JP2594250B2 - Copper base alloy for connector and method of manufacturing the same - Google Patents

Copper base alloy for connector and method of manufacturing the same

Info

Publication number
JP2594250B2
JP2594250B2 JP4146380A JP14638092A JP2594250B2 JP 2594250 B2 JP2594250 B2 JP 2594250B2 JP 4146380 A JP4146380 A JP 4146380A JP 14638092 A JP14638092 A JP 14638092A JP 2594250 B2 JP2594250 B2 JP 2594250B2
Authority
JP
Japan
Prior art keywords
cold
weight
alloy
connector
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4146380A
Other languages
Japanese (ja)
Other versions
JPH05311298A (en
Inventor
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP4146380A priority Critical patent/JP2594250B2/en
Publication of JPH05311298A publication Critical patent/JPH05311298A/en
Application granted granted Critical
Publication of JP2594250B2 publication Critical patent/JP2594250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、輸送機器の電気配線等
に使用される信号用微小電流コネクタ、電子機器等に使
用される圧接型コネクタやICソケットなどの構成材料
として好適な、優れた強度、弾性および電気伝導性を有
し、かつ優れた成形加工性、耐応力緩和特性およびめっ
き信頼性を有するコネクタ用銅基合金およびその製造法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an excellent and suitable material for forming a minute current connector for signals used for electric wiring of transportation equipment, a pressure contact type connector used for electronic equipment, and an IC socket. The present invention relates to a copper-based alloy for a connector having strength, elasticity and electric conductivity, and excellent moldability, stress relaxation resistance and plating reliability, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器装置の内部実装は、I
C、LSI、VLSIへの急速な高集積化に伴い高密度
化が図られるようになったため、これに必要なコネクタ
やICソケットのより一層の多機能化および高信頼化が
求められるようになった。また、輸送機器の電気配線に
おいてもカーエレクトロニクスの発達に伴って高密度化
や軽量化が図られ、これに必要なコネクタのより一層の
多機能化、高信頼化および小型化が求られている。
2. Description of the Related Art In recent years, the internal mounting of electronic equipment has been
With the rapid increase in integration of C, LSI, and VLSIs, higher densities have been achieved, so that the connectors and IC sockets required for such functions have been required to have more functions and higher reliability. Was. In addition, with the development of car electronics, higher densities and lighter weights have been achieved in the electrical wiring of transportation equipment, and further multifunctionality, higher reliability, and smaller size of the connectors required for this are required. .

【0003】すなわち、上記のようにより一層の多機能
化や高信頼化が求められているコネクタ等の構成材料に
は、以下のような特性が要求されているのである。
[0003] That is, as described above, the following characteristics are required for constituent materials of connectors and the like, which are required to have more functions and higher reliability.

【0004】ターミナルと電線との接続においては、高
密度化に伴う電線本数の増加に対して結線の合理化を図
るため、圧接が採用される場合が多い。そのため、ター
ミナルの構成材料は、優れた強度や弾性を有する必要が
ある。また、ターミナルの電気的信頼性を確保するため
には、バネの接触力が大きくかつ経時変化しないことが
必要である。そのため、ターミナルの構成材料には、優
れた電気伝導性、耐応力緩和性および耐食性が要求され
る。さらに、ターミナルの構成材料には、複雑な加工に
も耐え得る優れた成形加工性を有することが要求され
る。
In connection between a terminal and an electric wire, pressure welding is often employed in order to rationalize the connection in response to an increase in the number of electric wires due to a high density. Therefore, the constituent material of the terminal needs to have excellent strength and elasticity. Further, in order to ensure the electrical reliability of the terminal, it is necessary that the contact force of the spring is large and does not change with time. Therefore, the constituent material of the terminal is required to have excellent electric conductivity, stress relaxation resistance and corrosion resistance. Furthermore, the constituent material of the terminal is required to have excellent molding workability that can withstand complicated processing.

【0005】また、ターミナルにおけるコンタクト部に
は、ターミナルの接触抵抗の安定性を向上させるため、
めっき処理が施されることが多い。そのため、ターミナ
ルの構成材料は、めっき付け性に優れ、かつ使用環境や
発熱による熱影響によって材料とめっき層との間に拡散
が生じ、この拡散が生じた部分(脆弱部)においてめっ
き剥離を生じないことが必要とされる。
In order to improve the stability of the contact resistance of the terminal,
Plating is often applied. Therefore, the material of the terminal is excellent in plating properties, and diffusion occurs between the material and the plating layer due to the influence of the use environment and heat generation, and plating peeling occurs in a portion (fragile portion) where the diffusion occurs. Not required.

【0006】ICソケットにおいては、集積度の向上に
伴ってピン数が増加しており、その実装方式は、DIP
タイプからピングリットアレイやチップキャリア等に移
行している。また、ICソケットは、脱着回数の多いE
P−ROMやP−ROMライター用、およびICテスタ
ーのバーンインやエージング用等として広く展開されて
いる。そのため、ICソケットの構成材料は、ターミナ
ルの構成材料と同様に、強度、弾性、電気伝導性、耐熱
性、耐応力緩和性に優れている必要がある。
In an IC socket, the number of pins is increasing with an increase in the degree of integration.
There is a shift from types to pinlit arrays and chip carriers. The IC socket is E
It is widely deployed for use in P-ROMs and P-ROM writers, and for burn-in and aging of IC testers. Therefore, the constituent material of the IC socket needs to be excellent in strength, elasticity, electrical conductivity, heat resistance, and stress relaxation resistance, like the constituent material of the terminal.

【0007】従来、上記のような用途におけるコネクタ
の構成材料としては、主にリン青銅やベリリウム銅が用
いられていた。しかしながら、リン青銅は圧接型コネク
タとして使用した場合、十分な強度や弾性が得られない
という問題点があった。また、ICソケット用、特にI
Cテスターのバーンインやエージング用として使用した
場合、耐応力緩和特性や耐熱性が不十分であり、信頼性
や耐久性に問題があった。さらに、一般的なコネクタと
して使用した場合においても、耐応力緩和特性が不十分
であったり、めっき剥離を生じてしまうことがあったた
め、信頼性に問題があった。
Heretofore, phosphor bronze and beryllium copper have been mainly used as constituent materials of connectors for the above applications. However, when phosphor bronze is used as a press-fit type connector, there is a problem that sufficient strength and elasticity cannot be obtained. Also for IC sockets, especially I
When used for burn-in and aging of a C tester, the stress relaxation resistance and heat resistance were insufficient, and there were problems in reliability and durability. Furthermore, even when used as a general connector, there was a problem in reliability because the stress relaxation resistance was insufficient or plating peeling occurred.

【0008】一方、ベリリウム銅は、強度および弾性を
もたせるためには成形加工後に 300〜 350℃で時効処理
を行わなければならなかったため、経済性の面で問題が
あった。また、成形加工後の時効処理の後に行われる後
めっきにおいては、複雑に加工した部分にめっきが均一
に電着しにくく、めっきむらを生じやすいという問題点
があった。一方、成型加工前に行われる先めっきにおい
ては、SnやSn−Pb等といった低融点金属のめっき
が行えず、めっき種類が限定されてしまうという問題点
があった。
[0008] On the other hand, beryllium copper has had a problem in terms of economy because it had to be subjected to aging treatment at 300 to 350 ° C after molding in order to impart strength and elasticity. Further, in the post-plating performed after the aging treatment after the forming process, there is a problem that plating is difficult to be uniformly electrodeposited on a complicatedly processed portion, and plating unevenness is likely to occur. On the other hand, in the pre-plating performed before the molding process, there is a problem that plating of a low melting point metal such as Sn or Sn-Pb cannot be performed, and the plating type is limited.

【0009】上記のような問題を解決すべく、Cu−N
i−Al系あるいはCu−Ni−Al−B系のコネクタ
用銅基合金およびその製造方法が提供されている(特願
昭62-84653号、特願昭 62-209839号、特願昭 62-306993
号)。しかしながら、これらの方法によると、Cu−N
i−Al系、Cu−Ni−Al−B系の合金は連続鋳造
におけるカーボン鋳型と添加元素のNiとの反応の問題
が、Alの存在下で顕著であるため、鋳造時の歩留低下
が著しいという問題点があった。また、溶体化処理、時
効処理と加工との組合せで得られる板材の材料特性のう
ち、特にばね限界値が大きくバラついてしまうという問
題があった。
In order to solve the above problems, Cu-N
An i-Al-based or Cu-Ni-Al-B-based copper-based alloy for a connector and a method of producing the same are provided (Japanese Patent Application Nos. 62-84653, 62-209839, 62-9839). 306993
issue). However, according to these methods, Cu-N
In the case of i-Al-based and Cu-Ni-Al-B-based alloys, the problem of the reaction between the carbon mold and the additive element Ni in continuous casting is prominent in the presence of Al. There was a problem that it was remarkable. In addition, among the material properties of the sheet material obtained by the combination of the solution treatment, the aging treatment and the processing, there is a problem that the spring limit value particularly varies greatly.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述従来の
技術の問題点を解決し、強度、弾性および電気伝導性に
優れ、かつ成形加工性、耐応力緩和特性およびめっき信
頼性に優れたコネクタ用銅基合金およびその製造法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and is excellent in strength, elasticity and electric conductivity, and excellent in moldability, stress relaxation resistance and plating reliability. An object of the present invention is to provide a copper-based alloy for a connector and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究の結果、NiおよびAlを規
制した割合で適量添加し、さらにCo、CrおよびTi
のうち少なくとも1種、およびSnを適量添加し(必要
に応じてBも適量添加)、酸素含有量を規制することに
より、上記課題が解決されることを見い出し、本発明に
到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, have added appropriate amounts of Ni and Al at a regulated ratio, and further added Co, Cr and Ti.
It has been found that the above-mentioned problems can be solved by adding at least one of the above and Sn in an appropriate amount (and also adding an appropriate amount of B if necessary) and regulating the oxygen content, thereby achieving the present invention.

【0012】すなわち、本発明は、重量%において、N
i: 5〜15%、Al: 0.5〜 2.0%、Sn: 0.1〜 3.0
%、Co、CrおよびTiのうち少なくとも1種:0.01
〜 2.0%を含有し、かつ上記Ni/Alの重量百分率の
比率が 3〜10の範囲、および酸素含有量が 50ppm以下で
あり、残部がCuおよび不可避的不純物からなるコネク
タ用銅基合金;および重量%において、Ni: 5〜15
%、Al: 0.5〜 2.0%、Sn: 0.1〜 3.0%、B:
0.005〜 0.1%、Co、CrおよびTiのうち少なくと
も1種:0.01〜 2.0%を含有し、かつ上記Ni/Alの
重量百分率の比率が3〜10の範囲、および酸素含有量が
50ppm以下であり、残部がCuおよび不可避的不純物か
らなるコネクタ用銅基合金;ならびに重量%において、
Ni: 5〜15%、Al: 0.5〜 2.0%、Sn: 0.1〜
3.0%、Co、CrおよびTiのうち少なくとも1種:
0.01〜 2.0%を含有し、かつ上記Ni/Alの重量百分
率の比率が 3〜10の範囲、および酸素含有量が 50ppm以
下であり、残部がCuおよび不可避的不純物からなる合
金材料を連続鋳造して素材板を得、この素材板を熱間圧
延することなく50%以上の加工率で冷間圧延する工程、
冷延材を 750〜 950℃の温度で10〜 600秒間溶体化処理
する工程、溶体化処理材を30〜90%の加工率で冷間圧延
する工程、および冷延材を 300〜 600℃の温度で 5〜 3
60分間時効処理する工程からなることを特徴とするコネ
クタ用銅基合金の製造方法;および重量%において、N
i: 5〜15%、Al: 0.5〜 2.0%、Sn: 0.1〜 3.0
%、B: 0.005〜 0.1%、Co、CrおよびTiのうち
少なくとも1種:0.01〜 2.0%を含有し、かつ上記Ni
/Alの重量百分率の比率が 3〜10の範囲、および酸素
含有量が 50ppm以下であり、残部がCuおよび不可避的
不純物からなる合金材料を連続鋳造して素材板を得、こ
の素材板を熱間圧延することなく50%以上の加工率で冷
間圧延する工程、冷延材を 750〜 950℃の温度で10〜 6
00秒間溶体化処理する工程、溶体化処理材を30〜90%の
加工率で冷間圧延する工程、および冷延材を 300〜 600
℃の温度で 5〜 360分間時効処理する工程からなること
を特徴とするコネクタ用銅基合金の製造方法を提供する
ものである。
That is, according to the present invention, N
i: 5 to 15%, Al: 0.5 to 2.0%, Sn: 0.1 to 3.0
%, At least one of Co, Cr and Ti: 0.01
A copper-based alloy for a connector, which contains no more than 2.0% and the weight percentage ratio of Ni / Al is in the range of 3 to 10, and the oxygen content is 50 ppm or less, and the balance consists of Cu and unavoidable impurities; Ni: 5 to 15% by weight
%, Al: 0.5 to 2.0%, Sn: 0.1 to 3.0%, B:
0.005 to 0.1%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the Ni / Al weight percentage ratio is in the range of 3 to 10, and the oxygen content is
Not more than 50 ppm, with the balance being Cu and unavoidable impurities;
Ni: 5 to 15%, Al: 0.5 to 2.0%, Sn: 0.1 to
3.0%, at least one of Co, Cr and Ti:
Continuously cast an alloy material containing 0.01 to 2.0%, the weight percentage ratio of Ni / Al is in the range of 3 to 10, and the oxygen content is 50 ppm or less, with the balance being Cu and unavoidable impurities. To obtain a blank, and press this blank
Cold rolling at a processing rate of 50% or more without elongation ,
A step of solution-treating the cold-rolled material at a temperature of 750 to 950 ° C for 10 to 600 seconds, a step of cold-rolling the solution-treated material at a processing rate of 30 to 90%, and a step of 5 to 3 at temperature
A method for producing a copper-base alloy for a connector, comprising a step of aging for 60 minutes;
i: 5 to 15%, Al: 0.5 to 2.0%, Sn: 0.1 to 3.0
%, B: 0.005 to 0.1%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the Ni
/ Range ratio of 3 to 10 weight percent of Al, and oxygen content is not more 50ppm or less, to obtain a material plate an alloy material the balance being Cu and unavoidable impurities by continuous casting, heat the material sheet Cold rolling at a working ratio of 50% or more without cold rolling, cold-rolled material at a temperature of 750 to 950 ° C for 10 to 6
Solution-treating for 00 seconds, cold-rolling the solution-treated material at a working ratio of 30 to 90%, and cold-rolling the material to 300 to 600%.
A method for producing a copper-based alloy for a connector, comprising a step of aging at a temperature of 5 ° C. for 5 to 360 minutes.

【0013】上記コネクタ用銅基合金の製造方法におい
ては、冷間圧延前の溶体化処理材に、 300〜 550℃の温
度で 5〜 360分間の時効処理を施したり、溶体化処理工
程を少なくとも2回行うことにより、より好適なコネク
タ用銅基合金を得ることができる。
In the method for producing a copper-base alloy for a connector, the solution-treated material before cold rolling is subjected to an aging treatment at a temperature of 300 to 550 ° C. for 5 to 360 minutes, or at least a solution treatment step. By performing the treatment twice, a more suitable copper-based alloy for a connector can be obtained.

【0014】[0014]

【作用】まず、本発明の合金成分の含有量の範囲限定理
由について以下に説明する。
First, the reason for limiting the range of the content of the alloy component of the present invention will be described below.

【0015】本発明の銅基合金はNi−Al系金属間化
合物による析出強化を図った点に一つの特徴があるた
め、NiとAlは本発明合金において不可欠の元素であ
る。Niは、Alと化合物を形成し、強度、弾性、耐熱
性、耐応力緩和特性の向上に寄与する元素であり、ま
た、鋳造組織を微細にし、かつ溶体化処理時における結
晶粒の粗大化を阻止する効果を有している。
The copper-based alloy of the present invention has one feature in that the precipitation strengthening by the Ni-Al based intermetallic compound is attained. Therefore, Ni and Al are indispensable elements in the alloy of the present invention. Ni is an element that forms a compound with Al and contributes to the improvement of strength, elasticity, heat resistance, and stress relaxation resistance. It also refines the cast structure and reduces the crystal grains during solution treatment. Has the effect of blocking.

【0016】このような効果を発揮させるためには、N
iの含有量が、重量%において 5%以上必要であるが、
15%を超えると電気伝導性の低下が顕著になり、しかも
連続鋳造でカーボン鋳型を用いた場合、鋳型との反応が
顕著になってインゴットの健全性が損なわれてしまう。
また、Niの含有量が15%を超えると、溶体化処理温度
が高くなりすぎて製造上不利になる上、材料費が高くな
ってしまう。そのため、本発明におけるNiの含有量は
5〜15重量%の範囲とした。
In order to exhibit such an effect, N
The content of i needs to be 5% or more by weight,
If it exceeds 15%, the electric conductivity is significantly reduced, and when a carbon mold is used in continuous casting, the reaction with the mold becomes noticeable and the soundness of the ingot is impaired.
On the other hand, if the content of Ni exceeds 15%, the solution treatment temperature becomes too high, which is disadvantageous in production and increases the material cost. Therefore, the content of Ni in the present invention is
The range was 5 to 15% by weight.

【0017】一方、Al含有量は、 0.5%未満ではNi
との共存下であっても強度、弾性、耐熱性の向上が少な
く、 2.0%を超えると析出物が過度に多くなり合金の延
性、成形加工性、めっき性を低下させ、しかも鋳造性が
低下し、経済的に不利になってしまう。そのため、本発
明におけるAlの含有量は 0.5〜 2.0重量%の範囲とし
た。
On the other hand, if the Al content is less than 0.5%,
Even when coexisting with steel, the improvement in strength, elasticity and heat resistance is small, and if it exceeds 2.0%, the precipitates become excessively large, reducing the alloy's ductility, formability, plating property, and castability. And is disadvantaged economically. Therefore, the content of Al in the present invention is in the range of 0.5 to 2.0% by weight.

【0018】また、NiとAlは、Ni−Al系金属間
化合物として析出するときに本発明の目的が有利に達成
されるが、このNi−Al系金属間化合物による強化を
十分に発揮させるためには、Ni/Alの重量百分率の
比率を制限する必要がある。すなわち、Ni/Alの重
量百分率の比率が3より小さい場合には、Cuマトリッ
クス中に固溶するAl量が過度に多くなり、Ni/Al
の重量百分率の比率が10より大きい場合には、Cuマト
リックス中に固溶するNi量が過度に多くなる。このよ
うに、NiおよびAlのどちらか一方のCuマトリック
ス中に固溶する量が過度に多くなると電気伝導性が低下
し、効率良く強度および弾性を向上させることができな
くなってしまうのである。そのため、本発明におけるN
i/Alの重量百分率の比率は 3〜10の範囲とした。
The object of the present invention is advantageously achieved when Ni and Al are precipitated as a Ni—Al intermetallic compound. Requires that the weight percentage ratio of Ni / Al be limited. That is, when the weight percentage ratio of Ni / Al is smaller than 3, the amount of Al dissolved in the Cu matrix becomes excessively large, and the Ni / Al
If the weight percentage ratio is larger than 10, the amount of Ni dissolved in the Cu matrix becomes excessively large. As described above, if the amount of either Ni or Al that forms a solid solution in the Cu matrix becomes excessively large, the electrical conductivity decreases, and the strength and elasticity cannot be improved efficiently. Therefore, N in the present invention
The weight percentage ratio of i / Al was in the range of 3-10.

【0019】Snは、カーボン鋳造を用いた連続鋳造性
を向上させる作用を有している。すなわち、SnはAl
存在下におけるNiとカーボンとの反応を効率良く防止
し、インゴットの健全性の向上とカーボン鋳型の寿命向
上に寄与しているのである。また、SnはCuマトリッ
クス中に固溶して強度や弾性を向上させ、特にばね限界
値のバラツキを小さくする効果を有している。上記のよ
うな効果は、Snの含有量が、重量%において 0.1%未
満では十分でなく、 3.0%を超えるとNiとの共存下で
スピノーダル分解を起こして異相を生じてしまう。この
ように異相を生じると、さらなる強度および弾性の向上
は可能となるが、成形加工性が著しく低下し、しかも熱
処理が複雑になりコストアップにつながるため好ましく
ない。そのため、本発明におけるSnの含有量は 0.1〜
3.0重量%の範囲とした。
Sn has an effect of improving continuous castability using carbon casting. That is, Sn is Al
The reaction between Ni and carbon in the presence is efficiently prevented, which contributes to improving the soundness of the ingot and extending the life of the carbon mold. In addition, Sn forms a solid solution in the Cu matrix to improve strength and elasticity, and has an effect of particularly reducing variation in the spring limit value. The effect described above is not sufficient if the Sn content is less than 0.1% by weight, and if it exceeds 3.0%, spinodal decomposition occurs in the presence of Ni and a different phase is generated. When such a different phase is generated, the strength and elasticity can be further improved, but the moldability is significantly reduced, and the heat treatment becomes complicated, leading to an increase in cost. Therefore, the content of Sn in the present invention is 0.1 to
The range was 3.0% by weight.

【0020】Co、Cr、Tiは、溶体化処理工程おけ
る結晶粒粗大化の防止、および時効処理工程における粒
界反応の効果的抑制等、合金の製造上有利になるだけで
なく、強度、弾性、電気伝導性をよりいっそう向上させ
る効果を有している。このような効果は、Co、Crお
よびTiのうち少なくとも1種を添加することにより発
揮されるが、その含有量は、重量%において0.01%未満
では充分でなく、 2.0%を超えると電気伝導性および成
形加工性の低下が著しくなる上、鋳造性も低下するため
経済的に不利となる。そのため、本発明におけるCo、
CrおよびTiのうち少なくとも1種の含有量は0.01〜
2.0%とした。なお、Co、CrおよびTiのより好ま
しい含有量は、Co:0.01〜 2.0重量%、Cr:0.01〜
1.5重量%、Ti:0.01〜 1.5重量%の範囲である。
Co, Cr, and Ti are not only advantageous in the production of alloys, such as preventing crystal grain coarsening in the solution treatment step and effectively suppressing grain boundary reactions in the aging treatment step, but also have strength, elasticity, and the like. Has the effect of further improving the electrical conductivity. Such an effect is exhibited by adding at least one of Co, Cr and Ti. However, if the content is less than 0.01% in weight%, the content is not sufficient. In addition, the moldability is significantly reduced, and the castability is also reduced, which is economically disadvantageous. Therefore, in the present invention, Co,
The content of at least one of Cr and Ti is 0.01 to
2.0%. The more preferable contents of Co, Cr and Ti are as follows: Co: 0.01 to 2.0% by weight, Cr: 0.01 to
1.5% by weight, Ti: 0.01 to 1.5% by weight.

【0021】Bは、溶解、鋳造時の脱酸剤として寄与
し、また溶体化処理時の結晶粒の粗大化を防止する効果
を有するが、Bの含有量が 0.005%未満ではこのような
効果が充分に発揮されず、 0.1%を超えると成形加工性
が低下し、経済的にも不利となってしまう。そのため、
本発明におけるBの含有量は 0.005〜 0.1重量%の範囲
とした。
B contributes as a deoxidizing agent at the time of melting and casting, and has an effect of preventing the crystal grains from coarsening at the time of solution treatment. However, when the B content is less than 0.005%, such an effect is obtained. Is not sufficiently exhibited, and if it exceeds 0.1%, the moldability decreases, which is economically disadvantageous. for that reason,
The content of B in the present invention is in the range of 0.005 to 0.1% by weight.

【0022】O2 は、合金中に50ppm より多量に含まれ
ると、酸素との親和力の大きいAlが酸化されてAl2
3 が形成され、めっき付け性やめっき信頼性の劣化、
プレス金型寿命の低下等を招いてしまう。また、合金の
製造過程においてH2 ガスを用いた場合、表面および内
部に水素脆化が生じてしまうこともある。そのため、本
発明におけるO2 の含有量は 50ppm以下の範囲とした。
When O 2 is contained in an amount of more than 50 ppm in the alloy, Al having a high affinity for oxygen is oxidized and Al 2 is oxidized.
O 3 is formed, and plating property and plating reliability deteriorate,
This leads to a reduction in the life of the press die. Further, when H 2 gas is used in the production process of the alloy, hydrogen embrittlement may occur on the surface and inside. Therefore, the content of O 2 in the present invention is set to a range of 50 ppm or less.

【0023】このような成分組成に調整した本発明の銅
基合金は、Ni−Al系金属間化合物を微細に析出さ
れ、強度、弾性、電気伝導性、成形加工性、耐応力緩和
特性、めっき信頼性など様々な特性に優れているため、
近時のコネクタ用材料に要求される諸特性を具備した材
料とすることができる。
The copper-base alloy of the present invention adjusted to such a composition has finely precipitated Ni-Al intermetallic compound, and has strength, elasticity, electric conductivity, moldability, stress relaxation resistance, and plating. Because it is excellent in various characteristics such as reliability,
A material having various characteristics required for recent connector materials can be obtained.

【0024】次に、本発明のコネクタ用銅基合金の製造
方法について以下に説明する。
Next, a method for producing the copper-based alloy for a connector of the present invention will be described below.

【0025】まず、重量%において、Ni: 5〜15%、
Al: 0.5〜 2.0%、Sn: 0.1〜3.0%、Co、Cr
およびTiのうち少なくとも1種:0.01〜 2.0%を含有
し、かつ上記Ni/Alの重量百分率の比率が 3〜10の
範囲、および酸素濃度が 50ppm以下であり、場合によっ
てはBを 0.005〜 0.1%含有し、残部がCuおよび不可
避的不純物からなる合金材料を連続鋳造(溶解鋳造)し
て素材板(インゴット)を作製する。
First, in weight%, Ni: 5 to 15%,
Al: 0.5 to 2.0%, Sn: 0.1 to 3.0%, Co, Cr
And at least one of Ti: 0.01 to 2.0%, and the Ni / Al weight percentage ratio is in the range of 3 to 10, and the oxygen concentration is 50 ppm or less, and in some cases, B is 0.005 to 0.1. %, With the balance being continuously cast (melt cast) of an alloy material consisting of Cu and unavoidable impurities to produce a material plate (ingot).

【0026】なお、上記溶解鋳造は不活性ガスあるいは
還元ガス雰囲気中で行うことが望ましい。また、連続鋳
造の鋳型の材質としては、冷却(急冷)、消耗、溶湯と
の反応、ランニングコストの面からカーボンを用いるこ
とが望ましい。さらに、鋳造後、二次冷却によってイン
ゴットは急冷されるのが望ましい。ただし、上記急冷開
始温度は 800℃以上が望ましい。
It is desirable that the melting and casting be performed in an inert gas or reducing gas atmosphere. As the material of the casting mold for continuous casting, it is desirable to use carbon from the viewpoint of cooling (rapid cooling), consumption, reaction with molten metal, and running cost. Further, after casting, it is desirable that the ingot is rapidly cooled by secondary cooling. However, the quenching start temperature is desirably 800 ° C or higher.

【0027】次に、作製したインゴットを冷間加工率50
%以上で圧延する。この場合、冷間圧延でなく熱間圧延
を行ってもよいが、酸化雰囲気での加熱、圧延は、添加
元素のAlが内部酸化してAl2 3 (強固な皮膜)を
形成し、熱間割れを生じやすくなるため望ましくない。
また、冷間加工率が50%未満であると引き続き行われる
溶体化処理工程において、鋳造時の偏析を消失させるの
に要する時間が著しく長くなってしまうため好ましくな
い。
Next, the produced ingot was subjected to a cold working ratio of 50.
Roll at% or more. In this case, hot rolling may be performed instead of cold rolling. However, in heating and rolling in an oxidizing atmosphere, Al as an additional element is internally oxidized to form Al 2 O 3 (a strong film), Undesirably, cracks tend to occur.
On the other hand, if the cold working ratio is less than 50%, the time required to eliminate segregation at the time of casting in the subsequent solution treatment step is extremely long, which is not preferable.

【0028】次いで、この板材に 750〜 950℃の温度で
10〜 600秒の溶体化処理を施す。なお、処理温度は 750
℃未満では充分に溶体化せず、 950℃を超えると短時間
で結晶粒が粗大化してしまうため、 750〜 950℃の範囲
とした。また、処理時間は、10秒未満では鋳造時の偏析
が残ってしまうため溶体化が充分に行われず、 600秒を
超えると結晶粒が粗大化する上経済的でなくなってしま
うため、10〜 600秒の範囲とした。
Next, the plate is heated at a temperature of 750 to 950 ° C.
Perform a solution treatment for 10 to 600 seconds. The processing temperature is 750
If the temperature is lower than 950 ° C, the solution does not sufficiently melt. If the temperature exceeds 950 ° C, the crystal grains become coarse in a short time. If the treatment time is less than 10 seconds, segregation during casting remains, so that the solution is not sufficiently performed.If the treatment time is more than 600 seconds, the crystal grains become coarse and uneconomical. The range was seconds.

【0029】次に、得られた溶体化処理材を必要に応じ
て酸洗した後、30〜90%の範囲で冷間圧延する。これ
は、加工率が30%未満では加工によって付与される加工
歪が小さく、後続の時効処理工程の時効析出における強
度および弾性の向上が充分でなくなってしまい、また、
加工率が90%を超えると圧延の集合組織の発達が著しく
機械的性質に方向性(異方性)をもつようになり、成形
加工性を低下させてしまうため、時効処理前の冷間圧延
の加工率は30〜90%の範囲とした。
Next, the obtained solution-treated material is subjected to pickling, if necessary, and then cold-rolled in the range of 30 to 90%. This is because, when the working ratio is less than 30%, the working strain imparted by working is small, and the strength and elasticity in the aging precipitation in the subsequent aging treatment step are not sufficiently improved, and
If the working ratio exceeds 90%, the development of rolling texture will be remarkable, and the mechanical properties will have directionality (anisotropic), and the formability will be reduced. Therefore, cold rolling before aging treatment The processing rate was in the range of 30 to 90%.

【0030】次いで、時効処理として 300〜 600℃の温
度で 5〜 360分の熱処理を行う。処理温度は、 300℃未
満では析出に要する時間が長くなり過ぎるため経済的で
なく、 600℃を超える温度では過時効となってしまい、
特性の一層の向上が期待できなくなるため、 300〜 600
℃の範囲とした。また、時効処理時間は、 5分未満では
析出物の形成が不十分であり、 360分を超えるような長
時間では析出物の成長の上からも経済性の上からも好ま
しくないため、 5〜 360分の範囲とした。
Next, heat treatment is performed at a temperature of 300 to 600 ° C. for 5 to 360 minutes as an aging treatment. If the treatment temperature is lower than 300 ° C, the time required for precipitation becomes too long, so it is not economical, and if the temperature exceeds 600 ° C, it becomes overaged,
300-600
° C. If the aging treatment time is less than 5 minutes, the formation of precipitates is insufficient, and if the aging treatment time is longer than 360 minutes, it is not preferable from the viewpoint of growth of precipitates and economical efficiency. The range was 360 minutes.

【0031】また、本発明法においては、必要に応じて
上記溶体化処理後に得られた溶体化処理材(冷間圧延処
理を施す前)に、 300〜 550℃の温度で 5〜 360分間の
時効処理(前時効処理)を施しても良い。この時効処理
によって一層の強度、弾性、電気伝導性の向上が期待で
きる。この時効処理における処理温度は、 300℃未満で
は析出するに要する時間が長すぎて経済的でなく、 550
℃を超えると過時効になり特性の一層の向上が期待でき
なくなるため、 300〜 550℃の範囲とした。また、処理
時間については、 5分未満では析出物の形成が不十分で
あり、 360分を超えるような長時間では析出物の成長の
上からも経済性の上からも好ましくないことから、 5〜
360分間の範囲とした。ただし、この前時効処理を施し
た後の冷間圧延における加工率は30〜70%が望ましい。
これは、30%未満の加工率では引き続き行われる時効処
理後の強度、弾性が不十分であり、70%を超えると成形
加工性の低下が著しくなってしまうためである。
In the method of the present invention, if necessary, the solution-treated material (after cold rolling) obtained after the solution treatment may be added at a temperature of 300 to 550 ° C. for 5 to 360 minutes. Aging treatment (pre-aging treatment) may be performed. This aging treatment can be expected to further improve strength, elasticity, and electrical conductivity. If the treatment temperature in this aging treatment is less than 300 ° C., the time required for precipitation is too long and it is not economical.
If the temperature exceeds ℃, overaging occurs and further improvement of the characteristics cannot be expected. Regarding the treatment time, if the formation time is less than 5 minutes, the formation of precipitates is insufficient, and if the processing time is longer than 360 minutes, it is not preferable from the viewpoint of growth of the precipitates and economical efficiency. ~
The range was 360 minutes. However, the working ratio in the cold rolling after the pre-aging treatment is desirably 30 to 70%.
This is because if the working ratio is less than 30%, the strength and elasticity after the subsequent aging treatment are insufficient, and if the working ratio exceeds 70%, the moldability is significantly reduced.

【0032】さらに、本発明法においては、必要に応じ
て上記溶体化処理工程を2回以上行っても良い。溶体化
処理を2回以上行うことにより、鋳造時の不均一な組織
および偏析の影響をほとんどなくすことができるように
なる(鋳造組織の影響を残すと本合金の弾性および成形
加工性のより一層の向上が望めなくなる)。
Further, in the method of the present invention, the solution treatment step may be performed two or more times as necessary. By performing the solution treatment twice or more, the influence of the non-uniform structure and the segregation during casting can be almost eliminated. (If the influence of the casting structure is left, the elasticity and formability of the alloy are further improved. Improvement cannot be expected).

【0033】以上のような加工と熱処理を経ることによ
り、Ni−Al系金属間化合物がCuマトリックス中に
微細に析出した組織の銅基合金の薄板が得られるように
なる。この銅基合金は、高強度、高弾性、高伝導性を兼
備し、かつ成形加工性、めっき性、耐応力緩和特性等に
優れるものであるため、近年の電気・電子部品、輸送機
器等で用いられるコネクタ材料として極めて好適なもの
である。
Through the above-described processing and heat treatment, a thin plate of a copper-based alloy having a structure in which a Ni-Al intermetallic compound is finely precipitated in a Cu matrix can be obtained. This copper-based alloy has both high strength, high elasticity, and high conductivity, and is excellent in moldability, plating properties, stress relaxation resistance, etc. This is a very suitable connector material to be used.

【0034】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は以下の実施例により制
限されるものではない。
Now, the present invention will be described in further detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.

【0035】[0035]

【実施例1】表1にその化学成分値(重量%)を示す銅
基合金(試料No.1〜11:試料No.1〜5は本発明合金、試
料No.6〜11は比較合金)を高周波溶解炉を用いて溶製
し、10× 100× 10000(mm)の鋳塊に連続鋳造した。た
だし、溶解鋳造は、試料No.1〜10の合金についてはAr
ガスで完全にシールドした雰囲気中で行い、 No.11の合
金については大気中で行った。また、鋳型の材質として
はカーボンを用い、引出しはパルス方式(平均引出し速
度100mm/分)で行った。
Example 1 Copper-based alloys (Sample Nos. 1-11: Sample Nos. 1-5 are alloys of the present invention, Sample Nos. 6-11 are comparative alloys) whose chemical component values (% by weight) are shown in Table 1. Was melted using a high-frequency melting furnace and continuously cast into a 10 × 100 × 10000 (mm) ingot. However, in the melt casting, the alloys of Sample Nos.
The test was performed in an atmosphere completely shielded by gas, and the No. 11 alloy was tested in the air. Further, carbon was used as a material of the mold, and the drawing was performed by a pulse method (average drawing speed 100 mm / min).

【0036】[0036]

【表1】 溶解鋳造後、得られたインゴットの表面を観察し、欠陥
のなかったものを○、欠陥のあったものを×として表1
に併記した。
[Table 1] After melting and casting, the surface of the obtained ingot was observed.
It was also described in.

【0037】次に、該インゴットを冷間圧延によって厚
さ 2mmまで圧延(加工率80%)し、これを 850℃の温度
で 180秒間の溶体化処理を行った。溶体化処理後、再度
厚さ0.6mmまで冷間圧延(加工率70%)し、 850℃の温
度で 150秒間の溶体化処理を行った。次いで、得られた
溶体化処理材を酸洗、バフ掛けした後、厚さ 0.2mmまで
冷間圧延(加工率67%)し、 500℃の温度で60分間の時
効処理を施した。なお、上記熱処理に際しては、処理雰
囲気を不活性ガスまたは還元ガス雰囲気とすることによ
り、材料表面および内部の酸化をできるだけ制御した。
Next, the ingot was rolled by cold rolling to a thickness of 2 mm (working rate: 80%), and was subjected to a solution treatment at a temperature of 850 ° C. for 180 seconds. After the solution treatment, cold rolling was performed again to a thickness of 0.6 mm (working rate: 70%), and the solution treatment was performed at a temperature of 850 ° C. for 150 seconds. Next, the obtained solution-treated material was pickled and buffed, cold-rolled to a thickness of 0.2 mm (working ratio 67%), and subjected to aging treatment at a temperature of 500 ° C. for 60 minutes. At the time of the heat treatment, oxidation of the material surface and inside was controlled as much as possible by setting the processing atmosphere to an inert gas or reducing gas atmosphere.

【0038】上記のようにして得た試験材を用い、硬
度、引張強さ、ばね限界値、導電率、曲げ加工性、はん
だ付け性、特性バラツキを測定し、その結果を表1に併
記した。なお、硬度、引張強さ、ばね限界値および導電
率の測定は、それぞれJIS Z 2244、JIS Z 2241、JIS H
3130およびJIS H 0505にしたがって行った。また、曲げ
加工性の測定は、90度w曲げ試験( CES-M0002-6、R=
0.2mm、曲げ軸が圧延方向に平行)を行い、中央部山表
面が良好なものを○、割れが発生したものを×として評
価した。
Using the test material obtained as described above, hardness, tensile strength, spring limit value, conductivity, bending workability, solderability, and characteristic variation were measured, and the results are shown in Table 1. . The hardness, tensile strength, spring limit value and conductivity were measured according to JIS Z 2244, JIS Z 2241, JIS H
Performed according to 3130 and JIS H 0505. The bending workability was measured by a 90 degree w bending test (CES-M0002-6, R =
0.2 mm, the bending axis was parallel to the rolling direction).

【0039】半田密着性の測定は、表面に半田めっき
(ディップ:Sn−40wt%Pb、 260℃×5sec、弱活性
ロジンフラックス使用)を行った後、 150℃の温度で 5
00時間加熱後、試験片を90度w曲げし(R= 0.2mm)、
セロハンテープでピーリングテストを行い、めっきが剥
離しなかったものを○、剥離したものを×として評価し
た。特性のバラツキの測定は、同一工程にて3回繰り返
し試作を行い、得られた試験材の引張強さ、ばね限界値
を測定し、この測定値のバラツキが平均値の 5%以内に
すべておさまったものを○、 5%を超えたものを×とし
て評価した。
The solder adhesion was measured by performing solder plating on the surface (dip: Sn-40 wt% Pb, 260 ° C. × 5 sec, using weakly active rosin flux),
After heating for 00 hours, the test piece was bent 90 degrees w (R = 0.2 mm),
A peeling test was carried out with a cellophane tape, and those where the plating did not peel were evaluated as ○, and those that peeled were evaluated as x. For the measurement of the dispersion of the characteristics, a trial production was repeated three times in the same process, and the tensile strength and the spring limit value of the obtained test material were measured. The dispersion of the measured values was all within 5% of the average value. Were evaluated as ○, and those exceeding 5% were evaluated as ×.

【0040】また、試料No.3の本発明合金と市販のリン
青銅( C5210EH、 0.2mm)について応力緩和特性(応力
緩和率)の測定を行い、その結果を表2に示した。応力
緩和特性(応力緩和率)の測定は、試験片の中央部応力
が40kgf/mm2 になるようにアーチ状に曲げ 150℃および
200℃の温度で 500時間保持後の曲げぐせを応力緩和率
として算出した。なお、応力緩和率(%)は、次式によ
り計算した。
Further, the stress relaxation characteristics (stress relaxation rate) of the alloy of the present invention of sample No. 3 and a commercially available phosphor bronze (C5210EH, 0.2 mm) were measured, and the results are shown in Table 2. Stress Measurement of relaxation property (stress relaxation ratio), 0.99 ° C. and bent into an arch shape so that the central portion Stress of the test piece is 40 kgf / mm 2
The bending after holding at a temperature of 200 ° C. for 500 hours was calculated as a stress relaxation rate. The stress relaxation rate (%) was calculated by the following equation.

【0041】応力緩和率(%)=[(L1 −L2 )/
(L1 −L0 )]× 100 上記式中におけるL0 は、治具の長さ(mm)、L1 は、
開始時の試料長さ(mm)、L2 は、処理後の試料端間の
水平距離(mm)である。
Stress relaxation rate (%) = [(L 1 -L 2 ) /
(L 1 −L 0 )] × 100 In the above equation, L 0 is the length (mm) of the jig, and L 1 is
The starting sample length (mm), L 2, is the horizontal distance (mm) between sample ends after processing.

【0042】[0042]

【表2】 [Table 2]

【0043】表1の結果から次のことが確認された。試
料No.1〜 5の本発明合金は、硬度、引張強さ、ばね限界
値および導電率のバランスに優れ、かつ曲げ加工性、半
田密着性および鋳造性に優れており、しかも特性のバラ
ツキが小さいことから、コネクタ用銅基合金として非常
に優れたものであった。
The following was confirmed from the results in Table 1. The alloys of the present invention of Sample Nos. 1 to 5 are excellent in balance between hardness, tensile strength, spring limit value and electrical conductivity, and excellent in bending workability, solder adhesion and castability, and furthermore, there is variation in characteristics. Due to its small size, it was very excellent as a copper base alloy for connectors.

【0044】これに対し、Sn、Co、CrおよびTi
のいずれも含まない試料No.6の比較合金は、鋳造性およ
び特性バラツキの点で劣っていた。また、本発明で規定
するよりNi量が多く、Ni/Alの重量百分率の比率
が大きい試料No.7の比較合金は、導電率が低く、しかも
成形加工性が劣っていた。さらに、本発明で規定するよ
りAl量が少なく、かつNi/Alの重量百分率の比率
が大きい試料No.8の比較合金は、硬度、引張強さおよび
ばね限界値が低く、バランスが悪かった。
On the other hand, Sn, Co, Cr and Ti
The comparative alloy of sample No. 6, which does not contain any of the above, was inferior in terms of castability and characteristic variation. Further, the comparative alloy of Sample No. 7, which had a larger amount of Ni and a larger percentage by weight of Ni / Al than specified in the present invention, had low conductivity and was inferior in moldability. Further, the comparative alloy of Sample No. 8 having a smaller amount of Al and having a larger percentage by weight of Ni / Al than specified in the present invention had low hardness, tensile strength and spring limit values, and was poorly balanced.

【0045】また、本発明で規定するSn量より多い試
料No.9の比較合金は、導電率、曲げ加工性、鋳造性およ
び特性バラツキの点で劣っていた。また、本発明で規定
するよりCoとTiとの合計含有量が多い試料 No.10の
比較合金は、曲げ加工性、半田密着性、鋳造性および特
性バラツキが劣っていた。さらに、Ni量、Al量、N
i/Alの重量百分率の比率、Sn量、ならびにCo、
CrおよびTiの合計含有量が本発明で規定する値であ
るが、酸素含有量が多い試料 No.11の比較合金は、曲げ
加工性、半田密着性、鋳造性および特性バラツキが劣っ
ていた。
The comparative alloy of Sample No. 9 having a Sn content larger than that specified in the present invention was inferior in electrical conductivity, bending workability, castability and characteristic variations. Further, the comparative alloy of Sample No. 10 having a larger total content of Co and Ti than specified in the present invention was inferior in bending workability, solder adhesion, castability, and characteristic variation. Furthermore, Ni amount, Al amount, N
i / Al weight percentage ratio, Sn amount, and Co,
Although the total content of Cr and Ti is the value specified in the present invention, the comparative alloy of Sample No. 11 having a large oxygen content was inferior in bending workability, solder adhesion, castability, and characteristic variation.

【0046】一方、表2の結果から、本発明合金は従来
の代表的なコネクタ材料であるリン青銅に比べて耐応力
緩和特性に優れていることが確認された。
On the other hand, from the results shown in Table 2, it was confirmed that the alloy of the present invention is more excellent in stress relaxation resistance than phosphor bronze which is a typical conventional connector material.

【0047】[0047]

【実施例2】まず、表1における試料No.3の化学成分値
(重量%)を示す本発明銅基合金を、実施例1と同様に
して鋳造、圧延および溶体化処理を行い、厚さ 0.6mmの
溶体化処理材を作製した。次いで、該処理材を 400℃の
高温で30分間時効処理し、酸洗、バフ掛けした後、厚さ
0.2mmまで冷間圧延し、 500℃の温度で60分間の時効処
理を施した。
Example 2 First, a copper-based alloy of the present invention showing the chemical component value (% by weight) of Sample No. 3 in Table 1 was cast, rolled and solution-treated in the same manner as in Example 1 to obtain a thickness. A solution treatment material of 0.6 mm was prepared. Next, the treated material is aged at a high temperature of 400 ° C. for 30 minutes, pickled, buffed, and
It was cold-rolled to 0.2 mm and aged at a temperature of 500 ° C. for 60 minutes.

【0048】上記のようにして得た試験材(「試料A」
とする)について、硬度、引張強さ、ばね限界値、導電
率を測定し、その結果を表3に示した。なお、これらの
測定については実施例1に準拠した。また、参考のため
表1における試料No.3の試料から実施例1と同様の方法
で試験材(「試料B」とする)を作製し、硬度、引張強
さ、ばね限界値、導電率を測定し、その結果を表3に併
記した。
The test material obtained as described above ("Sample A")
), The hardness, the tensile strength, the spring limit value, and the conductivity were measured, and the results are shown in Table 3. In addition, these measurements were based on Example 1. For reference, a test material (hereinafter referred to as “sample B”) was prepared from the sample of sample No. 3 in Table 1 in the same manner as in Example 1, and the hardness, tensile strength, spring limit value, and conductivity were measured. The measurement was performed, and the results are shown in Table 3.

【0049】[0049]

【表3】 [Table 3]

【0050】表3からも分かるように、溶体化処理後に
得られた溶体化処理材に、冷間圧延処理を施す前に時効
処理を施すことにより、硬度、引張強さ、ばね限界値、
導電率が一層向上した。
As can be seen from Table 3, the solution treatment material obtained after the solution treatment is subjected to the aging treatment before the cold rolling treatment, whereby the hardness, tensile strength, spring limit value,
The conductivity was further improved.

【0051】[0051]

【発明の効果】本発明の開発により、強度、弾性、電気
伝導性に優れ、かつ成形加工性、耐応力緩和特性、めっ
き信頼性に優れる銅基合金が得られるようになった。そ
のため、本発明の銅基合金は、近年の輸送機器電装品の
小型軽量化と配線の高密度化や電子機器装置の内部実装
の高密度化高信頼化に十分対応できるものである。
According to the development of the present invention, a copper-based alloy having excellent strength, elasticity and electric conductivity, and excellent in moldability, stress relaxation resistance and plating reliability has been obtained. Therefore, the copper-based alloy of the present invention can sufficiently cope with recent reductions in the size and weight of electrical components of transportation equipment, higher density of wiring, and higher density and higher reliability of internal mounting of electronic equipment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/02 H01B 1/02 A H01H 1/02 H01H 1/02 C H01R 13/03 H01R 13/03 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01B 1/02 H01B 1/02 A H01H 1/02 H01H 1/02 C H01R 13/03 H01R 13 / 03 A

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn: 0.1〜 3.0%、Co、Crお
よびTiのうち少なくとも1種:0.01〜 2.0%を含有
し、かつ上記Ni/Alの重量百分率の比率が 3〜10の
範囲、および酸素含有量が 50ppm以下であり、残部がC
uおよび不可避的不純物からなるコネクタ用銅基合金。
(1) Ni: 5 to 15% by weight,
l: 0.5 to 2.0%, Sn: 0.1 to 3.0%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the ratio of the weight percentage of Ni / Al is in the range of 3 to 10, And the oxygen content is 50 ppm or less and the balance is C
Copper base alloy for connectors consisting of u and unavoidable impurities.
【請求項2】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn: 0.1〜 3.0%、B: 0.005〜
0.1%、Co、CrおよびTiのうち少なくとも1種:
0.01〜 2.0%を含有し、かつ上記Ni/Alの重量百分
率の比率が 3〜10の範囲、および酸素含有量が 50ppm以
下であり、残部がCuおよび不可避的不純物からなるコ
ネクタ用銅基合金。
2. In weight%, Ni: 5 to 15%, A
l: 0.5 to 2.0%, Sn: 0.1 to 3.0%, B: 0.005 to
0.1%, at least one of Co, Cr and Ti:
A copper-based alloy for a connector containing 0.01 to 2.0%, wherein the ratio of the weight percentage of Ni / Al is in the range of 3 to 10, and the oxygen content is 50 ppm or less, with the balance being Cu and unavoidable impurities.
【請求項3】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn:0.1〜 3.0%、Co、Crお
よびTiのうち少なくとも1種:0.01〜 2.0%を含有
し、かつ上記Ni/Alの重量百分率の比率が 3〜10の
範囲、および酸素含有量が 50ppm以下であり、残部がC
uおよび不可避的不純物からなる合金材料を連続鋳造し
て素材板を得、この素材板を熱間圧延することなく50%
以上の加工率で冷間圧延する工程、冷延材を 750〜 950
℃の温度で10〜 600秒間溶体化処理する工程、溶体化処
理材を30〜90%の加工率で冷間圧延する工程、および冷
延材を 300〜 600℃の温度で 5〜 360分間時効処理する
工程からなることを特徴とするコネクタ用銅基合金の製
造方法。
3. Ni: 5 to 15% by weight, A
l: 0.5 to 2.0%, Sn: 0.1 to 3.0%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the ratio of the Ni / Al weight percentage is in the range of 3 to 10, And the oxygen content is 50 ppm or less and the balance is C
The alloy material consisting of u and unavoidable impurities is continuously cast to obtain a material plate, and this material plate is reduced to 50% without hot rolling.
Cold rolling process at the above processing rate, cold rolled material 750 ~ 950
Solution treatment at 10 ° C for 10-600 seconds, cold-rolling of solution-treated material at 30-90% reduction rate, and aging cold-rolled material at 300-600 ° C for 5-360 minutes A method for producing a copper-based alloy for a connector, comprising a step of treating.
【請求項4】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn:0.1〜 3.0%、B: 0.005〜
0.1%、Co、CrおよびTiのうち少なくとも1種:
0.01〜 2.0%を含有し、かつ上記Ni/Alの重量百分
率の比率が 3〜10の範囲、および酸素含有量が 50ppm以
下であり、残部がCuおよび不可避的不純物からなる合
金材料を連続鋳造して素材板を得、この素材板を熱間圧
延することなく50%以上の加工率で冷間圧延する工程、
冷延材を 750〜 950℃の温度で10〜 600秒間溶体化処理
する工程、溶体化処理材を30〜90%の加工率で冷間圧延
する工程、および冷延材を 300〜 600℃の温度で 5〜 3
60分間時効処理する工程からなることを特徴とするコネ
クタ用銅基合金の製造方法。
4. Ni: 5 to 15% by weight, A
l: 0.5 to 2.0%, Sn: 0.1 to 3.0%, B: 0.005 to
0.1%, at least one of Co, Cr and Ti:
Continuously cast an alloy material containing 0.01 to 2.0%, the weight percentage ratio of Ni / Al is in the range of 3 to 10, and the oxygen content is 50 ppm or less, with the balance being Cu and unavoidable impurities. To obtain a blank, and press this blank
Cold rolling at a processing rate of 50% or more without elongation ,
A step of solution-treating the cold-rolled material at a temperature of 750 to 950 ° C for 10 to 600 seconds, a step of cold-rolling the solution-treated material at a processing rate of 30 to 90%, and a step of 5 to 3 at temperature
A method for producing a copper-based alloy for a connector, comprising a step of aging for 60 minutes.
JP4146380A 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same Expired - Fee Related JP2594250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146380A JP2594250B2 (en) 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146380A JP2594250B2 (en) 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05311298A JPH05311298A (en) 1993-11-22
JP2594250B2 true JP2594250B2 (en) 1997-03-26

Family

ID=15406404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146380A Expired - Fee Related JP2594250B2 (en) 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2594250B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837434B2 (en) * 2003-06-20 2006-10-25 アルプス電気株式会社 Connected device
CN102369302A (en) * 2009-03-31 2012-03-07 奎斯泰克创新公司 Beryllium-free high-strength copper alloys
WO2018235458A1 (en) * 2017-06-22 2018-12-27 日本精線株式会社 Ultrafine copper alloy wire for spring, and method for producing same
JP7202121B2 (en) * 2018-09-27 2023-01-11 Dowaメタルテック株式会社 Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254616A (en) * 1975-10-31 1977-05-04 Ishikawajima Harima Heavy Ind Co Ltd Reddish yellow coppr bae alloy of high trength, and high hardness
JPH0830233B2 (en) * 1987-06-23 1996-03-27 古河電気工業株式会社 High strength and high conductivity copper alloy
JPS6452035A (en) * 1987-08-24 1989-02-28 Dowa Mining Co Copper-base alloy for connector
JPH01177328A (en) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk High strength copper-based alloy

Also Published As

Publication number Publication date
JPH05311298A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JPH0841612A (en) Copper alloy and its preparation
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US5322575A (en) Process for production of copper base alloys and terminals using the same
US6136104A (en) Copper alloy for terminals and connectors and method for making same
JP2001164328A (en) Copper alloy for connector and producing method therefor
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
US20030196736A1 (en) Copper alloy with excellent stress relaxation resistance property and production method therefor
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JPH10219372A (en) Copper alloy for electrical and electronic parts, and is production
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JP2743342B2 (en) Copper base alloy for connector and method of manufacturing the same
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP3105392B2 (en) Manufacturing method of copper base alloy for connector
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JP2594249B2 (en) Copper base alloy for connector and method of manufacturing the same
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JPH0355532B2 (en)
JP3302840B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JPH0565571B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees