JPH0418027B2 - - Google Patents
Info
- Publication number
- JPH0418027B2 JPH0418027B2 JP61256905A JP25690586A JPH0418027B2 JP H0418027 B2 JPH0418027 B2 JP H0418027B2 JP 61256905 A JP61256905 A JP 61256905A JP 25690586 A JP25690586 A JP 25690586A JP H0418027 B2 JPH0418027 B2 JP H0418027B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- temperature
- minutes
- rolling
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000137 annealing Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 13
- 238000005096 rolling process Methods 0.000 claims description 10
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000005452 bending Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
〔産業上の利用分野〕
本発明は半導体用銅系リード材の製造法に関
し、特に成形加工性の優れたリード材を提供する
ものである。
〔従来の技術〕
一般に半導体リード材には銅合金が用いられ、
従来は熱間圧延後、冷間圧延と焼鈍を繰り返す仕
上げ調質圧延により所望の寸法のものを得てい
た。近年電子機器部分の小型化、高集積度化から
半導体用リード材においても薄肉化が進み、更に
高強度で歪の少ないフラツトな材料が要求される
ようになつた。また最近は2方向リードを持つ実
装方式から4方向リードを持つ実装方式に進展
し、リード材にはより優れた成形加工性と加工時
の等方向性が要求されるようになつた。
〔発明が解決しようとする問題点〕
仕上げ調質圧延を行なつた材料は成形加工性、
特に曲げ加工性が劣るという欠点がある。即ち方
向によつて曲げ加工時にスプリングバツクの異方
性が生じ、PLCC等のリードフレームのように4
方向にリードが出ているものでは曲げたときに角
度が異なると、基盤に実装する際位置がずれた
り、基盤につかない部分が生じるため、半導体の
信頼性を著しく低下させている。
〔問題点を解決するための手段〕
本発明はこれに鑑み種々検討の結果、歪が少な
くフラツトな、即ち形状的に優れ、かつ曲げ加工
時の異方性の少ない半導体用銅系リード材の製造
方を開発したものである。
即ち本発明製造法はリード用銅合金を仕上げ調
質圧延した後、150〜600℃の温度で5〜300分低
温焼鈍を行なうか、又は300〜800℃の温度で10秒
〜5分の連続焼鈍を行ない、しかる後伸び率0.3
%未満のテンシヨンレベラーにより整直すること
を特徴とするものである。
〔作用〕
本発明はリード用銅合金を仕上げ調室圧延した
後、調室圧延により粒界に蓄積された歪を低温焼
鈍又は連続焼鈍で開放し、異方性を改善するもの
である。更に低温焼鈍又は連続焼鈍後にあまり歪
をかけずにテンシヨンレベラーをかけることによ
りコイルの巻きぐせをとるものである。
しかして仕上げ調質圧延後に、150〜600℃の温
度で5〜300分の低温焼鈍を行なうのは、150℃未
満の温度では300分を超える焼鈍を行なつても粒
界に蓄積された歪は解放されず、異方性が大き
く、600℃を超える温度では材料の強度が低下し
てしまう。また5分未満では材料全体に十分歪と
りが行なわれず、300分を超える焼鈍では効果が
飽和してしまい、コストが大きくなり工業的でな
いためである。
また上記低温焼鈍に代えて、300〜800℃の温度
で10秒〜5分の連続焼鈍を行なうのは、300℃未
満の温度では歪とりが不十分で異方性が大きく、
800℃を超える温度では強度が低下してしまう。
また10秒未満では歪が解放されず、5分以上では
生産性が著しく低下し、工業的でなくなるためで
ある。
次に上記夫々の焼鈍後、伸び率0.3%未満のテ
ンシヨンレベラーをかけるのは、0.3%以上では
曲げ加工時に異方性が生じるようになるためであ
る。
〔実施例〕
Sn0.1wt%、Cr0.15wt%,残部Cuからなる合金
を常法に従つて溶解・鋳造し、鋳塊を面削してか
ら熱間圧延を加え、これに冷間圧延と焼鈍を繰り
返す仕上げ調室圧延により板厚0.2mmの銅合金条
を製作した。この銅合金条に第1表に示すよに焼
鈍やテンシヨンレベラー等を加え、これら材料に
ついて引張り強度、曲げ加工性を調べ、その結果
を第1表に併記する。また従来方法、即ち
Sn0.1wt%,Cr0.15wt%、残部Cuから成る合金塊
を熱間圧延後、冷間圧延と焼鈍を繰り返す調室圧
延により仕上げたものについての引張り強度、曲
げ加工性の測定結果を第1表に併記する。なお曲
げ加工性は圧延方向と平行及び直角にサンプルを
採取し、両サンプルについてJIS Z 2248に準じ
たVブロツク法により90°に曲げた後、両サンプ
ルの角度を測定して、その角度差の絶対値を示し
た。
[Industrial Field of Application] The present invention relates to a method for manufacturing a copper-based lead material for semiconductors, and particularly provides a lead material with excellent moldability. [Prior art] Copper alloy is generally used for semiconductor lead materials.
Conventionally, after hot rolling, desired dimensions were obtained by finish temper rolling, which involves repeating cold rolling and annealing. In recent years, lead materials for semiconductors have become thinner due to the miniaturization and higher integration of electronic equipment parts, and there has been a demand for flat materials with even higher strength and less distortion. Furthermore, recently there has been a shift from a mounting method with leads in two directions to a mounting method with leads in four directions, and lead materials are now required to have better moldability and isodirectionality during processing. [Problems to be solved by the invention] The material subjected to finish skin rolling has poor formability,
In particular, it has the disadvantage of poor bending workability. In other words, anisotropy of springback occurs during bending depending on the direction, and as in the lead frame of PLCC etc.
If a device with leads protruding in different directions is bent at a different angle, the position may shift when it is mounted on a board, or some parts may not touch the board, significantly reducing the reliability of the semiconductor. [Means for Solving the Problems] In view of this, the present invention has been made as a result of various studies and has developed a copper-based lead material for semiconductors that has less distortion, is flat, has an excellent shape, and has less anisotropy during bending. A manufacturing method was developed. That is, in the manufacturing method of the present invention, after finish-pass rolling the copper alloy for the lead, low-temperature annealing is performed at a temperature of 150 to 600°C for 5 to 300 minutes, or continuous annealing is performed at a temperature of 300 to 800°C for 10 seconds to 5 minutes. After annealing, the elongation rate is 0.3.
It is characterized by being straightened by a tension leveler of less than %. [Function] The present invention improves the anisotropy by subjecting the lead copper alloy to finish conditioning rolling, and then releasing the strain accumulated in the grain boundaries due to conditioning rolling by low-temperature annealing or continuous annealing. Further, after low-temperature annealing or continuous annealing, a tension leveler is applied without applying much strain to remove curling curls in the coil. However, low-temperature annealing for 5 to 300 minutes at a temperature of 150 to 600 degrees Celsius after finish skin-pass rolling is because even if annealing is performed for more than 300 minutes at a temperature below 150 degrees Celsius, strain accumulated at the grain boundaries will occur. is not released, the anisotropy is large, and the strength of the material decreases at temperatures above 600°C. Further, if annealing is performed for less than 5 minutes, the entire material will not be sufficiently strain-relieved, and if annealing is performed for more than 300 minutes, the effect will be saturated and the cost will increase, making it unsuitable for industrial use. In addition, instead of the low-temperature annealing described above, continuous annealing at a temperature of 300 to 800°C for 10 seconds to 5 minutes is not effective because strain relief is insufficient at temperatures below 300°C and the anisotropy is large.
At temperatures above 800°C, the strength decreases.
Moreover, if the time is less than 10 seconds, the strain will not be released, and if it is more than 5 minutes, the productivity will drop significantly, making it unsuitable for industrial use. Next, after each of the above annealing processes, a tension leveler with an elongation rate of less than 0.3% is applied because an elongation of 0.3% or more causes anisotropy during bending. [Example] An alloy consisting of 0.1wt% Sn, 0.15wt% Cr, and the balance Cu is melted and cast according to a conventional method, and the ingot is faceted and then hot rolled. Copper alloy strips with a thickness of 0.2 mm were manufactured by finishing chamber rolling with repeated annealing. These copper alloy strips were subjected to annealing, a tension leveler, etc. as shown in Table 1, and the tensile strength and bending workability of these materials were examined, and the results are also listed in Table 1. Also, the conventional method, i.e.
The results of measuring the tensile strength and bending workability of an alloy ingot consisting of 0.1wt% Sn, 0.15wt% Cr, and the balance Cu were hot-rolled and then finished by chamber rolling with repeated cold rolling and annealing. Also listed in the table. The bending workability was determined by taking samples parallel and perpendicular to the rolling direction, bending both samples to 90° using the V-block method according to JIS Z 2248, measuring the angle of both samples, and calculating the difference in angle. Absolute values are shown.
【表】【table】
このように本発明法によれば、形状及び曲げ加
工性を向上させた銅合金を製造することができ、
これを半導体用リード材に使用してその薄肉化、
小型化を可能にする等工業上顕著な効果を奏する
ものである。
As described above, according to the method of the present invention, a copper alloy with improved shape and bending workability can be produced,
This can be used as lead material for semiconductors to make them thinner.
This has significant industrial effects, such as enabling miniaturization.
Claims (1)
150〜600℃の温度で5〜300分の低温焼鈍を行な
うか、又は300〜800℃の温度で10秒〜5分の連続
焼鈍を行ない、しかる後伸び率0.3%未満のテン
シヨンレベラーにより整直することを特徴とする
半導体用銅系リード材の製造法。1 After finishing and temper rolling the lead copper alloy,
Low-temperature annealing is performed at a temperature of 150-600°C for 5-300 minutes, or continuous annealing is performed at a temperature of 300-800°C for 10 seconds-5 minutes, and then adjusted with a tension leveler with an elongation rate of less than 0.3%. A method for manufacturing a copper-based lead material for semiconductors, which is characterized by its ability to be repaired.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25690586A JPS63112003A (en) | 1986-10-30 | 1986-10-30 | Production of copper lead material for semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25690586A JPS63112003A (en) | 1986-10-30 | 1986-10-30 | Production of copper lead material for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63112003A JPS63112003A (en) | 1988-05-17 |
JPH0418027B2 true JPH0418027B2 (en) | 1992-03-26 |
Family
ID=17299016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25690586A Granted JPS63112003A (en) | 1986-10-30 | 1986-10-30 | Production of copper lead material for semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63112003A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3080232B2 (en) * | 1987-10-27 | 2000-08-21 | 日立金属株式会社 | Lead frame material excellent in punching workability and manufacturing method thereof |
CN103639230B (en) * | 2013-12-06 | 2015-12-02 | 安徽鑫科新材料股份有限公司 | A kind of processing technology of Zn-Cu-Ni alloy strip |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145159A (en) * | 1979-04-12 | 1980-11-12 | Furukawa Kinzoku Kogyo Kk | Manufacture of copper foil with superior flexibility for printed wiring plate |
JPS6033328A (en) * | 1983-08-02 | 1985-02-20 | Dowa Mining Co Ltd | Copper-based alloy for lead frame and manufacture thereof |
JPS6169952A (en) * | 1984-09-14 | 1986-04-10 | Furukawa Electric Co Ltd:The | Manufacture of high strength and toughness copper alloy having high electric conductivity |
JPS6199647A (en) * | 1984-10-20 | 1986-05-17 | Kobe Steel Ltd | Material for lead frame for semiconductor and its manufacture |
JPS61127842A (en) * | 1984-11-24 | 1986-06-16 | Kobe Steel Ltd | Copper alloy for terminal and connector and its manufacture |
JPS62267456A (en) * | 1986-05-13 | 1987-11-20 | Kobe Steel Ltd | Manufacture of high strength copper alloy for lead frame having high electric conductivity |
-
1986
- 1986-10-30 JP JP25690586A patent/JPS63112003A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145159A (en) * | 1979-04-12 | 1980-11-12 | Furukawa Kinzoku Kogyo Kk | Manufacture of copper foil with superior flexibility for printed wiring plate |
JPS6033328A (en) * | 1983-08-02 | 1985-02-20 | Dowa Mining Co Ltd | Copper-based alloy for lead frame and manufacture thereof |
JPS6169952A (en) * | 1984-09-14 | 1986-04-10 | Furukawa Electric Co Ltd:The | Manufacture of high strength and toughness copper alloy having high electric conductivity |
JPS6199647A (en) * | 1984-10-20 | 1986-05-17 | Kobe Steel Ltd | Material for lead frame for semiconductor and its manufacture |
JPS61127842A (en) * | 1984-11-24 | 1986-06-16 | Kobe Steel Ltd | Copper alloy for terminal and connector and its manufacture |
JPS62267456A (en) * | 1986-05-13 | 1987-11-20 | Kobe Steel Ltd | Manufacture of high strength copper alloy for lead frame having high electric conductivity |
Also Published As
Publication number | Publication date |
---|---|
JPS63112003A (en) | 1988-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7563408B2 (en) | Copper alloy and method of manufacturing the same | |
KR100842726B1 (en) | A silver containing copper alloy and a process for forming the same | |
WO2011068134A1 (en) | Copper alloy sheet material having low young's modulus and method for producing same | |
JP3717321B2 (en) | Copper alloy for semiconductor lead frames | |
JP3511648B2 (en) | Method for producing high-strength Cu alloy sheet strip | |
EP2971215B1 (en) | Process for improving formability of wrought copper-nickel-tin alloys | |
JP2002038227A (en) | Phosphor bronze bar excellent in deep drawing and its production method | |
JPH0418027B2 (en) | ||
JP3105392B2 (en) | Manufacturing method of copper base alloy for connector | |
EP0249778B1 (en) | Composites having improved resistance to stress relaxation | |
JP3603726B2 (en) | Austenitic stainless steel sheet for electronic components | |
JPS64459B2 (en) | ||
JPWO2018061530A1 (en) | Method of manufacturing Fe-Ni based alloy sheet and Fe-Ni based alloy sheet | |
JPS63266053A (en) | Production of high tensile copper based alloy | |
JPH0867914A (en) | Production of ic lead frame material | |
US4395295A (en) | Process for treating copper-aluminum-silicon alloys to improve fatigue strength | |
JPWO2019244962A1 (en) | Fe-Ni alloy thin plate | |
US8328961B2 (en) | Iron-nickel alloy strip for the manufacture of support grids for the integrated circuits | |
JPH0347604A (en) | Production of alpha type titanium alloy sheet | |
JP3629102B2 (en) | Ferritic stainless steel sheet with excellent magnetic properties and method for producing the same | |
JP2014080676A (en) | PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL | |
TW200829707A (en) | Copper alloy material for electric and electronic instruments and method of producing the same | |
JPH0130893B2 (en) | ||
JPH08199270A (en) | Iron-nickel alloy sheet excellent in magnetic property and its production | |
JPS6293357A (en) | Manufacture of high strength copper alloy |