JP3105392B2 - Manufacturing method of copper base alloy for connector - Google Patents

Manufacturing method of copper base alloy for connector

Info

Publication number
JP3105392B2
JP3105392B2 JP06073993A JP7399394A JP3105392B2 JP 3105392 B2 JP3105392 B2 JP 3105392B2 JP 06073993 A JP06073993 A JP 06073993A JP 7399394 A JP7399394 A JP 7399394A JP 3105392 B2 JP3105392 B2 JP 3105392B2
Authority
JP
Japan
Prior art keywords
copper
connector
resistance
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06073993A
Other languages
Japanese (ja)
Other versions
JPH07258777A (en
Inventor
章 菅原
佳武 花
郁 田辺
哲男 加藤
幸男 太田
直樹 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Yazaki Corp
Original Assignee
Dowa Holdings Co Ltd
Yazaki Corp
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Yazaki Corp, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP06073993A priority Critical patent/JP3105392B2/en
Publication of JPH07258777A publication Critical patent/JPH07258777A/en
Application granted granted Critical
Publication of JP3105392B2 publication Critical patent/JP3105392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コネクタ等の電気
・電子部品用材料として好適な中強度・中導電性銅基合
金の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a medium-strength and medium-conductive copper-based alloy suitable as a material for electric and electronic parts such as connectors.

【0002】[0002]

【従来の技術】近年のエレクトロニクスの発達により、
種々の機械の電気配線の複雑化・高集積化が進み、これ
に伴ってコネクタ等の電気・電子部品用伸銅品材料の需
要が増加している。
2. Description of the Related Art With the recent development of electronics,
The electrical wiring of various machines is becoming more complicated and highly integrated, and accordingly, the demand for copper products for electrical and electronic parts such as connectors is increasing.

【0003】また、コネクタ等の電気・電子部品には、
より一層の軽量化、高信頼化、低コスト化が要求される
ようになり、これらの要求を満たすものとなるようにす
るために、コネクタ用銅基合金材料は薄肉化され、ま
た、複雑な形状にプレスされるため、強度、弾性、導電
性およびプレス成形性が良好でなければならないとされ
ている。
[0003] Electric and electronic parts such as connectors include:
Further weight reduction, higher reliability, and lower cost are required, and in order to satisfy these requirements, the copper-based alloy material for connectors has been reduced in thickness and complicated. It is said that strength, elasticity, conductivity, and press formability must be good in order to be pressed into a shape.

【0004】具体的には、端子について、挿抜時や曲げ
に対して座屈しない強度、電線の加締め、保持に対する
強度等の改善が望まれ、したがって引張強さは、450
N/mm2 以上であることが好ましく、さらに通電によるジ
ュール熱発生を抑えるため導電率は、39%IACS 以上で
あることが好ましいとされている。
Specifically, it is desired to improve the strength of the terminal such that it does not buckle during insertion or removal or bending, and the strength against crimping and holding of the electric wire.
It is preferable that the conductivity be N / mm 2 or more, and that the conductivity be 39% IACS or more in order to suppress generation of Joule heat due to energization.

【0005】また、端子の小型化によりプレス成形性の
要求も厳しくなり、曲げ部半径(R)と板厚(t)との
比R/tが1以下を満足する加工性が必要である。更
に、耐食性、耐応力腐食割れ性に優れていることが必要
であり、またメス端子に至っては、熱的負荷が加わるこ
とから、耐応力緩和特性にも優れていなければならな
い。
[0005] Further, the demand for press formability is becoming severer due to the miniaturization of terminals, and workability is required to satisfy a ratio R / t of the radius (R) of the bent portion to the thickness (t) of 1 or less. Furthermore, it is necessary to have excellent corrosion resistance and stress corrosion cracking resistance, and since the female terminal is subjected to a thermal load, it must also have excellent stress relaxation resistance.

【0006】従来、コネクタ材としては黄銅等が低コス
トの材料として使用されていたが、これらは強度と導電
率のバランス、耐食性、耐応力腐食割れ性、耐応力緩和
特性等の点では劣っていた。このように、上記の諸特性
を同時に兼備し、しかも安価なコネクタ用合金材料は得
られていなかった。
Hitherto, brass and the like have been used as low-cost materials as connector materials, but they are inferior in terms of balance between strength and electrical conductivity, corrosion resistance, stress corrosion cracking resistance, stress relaxation resistance and the like. Was. As described above, an inexpensive alloy material for a connector which has the above-mentioned various properties simultaneously and has not been obtained.

【0007】一般にコネクタ等の電気・電子部品はSn
めっきされることが多いため、プレス工程で生じたプレ
スくずを溶解原料として再使用するためには、脱脂、め
っき剥離等の予備処理が必要であった。またプレスくず
を直接原料として使用した場合には、プレス油の燃焼
(酸化)や蒸発の過程で炉壁を痛めたり、水素の吸蔵に
よるインゴットのブローホール発生があったりして、歩
留まり低下等、コストアップの要因となっていた。
Generally, electrical and electronic parts such as connectors are made of Sn.
Since plating is often performed, preliminary treatments such as degreasing and plating peeling are required in order to reuse press waste generated in the pressing process as a raw material for dissolution. When press waste is directly used as a raw material, the furnace wall is damaged in the process of burning (oxidizing) or evaporating the press oil, blowholes of the ingot are generated due to the absorption of hydrogen, and the yield is reduced. This was a factor of cost increase.

【0008】さらに、従来のめっき材の製造工程におい
ては母材となる材料の製造工程とSnめっき等の表面処
理工程とが各々独立して実施されており、熱処理等をは
じめとした工程短縮等によるコストダウンの余地が残さ
れていた。
Further, in the conventional manufacturing process of a plated material, a manufacturing process of a material to be a base material and a surface treatment process such as Sn plating are performed independently of each other. There is still room for cost reduction.

【0009】また、母材の材質によって、Cu下地めっ
きの有無や厚さ等が検討されているが、これはめっき加
熱剥離の見地から検討されたものであり、耐応力緩和特
性、はんだ付け性、接触抵抗、ばね性などコネクタ端子
として要求される特性について、総合的には検討されて
おらず、このためCuやSnの最適膜厚の検討は不十分
であった。
[0009] In addition, the presence or absence of Cu base plating, the thickness, and the like are examined depending on the material of the base material. However, this is examined from the viewpoint of plating heat peeling. The characteristics required for the connector terminal, such as contact resistance, contact resistance, and spring property, have not been comprehensively studied. Therefore, the study of the optimal film thickness of Cu or Sn has been insufficient.

【0010】[0010]

【発明が解決しようとする課題】本発明は、エレクトロ
ニクスの発達にともない、コネクタ等の電気、電子部品
用材料に要求される上記のような諸特性を兼備した銅基
合金、すなわち強度、弾性、導電率、プレス成形性等に
優れたコネクタ用銅基合金の製造法を提供するものであ
る。
SUMMARY OF THE INVENTION With the development of electronics, the present invention relates to a copper-based alloy having the above-mentioned various characteristics required for materials for electrical and electronic parts such as connectors, that is, strength, elasticity, and the like. An object of the present invention is to provide a method for producing a copper-based alloy for a connector having excellent conductivity, press formability, and the like.

【0011】[0011]

【課題を解決するための手段】本発明者等は斯かる課題
を解決するために鋭意研究した結果、銅に添加する成分
の種類を極めて少なくするとともに、銅材より安価な成
分を添加することにより低コスト化を図ることによって
コネクタ等の電気・電子部品の製造用材料に要求される
強度・弾性・導電率・プレス成形性等に優れた諸特性を
兼備したコネクタ用銅合金を開発することができた。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, the types of components to be added to copper have been extremely reduced, and components that are less expensive than copper materials have been added. Develop copper alloys for connectors that have excellent properties such as strength, elasticity, electrical conductivity, and press formability required for materials for manufacturing electrical and electronic components such as connectors by reducing costs. Was completed.

【0012】さらにまた、Snで表面処理した合金のプ
レスくずを直接溶解原料として再使用することが可能と
なるようにするとともに、本合金のSn表面処理材をよ
り有利に得るための製造法の提供を目的とする。
[0012] Still further, the present invention provides a method for producing a Sn surface-treated material of the present alloy in a more advantageous manner, while enabling the press waste of the alloy surface-treated with Sn to be directly reused as a raw material for melting. For the purpose of providing.

【0013】すなわち本発明は、添加成分元素の含有量
がZn:3.0〜7.0wt% 、Sn:0.2〜1.0wt
% であり、且つそれらの添加量が次式(1)で表わされる
関係を満たし、1.0≦0.2X+Y≦1.8 (1)[但
し、XはZnの添加量(wt%)であり、YはSnの添加
量(wt%)である。]不純物の合計が0.2wt%以下であ
る銅基合金を原材料として用い、350〜750℃の温
度で1〜360分の熱処理後、加工率40%以上で冷間
加工して得た材料の表面に、Cu下地を0.3〜1.0
μm、SnをCu下地上に0.5〜2.0μmの厚さで
表面処理層として形成し、次いで100〜280℃の温
度で1〜180分の熱処理を施すことを特徴とするコネ
クタ用銅基合金の製造法を提供するものである。
That is, according to the present invention, the content of the additional component element is as follows: Zn: 3.0 to 7.0% by weight, Sn: 0.2 to 1.0% by weight.
%, And their addition amounts satisfy the relationship represented by the following formula (1), and 1.0 ≦ 0.2X + Y ≦ 1.8 (1) [where X is the Zn addition amount (wt%) And Y is the amount of Sn added (wt%). ] A material obtained by using a copper-based alloy having a total of impurities of 0.2 wt% or less as a raw material, performing a heat treatment at a temperature of 350 to 750 ° C for 1 to 360 minutes, and then performing a cold working at a working ratio of 40% or more. 0.3 to 1.0 Cu underlayer on the surface
a copper for a connector, which is formed by forming a surface treatment layer of 0.5 μm and Sn on a Cu underlayer with a thickness of 0.5 to 2.0 μm, and then performing a heat treatment at a temperature of 100 to 280 ° C. for 1 to 180 minutes. A method for producing a base alloy is provided.

【0014】[0014]

【発明の実施の形態】本発明の銅基合金におけるZnお
よびSnの成分量限定理由は以下に基づく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the amounts of Zn and Sn in the copper-based alloy of the present invention are based on the following.

【0015】Zn: Znを添加することにより、強
度、弾性が向上する。Cuより安価であるため多量に添
加することが望ましいが、7wt% を越えると耐食性、耐
応力腐食割れ性、導電率および耐応力緩和特性が低下す
る。さらにめっき性、はんだ付け性が低下する。一方、
3wt% より少ないと強度、弾性が不足する。さらにSn
で表面処理したスクラップを原料とした場合に、溶解時
の水素ガス吸蔵量が多くなり、インゴットのブローホー
ルが発生しやすくなる。また、安価なZnが少ないので
あるから、経済的にも不利になる。したがって、Znは
3.0〜7.0wt% の範囲とする。
Zn: Strength and elasticity are improved by adding Zn. Since it is less expensive than Cu, it is desirable to add a large amount thereof. However, if it exceeds 7% by weight, corrosion resistance, stress corrosion cracking resistance, conductivity and stress relaxation resistance deteriorate. Further, the plating property and the solderability are reduced. on the other hand,
If it is less than 3 wt%, the strength and elasticity are insufficient. Further Sn
When the scrap surface-treated as a raw material is used as a raw material, the amount of occluded hydrogen gas at the time of melting increases, and blowholes of the ingot are easily generated. Further, since there is little cheap Zn, it is economically disadvantageous. Therefore, Zn is set in the range of 3.0 to 7.0 wt%.

【0016】Sn: Snは微量で強度、弾性をはじめ
とした機械的特性を向上させる効果がある。また、Sn
めっき材等のSnで表面処理した材料の再利用の点から
も添加元素として含有されるのが好ましい。しかしなが
ら、Sn含有量が増すと導電率が急激に低下し、また熱
間加工性も低下する。このため導電率39%IACS を確保
するためには、1.0wt% を越えない範囲でなければな
らず、また逆に0.2wt% より少ないと以上のような効
果を得られないことから、Snの添加量は0.2〜1.
0wt% の範囲であればよい。
Sn: A small amount of Sn has an effect of improving mechanical properties such as strength and elasticity. Also, Sn
It is preferable to contain it as an additional element also from the viewpoint of reusing a material surface-treated with Sn such as a plating material. However, when the Sn content increases, the electrical conductivity sharply decreases, and the hot workability also decreases. Therefore, in order to secure a conductivity of 39% IACS, the content must be within a range not exceeding 1.0% by weight. Conversely, if the content is less than 0.2% by weight, the above effects cannot be obtained. The addition amount of Sn is 0.2-1.
It may be in the range of 0 wt%.

【0017】また上述のように限定された成分の範囲で
あれば、Cuの固溶限を越えない範囲であるため均一な
組成の合金が得られ、尚且つ以下の式(1) により限定さ
れる範囲(図1に示す斜線部が、本発明銅基合金の組成
範囲である)で、Zn、Snを母合金のCuに添加する
ことで引張強さ450N/mm2 以上、導電率が39%IACS
以上、さらにコネクタ材として必要な諸特性、具体的に
は耐食性、耐応力腐食割れ性(アンモニア蒸気中での割
れ寿命が黄銅1種の10倍以上)、耐応力緩和特性(1
20〜150℃における緩和率が黄銅1種の半分以
下)、成形加工性(R/t≦1.0の90°W曲げにも
クラック発生無し)等を満足する銅基合金を作製でき
る。 1.0≦0.2X+Y≦1.8 (1) [但し、XはZnの添加量(wt% )であり、YはSnの
添加量(wt% )である。]さらに、その他の不純物はで
きるだけ少ないほうが望ましい。特に一般的に含有され
やすいFe、Siは少量の含有で導電率の低下や、熱処
理時の硬度のばらつきを大きくし、また再結晶時におけ
る結晶粒の制御が難しくなるため、Feは0.1wt% 以
下、さらに好ましくは0.05wt% 以下、Siは0.0
5wt% 以下、さらに好ましくは0.03wt% 以下とす
る。
If the range of the components defined as described above is within the range not exceeding the solid solubility limit of Cu, an alloy having a uniform composition can be obtained, and the alloy is limited by the following formula (1). (The hatched portion shown in FIG. 1 is the composition range of the copper-based alloy of the present invention), Zn and Sn are added to Cu of the master alloy to have a tensile strength of 450 N / mm 2 or more and a conductivity of 39 or more. % IACS
In addition, various characteristics required for the connector material, specifically, corrosion resistance, stress corrosion cracking resistance (the crack life in ammonia vapor is at least 10 times that of brass 1), stress relaxation resistance (1
A copper-based alloy that satisfies the relaxation rate at 20 to 150 ° C. of not more than half of one type of brass and the formability (no crack generation even in 90 ° W bending with R / t ≦ 1.0) can be produced. 1.0 ≦ 0.2X + Y ≦ 1.8 (1) [where X is the amount of Zn added (wt%) and Y is the amount of Sn added (wt%)]. Further, it is desirable that other impurities be as small as possible. In particular, Fe and Si, which are generally contained in small amounts, lower the conductivity and increase the variation in hardness during heat treatment with a small amount, and it becomes difficult to control the crystal grains during recrystallization. % Or less, more preferably 0.05 wt% or less,
5 wt% or less, more preferably 0.03 wt% or less.

【0018】また、不純物の合計が0.2wt% を越える
と導電率の低下以外に、不純物含有の影響による成形加
工性の低下や酸化皮膜の影響による接触抵抗の増大、は
んだ付け性の低下を生じ、また製造上も歩留まりや特性
にばらつきが発生しやすくなることから、不純物の合計
は0.2wt% 以下とする。
When the total amount of impurities exceeds 0.2% by weight, besides the decrease in conductivity, a decrease in moldability due to the effect of impurities, an increase in contact resistance due to the effect of an oxide film, and a decrease in solderability are caused. Therefore, the total amount of impurities is set to 0.2% by weight or less because the yield and the characteristics are likely to vary in production.

【0019】また、本発明の銅合金材料を350〜75
0℃の温度で1〜360分熱処理後、加工率40%以上
で冷間加工した材料の表面に、Cu下地を0.3〜1.
0μm、Snを0.5〜2.0μmの厚さで表面被覆し
た後に、100〜280℃の温度で1〜180分熱処理
を施すとさらにコネクタ用材料としての特性が向上する
ことを見い出した。
Further, the copper alloy material of the present invention is used in an amount of 350 to 75.
After a heat treatment at a temperature of 0 ° C. for 1 to 360 minutes, a Cu underlayer of 0.3 to 1.
It has been found that when the surface is coated with 0 μm and Sn at a thickness of 0.5 to 2.0 μm and then heat-treated at a temperature of 100 to 280 ° C. for 1 to 180 minutes, the characteristics as a connector material are further improved.

【0020】この場合、最終冷間加工前の焼鈍におい
て、結晶粒径を5〜20μmに制御すればプレス成形性
が向上するが、この時の処理温度は350〜750℃と
する。これは350℃未満の温度では再結晶に必要な温
度としては低すぎ、処理時間が長くなるため経済的でな
く、逆に750℃を越える温度では短時間で結晶粒が粗
大化し、粒径の制御が難しい。
In this case, in the annealing before the final cold working, press formability is improved by controlling the crystal grain size to 5 to 20 μm, but the processing temperature at this time is 350 to 750 ° C. If the temperature is lower than 350 ° C., the temperature required for recrystallization is too low, and the treatment time is long. Therefore, it is not economical. If the temperature exceeds 750 ° C., the crystal grains become coarse in a short time, Difficult to control.

【0021】処理時間は、1〜360分とする。これは
処理時間が短かすぎると再結晶による結晶粒の制御が十
分でなく、長すぎると結晶粒の成長、粗大化が起こりや
すく、また経済的にも不利となるからである。最終冷間
加工率は40%以上とする。40%未満では加工硬化に
よる強度、硬度等の向上が十分でない。但し、加工率が
大きすぎると加工性が低下するので、より好ましい範囲
としては40〜80%の範囲である。
The processing time is 1 to 360 minutes. This is because if the treatment time is too short, the control of the crystal grains by recrystallization is not sufficient, and if the treatment time is too long, the growth and coarsening of the crystal grains are likely to occur, and it is economically disadvantageous. The final cold working ratio is 40% or more. If it is less than 40%, improvement in strength, hardness and the like due to work hardening is not sufficient. However, if the working ratio is too large, the workability is reduced. Therefore, a more preferable range is 40 to 80%.

【0022】このようにして得られた材料に、表面処理
としてCu下地を0.3〜1.0μm、Snの表面処理
被覆を0.5〜2.0μm施す。Cu下地が0.3μm
未満では、合金中のZnが表面処理層および表面に拡散
し酸化することによる接触抵抗の増加や、はんだ付け性
の低下を防止する効果が少なく、1.0μmを越えても
効果が飽和し、また経済的でもなくなる。Sn表面処理
層は、0.5μm未満では耐食性、特に耐硫化水素性が
不十分であり、逆に2.0μmを越えても効果が飽和
し、経済的に不利となる。
The material thus obtained is coated with a Cu underlayer of 0.3 to 1.0 μm and a Sn surface treatment coating of 0.5 to 2.0 μm as a surface treatment. 0.3 μm Cu underlayer
If it is less than 0.5, the effect of preventing the decrease in solderability and the increase in contact resistance due to diffusion and oxidation of Zn in the alloy to the surface treatment layer and the surface is small, and even if it exceeds 1.0 μm, the effect is saturated, It is also not economical. If the Sn surface-treated layer is less than 0.5 μm, the corrosion resistance, particularly the hydrogen sulfide resistance, is insufficient. If the Sn surface-treated layer exceeds 2.0 μm, the effect is saturated, which is economically disadvantageous.

【0023】さらに、これらの表面処理は電気めっきに
よって実施すれば、膜厚の均一性、経済性の面から好ま
しく、尚、より好ましくは表面処理後に光沢を出すため
にリフロー処理を施すとよい。
Further, if these surface treatments are carried out by electroplating, it is preferable in terms of uniformity of film thickness and economy, and more preferably, reflow treatment is performed after the surface treatment in order to obtain gloss.

【0024】これらの表面処理後に熱処理を行うとさら
にウィスカ対策をはじめとした特性の向上が図れること
が判明した。すなわち、上記表面処理材を100〜28
0℃の温度で1〜180分熱処理することによって、材
料のばね限界値、耐応力緩和特性が向上し、ウィスカ対
策が実現できる。100℃未満の温度ではこのような効
果が十分でなく、280℃を越えると拡散や酸化によ
り、接触抵抗、はんだ付け性、加工性が低下する。ま
た、熱処理時間が1分未満では効果が十分でなく180
分を超えると拡散や酸化による前述の特性低下が起こり
経済的でない。以下、実施例をもって詳細に説明する
が、本発明の範囲はこれらに限定されるものではない。
It has been found that heat treatment after these surface treatments can further improve characteristics such as whisker countermeasures. That is, the surface treatment material is used in an amount of 100 to 28.
By performing the heat treatment at a temperature of 0 ° C. for 1 to 180 minutes, the spring limit value and stress relaxation resistance of the material are improved, and whisker countermeasures can be realized. If the temperature is lower than 100 ° C., such an effect is not sufficient. If the temperature is higher than 280 ° C., contact resistance, solderability and workability are reduced due to diffusion and oxidation. If the heat treatment time is less than 1 minute, the effect is not sufficient, and
If the amount exceeds the above range, the above-mentioned characteristics decrease due to diffusion and oxidation, which is not economical. Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited thereto.

【0025】[0025]

【実施例1】表1に化学成分(wt% )を示す銅基合金N
o.1〜11を高周波誘導溶解炉を用いて溶製し、40
×40×150(mm)の鋳塊に鋳造した。ただし溶解鋳造
時の雰囲気はArガス雰囲気とした。鋳造後直ちに水冷
し、各鋳塊について冷間圧延と焼鈍を繰り返し、厚さ
0.6mmまで冷間圧延した。
Example 1 Table 1 shows a copper-based alloy N having a chemical composition (wt%).
o. 1 to 11 were melted using a high-frequency induction melting furnace, and 40
It was cast into an ingot of × 40 × 150 (mm). However, the atmosphere during melting and casting was an Ar gas atmosphere. Immediately after casting, it was cooled with water, and cold rolling and annealing were repeated for each ingot, and cold rolled to a thickness of 0.6 mm.

【0026】次いで、450℃の温度で30分間熱処理
後、水急冷を行い、さらに酸洗を施して得た熱処理材を
厚さ0.25mmまで冷間圧延し、試験材とした。尚、表
1に示した本発明合金No.1〜8中の不純物は、それ
ぞれ合計0.2wt% 以下であり、特にFe、Siは共に
0.05wt% 以下であった。
Next, after heat treatment at a temperature of 450 ° C. for 30 minutes, water quenching was carried out, and the heat-treated material obtained by acid pickling was cold-rolled to a thickness of 0.25 mm to obtain a test material. The alloy No. 1 of the present invention shown in Table 1 was used. Impurities in Nos. 1 to 8 were each 0.2% by weight or less in total, and in particular, both Fe and Si were 0.05% by weight or less.

【0027】以上のようにして得られた試験材を用いて
硬さ、引張強さおよび導電率の測定を行なった。測定方
法はそれぞれJIS Z 2244、JIS Z 22
41、JIS H 0505に従った。また、曲げ加工
性は、90°W曲げ試験(CES−M−0002−6、
R=0.2mm、圧延方向および垂直方向)を行ない、中
央部の山表面が良好なものを○印、しわの発生したもの
を△印、割れの発生したものを×印として評価し、これ
らの結果を表1に併せて示した。
The hardness, tensile strength and electrical conductivity were measured using the test materials obtained as described above. The measurement methods are JIS Z 2244 and JIS Z 22
41, according to JIS H0505. In addition, bending workability was measured by a 90 ° W bending test (CES-M-0002-6,
R = 0.2 mm, rolling direction and vertical direction), and those with a good mountain surface at the center were evaluated as ○, those with wrinkles as Δ, and those with cracks as X, and evaluated. Table 1 also shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示した結果から、本発明に係わるN
o.1〜8の銅合金は引張強さ、導電率のバランスに優
れ、また曲げ加工性も良好であることがわる。従ってこ
れらはコネクタ等の電気・電子部品用材料として非常に
優れた特性を有する銅合金である。これに対して、Zn
含有量の多いNo.9、Fe不純物の多いNo.10、
Fe,Si不純物の多いNo.11は、導電率、曲げ加
工性に劣っていることがわかる。
From the results shown in Table 1, it is found that N
o. Copper alloys Nos. 1 to 8 are excellent in balance between tensile strength and electrical conductivity, and have good bending workability. Therefore, these are copper alloys having extremely excellent properties as materials for electric and electronic parts such as connectors. In contrast, Zn
No. with high content 9, No. 9 with many Fe impurities 10,
No. 1 containing many Fe and Si impurities. No. 11 is inferior in electrical conductivity and bending workability.

【0030】[0030]

【実施例2】実施例1の表1に示す本発明合金No.1
と市販の黄銅1種(C2600−EH,C2600−H
材)について、硬さ、引張強さ、ばね限界値、導電率、
耐応力腐食割れ性、耐熱温度を試験測定した。この場
合、硬さ、引張強さおよび導電率の測定試験は、実施例
1と同様の測定法であり、ばね限界値の測定は、JIS
H 3130にしたがって行なった。応力腐食割れ時間
は試料に約400N/mm2 の曲げ応力を負荷し、12.5
%アンモニア水の入ったデシケータ内に暴露して割れが
発生した時間である。耐熱温度は、30分加熱保持後の
硬さが、初期硬さの90%となる温度とした。このよう
にして得た結果を表2に併せて示した。
Example 2 Inventive alloy No. 1 shown in Table 1 of Example 1. 1
And one type of commercially available brass (C2600-EH, C2600-H
Material), hardness, tensile strength, spring limit, conductivity,
The stress corrosion cracking resistance and the heat resistance temperature were tested and measured. In this case, the measurement test of the hardness, the tensile strength and the electrical conductivity is the same measurement method as in Example 1, and the measurement of the spring limit value is performed according to JIS.
H 3130. The stress corrosion cracking time was determined by applying a bending stress of about 400 N / mm 2 to
Exposure time in the desiccator containing the aqueous ammonia solution and the cracking time. The heat-resistant temperature was a temperature at which the hardness after heating and holding for 30 minutes was 90% of the initial hardness. The results thus obtained are also shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示す結果から、本発明の銅基合金
は、従来の代表的なコネクタ等の電気・電子部品用材料
である黄銅に比較して、導電率、耐応力腐食割れ性、耐
熱性が向上していることがわかる。従って、本発明の銅
基合金は、耐環境性、信頼性に優れていることが明らか
である。
From the results shown in Table 2, the copper-based alloy of the present invention has higher conductivity, stress corrosion cracking resistance, and heat resistance than brass, which is a conventional material for electric and electronic parts such as connectors. It can be seen that the property has been improved. Therefore, it is clear that the copper-based alloy of the present invention has excellent environmental resistance and reliability.

【0033】[0033]

【実施例3】Embodiment 3

【表3】 [Table 3]

【0034】表3に示す組成の本発明合金条材を作製
後、Cu下地めっきを0.5μm、Snめっきを1.1
μm施した後、プレス打ち抜きした材料を溶解鋳造用の
原料として準備した。鋳造における目標組成は第3表と
し、また、溶解用の原料としてプレスくずを約1t、残
りは電気Cu、Znにより成分調整し約2tのインゴッ
トを6本得た。得られたインゴットの成分はほぼ表3に
示すものと同一であった。
After preparing the alloy strip of the present invention having the composition shown in Table 3, the Cu base plating was 0.5 μm and the Sn plating was 1.1 μm.
After the μm application, a material punched out by press was prepared as a raw material for melting casting. The target composition in the casting is shown in Table 3, and press scrap as a raw material for melting is about 1 t, and the rest is adjusted with electric Cu and Zn to obtain six ingots of about 2 t. The components of the obtained ingot were almost the same as those shown in Table 3.

【0035】これらの得られたインゴットのうち3本
は、原料のプレスくずを450℃で、3時間大気中で加
熱処理して用いたものであり、残りの3本は何ら処理を
せずに用いたものである。各インゴットを急速に溶解
し、2tのインゴットを鋳造して、熱間圧延、冷間圧
延、焼鈍を繰り返し、0.25mmに仕上げた。このよう
にして得られた材料の全長を検査し、インゴットのブロ
ーホールに起因した欠点の個数を数え、その結果を表4
に示した。
Three of the obtained ingots were obtained by heating raw press waste at 450 ° C. for 3 hours in the air, and the remaining three were not subjected to any treatment. It was used. Each ingot was rapidly melted, a 2t ingot was cast, and hot rolling, cold rolling, and annealing were repeated to finish to 0.25 mm. The total length of the material obtained in this way was inspected, the number of defects caused by blowholes of the ingot was counted, and the results were shown in Table 4.
It was shown to.

【0036】[0036]

【表4】 [Table 4]

【0037】表4に示す結果から、本発明法に従ってプ
レスくずを熱処理して用いたものは欠陥がなく優れてい
たのに対し、熱処理をしないで用いた製品には欠陥が発
生しており、歩留まりに問題があることがわかる。
From the results shown in Table 4, it can be seen that the heat-treated press waste used in accordance with the method of the present invention was excellent without defects, whereas the product used without heat treatment had defects. It turns out that there is a problem in the yield.

【0038】[0038]

【実施例4】実施例1によって得られた本発明合金N
o.1にCu下地めっき0.5μm、Snめっき1.1
μmを施した後、150℃の温度で60分の熱処理を実
施したものと、めっき処理後熱処理しなかったものの特
性を比較し、その結果を表5に示した。ただし、応力緩
和率は、試験片の中央部の応力が、400N/mm2 になる
ようにアーチ状に曲げ150℃の温度で500時間保持
後の曲げぐせを応力緩和率として次式により算出した。
Example 4 Alloy N of the present invention obtained in Example 1
o. 1 is Cu under plating 0.5 μm, Sn plating 1.1
The characteristics of the heat-treated at 150 ° C. for 60 minutes after the application of the μm and those not heat-treated after the plating treatment were compared, and the results are shown in Table 5. However, the stress relaxation rate was calculated by the following equation as the stress relaxation rate after bending for 500 hours at a temperature of 150 ° C. in an arch shape so that the stress at the center of the test piece was 400 N / mm 2 . .

【0039】応力緩和率(%)=[(L1 −L2 )/
(L1 −L0 )]×100 L0 :治具の長さ(mm) L1 :開始前の試料長さ(mm) L2 :処理後の試料端間の水平距離(mm)
Stress relaxation rate (%) = [(L 1 -L 2 ) /
(L 1 −L 0 )] × 100 L 0 : length of jig (mm) L 1 : length of sample before start (mm) L 2 : horizontal distance between sample ends after treatment (mm)

【0040】[0040]

【表5】 [Table 5]

【0041】表5に示す結果より、めっき処理後本発明
法によって熱処理した材料は、熱処理をしなかった材料
に比べて諸特性に優れ、コネクタ用として適しているこ
とがわかった。
From the results shown in Table 5, it was found that the material heat-treated by the method of the present invention after the plating treatment was superior in various properties to the material not subjected to the heat treatment and was suitable for connectors.

【0042】[0042]

【発明の効果】上述のように本発明法によって得られた
材料は、従来合金である黄銅等に比較して、引張強さ、
導電率のバランスや成形加工性をはじめ、耐環境性、耐
熱性、耐応力緩和率保持性等に優れるため、黄銅に代わ
る安価なコネクタ等の電気・電子部品材料として最適な
ものである。
As described above, the material obtained by the method of the present invention has a tensile strength,
Since it has excellent electrical resistance balance, moldability, environmental resistance, heat resistance, stress relaxation resistance retention, etc., it is the most suitable material for electrical and electronic parts such as brass, which is an inexpensive connector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明銅基合金の組成範囲を示す分布図であ
る。
FIG. 1 is a distribution diagram showing a composition range of a copper-based alloy of the present invention.

フロントページの続き (72)発明者 田辺 郁 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 加藤 哲男 静岡県榛原郡榛原町布引原206−1 矢 崎部品株式会社内 (72)発明者 太田 幸男 静岡県榛原郡榛原町布引原206−1 矢 崎部品株式会社内 (72)発明者 角田 直樹 静岡県榛原郡榛原町布引原206−1 矢 崎部品株式会社内 (56)参考文献 特開 平1−162737(JP,A) 特開 平1−268834(JP,A) 特開 昭61−284593(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 9/00 - 9/10 C22F 1/00 - 3/02 Continued on the front page (72) Inventor Iku Tanabe 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Tetsuo Kato 206-1 Nunobikihara, Harihara-gun, Haibara-gun, Shizuoka Prefecture Yazaki Parts Co., Ltd. (72) Inventor Yukio Ota 206-1 Nunobikihara, Haibara-cho, Haibara-gun, Shizuoka Prefecture, Japan Inside (72) Inventor Naoki Kakuda 206-1 Nunobikihara, Haibara-cho, Haibara-gun, Shizuoka Prefecture, Yazaki Parts Corporation ( 56) References JP-A-1-162737 (JP, A) JP-A-1-268834 (JP, A) JP-A-61-284593 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 9/00-9/10 C22F 1/00-3/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 添加成分元素の含有量がZn:3.0〜
7.0wt% 、Sn:0.2〜1.0wt% であり、且つそ
れらの添加量が次式(1)で表わされる関係を満たし、 1.0≦0.2X+Y≦1.8 (1) [但し、XはZnの添加量(wt%)であり、YはSnの添
加量(wt%)である。]不純物の合計が0.2wt%以下で
ある銅基合金を原材料として用い、 350〜750℃の温度で1〜360分の熱処理後、加
工率40%以上で冷間加工して得た材料の表面に、 Cu下地を0.3〜1.0μm、SnをCu下地上に
0.5〜2.0μmの厚さで表面処理層として形成し、 次いで100〜280℃の温度で1〜180分の熱処理
を施すことを特徴とするコネクタ用銅基合金の製造法。
1. The content of an additional component element is Zn: 3.0 to 3.0.
7.0 wt%, Sn: 0.2 to 1.0 wt%, and their addition amounts satisfy the relationship represented by the following formula (1): 1.0 ≦ 0.2X + Y ≦ 1.8 (1) [However, X is the addition amount (wt%) of Zn, and Y is the addition amount (wt%) of Sn. ] Using a copper-based alloy having a total of impurities of 0.2 wt% or less as a raw material, heat-treating at a temperature of 350 to 750 ° C for 1 to 360 minutes, and then performing cold working at a working ratio of 40% or more. On the surface, a Cu base is formed as a surface treatment layer with a thickness of 0.3 to 1.0 μm and Sn on a Cu base with a thickness of 0.5 to 2.0 μm, and then at a temperature of 100 to 280 ° C. for 1 to 180 minutes. A method for producing a copper-based alloy for a connector, comprising:
JP06073993A 1994-03-18 1994-03-18 Manufacturing method of copper base alloy for connector Expired - Lifetime JP3105392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06073993A JP3105392B2 (en) 1994-03-18 1994-03-18 Manufacturing method of copper base alloy for connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06073993A JP3105392B2 (en) 1994-03-18 1994-03-18 Manufacturing method of copper base alloy for connector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000042538A Division JP3323472B2 (en) 1994-03-18 2000-02-21 Manufacturing method of copper base alloy for connector

Publications (2)

Publication Number Publication Date
JPH07258777A JPH07258777A (en) 1995-10-09
JP3105392B2 true JP3105392B2 (en) 2000-10-30

Family

ID=13534162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06073993A Expired - Lifetime JP3105392B2 (en) 1994-03-18 1994-03-18 Manufacturing method of copper base alloy for connector

Country Status (1)

Country Link
JP (1) JP3105392B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792653B1 (en) * 2005-07-15 2008-01-09 닛코킨조쿠 가부시키가이샤 Copper alloy for electronic and electric machinery and tools, and manufacturing method thereof
JP4672618B2 (en) * 2005-08-24 2011-04-20 Jx日鉱日石金属株式会社 Cu-Zn-Sn alloy for electrical and electronic equipment
JP4538424B2 (en) * 2006-03-29 2010-09-08 日鉱金属株式会社 Cu-Zn-Sn alloy tin-plated strip
JP4781145B2 (en) * 2006-03-30 2011-09-28 Jx日鉱日石金属株式会社 Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
CN1937856B (en) * 2006-07-28 2010-12-15 王克政 Rare earth basic-metal resistance size for metal base board based rare earth thick film circuit and its preparing process
TW200844267A (en) * 2007-03-22 2008-11-16 Nippon Mining Co Sn-plated copper alloy material for printed board terminal
JP5150908B2 (en) * 2008-07-07 2013-02-27 Dowaメタルテック株式会社 Copper alloy for connector and its manufacturing method
JP5339995B2 (en) * 2009-04-01 2013-11-13 Jx日鉱日石金属株式会社 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip

Also Published As

Publication number Publication date
JPH07258777A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP2522629B2 (en) Copper alloy for electric parts and electronic parts and method for producing the same
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP2001262255A (en) Copper based alloy bar for terminal and its producing method
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP3105392B2 (en) Manufacturing method of copper base alloy for connector
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP4688100B2 (en) Manufacturing method of Cu plated steel sheet for electrical contacts
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP3323472B2 (en) Manufacturing method of copper base alloy for connector
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JP4633380B2 (en) Manufacturing method of copper alloy sheet for conductive parts
JPH0559974B2 (en)
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JP3438307B2 (en) Sn-plated copper alloy plate
JP2594249B2 (en) Copper base alloy for connector and method of manufacturing the same
JP2743342B2 (en) Copper base alloy for connector and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term