Comparative Method Nα14, in which the temperature of low-temperature annealing exceeds 600°C, and Comparative Method Nα17, in which the temperature of continuous annealing exceeds 800°C, have a significant decrease in strength.
このように本発明法によれば、形状及び曲げ加工性を向
上させた銅合金を製造することができ、これを半導体用
リード材に使用してその薄肉化、小型化を可能にする等
工業上顕著な効果を奏するものである。As described above, according to the method of the present invention, it is possible to produce a copper alloy with improved shape and bending workability, and this can be used in semiconductor lead materials to make them thinner and more compact. This has a remarkable effect.
Claims (2)
〜600℃の温度で5〜300分の低温焼鈍を行なうか
、又は300〜800℃の温度で10秒〜5分の連続焼
鈍を行なうことを特徴とする半導体用銅系リード材の製
造法。(1) After finishing and temper rolling the copper alloy for leads, 150
A method for producing a copper-based lead material for semiconductors, characterized by performing low-temperature annealing at a temperature of ~600°C for 5 to 300 minutes, or performing continuous annealing at a temperature of 300 to 800°C for 10 seconds to 5 minutes.
〜600℃の温度で5〜300分の低温焼鈍を行なうか
、又は300〜800℃の温度で10秒〜5分の連続焼
鈍を行ない、しかる後伸び率0.3%未満のテンション
レベラー又はローラーレベラーにより整直することを特
徴とする半導体用銅系リード材の製造法。(2) After finish-pass rolling the copper alloy for the lead, 150
Low-temperature annealing at a temperature of ~600°C for 5 to 300 minutes or continuous annealing at a temperature of 300 to 800°C for 10 seconds to 5 minutes, followed by a tension leveler or roller with an elongation of less than 0.3%. A method for manufacturing copper-based lead materials for semiconductors, which is characterized by straightening with a leveler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25690586A JPS63112003A (en) | 1986-10-30 | 1986-10-30 | Production of copper lead material for semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25690586A JPS63112003A (en) | 1986-10-30 | 1986-10-30 | Production of copper lead material for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63112003A true JPS63112003A (en) | 1988-05-17 |
JPH0418027B2 JPH0418027B2 (en) | 1992-03-26 |
Family
ID=17299016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25690586A Granted JPS63112003A (en) | 1986-10-30 | 1986-10-30 | Production of copper lead material for semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63112003A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01201421A (en) * | 1987-10-27 | 1989-08-14 | Hitachi Metals Ltd | Lead frame material and its production |
CN103639230A (en) * | 2013-12-06 | 2014-03-19 | 安徽鑫科新材料股份有限公司 | Technology for processing copper-nickel-zinc alloy strips |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145159A (en) * | 1979-04-12 | 1980-11-12 | Furukawa Kinzoku Kogyo Kk | Manufacture of copper foil with superior flexibility for printed wiring plate |
JPS6033328A (en) * | 1983-08-02 | 1985-02-20 | Dowa Mining Co Ltd | Copper-based alloy for lead frame and manufacture thereof |
JPS6169952A (en) * | 1984-09-14 | 1986-04-10 | Furukawa Electric Co Ltd:The | Manufacture of high strength and toughness copper alloy having high electric conductivity |
JPS6199647A (en) * | 1984-10-20 | 1986-05-17 | Kobe Steel Ltd | Material for lead frame for semiconductor and its manufacture |
JPS61127842A (en) * | 1984-11-24 | 1986-06-16 | Kobe Steel Ltd | Copper alloy for terminal and connector and its manufacture |
JPS62267456A (en) * | 1986-05-13 | 1987-11-20 | Kobe Steel Ltd | Manufacture of high strength copper alloy for lead frame having high electric conductivity |
-
1986
- 1986-10-30 JP JP25690586A patent/JPS63112003A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145159A (en) * | 1979-04-12 | 1980-11-12 | Furukawa Kinzoku Kogyo Kk | Manufacture of copper foil with superior flexibility for printed wiring plate |
JPS6033328A (en) * | 1983-08-02 | 1985-02-20 | Dowa Mining Co Ltd | Copper-based alloy for lead frame and manufacture thereof |
JPS6169952A (en) * | 1984-09-14 | 1986-04-10 | Furukawa Electric Co Ltd:The | Manufacture of high strength and toughness copper alloy having high electric conductivity |
JPS6199647A (en) * | 1984-10-20 | 1986-05-17 | Kobe Steel Ltd | Material for lead frame for semiconductor and its manufacture |
JPS61127842A (en) * | 1984-11-24 | 1986-06-16 | Kobe Steel Ltd | Copper alloy for terminal and connector and its manufacture |
JPS62267456A (en) * | 1986-05-13 | 1987-11-20 | Kobe Steel Ltd | Manufacture of high strength copper alloy for lead frame having high electric conductivity |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01201421A (en) * | 1987-10-27 | 1989-08-14 | Hitachi Metals Ltd | Lead frame material and its production |
CN103639230A (en) * | 2013-12-06 | 2014-03-19 | 安徽鑫科新材料股份有限公司 | Technology for processing copper-nickel-zinc alloy strips |
CN103639230B (en) * | 2013-12-06 | 2015-12-02 | 安徽鑫科新材料股份有限公司 | A kind of processing technology of Zn-Cu-Ni alloy strip |
Also Published As
Publication number | Publication date |
---|---|
JPH0418027B2 (en) | 1992-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63112003A (en) | Production of copper lead material for semiconductor | |
JP7294336B2 (en) | Fe-Ni alloy sheet | |
WO2018061530A1 (en) | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE | |
JPH02270945A (en) | Production of copper alloy for ic lead frame | |
JPH0363442B2 (en) | ||
JPS6386851A (en) | Production of copper-base lead material for semiconductor | |
JPH0867914A (en) | Production of ic lead frame material | |
JPH07109552A (en) | Production of extremely thin soft copper foil | |
JPS63161148A (en) | Manufacture of aluminum foil excellent in strength and workability | |
JP3000154B2 (en) | Lead frame material manufacturing method | |
JPH02270941A (en) | Fe-ni alloy excellent in etching workability and its production | |
JPS5811489B2 (en) | Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio | |
JPS61279628A (en) | Manufacture of fe-ni alloy plate or fe-ni-co alloy plate having superior repeated bendability | |
TW200829707A (en) | Copper alloy material for electric and electronic instruments and method of producing the same | |
SU1063494A1 (en) | Method of producing band for deep drawing | |
JPWO2023106262A5 (en) | ||
JPS6160141B2 (en) | ||
JPS5950125A (en) | Production of thin steel sheet having high hardness and high processability for can making | |
JPH04221039A (en) | Alloy material for lead frame and its production | |
JPS63219530A (en) | Manufacture of steel strip having mill scale excellent in peeling characteristic | |
JP3360236B2 (en) | Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties | |
JP3251691B2 (en) | Fe-Ni alloy material for lead frame and manufacturing method | |
JPH07252601A (en) | Iron-nickel alloy sheet and iron-nickel-cobalt alloy sheet for electronic parts, excellent in adhesion of resist and rusting resistance, and production | |
JPH09165658A (en) | Production of copper base lead material for semi-conductor | |
JPH0114969B2 (en) |