JPS6033328A - Copper-based alloy for lead frame and manufacture thereof - Google Patents

Copper-based alloy for lead frame and manufacture thereof

Info

Publication number
JPS6033328A
JPS6033328A JP14138683A JP14138683A JPS6033328A JP S6033328 A JPS6033328 A JP S6033328A JP 14138683 A JP14138683 A JP 14138683A JP 14138683 A JP14138683 A JP 14138683A JP S6033328 A JPS6033328 A JP S6033328A
Authority
JP
Japan
Prior art keywords
copper
based alloy
strength
weight
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14138683A
Other languages
Japanese (ja)
Other versions
JPS6142772B2 (en
Inventor
Kazutaka Nakajima
和隆 中島
Takako Sato
貴子 佐藤
Shigeru Ooyama
大山 繁
Toshikazu Tanaka
敏和 田中
Fumihiko Kawaguchi
文彦 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KINZOKU KOGYO KK
Dowa Holdings Co Ltd
Original Assignee
DOWA KINZOKU KOGYO KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KINZOKU KOGYO KK, Dowa Mining Co Ltd filed Critical DOWA KINZOKU KOGYO KK
Priority to JP14138683A priority Critical patent/JPS6033328A/en
Publication of JPS6033328A publication Critical patent/JPS6033328A/en
Publication of JPS6142772B2 publication Critical patent/JPS6142772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a copper based alloy for lead frame, which is excellent in the characteristics of strength and elongation, by subjecting a copper based alloy rough plate to which are added specific proportions of Ni, Fe and Sn on the basis of Cu to a finish cold rolling process under a specific condition. CONSTITUTION:A copper based alloy rough plate, consisting of 0.05-0.40wt% Ni, 0.5-1.5wt% Fe, 0.5-1.5wt% Sn and Cu as main component with inevitable impurities, is subjected to a finished rolling process with a draft rate of 50% or more and then to annealing process at 250-450 deg.C for 5-60min.

Description

【発明の詳細な説明】 本発明は、半導体リードフレーム材に要求される諸性性
を具備した銅基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper-based alloy having various properties required for semiconductor lead frame materials.

従来、半導体機器のり一ド利とし、では、素子およびセ
ラミックスとの接着および封止性の良好なコバール合金
(Fe−29Ni−16Co )や、42合金(Fe−
42Ni)などの高ニッケル合金が好んで使用されてい
た。しかし、近年の半導体回路のS積度の増加に伴って
、熱放散性を一層改善する必要から。
Conventionally, semiconductor devices have been used for adhesives such as Kovar alloy (Fe-29Ni-16Co) and 42 alloy (Fe-29Ni-16Co), which have good adhesion and sealing properties with elements and ceramics.
High nickel alloys such as 42Ni) were preferred. However, as the S density of semiconductor circuits increases in recent years, there is a need to further improve heat dissipation.

さらにはコストダウンを図る面から、このところのり一
ド月としては、銅基合金を使用する割合が高まっている
Furthermore, in order to reduce costs, the proportion of copper-based alloys used in adhesives has recently increased.

この従来のり一ド月用銅基合金としては、無酸素銅、 
Sn入り銅、リン青銅+ Fe入り銅などが知られてい
るが、いずれも一長一短があり、リード材としてd・要
される機械的強度、伸び、導電性、熱放散性、耐軟化性
、メッキ性、ハンダ付は性、経済性ムどの諸条件を総合
的にかつ十分に満足ずべく−Piの改善がこの1F・1
基合金に望まれている。
The conventional copper-based alloys for glue include oxygen-free copper,
Sn-containing copper, phosphor bronze + Fe-containing copper, etc. are known, but each has advantages and disadvantages, including mechanical strength, elongation, electrical conductivity, heat dissipation, softening resistance, and plating required for lead materials. In order to comprehensively and fully satisfy various conditions such as performance, soldering, performance and economy, this 1F/1
Desired for base alloys.

本発明はこの要求を満たずことを目的としたものである
。この目的において1本発明者らは試験研究を重ねた結
果、 Ni : 0.05〜0.40重箪%、Fe:(
1,5〜1.5重間%、 Sn : 0.5〜1.5重
量%、を銅に含有させた銅基台金がリードフレーム材と
してJl’+7+に好適な諸性質を兼備することを見い
だすこたがてきた。そして、この銅基合金は、その製造
にさいし一乙最終仕上げ圧延(冷間圧延)のさいに圧延
率を50%以上として必要板厚に仕上げ、その後、25
0〜450°Cの温度で5〜60分間の焼鈍を施すこと
によって、リードフレーム材として一層良好な特性を示
すことがわかった。
The present invention aims to meet this need. For this purpose, the present inventors conducted repeated test and research, and found that Ni: 0.05-0.40%, Fe: (
A copper base metal containing 1.5 to 1.5% by weight and Sn: 0.5 to 1.5% by weight in copper has various properties suitable for Jl'+7+ as a lead frame material. I've come to find out. This copper-based alloy is then finished to the required thickness at a rolling rate of 50% or more during final finishing rolling (cold rolling), and then 25%
It has been found that by annealing at a temperature of 0 to 450°C for 5 to 60 minutes, it exhibits better characteristics as a lead frame material.

本発明のリードフレーム用銅基台金の緒特性は後記実施
例に示すとおりであるが1本則基合金の合金元素である
Ni+ FeおよびSnの含有量を前記のように定めた
理由の概要を説明するとつぎのとおりである。
The properties of the copper base metal for lead frames of the present invention are as shown in the examples below, but an overview of the reasons for determining the contents of Ni + Fe and Sn, which are alloying elements of the single-base alloy, as described above will be explained below. The explanation is as follows.

Niは1機械的強度、耐軟化性および耐蝕性を改善する
作用を供するが、 0.05%未満ではこの効果が得ら
れない。しかし、0.4%を越えて含有させると、後記
表1のNo、 9〜10に見られるように、 N′I電
性とハンダ付り性が逆に劣化するようになる。
Ni provides the effect of improving mechanical strength, softening resistance, and corrosion resistance, but if it is less than 0.05%, this effect cannot be obtained. However, if the content exceeds 0.4%, the N'I conductivity and solderability will deteriorate, as seen in Nos. 9 and 10 of Table 1 below.

Feは、導電性を低下させることなく強度を向上させる
作用を供する。そして、固溶限以」二のFeの存在によ
り、銅マトリツクス中に析出した微細な鉄析出物が高温
加熱時の結晶粒の粗大化を阻止して耐軟化性を向上させ
る。Fe含有量が0.5%未満では、後記表1のNo、
5およびNo、6に見られるように、この強度と1li
ij軟化性の改善効果が不十分である。他方、 Fe含
有量が1.5%を越えると、4電性が低下しまた加工性
も悪くなる。
Fe serves to improve strength without reducing conductivity. Further, due to the presence of Fe at a concentration below the solid solubility limit, fine iron precipitates precipitated in the copper matrix prevent coarsening of crystal grains during high temperature heating and improve softening resistance. If the Fe content is less than 0.5%, No. in Table 1 below,
5 and No. 6, this strength and 1li
ij The effect of improving the softening property is insufficient. On the other hand, if the Fe content exceeds 1.5%, the tetraelectricity decreases and the processability also deteriorates.

Snは、泪マトリックス中に固溶して5強度と耐軟化性
を向上さセる。しかし、 Sn含有量が0.5%未満で
は1表1の陽7.No、8に見されるように8強度と耐
軟化性の改善効果が充分には現れない。他ろ、 Sn含
有量が1.5%を越えると、導電性と熱転−〒1i1が
悪くなり、熱間加工性も害される。
Sn forms a solid solution in the matrix to improve strength and softening resistance. However, if the Sn content is less than 0.5%, positive 7 in Table 1. As seen in No. 8, the improvement effect of 8 strength and softening resistance is not fully manifested. In addition, if the Sn content exceeds 1.5%, the conductivity and thermal transfer properties will deteriorate, and hot workability will also be impaired.

、二のように、 Ni : 0.05〜0.10重量%
、Fe:0.5〜1.5重量%、 Sn : 0.5〜
1.5重量%、を銅に含へさモることによって本発明の
銅基合金は半導体ICC用リート−要求される緒特性を
発現したものであるが、この銅基合金は、その粗板(冷
延板)をIJ、′延率が50%以上のもとで仕上り冷間
圧延し。
, like 2, Ni: 0.05-0.10% by weight
, Fe: 0.5~1.5% by weight, Sn: 0.5~
By adding 1.5% by weight to copper, the copper-based alloy of the present invention exhibits the properties required for semiconductor ICC REITs. (Cold-rolled sheet) was finished cold-rolled by IJ at a rolling reduction of 50% or more.

ついで250〜450℃の温度で5〜60分間の焼鈍を
施すと、後記の表2に示すように、一層、リード材とし
て望ましいり4性をもつイ]料とすることがてき乙。こ
の場合、最終の仕上り圧延率が50%未満では、1&続
の焼鈍によって充分な強度と伸びが18られす、圧延率
50%以上の仕上げ冷延と(250〜450°C)X(
5〜60分)の焼鈍との組合′せが必要である。焼鈍温
度が250℃より低いと、また焼鈍時間が5分より短い
と伸びが充分ではなく、また焼鈍温度が450℃より高
いと、また焼鈍温度が60分より長いと結晶粒が粗大化
して耐軟化性が劣化するとともに強度も充分なものでは
なくなる。
When the material is then annealed at a temperature of 250 to 450° C. for 5 to 60 minutes, it can be made into a material with properties that are even more desirable as a lead material, as shown in Table 2 below. In this case, if the final finish rolling reduction is less than 50%, sufficient strength and elongation can be obtained by 1 & subsequent annealing, but finish cold rolling at a rolling reduction of 50% or more (250-450°C)
A combination of annealing (5 to 60 minutes) is required. If the annealing temperature is lower than 250°C or the annealing time is shorter than 5 minutes, elongation will not be sufficient, and if the annealing temperature is higher than 450°C or longer than 60 minutes, the crystal grains will become coarse and the durability will deteriorate. As the softening property deteriorates, the strength also becomes insufficient.

以下に代表的な実施例を挙げて本発明のリードフレーム
用銅基合金の特性を説明する。
The characteristics of the copper-based alloy for lead frames of the present invention will be described below with reference to typical examples.

実施例1 表1に示す成分組成の合金を高周波真空溶解炉で溶製し
てこれをt〃造したインゴフトを850℃で熱間圧延し
、厚さ13mmの熱延板とした。この熱延板を通審の酸
洗処理した後、冷間圧延、焼鈍、酸洗を繰り返し、最終
的に50%の仕上げ冷間圧延により+ I!7.さ0.
5mmの冷延板をilた。ごの冷延まま(最終焼鈍なし
)の板からザンプルを採取して引張試験により引張強度
と伸びを測定すると共に。
Example 1 An ingot made by melting an alloy having the composition shown in Table 1 in a high-frequency vacuum melting furnace was hot-rolled at 850°C to obtain a hot-rolled plate having a thickness of 13 mm. After passing through the pickling process, this hot-rolled sheet is subjected to repeated cold rolling, annealing, and pickling, and is finally finished by 50% cold rolling to achieve +I! 7. Sa0.
A 5 mm cold rolled plate was rolled. Samples were taken from cold-rolled sheets (without final annealing) and the tensile strength and elongation were measured by a tensile test.

導電率、剛軟化性、ハンダ性を測定した。導電率は、リ
ード材の熱伝導性と導電性を評価する指標として惰用さ
れている(%IAC5)によった。面J軟化性は、試料
を30分加熱後の硬度が加熱前の硬度(圧延ままの硬度
)の80%となるときの温度を測定した。またハンダ付
り性は、ハンダ拡がり試験法によって評価した。それら
の結果を表1に総括して示した。
Electrical conductivity, bending resistance, and solderability were measured. The electrical conductivity was determined by (%IAC5), which is commonly used as an index for evaluating the thermal conductivity and electrical conductivity of the lead material. Surface J softening property was determined by measuring the temperature at which the hardness after heating the sample for 30 minutes becomes 80% of the hardness before heating (hardness as rolled). Moreover, solderability was evaluated by a solder spread test method. The results are summarized in Table 1.

表1の結果からつぎのことが明らかである。The following is clear from the results in Table 1.

NiとSnの含有量は本発明範囲であっても、 Feの
含N量が本発明で規定する範囲より低い比較例陽5.6
は2強度、導電率および耐軟化性が十分てはない。Ni
およびFe含有量が本発明範囲であってもSjj合右左
が本発明で規定する範囲より低い比較例N口、8は9強
度と耐軟化性が充分ではない。またPeおよびSnの含
有量が本発明範囲であってもNi含r7量が本発明で規
定する量より多い比較例陽9,10は導電率とハンタイ
′JU性が低下している。さらに旧の含有量が本発明範
囲であってもreとSnが本発明で規定する量より少な
い比較例No、11は耐軟化性およびハンダ付は性が劣
っている。
Even if the content of Ni and Sn is within the range of the present invention, the content of Fe and N is lower than the range specified by the present invention.
2. Strength, conductivity and softening resistance are not sufficient. Ni
Even if the Fe content is within the range of the present invention, the strength and softening resistance of Comparative Example No. 8, in which the Sjj ratio is lower than the range defined by the present invention, is insufficient. Further, even if the contents of Pe and Sn are within the range of the present invention, the conductivity and the JU property of Comparative Examples Nos. 9 and 10, in which the Ni content R7 is greater than the amount defined by the present invention, are decreased. Furthermore, even if the content of the old material was within the range of the present invention, Comparative Example No. 11, in which re and Sn were lower than the amounts specified by the present invention, had poor softening resistance and soldering properties.

これに対し1本発明で規定する範囲のNi、 Feおよ
びSnを含有する本発明例No、1〜陽4はいずれも強
度、伸び、導電率(%IAC5) 、耐軟化性およびハ
ンダ性が良好である。
On the other hand, inventive examples No. 1 to Positive 4 containing Ni, Fe, and Sn within the range specified by the present invention all have good strength, elongation, electrical conductivity (%IAC5), softening resistance, and solderability. It is.

実施例2 実施例1のNo、4.Na5およびN[110の合金に
ついて、最終板厚に仕上げる最終冷延において表2に表
示の最終圧延率のもとて0.25mmの板厚に冷間圧延
し、ついで表2に表示の焼鈍条件で最終焼鈍した場合(
またはしなかった場合)について、各試料を採取して引
張試験値と導電率を測定した。その結果を表2に示した
Example 2 No. 4 of Example 1. The Na5 and N[110 alloys were cold rolled to a thickness of 0.25 mm at the final rolling rate shown in Table 2 in the final cold rolling to achieve the final thickness, and then subjected to the annealing conditions shown in Table 2. When final annealing is carried out (
(or not), each sample was taken and the tensile test value and electrical conductivity were measured. The results are shown in Table 2.

表2 表2の結果より1本発明合金は、最終加工率を50%以
上として適切な最終焼鈍を施すと高い強度と伸びが得ら
れることがわかる。例えば試験No、Dに見られるよう
に、適切な最終圧下率と焼鈍条件の組合せにより、実施
例1の圧延まま(最終圧延率5()%)に比べて強度と
伸びの両面での向上を図ることができる。これに対して
比較合金の場合には、この最終圧下率と焼鈍条件の組合
せによっても強度の向上効果が低い。
Table 2 From the results shown in Table 2, it can be seen that the alloy of the present invention can obtain high strength and elongation when subjected to appropriate final annealing with a final working ratio of 50% or more. For example, as seen in Tests No. and D, by combining an appropriate final rolling reduction and annealing conditions, improvements in both strength and elongation were achieved compared to the as-rolled sample of Example 1 (final rolling reduction of 5()%). can be achieved. On the other hand, in the case of comparative alloys, the effect of improving strength is low even with the combination of this final reduction ratio and annealing conditions.

出願人 同和鉱業株式会社 同和金属工業株式会社 手続補正器(自発) 昭和59年7月17日 特許庁長官 志 賀 学殿 1、事件の表示 昭和58年特許願第141386号 2、発明の名称 リート−フレーム用銅基合金およびその製造法3.1市
正をする者 事件との関係 特許出願人 住所 東京都千代田区丸の内−丁目8番2号名称 同和
鉱業株式会社(ほか1名) 代表者 西1)尭 4、代理人 〒162 住所 東京都新宿区市谷薬王寺町83番地明細書の発明
の詳細な説明の()η 7、補正の内容 (1)、明細書2頁1〜2行の「増加」をr増大」に訂
正する。
Applicant: Dowa Mining Co., Ltd. Dowa Metal Industry Co., Ltd. Procedure corrector (voluntary) July 17, 1980 Director General of the Patent Office Gakudono Shiga1, Indication of the case 1982 Patent Application No. 1413862, Name of the invention REIT - Copper-based alloy for frames and its manufacturing method 3.1 Relationship with the case of the city commissioner Patent applicant address 8-2 Marunouchi-chome, Chiyoda-ku, Tokyo Name Dowa Mining Co., Ltd. (and one other person) Representative Nishi 1) Yaku 4, Agent 162 Address 83, Ichigaya Yakuoji-cho, Shinjuku-ku, Tokyo Detailed description of the invention in the specification () η 7, Contents of amendment (1), “On page 2 of the specification, lines 1-2” "increase" is corrected to "r increase".

(2)、明細書2頁4行の「のり一ド材」」を「リード
材」に訂正する。
(2) "Glue material" on page 2, line 4 of the specification is corrected to "lead material."

(3)、明細書2頁9行の「必要される」」を「必要と
されるjに訂正する。
(3) "Required" on page 2, line 9 of the specification is corrected to "required j."

(4)、明細書4頁最下行の「強度と伸びが」を「強度
が」に訂正する。
(4) In the bottom line of page 4 of the specification, "strength and elongation" is corrected to "strength".

(5)、明細書5頁16行の「冷延まま」をr冷延状態
1に訂正する。
(5) "As cold rolled" on page 5, line 16 of the specification is corrected to r cold rolled state 1.

(6)、明細書5頁19行〜明細書6頁1行の「導電率
は、・・によった。」の記載を次のとおりに補正する。
(6) The statement "The electrical conductivity was determined by..." on page 5, line 19 of the specification to page 6, line 1 of the specification is amended as follows.

「なお、熱伝導度は導電率と比例関係にあるので導電率
の測定で伝熱性を評価した。」 (7)、明細書6頁3行の「圧延まま丁を「圧延状態J
に訂正する。
"Thermal conductivity is in a proportional relationship with electrical conductivity, so we evaluated heat transfer by measuring electrical conductivity."
Correct to.

(8)、明細書6頁3〜4行の「温度を測定した。」を
「温度により評価した。」に訂正する。
(8) On page 6 of the specification, lines 3-4, "Temperature was measured." is corrected to "Evaluation was made by temperature."

Claims (1)

【特許請求の範囲】 (11,Ni : 0.05〜0.40重量%、 Fe
 : 0.5〜1.5重量%、Sn:0.5〜1.5重
量%、残部がCuおよび不可避的不純物からなるリード
フレーム用銅基合金。 f21. Nj: 0.05〜0.40重量%、 Fe
 : 0.5〜1.5重量%、 Sn : 0.5〜1
.5重量%、残部がCuおよび不可避的不純物からなる
銅基合金の粗板を、圧延率が50%以上のもとで仕上げ
冷間圧延し、ついで250〜450°Cの温度で5〜6
0分間の焼鈍を施すことからなるリードフレーム用銅基
合金の製造法。
[Claims] (11, Ni: 0.05 to 0.40% by weight, Fe
: 0.5 to 1.5% by weight, Sn: 0.5 to 1.5% by weight, and the balance is Cu and unavoidable impurities. f21. Nj: 0.05-0.40% by weight, Fe
: 0.5-1.5% by weight, Sn: 0.5-1
.. A rough plate of a copper-based alloy consisting of 5% by weight and the balance being Cu and unavoidable impurities is finish cold rolled at a rolling rate of 50% or more, and then rolled at a temperature of 250 to 450°C for 5 to 6 hours.
A method for producing a copper-based alloy for lead frames, comprising annealing for 0 minutes.
JP14138683A 1983-08-02 1983-08-02 Copper-based alloy for lead frame and manufacture thereof Granted JPS6033328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14138683A JPS6033328A (en) 1983-08-02 1983-08-02 Copper-based alloy for lead frame and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14138683A JPS6033328A (en) 1983-08-02 1983-08-02 Copper-based alloy for lead frame and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6033328A true JPS6033328A (en) 1985-02-20
JPS6142772B2 JPS6142772B2 (en) 1986-09-24

Family

ID=15290784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14138683A Granted JPS6033328A (en) 1983-08-02 1983-08-02 Copper-based alloy for lead frame and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6033328A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126720A (en) * 1985-11-27 1987-06-09 Mitsubishi Electric Corp Output changeover device of duplicated system
JPS63112003A (en) * 1986-10-30 1988-05-17 Furukawa Electric Co Ltd:The Production of copper lead material for semiconductor
JPS63266052A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPS63266053A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPH0417214A (en) * 1990-05-10 1992-01-22 Sumitomo Electric Ind Ltd Electric wire conductive body for harness
US5149917A (en) * 1990-05-10 1992-09-22 Sumitomo Electric Industries, Ltd. Wire conductor for harness

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126720A (en) * 1985-11-27 1987-06-09 Mitsubishi Electric Corp Output changeover device of duplicated system
JPS63112003A (en) * 1986-10-30 1988-05-17 Furukawa Electric Co Ltd:The Production of copper lead material for semiconductor
JPH0418027B2 (en) * 1986-10-30 1992-03-26 Furukawa Electric Co Ltd
JPS63266052A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPS63266053A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy
JPH0417214A (en) * 1990-05-10 1992-01-22 Sumitomo Electric Ind Ltd Electric wire conductive body for harness
US5149917A (en) * 1990-05-10 1992-09-22 Sumitomo Electric Industries, Ltd. Wire conductor for harness

Also Published As

Publication number Publication date
JPS6142772B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JPS5853057B2 (en) Highly conductive copper-based alloy
JP2011508081A (en) Copper-nickel-silicon alloy
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2000328157A (en) Copper alloy sheet excellent in bending workability
JPS60184655A (en) High-strength copper alloy having high electric conductivity
JPS6033328A (en) Copper-based alloy for lead frame and manufacture thereof
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JPS6256937B2 (en)
JPH032341A (en) High strength and high conductivity copper alloy
JPS6376839A (en) Copper alloy for electronic equipment and its production
JPS60116737A (en) Copper alloy
JPH09316569A (en) Copper alloy for lead frame and its production
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPS62185847A (en) High strength copper alloy for high thermal and electric conductivity use and its production
JP3032869B2 (en) High strength and high conductivity copper-based alloy
JPS62133033A (en) Cu alloy lead material for semiconductor device
JPS634885B2 (en)
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPH02129326A (en) High strength copper alloy