JPS60116737A - Copper alloy - Google Patents

Copper alloy

Info

Publication number
JPS60116737A
JPS60116737A JP22617283A JP22617283A JPS60116737A JP S60116737 A JPS60116737 A JP S60116737A JP 22617283 A JP22617283 A JP 22617283A JP 22617283 A JP22617283 A JP 22617283A JP S60116737 A JPS60116737 A JP S60116737A
Authority
JP
Japan
Prior art keywords
copper
alloy
resistance
heat resistance
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22617283A
Other languages
Japanese (ja)
Other versions
JPS628491B2 (en
Inventor
Keiichiro Oishi
恵一郎 大石
Takeshi Suzaki
須崎 丈志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANPO SHINDO KOGYO KK
Original Assignee
SANPO SHINDO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANPO SHINDO KOGYO KK filed Critical SANPO SHINDO KOGYO KK
Priority to JP22617283A priority Critical patent/JPS60116737A/en
Publication of JPS60116737A publication Critical patent/JPS60116737A/en
Publication of JPS628491B2 publication Critical patent/JPS628491B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a Cu alloy consisting of prescribed percentages of Ti, Ni, Zn and P and the balance Cu and having superior mechanical characteristics such as heat resistance, high resistance to tension, tensile strength at high temp., resistance to stress corrosion cracking and elasticity. CONSTITUTION:This Cu alloy consists of 0.1-1.5% Ti, 0.2-2.5% Ni, 0.05-2.0% Zn, 0.003-0.2% P and the balance Cu. The Cu alloy is proof against high temp. and shows superior oxidation resistance and high strength even after annealing at high temp. The Cu alloy has superior characteristics with respect to electric conductivity and very high heat resistance, so it can be widely used as a material for a heat exchanger, parts for the electric industry, parts which undergo heating to high temp. by brazing or other method, etc.

Description

【発明の詳細な説明】 本発明(4耐熱性、高抗張力、高温での引張強さ、耐応
力J’;%’食割れ性、弾性等の機械的諸性質に秀れた
銅基合金に関する。
Detailed Description of the Invention The present invention (4) relates to a copper-based alloy that has excellent mechanical properties such as heat resistance, high tensile strength, tensile strength at high temperatures, stress resistance J';%' corrosion resistance, and elasticity. .

銅は秀れた電気及び熱の伝導体であり且つ加工性か良い
ため、各種器物、建築材料、熱交換器材、電子用材料等
の多くの用途に使用されている。そして、これら様々の
用途に銅桐料を採用する場合、その機械的強度、耐熱性
、弾性などが問題となることが多くあり、これまで銅に
種々の合金元素を添加して満足すべき性質を得るべく、
燐脱酸銅や丹銅を始め種々の耐熱銅合金が提案されてい
る。
Copper is an excellent electrical and thermal conductor and has good workability, so it is used in many applications such as various objects, building materials, heat exchange equipment, and electronic materials. When using copper paulownia for these various uses, there are often problems with its mechanical strength, heat resistance, elasticity, etc., and until now, various alloying elements have been added to copper to achieve satisfactory properties. In order to obtain
Various heat-resistant copper alloys have been proposed, including phosphorus-deoxidized copper and red copper.

一般に銅に合金元素を添加すると、銅の優秀な加工性並
びに電気・熱の伝導度が低下するという欠点がある。従
って銅基合金においては、機械的強度や耐熱性、弾性、
耐食性と加工性や電気・熱の伝導性等との間のバランス
のとれたものが切望されている。また、上記に加え、加
工上焼入れ及び焼戻しく時効)等の特別な熱処理工程や
これに要する設備を必要とせず、製造コストの低いもの
が望まれる。
Generally, when alloying elements are added to copper, there is a drawback that copper's excellent workability and electrical and thermal conductivity are reduced. Therefore, in copper-based alloys, mechanical strength, heat resistance, elasticity,
There is a strong need for a material with a good balance between corrosion resistance, workability, electrical and thermal conductivity, etc. In addition to the above, it is desired to have a low manufacturing cost that does not require special heat treatment steps such as quenching and tempering during processing or the equipment required for these steps.

本願発明は、従前の銅基台金における上述の如き欠点の
除去を課題とするものであり、銅の秀れた加工性や電気
・熱の伝導性を損なうことなく機械的諸性質の向りが図
れ、しかも加工上特別な熱処理を必要とせず、安価に製
造し得る銅基合金の提供を目的とするものである。
The present invention aims to eliminate the above-mentioned drawbacks of conventional copper base metals, and improves various mechanical properties without impairing copper's excellent workability and electrical and thermal conductivity. The object of the present invention is to provide a copper-based alloy that can be manufactured at low cost without requiring any special heat treatment during processing.

本願発明者は前記課題の達成を図るため、銅とチタンと
ニッケルと亜鉛と燐と錫との配合物について多くの実験
を繰り返し、その結果を基にして、次に説明する様な新
たな配合比を有し、機械的強度や耐熱性、!1lil性
等に秀れ、しかも高い電気・熱の伝導性や加工性を兼ね
備えた銅基合金の開発に成功した。
In order to achieve the above-mentioned object, the inventor of the present application repeated many experiments on mixtures of copper, titanium, nickel, zinc, phosphorus, and tin, and based on the results, developed a new combination as described below. Has a ratio of mechanical strength and heat resistance,! We have succeeded in developing a copper-based alloy that has excellent 1 lil properties, as well as high electrical and thermal conductivity and workability.

即ち、木Kif+発明者は前記実験の結果から、チタン
、ニッケル、亜鉛、燐及び錫の添加量とその作用、添加
元素の合金緒特性に及はす相乗効果等について考察し、
次の様な事実を知得した。
That is, based on the results of the above experiments, the inventors of Kif+ considered the amounts of titanium, nickel, zinc, phosphorus, and tin added, their effects, and the synergistic effects of the added elements on the alloy properties.
I learned the following facts.

■ チタンを単独で添加した場合には、耐熱性の向」−
効果はかなりあるが、機械的強度や弾性等の向上効果は
極めて少なく、熱・電気の伝導性も悪い。
■ When titanium is added alone, it improves heat resistance.
Although it is quite effective, the effect of improving mechanical strength and elasticity is extremely small, and the conductivity of heat and electricity is also poor.

(わ ニッケルを単独で添加した場合には、耐熱+I、
機械的強度及び弾性はわずかに向上するが、その効果は
顕著なものでなく且つ熱・電気の伝導性も悪い。
(If nickel is added alone, heat resistance + I,
Although the mechanical strength and elasticity are slightly improved, the effect is not significant and the thermal and electrical conductivity is also poor.

■ チタンとニッケルとの共添の場合には、機械的強度
、耐熱性、弾性が著しく向上し、また電気伝導性も、そ
第1それの元素を単独に添加した場合よりも大幅に向上
する。
■ When titanium and nickel are co-added, mechanical strength, heat resistance, and elasticity are significantly improved, and electrical conductivity is also significantly improved compared to when each element is added alone. .

なお、チタンは0.1%以、下では効果がなく、また1
、5%を超えて添加しても、強度、耐熱性の著しい向上
は認められず、逆に電気の伝導性が低下し、経済的にも
問題となる。従ってチタン量は0.1〜1.5%の範囲
が最適である。一方、ニッケルは0.2%以下では効果
がなく、また2、5%を超えて含まれるとチタンと化合
しない残存するニッケルが多くなり、電気伝導度を低下
させる。従ってニッケルの範囲は0.2〜2.5%が最
適である。
In addition, titanium has no effect below 0.1%, and
Even if it is added in an amount exceeding 5%, no significant improvement in strength or heat resistance is observed, and on the contrary, electrical conductivity decreases, which also poses an economical problem. Therefore, the optimum amount of titanium is in the range of 0.1 to 1.5%. On the other hand, if nickel is contained in an amount of 0.2% or less, it has no effect, and if it is contained in an amount exceeding 2.5%, a large amount of nickel remains, which does not combine with titanium, resulting in a decrease in electrical conductivity. Therefore, the optimum range of nickel is 0.2 to 2.5%.

■ 亜鉛は、溶解時にあらかじめ添加しておけば溶銅中
の酸素量をかなり減少させミ高価なチタンのロスを大幅
に減少させることができると共に湯流れ性を向上させる
。また亜鉛は機械的強度や耐熱性を向上することができ
る。
■ If zinc is added in advance during melting, it can significantly reduce the amount of oxygen in the molten copper, significantly reduce the loss of expensive titanium, and improve the flowability of the metal. Zinc can also improve mechanical strength and heat resistance.

尚、亜鉛の含有量が0.05%以、下では効果かなく、
また2、0%を超えて添加しても、湯流れ性、チタンの
ロス防止、強度、耐熱性の向上は認められず、逆に電気
伝導性か低下する。従って亜鉛の範囲は0.05〜2’
、C1%位い力)最刃均である。
In addition, it is not effective if the zinc content is less than 0.05%,
Moreover, even if it is added in an amount exceeding 2.0%, no improvement in flowability, prevention of titanium loss, strength, or heat resistance is observed, and on the contrary, electrical conductivity decreases. Therefore, the range of zinc is 0.05-2'
, C1% force) is the most uniform.

1勺 燐は、r++;鉛と同楳に溶銅中の酸素を減少さ
ぜ、ル1流れf/lをよくすると共に≠トリックス中の
ニッケル及びチタン量を減少させ、チタン、ニッケル共
添時よりもさらに耐熱性、機械的強1Ω°、+jlli
性が向上する。また燐は電気・クツ(の伝導す11゛も
向上させることができる。
1. Phosphorus reduces the oxygen in molten copper in the same way as lead, improves the flow f/l, and reduces the amount of nickel and titanium in ≠ trix, and when titanium and nickel are co-added. Even more heat resistant, mechanical strength 1Ω°, +jlli
Improves sex. Phosphorus can also improve the conductivity of electricity and shoes.

而して、燐はその含有m、が0.003%以下で(4効
1]!かなく、また、燐が帆2%以上含まれると揚流れ
性、チタンのロス防止、強度、耐〃(性の著しい向」二
は認められず、逆に電気伝導度か低下すると共に応力腐
食割れの発生する恐れが/IA′る。従って燐の範囲は
0.003〜0.2%とするのが望ましい。
Therefore, if the phosphorus content m is 0.003% or less (4 effects 1)!, and if the phosphorus content is 2% or more, the upliftability, prevention of titanium loss, strength, and resistance will be reduced. (No significant effect on the conductivity was observed, and on the contrary, there was a risk that the electrical conductivity would decrease and stress corrosion cracking would occur.) Therefore, the phosphorus content should be in the range of 0.003 to 0.2%. is desirable.

ψ) チタン、ニッケル、亜鉛、燐の添加で当初(n 
1:1的は達成1−ることがてきる。しがし、これにさ
らに錫を添加することにより、マトリックス中のチタン
J看を減少させ、耐熱性、機械的強度、弾性、耐食性を
向上させることができる。
ψ) By adding titanium, nickel, zinc, and phosphorus, the initial (n
A 1:1 target can be achieved. However, by further adding tin, it is possible to reduce the amount of titanium in the matrix and improve heat resistance, mechanical strength, elasticity, and corrosion resistance.

尚、錫はその含有量が0.1%以下では効果がなく、ま
た1、5%以上添加しても、耐熱性、機械的強度、弾性
、耐食性に著しい向上は認められず、逆に電気伝導度が
低下する。従って錫の量は0.1〜1.5%とするのが
最適である。
Furthermore, tin has no effect if its content is less than 0.1%, and even if it is added more than 1.5%, no significant improvement is observed in heat resistance, mechanical strength, elasticity, or corrosion resistance; Conductivity decreases. Therefore, the optimum amount of tin is 0.1 to 1.5%.

本願発明は、前述の如き知見を基にして全く新規且つ独
創的に開発されたものであり、第一発明に係る合金は、
合金の基本配合を「チタン0.1〜1.5%、ニッケル
0.2〜2.5%、亜鉛0.05〜2,0%、燐帆00
3〜0.2%及び残部が銅」とするものである。
The present invention has been completely newly and uniquely developed based on the above-mentioned knowledge, and the alloy according to the first invention is
The basic composition of the alloy is ``Titanium 0.1-1.5%, Nickel 0.2-2.5%, Zinc 0.05-2.0%, Rinho 00.
3% to 0.2% and the balance is copper.

また、第二発明に係る合金は、合金の基本配合を「チタ
ン0.1〜1.5%、ニッケル0.2〜2.5%、亜鉛
0.05〜2,0%、燐帆003〜0.2%、錫帆1〜
1.5%及び残部が銅」とするものである。
In addition, the alloy according to the second invention has a basic composition of "Titanium 0.1 to 1.5%, Nickel 0.2 to 2.5%, Zinc 0.05 to 2.0%, Phosphorus 003 to 0.2%, tin sail 1~
1.5% and the balance copper.

以下に、本発明に係る銅基合金の具体例について説明す
る。
Specific examples of the copper-based alloy according to the present invention will be described below.

本発明に係る銅基合金と従来の銅基台金との機械的t’
l: fi、電気伝導度、耐熱性等を比較調査するため
、次の第1表に示す様な化学成分の銅基合金を数イ弔’
!J′Jf’sジノこ。
Mechanical t' between the copper-based alloy according to the present invention and the conventional copper-based metal
l: In order to conduct a comparative investigation of fi, electrical conductivity, heat resistance, etc., several copper-based alloys with chemical compositions as shown in Table 1 below were prepared.
! J'Jf's Jinoko.

第1/< 比較テスト用銅基合金の化学成分(wL%)
尚、第1表において、I(l L〜I≦4は本発明に係
る銅基合金である。また/Its 5〜&12は従来の
銅基合金であり、高5はニッケル、燐を添加していなイ
Cu −Ti−Zn合金、766はチタン、燐を添加し
ていないCu −Ni −Zn合金、扁7は燐を添加し
ティなイCu−Ti −Ni −Zn合金、76、3は
N1を添加しティなイCu −Ti −Zn −P合金
、IF−9はTiを添加していなイCu −Ni −Z
n −P合金、泥10はJIS規格の月銅板1種、j≦
J1はJIS規格の脱酸銅、高12はCu −Zn系の
耐熱銅合金である。
1st/< Chemical composition of copper-based alloy for comparison test (wL%)
In Table 1, I(l L~I≦4 is the copper-based alloy according to the present invention. /Its 5-&12 is the conventional copper-based alloy, and High 5 is the copper-based alloy with the addition of nickel and phosphorus. 766 is a Cu-Ni-Zn alloy with no addition of titanium or phosphorus, 7 is a Cu-Ti-Ni-Zn alloy with phosphorus added, 76, 3 is a Cu-Ti-Ni-Zn alloy with phosphorus added. IF-9 is a Cu-Ti-Zn-P alloy with the addition of N1, and IF-9 is a Cu-Ni-Z alloy without the addition of Ti.
n-P alloy, mud 10 is JIS standard moon copper plate type 1, j≦
J1 is JIS standard deoxidized copper, and High 12 is a Cu-Zn based heat-resistant copper alloy.

各々の材料を完全焼鈍し、それらの材料を圧下率209
6て冷間圧延し、導電率、引張強さ、伸ひ。
Each material is fully annealed and the material is reduced to a reduction rate of 209.
6. Cold rolled and tested for electrical conductivity, tensile strength, and elongation.

硬さを夫々測定した。その結果は第2表に示す如く゛で
ある。
The hardness of each was measured. The results are as shown in Table 2.

なお、准12合金については所定の焼入れ、焼戻しの熱
処理をし、引張強さ、伸び、硬さ及び導電率を測定した
。その結果か第9夷の最下欄に示されている。
Note that the Alloy No. 12 was subjected to predetermined quenching and tempering heat treatments, and its tensile strength, elongation, hardness, and electrical conductivity were measured. The results are shown in the bottom column of the 9th Yi.

第2表 機械的諸性質 第2表からも明らかな様に、本発明に係る銅基合金の引
張強さ及び硬さは、j612のC++ −Zn合金の熱
処理材及びA7のCu −Ni −Ti −Zn系合金
と同程度か或いはそれ以上あり、単独てNi 、 Ti
Pを添加した銅合金やNi、Ti、Pをそれぞれ2元素
組み合せた銅合金並ひにその他の銅基台金より優れてい
る。
Table 2 Mechanical Properties As is clear from Table 2, the tensile strength and hardness of the copper-based alloy according to the present invention are as follows: - Same level or higher than Zn-based alloys, with Ni and Ti alone
It is superior to copper alloys to which P is added, copper alloys that combine two elements of Ni, Ti, and P, as well as other copper-based metals.

また、伸びにおいては、j612のCu −Zn合金の
熱処理材より優れており、その他の銅合金と同程度か又
はわずかに劣る。なお、錫の添加は、イっすかfこ導電
率を低下させるが、引張り強さ、伸びを向上させること
がわかる。
Furthermore, in terms of elongation, it is superior to the heat treated material of J612 Cu-Zn alloy, and is comparable to or slightly inferior to other copper alloys. It is understood that the addition of tin lowers the electrical conductivity but improves the tensile strength and elongation.

更に、導電率の点ては属11の脱酸銅及。j612のC
u −Zn合金の熱処理材より劣るが、その他の合金よ
り優れていることがイつかる。このように、本発明に係
る銅基合金は、強度と導電率との間に優れたバランスを
有する銅基合金であることがわかる。
Furthermore, in terms of electrical conductivity, deoxidized copper of Group 11 and the like. j612 C
Although it is inferior to the heat treated material of u-Zn alloy, it is found to be superior to other alloys. Thus, it can be seen that the copper-based alloy according to the present invention is a copper-based alloy that has an excellent balance between strength and electrical conductivity.

次の第3表は、耐熱温度(軟化温度)と、600いこお
ける高温酸化性と、750 ’Cンで30分間#、鈍し
第3表 耐熱温度と高温酸化性と7500焼鈍後の硬さ
た後の硬さを夫々測定した結果である。
The following Table 3 shows the heat resistance temperature (softening temperature), high temperature oxidation property at 600°C, and annealing at 750°C for 30 minutes. These are the results of measuring the hardness after each test.

第3表において、耐熱温度、高温酸化性及び750C焼
鈍後の硬さ測定の各試験に用いた試料は、第2表の機械
的性質の試験において用いた試料と同しである。
In Table 3, the samples used for each test of heat resistance temperature, high temperature oxidation resistance, and hardness measurement after 750C annealing are the same as the samples used in the mechanical property test in Table 2.

耐熱温度は、初期硬さく常温での硬さ)の80%になる
ときの30分間加熱温度とした。また、高温酸化性とし
ては酸化増量を用いたが、これは600C130分加熱
後の試料重量から初期(常温)での試料重量を減じ、こ
れを試料表面積て除したものである。すなわち酸化増量
は、単位面積当りの高温酸化で生じた酸化物の酸素量の
増加を表わしている。
The heat resistance temperature was the heating temperature for 30 minutes at which the hardness reached 80% of the initial hardness (hardness at room temperature). Further, oxidation weight gain was used as the high temperature oxidation property, which was obtained by subtracting the sample weight at the initial stage (at room temperature) from the sample weight after heating at 600C for 130 minutes, and dividing this by the sample surface area. In other words, the oxidation weight gain represents the increase in the amount of oxygen in the oxide produced by high temperature oxidation per unit area.

第3表からも明らかな様に、本発明に係る銅基合金の耐
熱温度は、他のいずれの合金よりも優れており、また酸
化増量においても、他のいずれの合金よりも優れている
ことがわかる。更に、750C焼鈍後の硬さにおいても
、°本発明の係る銅基合金は、&7のCu −Ti −
Ni −Zn合金と同程度である以外は他の何れの合金
よりも優れており、且つ常温での硬さと比へた硬さの低
化率lこおいても、晶も秀11でいることかわかる。
As is clear from Table 3, the heat resistance temperature of the copper-based alloy according to the present invention is superior to any other alloy, and the oxidation weight gain is also superior to any other alloy. I understand. Furthermore, in terms of hardness after annealing at 750C, the copper-based alloy according to the present invention has a hardness of &7 Cu-Ti-
Except for being on the same level as the Ni-Zn alloy, it is superior to any other alloy, and even when considering the hardness reduction rate compared to the hardness at room temperature, the crystallinity is still excellent 11. I understand.

また、S11の添加は、特に高温酸化性を高め、耐熱4
111度、750 F:焼鈍後の硬さをも高めることが
、試料ja/Iの結果から明らかである。
In addition, the addition of S11 particularly increases the high temperature oxidation property and the heat resistance is 4.
111 degrees, 750 F: It is clear from the results of sample ja/I that the hardness after annealing is also increased.

このように、本発明に係る銅基台金は高い耐熱t1′l
l冒猛、優第1た耐酸化性及び高温焼鈍後でも高強度を
イJしており、総合的な耐熱性に秀れた銅基合金てノ・
、るl!: Jえる。
As described above, the copper base metal according to the present invention has a high heat resistance t1'l
A copper-based alloy with excellent overall heat resistance, with first-class oxidation resistance and high strength even after high-temperature annealing.
, Lul! : Jeru.

本発明の銅基合金は、上述の通り抗張力や伸び。The copper-based alloy of the present invention has high tensile strength and elongation as described above.

硬さ等の機械的性質たけてなく、電気伝導性の点ても秀
れた特性を有すると共に耐熱性も極めて高く、熱交換器
用累月や電気関係部品用素材、ろう(Jけ等の高〆晶加
熱をする部品等lζ広く活用し得るものである。
It has excellent mechanical properties such as hardness, excellent electrical conductivity, and extremely high heat resistance. It can be widely used for parts that heat crystals, etc.

また、本発明1ζ係る銅基合金は、加工上特別な熱処狸
等を全く必要としないため比較的安価に製造することか
でき、実用上極めて高い効用を有するものてt〕る。
Further, the copper-based alloy according to the present invention 1ζ does not require any special heat treatment or the like for processing, so it can be manufactured at a relatively low cost and has extremely high practical utility.

手続補正書(自主) 昭和58年12月:L、7日 1、事件の表示 特願昭5872261722、発明の
名称 銅 基 台 金 3、補正をする者 事件との関係 特許出願人 住 所 大阪府堺市三宝町8丁374番地氏 名 三宝
伸銅工業株式会社 代表者 久 野 雄一部 4、代 理 人 5、補正の対象 明細書の「3、発明の詳細な説明」の欄6、 補正の内
容 (2) 同8 rt 10 ?’r Ll l−−−&
 12は」の次の「c。
Procedural amendment (voluntary) December 1980: L, 7th 1, Indication of case: Japanese Patent Application No. 5872261722, Title of invention: Copper base Gold 3, Relationship with the case by person making the amendment: Address of patent applicant: Osaka Prefecture 8-374 Sanpo-cho, Sakai City Name: Sanpo Shindo Kogyo Co., Ltd. Representative Yu Kuno Part 4, Agent 5 Column 6 of “3. Detailed Description of the Invention” of the specification subject to amendment Contents (2) Same 8 rt 10? 'r Ll l---&
12 is”, followed by “c.

−Znjをl’ Co −Zr J +C補正する。-Znj is corrected by l'Co -ZrJ +C.

(3) :;il 10頁8行目「−−ira 12の
」次の「Cu−Z++ j ヲl Cu−Zr −I 
B: 補iE スル。
(3) :;il Page 10, line 8, “--ira 12 no” next “Cu-Z++ j worl Cu-Zr-I
B: Supplementary iE Sur.

(1)1司10 j’t J4 fi目はしめの[Cu
−Zn Jを「Cu−Zl」にン11爾1−する。
(1) 1 Tsukasa 10 j't J4 fi eye [Cu
-Convert Zn J to "Cu-Zl".

Claims (2)

【特許請求の範囲】[Claims] (1) チタン0.1〜15%、ニッケル帆2〜2.5
%、亜鉛0.05〜2.0%、燐0.003〜0.2%
及び残部か銅からなる銅基合金。
(1) Titanium 0.1-15%, nickel sail 2-2.5
%, zinc 0.05-2.0%, phosphorus 0.003-0.2%
Copper-based alloys consisting of copper and the balance copper.
(2) ヂタン帆1〜1.5%、ニッケル0.2〜2.
5%、亜鉛0.05〜2.0%、燐帆003〜0.2%
、錫帆1〜1.5%及び残部が銅からなる銅基合金。
(2) Ditan sail 1-1.5%, nickel 0.2-2.
5%, zinc 0.05-2.0%, phosphorus 003-0.2%
, a copper-based alloy consisting of 1 to 1.5% tin and the balance copper.
JP22617283A 1983-11-29 1983-11-29 Copper alloy Granted JPS60116737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22617283A JPS60116737A (en) 1983-11-29 1983-11-29 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22617283A JPS60116737A (en) 1983-11-29 1983-11-29 Copper alloy

Publications (2)

Publication Number Publication Date
JPS60116737A true JPS60116737A (en) 1985-06-24
JPS628491B2 JPS628491B2 (en) 1987-02-23

Family

ID=16841003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22617283A Granted JPS60116737A (en) 1983-11-29 1983-11-29 Copper alloy

Country Status (1)

Country Link
JP (1) JPS60116737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159541A (en) * 1984-12-28 1986-07-19 Hitachi Metals Ltd Copper alloy for lead frame
US4732731A (en) * 1985-08-29 1988-03-22 The Furukawa Electric Co., Ltd. Copper alloy for electronic instruments and method of manufacturing the same
JP2006144047A (en) * 2004-11-17 2006-06-08 Dowa Mining Co Ltd Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
JP2016518720A (en) * 2013-05-03 2016-06-23 サン−ゴバン グラス フランス Back contact substrate for photovoltaic cell or photovoltaic cell module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609262B2 (en) 2014-03-14 2019-11-20 アビニシオ テクノロジー エルエルシー Mapping of attributes of keyed entities

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159541A (en) * 1984-12-28 1986-07-19 Hitachi Metals Ltd Copper alloy for lead frame
JPS634890B2 (en) * 1984-12-28 1988-02-01 Hitachi Metals Ltd
US4732731A (en) * 1985-08-29 1988-03-22 The Furukawa Electric Co., Ltd. Copper alloy for electronic instruments and method of manufacturing the same
JP2006144047A (en) * 2004-11-17 2006-06-08 Dowa Mining Co Ltd Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
JP4568092B2 (en) * 2004-11-17 2010-10-27 Dowaホールディングス株式会社 Cu-Ni-Ti copper alloy and heat sink
JP2016518720A (en) * 2013-05-03 2016-06-23 サン−ゴバン グラス フランス Back contact substrate for photovoltaic cell or photovoltaic cell module

Also Published As

Publication number Publication date
JPS628491B2 (en) 1987-02-23

Similar Documents

Publication Publication Date Title
MXPA05002640A (en) Age-hardening copper-base alloy and processing.
US4434016A (en) Precipitation hardenable copper alloy and process
JPH0625388B2 (en) High strength, high conductivity copper base alloy
GB2043690A (en) Heat treating a copper based alloy for electrical conductivity
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPS58123846A (en) Lead material for semiconductor apparatus
US4810468A (en) Copper-chromium-titanium-silicon-alloy
US4260435A (en) Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPS6058783B2 (en) Method for manufacturing copper alloy for lead material of semiconductor equipment
JPH03115538A (en) Oxide dispersion strengthened special copper alloy
JPS60116737A (en) Copper alloy
JPS6199647A (en) Material for lead frame for semiconductor and its manufacture
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS59145746A (en) Copper alloy for lead material of semiconductor apparatus
JPH10130754A (en) Heat resistant copper base alloy
JPS59145749A (en) Copper alloy for lead material of semiconductor apparatus
JPS6256937B2 (en)
JPS61127842A (en) Copper alloy for terminal and connector and its manufacture
JPH0534409B2 (en)
JPS6033328A (en) Copper-based alloy for lead frame and manufacture thereof
JPS63274729A (en) Copper alloy for electronic and electrical appliance
JPS59136439A (en) Copper base alloy
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JPS62133033A (en) Cu alloy lead material for semiconductor device