TW200829707A - Copper alloy material for electric and electronic instruments and method of producing the same - Google Patents

Copper alloy material for electric and electronic instruments and method of producing the same Download PDF

Info

Publication number
TW200829707A
TW200829707A TW096137423A TW96137423A TW200829707A TW 200829707 A TW200829707 A TW 200829707A TW 096137423 A TW096137423 A TW 096137423A TW 96137423 A TW96137423 A TW 96137423A TW 200829707 A TW200829707 A TW 200829707A
Authority
TW
Taiwan
Prior art keywords
mass
less
electronic parts
copper alloy
rolling
Prior art date
Application number
TW096137423A
Other languages
Chinese (zh)
Other versions
TWI412611B (en
Inventor
Junsuke Nakano
Keisuke Kitazato
Takao Hirai
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of TW200829707A publication Critical patent/TW200829707A/en
Application granted granted Critical
Publication of TWI412611B publication Critical patent/TWI412611B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Abstract

A copper alloy material obtained by finish-rolling a material at a rate of work of 40% or lower, subjecting the finish-rolled material to a heat treatment with a continuous annealing furnace at a temperature of 500-800 DEG C for 1-100 seconds, and subjecting the heat-treated material to a stress relieving treatment at a temperature of 400-600 DEG C for 30-1,000 seconds. The copper alloy material for electrical/electronic parts underwent a dimensional change through the stress relieving treatment in the range of -0.02% to +0.02% in each of the directions parallel and perpendicular to the rolling direction.

Description

200829707 九、發明說明: 【發明所屬之技術領域】 本發明關於一種電氣•電子零件用銅合金材料及其製造 方法。 【先前技術】 使用於導線架,端子,連接器,繼電器,開關等之電 氣L電子零件之銅基合金系板條材料,除了要具有高強度 與高導電性外,且要求精密加工。 力並且例如,使用作為積體電路中之電路基板的導線 木係藉由對銅基合金系板條材料進行衝壓加工,以製造 具備所需條数之導線的框架本體。 一奴者近年電氣•電子零件之高密度積集化,連接器需進 行4鼓細且籍穷抵:网、丄 * 1加,又,在導線數增大,複雑化之導 線架的加工步驟由於:S Ϊ 、 ^ /驟中,係至少分成2次進行衝壓加工。此時, 係採用在最;^刀^►@ i 、 σ工後,施以去應變退火,消除因衝 ^ y所導致之加工應變後,再次施以衝壓加工,以製造 农後之導線架的方法。 、 前後然二=氣·電子零件材料’在上述去應變退火 壓加工、 ,、產生變化,而具有難以進行高精度之衝 衝壓機等的::用導銷之間隔發生變化’難以自動搬送進 里&線木加工時去應變退火前後之尺寸傲仆沾羽4 技術,例如m 欠um俊义尺寸邊化的習知 胥提出以下之方法。 在由系合金或心Ni_C。系合金所構成之導 200829707 線架的製造法中’具有下述方法:在冷壓延至製品板厚後, 進行狹縫加工至既定的寬度,接著在施以去應變退火的製 造步驟中,不施加張力進行去應變退火,或者將張力控制 在5.0kg/mm2以下進行去應變退火,藉此製造在65〇t:T 加熱10分鐘後之材料其原長度之收縮率在〇〇3%以下的 導線架材料。此處,收縮率係以{(原長度一加熱後之長度) /原長度}xl〇〇來定義(例如,參照日本特開平5 — 1〇996〇 號公報)。200829707 IX. Description of the Invention: [Technical Field] The present invention relates to a copper alloy material for electric and electronic parts and a method of manufacturing the same. [Prior Art] Copper-based alloy strip materials for electric L-electronic parts used in lead frames, terminals, connectors, relays, switches, etc., in addition to high strength and high electrical conductivity, require precision machining. For example, the wire used as the circuit substrate in the integrated circuit is subjected to press working of a copper-based alloy-based slat material to manufacture a frame body having a desired number of wires. In recent years, the high-density accumulation of electrical and electronic parts of a slave has been carried out. The connector needs to be 4 drums and is poor: net, 丄* 1 plus, and the number of wires is increased, and the processing steps of the reticular lead frame are processed. Since: S Ϊ , ^ / ^, the system is stamped at least twice. At this time, after the most; ^ knife ^ ► @ i, σ work, apply strain relief annealing, eliminate the processing strain caused by the y ^ y, and then apply stamping again to manufacture the lead frame after the farm Methods. In the above-mentioned strain relief annealing process, it is difficult to perform high-precision punching presses, etc.: It changes with the interval of the guide pins, and it is difficult to automatically transfer them. In the & wood processing, the size of the singular servant and the feathers before and after the strain annealing, for example, m um um Junyi size marginalization of the conventional method proposed the following method. In the alloy by the alloy or the heart Ni_C. In the manufacturing method of the 200829707 wire frame formed by the alloy, the method has the following method: after cold rolling to the thickness of the product, slit processing is performed to a predetermined width, and then in the manufacturing step of applying strain relief annealing, Applying tension to strain relief annealing, or controlling the tension below 5.0 kg/mm2 for strain relief annealing, thereby producing a shrinkage ratio of 原3% or less of the original length of the material after heating at 65 〇t:T for 10 minutes. Lead frame material. Here, the shrinkage ratio is defined by {(original length - length after heating) / original length} xl ( (for example, refer to Japanese Laid-Open Patent Publication No. Hei No. Hei.

又,在銅或銅合金所構成之導線架的之製造法中,具 有下述方法:使材料製造步驟巾送往連續退火爐時之爐内 張力為送往前之材料〇.2%安全限應力(pr〇〇fstres_ 1〇 〜8.5%以下,藉此製造以材料加工步驟之去應變退火温度 或再結晶温度進行加熱處理後,於上述加熱處理前後之收 縮率在讀%以下的導線架材料。此處,收縮率定義為長 邊方向基準長度在加熱後的形状變化率(例如,參照日_ 開 2003—286527 號公報)。 、 【發明内容】 一 Υ Η π孟鴿材料來說, 例=:而率的:二受到注意,因而逐漸採用上述習知 2003、疋日本特開平5~1G996()號公報< 疋〜開2003 一 286527號公報,皆僅注意 的收縮率’而關於昼延垂直方向之尺寸 丁方向 故並無法充分解決上述問題。、‘,,、3己載’ 號公報,係規定連續退火爐之爐内張力本::20 — ^ JL·网張力,但關於爐内溫度, 6 200829707 則僅。己載實施例之條件,故亦無法充分解決上述問題。並 且曰本特開2003 — 286527號公報之實施例中所使用的銅 合金僅為C194合金,對於其他一般銅合金,則無具體表 不是否可適用該實施例的條件。 本發明係有鑑於此問題而完成者,目的在於提供一種 可同時抑制衝壓加工後之去應變退火前後壓延平行方向與 壓延垂直方向之尺寸變化率的電氣•電子零件用銅合金材 料。 本發明人等,為了同時控制銅合金材料之去應變退火 别後壓延平行方向與壓延垂直方向之尺寸變化率,進行研 究後的結果,發現以下事實。 為了同時控制衝壓加工中或加工後之去應變退火前後 壓延平行方向與壓延垂直方向的尺寸變化率,進行各種實 驗研究後,例如在搬送銷與導孔之空隙在單側為5μιη左右 時,為了進行安定的自動搬送,發現壓延平行方向與壓延 垂直方向任一者的尺寸變化率最低必須在—〇 〇2%至+ 0.02%(較佳在一 0.01%至+ 0·01%)之範圍内。尤其是在導 線架窄寬度間距化,對朝4方向突出之外導腳部(〇uter Lead) 進行土3 μιη左右的高精度衝壓加工時,發現壓延垂直方向 之尺寸變化率變得特別重要,且壓延平行方向與壓延垂直 方向任一者的尺寸變化率最低亦是必須控制在一 〇 〇2%至 + 0.02%(較佳在一 0.01%至+ 0.01%)之範圍内。 又本發明人等’對於加熱處理前後之尺寸變化的現象, 將注意力集中在(1)因壓延所導入之晶格缺陷的消失(移動) 7 200829707 與⑺朝母相中之州#的析出•再固溶現象。亦即係推論 隨著藉由熱加工將屋延所致之晶格缺陷加以消除(移動)所 造成之集合組織的變&,在母相發生 所致之晶格缺陷的排列具有方向性,因此尺寸變 千仃方向與壓延垂直方向具有不同的變化。對於此点,進 行各種研究的結果,發現特別會對遷延平行方向之尺寸變 化造成巨大影響。X,推論因Ni2Si之優先成長析出及再 固溶而使得在母相中發生尺寸變化,由於析出現象具有優 先成長方向’因此尺寸變化在壓延平行方向與星延垂直方 向具有不同的變化,進行各種研究的結果,發現因優先成 長析出及再固溶所產生之尺寸變化,特別會對壓延垂直方 :之尺寸變化造成巨大影響。本發明,即基於此等發現而 元成者。 根據本發明,可提供以下之電氣•電子零件 料及其製造方法: ⑴一種電氣•電子零件用銅合金材料,係以彻。C以上 以下之温度在30秒以上刪秒以下之條件下對材料 進行去應變退火處理所形成,其中,該材料已事先以4〇% ==加工率進行了精加工壓延,且於該精加工壓延後藉 ,退火爐以简以上喊以下之溫度在"少以上⑽ 秒以下之條件下進行過熱處理,其特徵在於: 該去應變退火處理前後的壓延平行方向血壓延垂直方 :任-者之尺寸變化率皆在_〇.〇2%至+ 〇〇2% 内0 200829707 (2) 如⑴所記載之電氣•電子零件用銅合金材料,盆中, 該去應變退火處理係在 /、 行。 ^ ^ T +忏之加工步騾中進 (3) 如(1)或(2)所記載之雪裔^ ν 电軋電子零件用銅合金材料, 〃中’ κ氣•電子零件用銅合金材料為導線架材。 ㈣(4)ΓΓ)〜(3)任—者所記載之電氣•電子零件用銅合金 材料,其中,該銅合金材料含有15質量%以上4直 %以下的Ni、0.35質量%以上1.0質量%以下的S:,並: 含有選自0.05質量%以上〇 、'且 量%以上0.5質量%以下的… 下的Mg、〇.〇5質 里心下的Sn、〇〇5質量%以上 :下的Zn、0.01質量%以上質量%以下的Ag:005 質㈣以上。.4質量%以下的Cr中之 二·〇5 素,剩餘部分由銅及不可避免之雜質所構 ⑺-種電氣·電子零件關合金材料 特徵在於: 攻刀次兵 在以上_t以下對材料進行^秒以上⑽ 以下的去應變退火處理,使该去 便4去應變退火處理 平行方向與壓延垂直方向任一者 冑的紅 %至+ 0.02%的範圍内,i中, 在 0,02 „ n/ 其中该材料為事先對銅合全材 料以心以下之加I率進行了精加工㈣,且於該精加工 壓延後藉由500°C以上800°C以下、}和、、 、/n 連續退火爐進行過熱處理。 、上100移以下之 方、>(6:1”所:己載之電氣·電子零件用銅合金材料之製造 方法,/、中,係在電氣•電子零件 之材料加工步驟中進行 200829707 该去應變退火處理。 本發明之上述與其他之特徵及優點,可自下述記載更 加清楚瞭解。 【實施方式】 本發明之電氣•電子零件用銅合金材料,係對在材料製 造步驟中,係40%以下之加工率進行過精加工壓延,然 後以50吖以上喊以下之温度、】秒間以上1〇〇秒間以 下之條件藉由連續退火爐進行過熱處理的電氣•電子零件 材,在材料加工步驟進一步進行加工後所製得。本發明中, 所謂材料製造步驟,係指從鑄塊至製造電氣·電子零件她 材、條材等)的步驟’包含精加工壓延之步驟以及藉由連續 退火爐所進行的熱處理。 、 ,又於本發明中,材料加工步驟,係指至對上述材料 製=驟所製得之電氣•電子零件材(板材、條材等)進行加 •电氣電子零件為止的步驟,包含衝壓加工等之步 合右材料製造步驟之精加工壓延的加工率過大,則由於 二在表面务生龜裂及導入過多的晶格缺陷導致在其後之 步驟(例如材料加工步驟)之熱處理前後的壓延平行方向的 尺寸變化率特別大,而難以同時將壓延平行方向與壓延垂 直方向之尺寸變化率控制在適當的範圍。因此,使 〇步驟之精加工壓延的加工率在4〇%以下,較佳則在Μ Z以上20%以下。 若材料製造步驟之連續退火温度過低,則由於會殘留 200829707 :l所&人之SB格缺陷’導致其後之步驟(例如材料加工步 驟)之熱處理前後㈣延平行方向的尺寸變化率特別大,而 難以同時將壓延平;A也成、 、十仃方向與壓延垂直方向之尺寸變化率控 制在適S的乾圍。X ’若連續退火温度過低的話,則為了 要消除晶格缺陷,必猪尤蟲击上夕 乂肩化費較多的熱處理時間,而導致生 産力P“氐。相反地,若上述連續退火温度過高,則由於在 其後之步驟(例如材料加工步驟)之熱處理前後,析出現象 r 快速進行,導致壓延垂直方向之尺寸變化率特別大,而難 以同時將壓延平行方向與昼延垂直方向之尺寸變化率控制 在適當的範圍。又,若連續退火温度過高,亦會造成材料 軟化’而難以得到所欲之機械特性。因此,使材料製造步 驟之連續退火温度在5崎以上縦⑶下,較㈣在60代 以上7 5 0 °C以下。 若材料製造步驟之連續退火時間過長,則會造成材料 料軟化而無法得到所欲之機械特性、及導致生産力顯著降 低等目此較佳係使材料製造步驟之連續退火時間在1 〇〇 秒以下,更佳在6〇秒以下。又,若連續退火時間過短時, 則不能獲得安定的材料温度分布,而無法產生安定之再固 溶現象及回復壓延之應變等,無法得到所欲之機械特性, 故使連續退火時間在丨秒以上,較㈣在ig秒以上。 上述材料製造步驟所製得之材料的厚度,並無特別限 制’但較佳為0.25〜〇.〇5mm。又,本發明中之材料,包含 通¥稱為板材及條材者。 本發明’係藉由包含以4,c以上鐵以下之温度進 11 200829707 仃30秒以上1〇〇〇秒以下之去應 脾H、· 夂k人的材料加工步驟, 將上述材料製造步驟所製 加工+ _、 % 了叶加工成加工品。此材料 V 〃从電氣•電子零件之加工步 工步驟以h X ^驟為佳。又,材料加 、Λ包含衝壓加工的步驟為佳。 若材料加工步驟之去應變退火 去除衝壓加工之岸變…度過低’則無法充分 則將、… 去應變退火温度過高, =Γ料軟化,而無法得到所欲之機械特性。因此, 口工步驟之去應變退火温度在卿CU繼。^ 下,k佳則在450°C以上55(TC以下。 去除=加工㈣之去應變退火時間過短,則無法充分 '、i工之應纟夂。又’若上述去應變退火時間過長, 則會造成材料料軟化而無法得到所欲之機械特性、及導致 生產力顯著降低等。因此吏 士 便材枓加工步驟之去應變退火 日-間在3"少以上1000秒以下,較佳則在18〇秒以上 秒以下。 本發明之電氣•電子零件用銅合金材料,其熱處理(用 以進行去應㈣幻前後之壓延平彳讨向錢㈣直方向任 :者的尺寸變化率皆在-0·02%至+ 〇瑪。較佳為壓延 平仃方向與壓延垂直方向任一者的尺寸變化率 %至+ 0.01%之範圍内。 · 接著,說明本發明之電氣•電子零件用銅合金材料之銅 合金較佳之組成。 其一例,係含有i.5質量%以上4.5質量%以下的Ni、 0.35質量%以上U質量%以下的⑴,並且含有選自⑽ 12 200829707 質量%以上0,15質量% w π 、/以下的Mg、0.05質量%以上0.5 質量%以下的Sn,〇·〇5皙旦 議以^質量心里::幻質量心下,0·01 旦〇/以下的r ^ 下的Α§,〇·05質量%以上〇·4質 里%以下的Cr中之1链々 檀或2種以上的元素,剩餘部分則 由銅及不可避之雜質所構成之合金。Further, in the method of manufacturing a lead frame made of copper or a copper alloy, there is a method in which the tension in the furnace when the material manufacturing step towel is sent to the continuous annealing furnace is the material before delivery. 2% safety limit The stress (pr〇〇fstres_1 〇 to 8.5% or less) is used to manufacture a lead frame material having a shrinkage ratio of less than or equal to about % after heat treatment after heat treatment at a strain-annealing temperature or a recrystallization temperature of the material processing step. Here, the shrinkage ratio is defined as the shape change rate of the reference length in the longitudinal direction after heating (for example, refer to Japanese Laid-Open Patent Publication No. 2003-286527). [Invention] In the case of a material of 孟 孟 Meng Meng, example = : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The direction of the vertical direction is not sufficient to solve the above problems. The ',,, 3, and 3' publications specify the internal tension of the furnace in the continuous annealing furnace:: 20 — ^ JL·net tension, but about the furnace temperature 6 200829707 The above-mentioned problems are not fully solved by the conditions of the examples, and the copper alloy used in the embodiment of the Japanese Patent Publication No. 2003-286527 is only C194 alloy. For other general copper alloys, There is no specific condition as to whether or not the conditions of the embodiment can be applied. The present invention has been made in view of the above problems, and an object thereof is to provide a dimensional change which can simultaneously suppress the parallel direction of rolling and the vertical direction of rolling before and after strain relief annealing after press working. The present inventors have found the following facts in order to simultaneously control the dimensional change rate of the parallel direction of the rolling and the vertical direction of the rolling after the strain relief annealing of the copper alloy material. In order to simultaneously control the dimensional change rate of the parallel direction of rolling and the vertical direction of rolling before and after the strain annealing in the press working or after the processing, after various experimental studies, for example, when the gap between the transfer pin and the guide hole is about 5 μm on one side, Carrying out the automatic transfer of stability, and found that the rolling parallel direction and the rolling perpendicular direction The dimensional change rate to either one must be at least -2% to + 0.02% (preferably in the range of 0.01% to +01.01%), especially in the narrow width of the lead frame. When the high-precision press working of the soil is about 3 μm, the dimensional change rate in the vertical direction of the rolling is particularly important, and the rolling parallel direction and the rolling vertical direction are both important. The minimum rate of dimensional change must also be controlled within a range of from 2% to + 0.02% (preferably from 0.01% to +0.01%). Further, the inventors of the present invention have a phenomenon of dimensional change before and after heat treatment, Attention is focused on (1) the disappearance of the lattice defects introduced by calendering (movement) 7 200829707 and (7) precipitation and re-solidification of the state # in the mother phase. That is, it is inferred that the arrangement of the lattice defects caused by the occurrence of the parent phase is directional with the change of the aggregate structure caused by the elimination (movement) of the lattice defects caused by the thermal processing. Therefore, the size change direction and the rolling vertical direction have different changes. At this point, the results of various studies have found that it has a great influence on the dimensional change in the parallel direction. X, it is inferred that the size change occurs in the parent phase due to the preferential growth and re-solubilization of Ni2Si, and since the appearance of the precipitate has a preferential growth direction, the dimensional change has a different change in the parallel direction of the rolling direction and the vertical direction of the star-shaped extension. As a result of the research, it was found that dimensional changes due to preferential growth and re-solidification have a great influence on the dimensional change of the rolling vertical: The present invention is based on such findings. According to the present invention, the following electrical and electronic parts and methods for producing the same can be provided: (1) A copper alloy material for electric and electronic parts is used. The temperature below C is formed by de-strain annealing of the material under the condition of less than 30 seconds, wherein the material has been subjected to finishing calendering at a processing rate of 4%%==, and the finishing is performed. After the calendering, the annealing furnace is subjected to heat treatment under the condition of less than (10) seconds, and is characterized in that: the calendering parallel direction before and after the strain relief annealing is perpendicular to the vertical direction: The dimensional change rate is in the range of _〇.〇2% to + 〇〇2%. 0 200829707 (2) The copper alloy material for electrical and electronic parts as described in (1), in the basin, the strain relief annealing treatment is in /, Row. ^ ^ T + 加工 加工 加工 加工 加工 加工 加工 加工 加工 加工 加工 加工 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( For the wire frame. (4) (4) ΓΓ) (3) Any of the copper alloy materials for electrical and electronic parts, wherein the copper alloy material contains 15% by mass or more and 4% by% or less of Ni, 0.35% by mass or more and 1.0% by mass. In the following S:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: Zn, 0.01% by mass or more and Ag: 005 (four or more). .4% by mass or less of Cr···5, the remainder is composed of copper and unavoidable impurities. (7)-Electrical and electronic parts are characterized by: The tapping force is above the above _t Performing a strain relief annealing treatment of (2) or more (10) or less, so that the de-strain 4 is subjected to the strain-annealing treatment in the range of the red % to + 0.02% of the parallel direction and the vertical direction of the rolling, i, at 0, 02 „ n/ wherein the material is previously subjected to finishing (I) to the copper composite material at a rate of less than the core, and after the finishing and rolling, by 500 ° C or more and 800 ° C or less, } and , , , / n The continuous annealing furnace is subjected to heat treatment. The upper and lower 100-degree or less, and the (6:1): the manufacturing method of the copper alloy material for electric and electronic parts, which is contained in electrical and electronic parts. In the material processing step, the de-strain annealing treatment of 200829707 is performed. The above and other features and advantages of the present invention can be more clearly understood from the following description. [Embodiment] The copper alloy material for electric and electronic parts of the present invention is In the material manufacturing step, An electrical/electronic parts material that has been subjected to finishing heat treatment at a processing rate of 40% or less, and then subjected to heat treatment by a continuous annealing furnace at a temperature of 50 吖 or more and a temperature of less than or equal to 1 sec. The processing step is further processed. In the present invention, the step of "material manufacturing step refers to the step of ingot casting to manufacturing electrical and electronic parts, materials, strips, etc." includes the steps of finishing calendering and by continuous Heat treatment by annealing furnace. Further, in the present invention, the material processing step refers to a step up to the addition of electrical and electronic parts to the electrical and electronic parts (plates, strips, etc.) obtained by the above-mentioned material manufacture, including stamping. If the processing rate of the finishing and the finishing of the right material manufacturing step is too large, the second surface is cracked and the excessive lattice defects are introduced, resulting in the heat treatment of the subsequent steps (for example, the material processing step). The dimensional change rate in the rolling parallel direction is particularly large, and it is difficult to simultaneously control the dimensional change ratio of the rolling parallel direction and the rolling vertical direction to an appropriate range. Therefore, the processing ratio of the finishing and rolling of the crucible step is 4% or less, preferably ΜZ or more and 20% or less. If the continuous annealing temperature of the material manufacturing step is too low, the dimensional change rate of the parallel direction may be particularly high (4) before and after the heat treatment of the subsequent steps (for example, the material processing step) due to the residual SB defect of 200829707:1& It is difficult to simultaneously flatten the flattening; the dimensional change rate of the direction A and the direction of the tenth and the vertical direction of the rolling is controlled to the dry circumference of the appropriate S. X 'If the continuous annealing temperature is too low, in order to eliminate the lattice defects, the pig will be hit by the heat treatment time, which leads to the productivity P "氐. Conversely, if the above continuous annealing If the temperature is too high, the precipitation of the image appears rapidly before and after the heat treatment in the subsequent step (for example, the material processing step), resulting in a particularly large dimensional change rate in the vertical direction of the rolling, and it is difficult to simultaneously parallelize the rolling parallel direction and the rolling direction. The dimensional change rate is controlled within an appropriate range. Moreover, if the continuous annealing temperature is too high, the material will be softened and it is difficult to obtain the desired mechanical properties. Therefore, the continuous annealing temperature of the material manufacturing step is above 5 縦 (3) Lower, (4) is below 60 generations and below 75 ° C. If the continuous annealing time of the material manufacturing step is too long, the material material will soften and the desired mechanical properties will not be obtained, and the productivity will be significantly reduced. Preferably, the continuous annealing time of the material manufacturing step is less than 1 sec., more preferably less than 6 sec. Further, if the continuous annealing time is too short, then The stable temperature distribution of the material can be obtained, and the re-solid solution phenomenon and the strain of the recovery calender cannot be produced, and the desired mechanical properties cannot be obtained, so that the continuous annealing time is longer than the leap seconds, and more than (iv) is more than ig seconds. The thickness of the material obtained by the material manufacturing step is not particularly limited 'but preferably 0.25 to 〇. 〇 5 mm. Further, the material of the present invention includes those known as sheets and strips. By processing the material processing steps of the above materials manufacturing step by including the material processing steps of the spleen H, · 夂k person with the temperature below 4, c and above iron into the 11 200829707 仃 30 seconds or more and 1 sec. % The leaf is processed into a processed product. This material V 〃 is better from the step of processing the electrical and electronic parts. The step of adding the material and the Λ including the stamping process is better. Strain annealing to remove the stamping process. If the temperature is too low, then the strain will not be sufficient. The strain annealing temperature is too high, and the material is softened, so that the desired mechanical properties cannot be obtained. Therefore, the strain step is strained. The fire temperature is in Qing CU. ^, K is better than 450 ° C above 55 (TC below. Removal = processing (four) of the strain annealing time is too short, it can not be sufficient ', i work should be. And if the above If the strain-annealing time is too long, the material will soften and the desired mechanical properties will not be obtained, and the productivity will be significantly reduced. Therefore, the strain-annealing day of the gentleman's processing step is 3"less than 1000 In the second or less, preferably less than 18 sec. or less. The copper alloy material for electric and electronic parts of the present invention is heat-treated (for the purpose of performing the response (four) before and after the illusion of the flattening and begging to the money (four) straight direction: The dimensional change rate is in the range of -0.22% to + gamma. It is preferably in the range of the dimensional change rate of any one of the rolling flat direction and the rolling vertical direction to +0.01%. Next, a preferred composition of the copper alloy of the copper alloy material for electric and electronic parts of the present invention will be described. In one example, it is contained in (1) containing not more than 5.5% by mass and not more than 4.5% by mass of Ni, 0.35% by mass or more and less than 5% by mass of U mass%, and is contained in (10) 12 200829707 mass% or more and 0, 15 mass% w π or less. Mg, 0.05% by mass or more and 0.5% by mass or less of Sn, 〇·〇5皙 议 议 ^ 质量 质量 质量 质量 : 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 : : 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 % or more of the above-mentioned 〇·4% of the Cr in the chain, or two or more elements, and the remainder consists of an alloy of copper and unavoidable impurities.

Ni及Si,除了具有可八 里刀 固〉谷於銅合金中提而合金強 度之助果外,亦可藉由進 ,.A 琨仃適*的時效處理,形成Ni2Si 、、且成之析出物,顯著提升人 危口金強度,且亦可顯著提升導電 f::?Ni,有量未滿I5質量%或以含有量未滿0.35 二里旦。',可此會無法得到所欲之機械特性。又’當Ni 3有里超過4.5夤篁%或Si含有量超過1〇質量%時,可 能會造成導電率顯著降低、及由於粗大之犯—㈣子生成 於母相中而導致難以同時將壓延平行方向與塵延垂直方向 〇之尺寸變化率控制在適當的範圍。犯含有量以在Μ質量 :以上(Ο趣以下為更佳。又’以含有量以在〇 4質 :%:上0.90議以下為更佳。並且,為了同時控制壓 延平行方向與麼延垂直方向之尺寸變化率,較佳使合金中 所含之Ni與Si的原子比率接近化學計量版成之N^si的 原子比率。因此,Ni相對於Si含有量之比(Ni含有量/ Si 含有量)較佳從2至8,尤以4為最佳。 又’除了上述成分外,並含有選自0.05質量%以上〇 15 質量%以下的Mg、0.05質量%以上〇·5質量%以下的Sn、 〇·05質量%以上1質量%以下的Ζη、〇·〇1質量%以上 貝里%以下的Ag、0·05質量%以上〇·4質量%以下的& 13 200829707 中之1種或2種以上的元素。藉由以上述含量含有此等之 金屬,有助於增加強度。更佳為含有選自〇1質量%以上 0.125貝1%以下的sn、0.1質量%以上ο」質量%以下的 Zn中之1種或2種以上的元素。 又,本發明之尺寸變化率,係指使用平行於壓延方向 之方向或垂直於壓延方向之方向的退火前基準長度,與退 火後長度發生變化的上述基準長度,使其為((退火後基準 長度)一(退火前基準長度))^退火前基準長度)χΐ〇〇。 此處&寸艾化率為正者表示膨張,&負者則表示收 縮。 除了上述之以外,可直接適用電氣•電子零件用銅合金 材料之材料製造步驟及材料加工步驟中的通常步驟、處 理。例如,於本發明,至精加工壓延前所進行之熱壓延的 力二工率較佳為90〜99%。又,至精加工壓延前所進行之冷 壓延的加工率較佳為90〜99%。 本發明之電氣·電子零件可為導線架、連接器、端子、 =器'_等任何-者’尤其適用於如導線架、連 要求微細且精密加工者。 σ 本發明之鋼合金材料,可於 中,製成衝厂堅加工中或加二電子零件之製造步驟 —+ Α加工後之去應變退火前後的壓延平 二方向與壓延垂直方向任—者的尺寸變化率同時降低且成 到控制的銅合金材料,尤其適 又 之小型化n η 4 為a H、携π電話 而而要進仃臧細且精密衝壓加工之連接器的材 14 200829707 又’根據本發明方法,可在工業上製造具有上述優異 物性之電氣•電子零件用銅合金材料。 (實施例) 以下’根據實施例進一步詳細説明本發明,但本發明 並不限定於此。 [實施例(本發明例)及比較例] 使用表1所示之具有各種化學組成的銅合金作為導線 架用材料。上述材料係以通常方法予以溶解、冷却,製得 鑄塊。從鑄塊進行熱壓延後加以退火,接著重複冷壓延〜 退火後’如表2所示,使精加工壓延之加工率為3%、1〇 %、20%、40% 或 45%,製得板厚 〇.05inm〜0.25mm 之各 種板厚的冷壓延材。 並且’使連續退火爐的爐内張力為〇 7kg/mm2,爐内 温度為 450、500、600、700、800 或 85(rc,退火時間為 1〇、 6〇、100或120秒,對上述冷壓延材進行熱處理,而得到 表2所示之No.l〜44之材料。 然後’對上述材料設想導線架加工步驟之衝壓加工中 或加工後之去應變退火,對板寬55mm之材料在氬環境氣 氛中進行温度500t、180秒之加熱處理,測量加熱處理前 在上述材料所留下之壓延平行方向的基準長度1〇〇mm、及 壓延垂直方向之基準長度5〇mm在加熱後的尺寸變化,並 算出尺寸變化率。其結果示於表hN〇1〜32為本發明例, Νο·33〜No.44為比較例。 15 200829707 r [表i] 銅合金種類 所含成分(質量%) Ni Si Mg Sn Zn Ag Cr Cu A 3.0 0.65 0.15 — — — — 剩餘 B 2.6 0.55 — — 0.5 0.05 — 剩餘 C 2.3 0.50 0.10 0.15 0.5 — — 剩餘 D 3.7 0.90 0.10 0.15 0.5 — 0.2 剩餘 [表2] 本發明作Ni and Si, in addition to having the benefit of the strength of the alloy in the copper alloy, can also form Ni2Si, and precipitates by the aging treatment of . It can significantly improve the strength of human critical gold, and can also significantly increase the conductivity f::?Ni, the amount is less than I5 mass% or the content is less than 0.35 two days. ', but this will not get the desired mechanical characteristics. 'When Ni 3 has more than 4.5% by weight or more than 1% by mass of Si, it may cause a significant decrease in electrical conductivity, and it may be difficult to simultaneously calender due to the coarseness of the (4) generation in the parent phase. The dimensional change rate of the parallel direction and the vertical direction of the dust extension is controlled within an appropriate range. The amount of the guilty amount is in the : quality: above (the following is better for the fun. It is better to use the content in the 〇4 quality:%: 0.90 or less. Also, in order to simultaneously control the parallel direction of the rolling and the vertical direction The dimensional change rate of the direction is preferably such that the atomic ratio of Ni to Si contained in the alloy is close to the atomic ratio of N^si formed by the stoichiometric amount. Therefore, the ratio of Ni to Si content (Ni content/Si content) The amount is preferably from 2 to 8, particularly preferably 4. Further, in addition to the above components, Mg is selected from 0.05% by mass or more and 15% by mass or less, and 0.05% by mass or more and 5% by mass or less. Sn 〇 〇 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 Further, it is preferable to contain the metal in the above content, and it is preferable to increase the strength. More preferably, it contains a mass selected from the group consisting of 〇1% by mass or more and 0.125 Å1% or less, and 0.1% by mass or more. One or more elements of Zn or less of % or less. Further, the dimensional change of the present invention Refers to the reference length before annealing using the direction parallel to the direction of the rolling direction or perpendicular to the direction of the rolling direction, and the reference length which varies with the length after annealing to be ((after annealing) 1 (pre-annealing reference length) )) ^ Base length before annealing) χΐ〇〇. Here, the & inch rate is positive for expansion, and & negative is for contraction. In addition to the above, the material manufacturing steps of the copper alloy material for electric and electronic parts and the usual steps and processes in the material processing steps can be directly applied. For example, in the present invention, the force reduction rate of the hot calendering performed before the finishing calendering is preferably from 90 to 99%. Further, the processing rate of the cold rolling performed before the finishing rolling is preferably 90 to 99%. The electric/electronic component of the present invention can be used for a lead frame, a connector, a terminal, a device, or the like, and is particularly suitable for use in a lead frame, for example, which requires fine and precise machining. σ The steel alloy material of the invention can be made in the manufacturing process of the punching factory or the manufacturing process of adding two electronic parts—the rolling direction and the rolling vertical direction before and after the strain annealing after the Α processing. A copper alloy material with a dimensional change rate that is simultaneously reduced and controlled, especially suitable for miniaturization n η 4 is a H, a material that carries a π telephone and is required to be thin and precision stamped. 200829707 According to the method of the present invention, a copper alloy material for electric/electronic parts having the above excellent physical properties can be industrially produced. (Embodiment) Hereinafter, the present invention will be described in further detail based on examples, but the present invention is not limited thereto. [Examples (Inventive Examples) and Comparative Examples] Copper alloys having various chemical compositions shown in Table 1 were used as the material for the lead frame. The above materials are dissolved and cooled in the usual manner to obtain an ingot. Annealing from the ingot after hot rolling, followed by repeated cold rolling ~ after annealing 'as shown in Table 2, the processing rate of finishing calendering is 3%, 1%, 20%, 40% or 45%. It has a thickness of 〇.05inm~0.25mm of various thicknesses of cold rolled steel. And 'the internal furnace tension of the continuous annealing furnace is 〇7kg/mm2, and the furnace temperature is 450, 500, 600, 700, 800 or 85 (rc, annealing time is 1〇, 6〇, 100 or 120 seconds, The cold rolled material is subjected to heat treatment to obtain the materials of No. 1 to 44 shown in Table 2. Then, the above materials are subjected to the strain relief annealing in the press working of the lead frame processing step or the processing, and the material having a plate width of 55 mm is The heating treatment was carried out at a temperature of 500 t and 180 seconds in an argon atmosphere, and the reference length of the rolling parallel direction left by the above material before the heat treatment was measured to be 1 mm, and the reference length of the rolling vertical direction was 5 mm after heating. The dimensional change was calculated, and the dimensional change rate was calculated. The results are shown in Tables hN〇1 to 32, which are examples of the present invention, and Νο·33 to No. 44 are comparative examples. 15 200829707 r [Table i] Composition of the copper alloy type (quality) %) Ni Si Mg Sn Zn Ag Cr Cu A 3.0 0.65 0.15 — — — — Remaining B 2.6 0.55 — — 0.5 0.05 — Remaining C 2.3 0.50 0.10 0.15 0.5 — — Remaining D 3.7 0.90 0.10 0.15 0.5 — 0.2 Remaining [Table 2] The invention

No. 板厚 (mm) 繼員 嶽口 連續歌 加熱(500°Cxl80sec)前後之 尺寸變化率(%) 爐内溫度 (°C) 減理時間 (sec) 觀平行方向 垂直方向 1 0.050 A 3 500 10 0.0131 -0.0094 2 0.100 B 3 500 100 0.0128 -0.0101 3 0.150 C 3 800 10 -0.0041 -0.0182 4 0.200 D 3 800 100 -0.0054 -0.0185 5 0.250 A 10 500 10 0.0135 -0.0058 6 0.050 B 10 500 60 0.0137 -0.0061 7 0.100 C 10 500 100 0.0129 -0.0074 8 0.150 D 10 600 10 0.0047 -0.0088 9 0.200 A 10 600 60 0.0044 -0.0078 10 0.250 B 10 600 100 0.0034 -0.0095 11 0.050 C 10 700 10 0.0031 -0.0085 12 0.100 D 10 700 60 0.0025 -0.0091 16 200829707 13 0.150 A 10 700 100 0.0014 -0.0108 14 0.200 B 10 800 10 0.0004 -0.0154 15 0.250 C 10 800 60 -0.0025 -0.0165 16 0.050 D 10 800 100 -0.0027 -0.0177 17 0.100 A 20 500 10 0.0157 -0.0049 18 0.150 B 20 500 60 0.0154 -0.0052 19 0.200 C 20 500 100 0.0154 -0.0068 20 0.250 D 20 600 10 0.0068 -0.0074 21 0.050 A 20 600 60 0.0061 -0.0069 22 0.100 B 20 600 100 0.0049 -0.0082 23 0.150 C 20 700 10 0.0044 -0.0072 24 0.200 D 20 700 60 0.0041 -0.0079 25 0.250 A 20 700 100 0.0031 -0.0091 26 0.050 B 20 800 10 0.0024 -0.0142 27 0.100 C 20 800 60 0.0010 -0.0148 28 0.150 D 20 800 100 0.0015 -0.0161 29 0.200 A 40 500 10 0.0184 -0.0014 30 0.250 B 40 500 100 0.0171 -0.0031 31 0.050 C 40 800 10 0.0048 -0.0141 32 0.100 D 40 800 100 0.0031 -0.0151 33 0.150 A 45 500 60 0.0274 0.0021 比 車父 例 34 0.200 B 45 600 60 0.0232 -0.0008 35 0.250 C 45 700 60 0.0225 -0.0014 36 0.050 D 45 800 60 0.0221 -0.0021 17 200829707 ΓNo. Thickness (mm) Dimensional change rate (%) before and after the success of the Yuekou continuous song heating (500°Cxl80sec) Furnace temperature (°C) Reduction time (sec) View parallel direction Vertical direction 1 0.050 A 3 500 10 0.0131 -0.0094 2 0.100 B 3 500 100 0.0128 -0.0101 3 0.150 C 3 800 10 -0.0041 -0.0182 4 0.200 D 3 800 100 -0.0054 -0.0185 5 0.250 A 10 500 10 0.0135 -0.0058 6 0.050 B 10 500 60 0.0137 - 0.0061 7 0.100 C 10 500 100 0.0129 -0.0074 8 0.150 D 10 600 10 0.0047 -0.0088 9 0.200 A 10 600 60 0.0044 -0.0078 10 0.250 B 10 600 100 0.0034 -0.0095 11 0.050 C 10 700 10 0.0031 -0.0085 12 0.100 D 10 700 60 0.0025 -0.0091 16 200829707 13 0.150 A 10 700 100 0.0014 -0.0108 14 0.200 B 10 800 10 0.0004 -0.0154 15 0.250 C 10 800 60 -0.0025 -0.0165 16 0.050 D 10 800 100 -0.0027 -0.0177 17 0.100 A 20 500 10 0.0157 -0.0049 18 0.150 B 20 500 60 0.0154 -0.0052 19 0.200 C 20 500 100 0.0154 -0.0068 20 0.250 D 20 600 10 0.0068 -0.0074 21 0.050 A 20 600 60 0.0061 -0.0069 22 0.100 B 20 600 100 0.0049 -0.0082 230.150 C 20 700 10 0.0044 -0.0072 24 0.200 D 20 700 60 0.0041 -0.0079 25 0.250 A 20 700 100 0.0031 -0.0091 26 0.050 B 20 800 10 0.0024 -0.0142 27 0.100 C 20 800 60 0.0010 -0.0148 28 0.150 D 20 800 100 0.0015 -0.0161 29 0.200 A 40 500 10 0.0184 -0.0014 30 0.250 B 40 500 100 0.0171 -0.0031 31 0.050 C 40 800 10 0.0048 -0.0141 32 0.100 D 40 800 100 0.0031 -0.0151 33 0.150 A 45 500 60 0.0274 0.0021 Example 34 0.200 B 45 600 60 0.0232 -0.0008 35 0.250 C 45 700 60 0.0225 -0.0014 36 0.050 D 45 800 60 0.0221 -0.0021 17 200829707 Γ

從表2清楚可知,本發明例No. 1〜32之熱處理前後的 壓延平行方向與壓延垂直方向任一者的尺寸變化率皆在一 0.02/至+ 0.02%之範圍,故例如即使在搬送銷與導孔之 空隙在單側為5_左右時’亦具有可進行安定自動搬送之 優異的作用。 又’為特佳之製造條件的No.8、9、11、12、2〇、21、As is clear from Table 2, the dimensional change rates of either the rolling parallel direction and the rolling vertical direction before and after the heat treatment of Examples Nos. 1 to 32 of the present invention are in the range of 0.02/ to + 0.02%, so that, for example, even in the conveying pin When the gap with the pilot hole is about 5 mm on one side, it also has an excellent effect of being able to perform stable automatic transfer. Also, No. 8, 9, 11, 12, 2, 21, which are excellent manufacturing conditions.

23 24由於熱處理前後之壓延平行方向與壓延垂直方向 任-者的尺寸變化率皆在—之範圍,故 特別優異。 另一方面,精加工壓延之加工率大於本發明範圍之比 較例No.33〜36,其壓延平行方向之尺寸變化率大。又, 連續退火之爐内温度低於本發明範圍 < 胸.37、39,壓延 平行方向之尺寸變化率大。χ,連續退火之爐内温度高於 本發明範圍之Νο.38、40,壓延垂直方向之尺寸變化率特 引大。又’連續退火之退火時間大於本發明範圍之41 18 200829707 〜44’ M延垂直方向之尺寸變化率特別大。 [産業上之利用之可能性】 帝 > 本U之%氣•電子零件用銅合金材料,係在為了施加 电:·電子零件用之微細加工而實施去應變退火的電氣·電 子令:用銅合金材料中,可同時控制上述去應變退火之熱 :理前後㈣延平行方向與屡延垂直方向之尺寸變化率: 琶氣•電子零件用銅合金材料。又,本發明之電氣·電子零 r 件用銅合金材料之製造方法,可適合製造上述電氣 零件用銅合金材料。 Α雖然與其實施態様說明本發明,但只要未特別加以指 疋’本發明在說明的任何一個細部皆不受到限制,在不違 :本發明之申請專利範圍所示之發明精神與範圍下,應 最廣範圍的解釋。 … 曰在日本所申請之特願 曰在日本所申請之特願 者皆參照於此並將其内 本案係主張2006年1〇月1〇 2006— 276808,及 2007 年 1〇 月 3 2007— 260386之優先榷,此等任一 容作為本說明書之記載的一部分。 【圖式簡單說明】 η、、 【主要元件符號說明】 無 1923 24 Since the rolling parallel direction and the rolling vertical direction before and after the heat treatment are all in the range of -, it is particularly excellent. On the other hand, the processing ratio of the finishing calendering is larger than that of the comparative examples No. 33 to 36 in the range of the present invention, and the dimensional change rate in the rolling parallel direction is large. Further, the temperature in the furnace for continuous annealing is lower than the range of the present invention <37.39, 39, and the dimensional change rate in the parallel direction of rolling is large. χ, the temperature in the furnace in which the continuous annealing is higher than the range of the present invention is Νο. 38, 40, and the dimensional change rate in the vertical direction of the rolling is particularly large. Further, the annealing time of the continuous annealing is larger than the range of 41 18 200829707 to 44' M in the range of the present invention, and the dimensional change rate in the vertical direction is particularly large. [Essence of the use of the industry] Emperor> The copper alloy material for the electronic parts of the U-electricity is an electric/electronic order for performing strain-annealing for the purpose of applying electricity: micro-machining for electronic parts: In the copper alloy material, the heat of the above-mentioned strain relief annealing can be simultaneously controlled: before and after (four) the dimensional change rate of the parallel direction and the repeated vertical direction: a copper alloy material for helium gas and electronic parts. Further, the method for producing a copper alloy material for electric and electronic parts according to the present invention can be suitably used for producing the above-mentioned copper alloy material for electric parts. Although the present invention has been described in terms of its embodiments, the invention is not limited to the details of the invention, and the invention is not limited by the scope of the invention. The widest range of explanations. ... 特 特 曰 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 特 特 特 特 特 特 特 特 特 特 特 特 特 2006 特 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 Priority is given to any of these as part of the description of this specification. [Simple description of the diagram] η,, [Description of main component symbols] None 19

Claims (1)

200829707 十、申謗專利範面: L 一種電氣•電子零件用銅合 以下之溫声材科’係以4崎以上 進行去庳婉飞二秒以上1〇00秒以下之條件下對材料 進订去應^火處理所形成,其t, 何杆 以下之加工率進行了精加工塵 产:…伙 連續退火爐以辑以上峨以下之=…延後藉 秒以下之條件下進杆- 又在1秒以上1 00 ^ 進仃過熱處理,其特徵在於: 該去應變退火處理前 向任-者之尺寸變化率皆在—。:二方向與虔延垂直方 内。 至+ 0.02%的範圍 2 ·如申凊專利範圍第1項之雷5 料,其中,該去” 、乳·電子零件用銅合金材 加工步驟中進行。 係在電乳•電子零件之材料 3·如申請專利範圍第i或 金材料,其中,該 、之電乳•電子零件用銅合 材或連接器材。乳·電子零件用銅合金材料為導線架 4.如申請專利範圍第… 用銅合金材料,置士 、 項之電氧•電子零件 4.5質量%以下 :亥銅°金材料含有Μ質量%以上 …並且含有選自二 …以上1·。質量%以下的 3有選自〇.〇5質量% 〇.〇5質量%以上〇.5質 .15貝里%以下的峋、 質量%以下的Zn、0 : # Sn、0.05質量%以上1 貝篁%以上暂旦 °.°5質量%以上。.4質量%以下的心:广下的Ag、 的元素,剩餘部分由之1種或2種以上 了避免之雜質所構成。 20 200829707 5·—種電氣·電子零件用銅合金材料之製造方法,其特 徵在於: 以400 C以上600°C以下的溫度在30秒以上1000秒以 下之條件下對材料進行去應變退火處理,使該去應變退火 處理前後的壓延平行方向與壓延垂直方向任一者的尺寸變 化率皆在一 0.02%至+ 0.02%的範圍内,其中,該材料為 事先對銅合金材料以40%以下之加工率進行了精加工壓 延,且於該精加工壓延後以500°C以上800°C以下之溫度, 在1秒以上100秒以下之條件下,以連續退火爐進行過熱 處理。 6.如申請專利範圍第5項之電氣·電子零件用銅合金材 料之製造彳法m系在電氣·電子零件之材料加工步 驟中進行該去應變退火處理。 ""200829707 X. Application of the patent scope of the application: L A kind of electric sound material for copper and electric parts for electrical and electronic parts is to be ordered by 4 or more than 2 to 00 seconds. ^Fire treatment formed, its t, the processing rate below the rod is refined dust production: ... the continuous annealing furnace to the above 峨 峨 = = = delay after the second under the conditions of the entry - again in 1 second The above 1 00 ^ heat treatment is characterized in that: the dimensional change rate of the forward strain of the strain relief annealing treatment is -. : The two directions are perpendicular to the extension. To the range of + 0.02% 2 · For example, the mine material of the first paragraph of the patent application scope, in which the copper and aluminum alloys are processed in the processing steps of the copper alloy. ·If you apply for the patent range i or gold material, among them, the copper material or connecting equipment for electric milk and electronic parts. The copper alloy material for milk and electronic parts is the lead frame 4. As claimed in the patent range... The alloy material, the electric oxygen and electronic parts of the shi, the item are 4.5% by mass or less: the galvanized gold material contains Μ% by mass or more... and contains 2 or more. The mass% or less of 3 is selected from 〇.〇 5 mass% 〇.〇5 mass% or more 5.5 mass. 15 berger% or less 峋, mass% or less Zn, 0: # Sn, 0.05% by mass or more 1 篁% or more of temporary °°.°5 mass % or more. 4% by mass or less of the heart: Ag, the element, and the remaining part are composed of one or two or more kinds of impurities to avoid. 20 200829707 5·-Electrical and copper alloy materials for electronic parts Manufacturing method characterized by: 400 C or more and 600 ° The temperature below C is subjected to strain relief annealing under conditions of 30 seconds or more and 1000 seconds or less, so that the dimensional change rate of either the rolling parallel direction and the rolling vertical direction before and after the strain relief annealing treatment is 0.02%. + 0.02% of the range, wherein the material is subjected to finishing and calendering to a copper alloy material at a processing rate of 40% or less, and after the finishing and rolling, at a temperature of 500 ° C or more and 800 ° C or less, The heat treatment is carried out in a continuous annealing furnace under the conditions of 1 second or more and 100 seconds or less. 6. The manufacture of copper alloy materials for electrical and electronic parts according to the fifth application of the patent application method is a material processing of electrical and electronic parts. The strain relief annealing process is performed in the step. "" 十一、圖式: 無 21XI. Schema: None 21
TW096137423A 2006-10-10 2007-10-05 Copper alloy material for electric and electronic instruments and method of producing the same TWI412611B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006276808 2006-10-10
JP2007260386A JP5170866B2 (en) 2006-10-10 2007-10-03 Copper alloy material for electric and electronic parts and method for producing the same

Publications (2)

Publication Number Publication Date
TW200829707A true TW200829707A (en) 2008-07-16
TWI412611B TWI412611B (en) 2013-10-21

Family

ID=39282873

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096137423A TWI412611B (en) 2006-10-10 2007-10-05 Copper alloy material for electric and electronic instruments and method of producing the same

Country Status (6)

Country Link
US (1) US20090229716A1 (en)
EP (1) EP2088215A4 (en)
JP (1) JP5170866B2 (en)
KR (1) KR20090064473A (en)
TW (1) TWI412611B (en)
WO (1) WO2008044680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480397B (en) * 2011-11-07 2015-04-11 Jx Nippon Mining & Metals Corp Rolled copper foil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069800A1 (en) * 2011-11-11 2013-05-16 古河電気工業株式会社 Rolled copper foil

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1A (en) * 1836-07-13 John Ruggles Locomotive steam-engine for rail and other roads
US4656003A (en) * 1984-10-20 1987-04-07 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and production of the same
JPH0815170B2 (en) * 1987-07-07 1996-02-14 株式会社ジャパエナジー Method of manufacturing film carrier
US4908275A (en) * 1987-03-04 1990-03-13 Nippon Mining Co., Ltd. Film carrier and method of manufacturing same
JPH02221344A (en) * 1989-02-21 1990-09-04 Mitsubishi Shindoh Co Ltd High strength cu alloy having hot rollability and heating adhesiveness in plating
JP2902830B2 (en) 1991-10-15 1999-06-07 日立金属株式会社 Lead frame material and manufacturing method thereof
JP3479470B2 (en) * 1999-03-31 2003-12-15 日鉱金属株式会社 Copper alloy foil for hard disk drive suspension and method of manufacturing the same
JP3521074B2 (en) * 2000-01-06 2004-04-19 三井金属鉱業株式会社 Method for testing physical properties of electrolytic copper foil
TW527427B (en) * 2000-03-14 2003-04-11 Nippon Mining Co Copper-alloy foil to be used for suspension member of hard-disc drive
JP3539685B2 (en) * 2000-03-14 2004-07-07 日鉱金属加工株式会社 Copper alloy foil for hard disk drive suspension
JP2003286527A (en) 2002-03-29 2003-10-10 Dowa Mining Co Ltd Copper or copper alloy with low shrinkage percentage, and manufacturing method therefor
JP4386236B2 (en) * 2002-10-11 2009-12-16 日鉱金属株式会社 Cu-Ni-Si alloy
JP2004149873A (en) * 2002-10-31 2004-05-27 Nikko Metal Manufacturing Co Ltd Corson copper alloy with die abrasion resistance
JP2006276808A (en) 2005-03-01 2006-10-12 Olympus Corp Zoom optical system and electronic imaging apparatus having the same
US20070185464A1 (en) 2006-02-03 2007-08-09 Bristol-Myers Squibb Company Ostomy appliance with recovery resistant moldable adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480397B (en) * 2011-11-07 2015-04-11 Jx Nippon Mining & Metals Corp Rolled copper foil

Also Published As

Publication number Publication date
EP2088215A1 (en) 2009-08-12
WO2008044680A1 (en) 2008-04-17
JP5170866B2 (en) 2013-03-27
JP2008115465A (en) 2008-05-22
KR20090064473A (en) 2009-06-18
TWI412611B (en) 2013-10-21
US20090229716A1 (en) 2009-09-17
EP2088215A4 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
CN102639731A (en) Titanium-copper for electronic component
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
TW201247908A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
TWI521073B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
TW201241195A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
TW201209181A (en) Copper-cobalt-silicon alloy for electrode material
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
TWI509090B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
TW200829707A (en) Copper alloy material for electric and electronic instruments and method of producing the same
JP6533401B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
TWI621721B (en) Copper alloy sheet, connector, and method for manufacturing copper alloy sheet
JP3729733B2 (en) Copper alloy plate for lead frame
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP7294336B2 (en) Fe-Ni alloy sheet
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
CN107923001B (en) Electronic electric equipment copper alloy, electronic electric equipment copper alloy thin plate, electronic electric equipment conductive component and terminal
JPH0453935B2 (en)
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP5623960B2 (en) Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same
TWI708854B (en) Titanium copper plate, pressed product, and manufacturing method of pressed product

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees