JP2001164328A - Copper alloy for connector and producing method therefor - Google Patents

Copper alloy for connector and producing method therefor

Info

Publication number
JP2001164328A
JP2001164328A JP2000004658A JP2000004658A JP2001164328A JP 2001164328 A JP2001164328 A JP 2001164328A JP 2000004658 A JP2000004658 A JP 2000004658A JP 2000004658 A JP2000004658 A JP 2000004658A JP 2001164328 A JP2001164328 A JP 2001164328A
Authority
JP
Japan
Prior art keywords
content
less
copper alloy
connector
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004658A
Other languages
Japanese (ja)
Other versions
JP4129807B2 (en
Inventor
Akira Sugawara
章 菅原
Kunihiko Tomohara
邦彦 智原
Hiroto Narueda
宏人 成枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000004658A priority Critical patent/JP4129807B2/en
Publication of JP2001164328A publication Critical patent/JP2001164328A/en
Application granted granted Critical
Publication of JP4129807B2 publication Critical patent/JP4129807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy combining various characteristics required for the material for electrical and electronic parts such as a connector in accordance wit the development of electronics, 1.e., a copper alloy for a connector excellent in strength, electrical conductivity, a Young's modulus, press formability, cost, or the like, and to provide a method for producing the same. SOLUTION: This copper alloy for a connector has a composition containing Zn and Sn in the ranges of 20 to 41 wt.% Zn and 0.1 to 4.0 wt.% Sn and also so as to satisfy the following inequality: 6.0<=0.25X+Y<=12, wherein X: the content (wt.%) of Zn, and Y: the content (wt.%) of Sn, and the balance Cu with inevitable impurities, provided that the content of S is controlled to <=30 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コネクタ等の電気
・電子部品用材料として好適な強度導電性を有し、さら
にヤング率の小さい銅合金およびその製造法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having strength and conductivity suitable for use as a material for electrical and electronic parts such as connectors and having a small Young's modulus, and a method for producing the same.

【0002】[0002]

【従来の技術】近年のエレクトロニクスの発達により、
種々の機械の電気配線は複雑化、高集積化が進み、それ
に伴いコネクタ等の電気・電子部品用として使用される
伸銅品材料が増加している。また、コネクタ等の電気・
電子部品は、軽量化、高信頼性、低コスト化が要求され
ている。よって、これらの要求を満たすために、コネク
タ用銅合金材料は薄肉化され、また複雑な形状にプレス
されるため、強度、弾性、導電性及びプレス成形性が良
好でなければならない。
2. Description of the Related Art With the recent development of electronics,
The electrical wiring of various machines is becoming more complicated and highly integrated, and accordingly, copper-clad products used for electrical and electronic components such as connectors are increasing. In addition, electrical and
Electronic components are required to be lightweight, highly reliable, and low in cost. Therefore, in order to satisfy these requirements, the copper alloy material for connectors is reduced in thickness and pressed into a complicated shape, so that it must have good strength, elasticity, conductivity, and press formability.

【0003】具体的には、端子において、挿抜時や曲げ
に対して座屈や変形しない強度、電線の加締め、保持に
対する強度、したがって引張強さは、600N/mm2
上、できれば700N/mm2 以上が好ましい。さらに通
電によるジュール熱発生を抑えるため導電率は、18%
IACS以上が好ましい。また、端子の小型化によりプ
レス成形性の要求も厳しくなり、曲げ部半径(R)と板
厚(t)の比R/tが1以下を満足するような加工性が
必要である。
[0003] More specifically, the terminal has a strength not to buckle or deform when inserted or pulled out or bent, a strength for crimping and holding the electric wire, and therefore a tensile strength of 600 N / mm 2 or more, preferably 700 N / mm 2 or more. Two or more are preferred. Furthermore, the conductivity is 18% to suppress the generation of Joule heat due to energization.
IACS or higher is preferred. In addition, due to the miniaturization of the terminals, the requirements for press formability are becoming severer, and workability is required such that the ratio R / t of the radius (R) of the bent portion to the plate thickness (t) satisfies 1 or less.

【0004】また従来は、コネクタが小型化され、小さ
い変位で大きな応力が得られるよう材料のヤング率が大
きいことが求められていたが、端子自身の寸法精度が厳
しくなり、金型技術やプレスの操業管理、または材料の
板厚や残留応力のバラツキ等、管理基準が厳しくなり、
逆にコストアップを招いていた。そこで、最近はヤング
率の小さい材料を用い、ばねの変位を大きくとる構造と
し、寸法のばらつきを許容できる設計が求められてきて
いる。したがって、ヤング率が115kN/mm2以下、
好ましくは110kN/mm2 以下であることが求められ
てきている。
Conventionally, it has been required that the connector be miniaturized and the material should have a large Young's modulus so that a large stress can be obtained with a small displacement. Operation standards, or management standards, such as variations in material thickness and residual stress, have become stricter.
Conversely, this has led to increased costs. Therefore, recently, there has been a demand for a design using a material having a small Young's modulus, a structure in which the displacement of the spring is made large, and a dimensional variation can be tolerated. Therefore, the Young's modulus is 115 kN / mm 2 or less,
It is required to be preferably 110 kN / mm 2 or less.

【0005】上記に加え、金型のメンテナンスの頻度も
コストに占める割合が大きく、クローズアップされてき
ている。金型のメンテナンスの大きな要因として、工具
の摩耗があげられる。素材をプレス加工(打ち抜きや曲
げ)する際に、パンチ、ダイス、ストリッパー等の工具
が摩耗し、加工材のバリ発生や寸法不良につながる。こ
の際、素材自身の摩耗に与える影響も大きい。したがっ
て、金型摩耗性に対する材料側の改善要求も高くなって
きている。
[0005] In addition to the above, the frequency of the maintenance of the mold also accounts for a large proportion of the cost, and has been getting closer. A major factor in mold maintenance is tool wear. When a material is pressed (punched or bent), tools such as punches, dies, and strippers wear, leading to burrs and dimensional defects in the processed material. At this time, the influence on the wear of the material itself is great. Accordingly, there is an increasing demand for improvement in mold wear on the material side.

【0006】更に、耐食性、耐応力腐食割れ性に優れて
いることが必要であり、またメス端子に至っては、熱的
負荷が加わることから、耐応力緩和特性に優れていなけ
ればならない。具体的には、応力腐食割れ寿命は従来の
黄銅一種の3倍以上、応力緩和率は80〜150℃にお
いて緩和率が黄銅一種の半分以下であることが望まし
い。
Furthermore, it is necessary to have excellent corrosion resistance and stress corrosion cracking resistance, and since the female terminal is subjected to a thermal load, it must be excellent in stress relaxation resistance. Specifically, the life of stress corrosion cracking is desirably three times or more that of conventional brass, and the stress relaxation rate at 80 to 150 ° C. is less than half that of brass.

【0007】従来、黄銅やりん青銅等が、コネクタ材と
して一般的に使用されていた。黄銅は低コストの材料と
して使用されているが、引張強さは質別がEHでも60
0N/mm2 を越えず、また耐食性、耐応力腐食割れ性、
耐応力緩和特性で劣っている。りん青銅は、強度、耐食
性、耐応力腐食割れ性、耐応力緩和特性のバランスに優
れている。しかしながら、導電率が例えばばね用りん青
銅で12%IACSと小さく、且つコスト的にも不利で
ある。そこで多くの銅合金が研究、開発され提案されて
いる。しかしながら、提案された多くの銅合金は、銅に
微量な添加元素を加え、強度、電気伝導性、耐応力緩和
特性等の特性をバランスさせたものであり、ヤング率に
ついては120〜135kN/mm2 と大きな値であり、
またコストも高かった。
Hitherto, brass, phosphor bronze, and the like have been generally used as connector materials. Brass is used as a low-cost material, but its tensile strength is 60
Not exceed 0N / mm 2, also corrosion resistance, stress corrosion cracking resistance,
Poor in stress relaxation resistance. Phosphor bronze has an excellent balance of strength, corrosion resistance, stress corrosion cracking resistance, and stress relaxation properties. However, for example, phosphor bronze for a spring has a small electric conductivity of 12% IACS, and is disadvantageous in cost. Therefore, many copper alloys have been researched, developed and proposed. However, many of the proposed copper alloys have a balance of properties such as strength, electric conductivity, and stress relaxation resistance by adding a trace amount of an additive element to copper, and have a Young's modulus of 120 to 135 kN / mm. It is a large value of 2 ,
The cost was also high.

【0008】ここで、黄銅、りん青銅共にヤング率は1
10〜120kN/mm2 であり、小さいヤング率が前述
設計の要求に合致し、最近またこれらの材料が見直され
てきている。よって、黄銅に近い価格で、引張強さ60
0N/mm2 以上、導電率が18%IACS以上、ヤング
率が115kN/mm2 以下、好ましくは110kN/mm
2 以下である材料が切に望まれている。
Here, the Young's modulus is 1 for both brass and phosphor bronze.
The low Young's modulus of 10 to 120 kN / mm 2 satisfies the above design requirements, and these materials have recently been reviewed. Therefore, at a price close to that of brass, a tensile strength of 60
0 N / mm 2 or more, conductivity 18% IACS or more, Young's modulus 115 kN / mm 2 or less, preferably 110 kN / mm 2
Materials with 2 or less are urgently desired.

【0009】また、コネクタ等の電気・電子部品はSn
めっきされることが多いが、これを原料にするために合
金元素としてSnを含有することが必要である。次に、
切断、切削やプレスしたくずは、切断、切削、プレス等
の油の存在のために、溶解原料として使用するために
は、脱脂や洗浄等が必要であった。前処理なしに直接原
料として使用した場合には、油の燃焼(酸化)や蒸発の
過程で炉壁を痛めたり、水素の吸蔵によるインゴットの
ブローホール発生があり、歩留まり低下等コストアップ
の要因となっていた。
Electrical and electronic parts such as connectors are made of Sn.
It is often plated, but in order to use it as a raw material, it is necessary to contain Sn as an alloy element. next,
Cutting, cutting or pressing waste requires degreasing, washing or the like in order to use it as a dissolving raw material due to the presence of oil for cutting, cutting or pressing. If used directly as a raw material without pre-treatment, the furnace wall may be damaged during the burning (oxidation) or evaporation of oil, or ingot blowholes may be generated due to the storage of hydrogen, which may lead to a decrease in yield and cost increase. Had become.

【0010】さらに、従来のSnめっき材は、母材とな
る素材の製造工程とSnめっき等の表面処理工程が各々
独立して実施されており、熱処理等をはじめとした工程
短縮等のコストダウンの余地があった。また母材の材質
によって、Cu下地めっきの有無や厚さ等が検討されて
いるが、これはめっき加熱剥離の見地から検討されたも
のであり、耐応力緩和特性、はんだ付け性、接触抵抗、
ばね性などコネクタ端子として要求される特性におい
て、総合的には検討されていなかった。そのため、Cu
やSnの最適膜厚の検討は不十分であった。
Further, in the conventional Sn-plated material, the manufacturing process of the base material and the surface treatment process such as Sn plating are performed independently of each other, so that cost reduction such as shortening of processes such as heat treatment is performed. There was room for Depending on the material of the base material, the presence / absence and thickness of the Cu base plating are studied. However, this is studied from the viewpoint of plating heat peeling, and the stress relaxation resistance, solderability, contact resistance,
The characteristics required for the connector terminal such as the spring property have not been comprehensively studied. Therefore, Cu
The study of the optimum film thickness of Sn and Sn was insufficient.

【0011】[0011]

【発明が解決しようとする課題】本発明は、エレクトロ
ニクスの発達にともない、コネクタ等の電気・電子部品
用材料に要求される上記のような諸特性を兼備した銅合
金、すなわち強度、導電率、ヤング率、プレス成形性、
コスト等に優れたコネクタ用銅合金およびその製造法を
提供するものである。
SUMMARY OF THE INVENTION With the development of electronics, the present invention provides a copper alloy having the above-mentioned various characteristics required for materials for electrical and electronic parts such as connectors, that is, strength, conductivity, Young's modulus, press formability,
An object of the present invention is to provide a copper alloy for connectors excellent in cost and the like and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明は、銅より安価な
成分を添加することにより低コスト化を図りつつ、コネ
クタ等の電気・電子部品用材料に要求される上記のよう
な諸特性を兼備した銅合金、すなわち強度、導電率、ヤ
ング率、プレス成形性、コスト等に優れたコネクタ用銅
合金を提供するものである。またさらに、Snを表面処
理した本合金のプレスくずを直接溶解原料として使用す
ることが可能な製造法および本合金のSn表面処理材を
より有利に得るための製造法を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, the above-mentioned various characteristics required for materials for electrical and electronic parts such as connectors are reduced while adding a component which is cheaper than copper. An object of the present invention is to provide a copper alloy for a connector, which is excellent in strength, conductivity, Young's modulus, press formability, cost, and the like. Still another object of the present invention is to provide a production method capable of directly using, as a melting material, press waste of the present alloy in which Sn is surface-treated, and a production method for more advantageously obtaining a Sn surface-treated material of the present alloy.

【0013】すなわち、 (1) Zn:20〜41wt% Sn:0.1 〜4.0 wt% の範囲で含有し、かつ次式(1)を満たし 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%)、Y:Snの含有量
(wt%)なるZn,Snを含み残部がCuおよび不可避
不純物からなり ただし、Sが30ppm 以下であることを特徴とするコネ
クタ用銅合金。
That is, (1) Zn: 20 to 41 wt% Sn: contained in the range of 0.1 to 4.0 wt% and satisfy the following expression (1): 6.0 ≦ 0.25X + Y ≦ 12 (1) : Zn content (wt%), Y: Sn content (wt%), including Zn and Sn, with the balance being Cu and unavoidable impurities, provided that S is 30 ppm or less. alloy.

【0014】 (2) Zn:20〜41wt% Sn:0.1 〜4.0 wt% の範囲で含有し、かつ次式(1)を満たし 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%)、Y:Snの含有量
(wt%)なるZn,Snを含み残部がCuおよび不可避
不純物からなり ただし、Sが30ppm 以下 第2相の面積占有比率が10%以下であることを特徴と
するコネクタ用銅合金。
(2) Zn: 20 to 41 wt% Sn: contained in the range of 0.1 to 4.0 wt% and satisfy the following formula (1): 6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn Content (wt%), Y: Sn content (wt%) including Zn and Sn, with the balance being Cu and unavoidable impurities, provided that S is 30 ppm or less and the area occupation ratio of the second phase is 10% or less. A copper alloy for a connector, comprising:

【0015】 (3) Zn:20〜41wt% Sn:0.1 〜4.0 wt% の範囲で含有し、かつ次式(1)を満たし 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%),Y:Snの含有量
(wt%)なるZn,Snを含み残部がCuおよび不可避
不純物からなり ただしSが30ppm 以下 第2相の面積占有比率が10%以下であり更に、引張強
さ600N/mm2 以上、導電率が18%IACS以上、
ヤング率が115kN/mm2 以下であることを特徴とす
るコネクタ用銅合金。
(3) Zn: 20 to 41 wt% Sn: contained in the range of 0.1 to 4.0 wt% and satisfy the following formula (1): 6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn Content (wt%), Y: Sn content (wt%) including Zn and Sn, with the balance being Cu and unavoidable impurities, where S is 30 ppm or less. The area occupation ratio of the second phase is 10% or less. Further, the tensile strength is 600 N / mm 2 or more, the conductivity is 18% IACS or more,
A copper alloy for a connector having a Young's modulus of 115 kN / mm 2 or less.

【0016】 (4) Zn:20〜41wt% Sn:0.1 〜4.0 wt% の範囲で含有し、かつ次式(1)を満たす 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%)、Y:Snの含有量
(wt%)なるZn,Snを含み残部がCuおよび不可避
不純物からなり、さらにFe:0.01〜3wt%、Ni:0.
01〜5wt%、Co:0.01〜3wt%、Ti0.01〜3wt%、
Mg:0.01〜2wt%、Zr:0.01〜2wt%、Ca:0.01
〜1wt%、Si:0.01〜3wt%、Mn:0.01〜5wt%、
Cd:0.01〜3wt%、Al:0.01〜5wt%、Pb:0.01
〜3wt%、Bi:0.01〜3wt%、Be:0.01〜3wt%、
Te:0.01〜1wt%、Y:0.01〜3wt%、La:0.01〜
3wt%、Cr:0.01〜3wt%、Ce:0.01〜3wt%、A
u:0.01〜5wt%、Ag:0.01〜5wt%、P:0.005 〜
0.5 wt%のうち少なくとも1種以上の元素を含み、その
総量が0.01〜5wt%であり、ただし、Sが30ppm 以下 第2相の面積占有比率が10%以下であり更に、引張強
さ600N/mm2 以上、導電率が18%IACS以上、
ヤング率が115kN/mm2、以下 であることを特徴とするコネクタ用銅合金。
(4) Zn: 20 to 41 wt% Sn: contained in the range of 0.1 to 4.0 wt% and satisfy the following formula (1): 6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn (Wt%), Y: Sn content (wt%) including Zn and Sn, the balance being Cu and unavoidable impurities, Fe: 0.01 to 3 wt%, Ni: 0.
01-5 wt%, Co: 0.01-3 wt%, Ti0.01-3 wt%,
Mg: 0.01 to 2 wt%, Zr: 0.01 to 2 wt%, Ca: 0.01
-1 wt%, Si: 0.01-3 wt%, Mn: 0.01-5 wt%,
Cd: 0.01-3 wt%, Al: 0.01-5 wt%, Pb: 0.01
-3 wt%, Bi: 0.01-3 wt%, Be: 0.01-3 wt%,
Te: 0.01-1 wt%, Y: 0.01-3 wt%, La: 0.01-
3 wt%, Cr: 0.01-3 wt%, Ce: 0.01-3 wt%, A
u: 0.01 to 5 wt%, Ag: 0.01 to 5 wt%, P: 0.005 to
At least one element is contained in 0.5 wt%, and the total amount is 0.01 to 5 wt%, provided that S is 30 ppm or less, the area occupation ratio of the second phase is 10% or less, and the tensile strength is 600 N / mm 2 or more, conductivity is 18% IACS or more,
A copper alloy for a connector, having a Young's modulus of 115 kN / mm 2 or less.

【0017】(5) 前記金属材料の表面にCu下地:0.3
〜2.0μm、Sn:0.5〜5.0μmの表面処理を施したこ
とを特徴とする請求項1〜4に記載のコネクタ用銅合
金。
(5) Cu underlayer: 0.3 on the surface of the metal material
The copper alloy for a connector according to any one of claims 1 to 4, wherein the copper alloy is subjected to a surface treatment of 2.0 to 2.0 m and Sn: 0.5 to 5.0 m.

【0018】(6)Zn:20〜41wt%、Sn:0.1 〜
4.0 wt%の範囲でかつ次式(1)を満たしてなるZn,
Snを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、場合によって
は更にFe:0.01〜3wt%、Ni:0.01〜5wt%、C
o:0.01〜3wt%、Ti0.01〜3wt%、Mg:0.01〜2
wt%、Zr:0.01〜2wt%、Ca:0.01〜1wt%、S
i:0.01〜3wt%、Mn:0.01〜5wt%、Cd:0.01〜
3wt%、Al:0.01〜5wt%、Pb:0.01〜3wt%、B
i:0.01〜3wt%、Be:0.01〜3wt%、Te:0.01〜
1wt%、Y:0.01〜3wt%、La:0.01〜3wt%、C
r:0.01〜3wt%、Ce:0.01〜3wt%、Au:0.01〜
5wt%、Ag:0.01〜5wt%、P:0.005 〜0.5 wt%の
うち少なくとも1種以上の元素を含み、その総量が0.01
〜5wt%であり、ただしSが30ppm 以下、である銅合
金材料を、300〜750℃の温度で1〜360分間の
熱処理後、加工率15%以上で冷間加工することによっ
て、第2相の面積占有比率が10%以下で、更に引張強
さ600N/mm2 以上、導電率が18%IACS以上、
ヤング率が115kN/mm2 以下であることを特徴とす
るコネクタ用銅合金の製造法。
(6) Zn: 20-41 wt%, Sn: 0.1-
Zn in the range of 4.0 wt% and satisfying the following equation (1):
Including Sn, 6.0 ≦ 0.25X + Y ≦ 12 (1) where, X: Zn content (wt%) Y: Sn content (wt%) The balance consists of Cu and unavoidable impurities. Fe: 0.01 to 3 wt%, Ni: 0.01 to 5 wt%, C
o: 0.01-3 wt%, Ti 0.01-3 wt%, Mg: 0.01-2
wt%, Zr: 0.01-2 wt%, Ca: 0.01-1 wt%, S
i: 0.01 to 3 wt%, Mn: 0.01 to 5 wt%, Cd: 0.01 to
3 wt%, Al: 0.01 to 5 wt%, Pb: 0.01 to 3 wt%, B
i: 0.01 to 3 wt%, Be: 0.01 to 3 wt%, Te: 0.01 to
1 wt%, Y: 0.01-3 wt%, La: 0.01-3 wt%, C
r: 0.01 to 3 wt%, Ce: 0.01 to 3 wt%, Au: 0.01 to
5 wt%, Ag: 0.01 to 5 wt%, P: 0.005 to 0.5 wt%, containing at least one or more elements, and the total amount is 0.01%.
A copper alloy material having a S content of 30 ppm or less, a heat treatment at a temperature of 300 to 750 ° C. for 1 to 360 minutes, followed by a cold working at a working rate of 15% or more to form a second phase. Has an area occupancy of 10% or less, a tensile strength of 600 N / mm 2 or more, and a conductivity of 18% IACS or more,
A method for producing a copper alloy for a connector, wherein the Young's modulus is 115 kN / mm 2 or less.

【0019】(7) Zn:20〜41wt%、Sn:0.1 〜
4.0 wt%の範囲でかつ次式(1)を満たしてなるZn,
Snを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、場合によって
は更にFe:0.01〜3wt%、Ni:0.01〜5wt%、C
o:0.01〜3wt%、Ti0.01〜3wt%、Mg:0.01〜2
wt%、Zr:0.01〜2wt%、Ca:0.01〜1wt%、S
i:0.01〜3wt%、Mn:0.01〜5wt%、Cd:0.01〜
3wt%、Al:0.01〜5wt%、Pb:0.01〜3wt%、B
i:0.01〜3wt%、Be:0.01〜3wt%、Te:0.01〜
1wt%、Y:0.01〜3wt%、La:0.01〜3wt%、C
r:0.01〜3wt%、Ce:0.01〜3wt%、Au:0.01〜
5wt%、Ag:0.01〜5wt%、P:0.005 〜0.5 wt%の
うち少なくとも1種以上の元素を含み、その総量が0.01
〜5wt%であり、ただし、Sが30ppm 以下、である銅
合金材料を、300〜750℃の温度で1〜360分間
の熱処理後、加工率15%以上で冷間加工することによ
って、第2相の面積比率が10%以下で、引張強さ60
0N/mm2 以上、導電率が18%IACS以上、ヤング
率が115kN/mm2 以下にした後,当該銅合金材料の
表面にCu下地:0.3 〜2.0 μm、Sn:0.5 〜5.0 μ
mの表面処理をした後に、更に100〜280℃の温度
で1〜180分間の熱処理を施すことを特徴とするコネ
クタ用銅合金の製造法。
(7) Zn: 20-41 wt%, Sn: 0.1-
Zn in the range of 4.0 wt% and satisfying the following equation (1):
Including Sn, 6.0 ≦ 0.25X + Y ≦ 12 (1) where, X: Zn content (wt%) Y: Sn content (wt%) The balance consists of Cu and unavoidable impurities. Fe: 0.01 to 3 wt%, Ni: 0.01 to 5 wt%, C
o: 0.01-3 wt%, Ti 0.01-3 wt%, Mg: 0.01-2
wt%, Zr: 0.01-2 wt%, Ca: 0.01-1 wt%, S
i: 0.01 to 3 wt%, Mn: 0.01 to 5 wt%, Cd: 0.01 to
3 wt%, Al: 0.01 to 5 wt%, Pb: 0.01 to 3 wt%, B
i: 0.01 to 3 wt%, Be: 0.01 to 3 wt%, Te: 0.01 to
1 wt%, Y: 0.01-3 wt%, La: 0.01-3 wt%, C
r: 0.01 to 3 wt%, Ce: 0.01 to 3 wt%, Au: 0.01 to
5 wt%, Ag: 0.01 to 5 wt%, P: 0.005 to 0.5 wt%, containing at least one or more elements, and the total amount is 0.01%.
A copper alloy material having a S content of 30 ppm or less is subjected to a heat treatment at a temperature of 300 to 750 ° C. for 1 to 360 minutes, followed by cold working at a working rate of 15% or more. When the area ratio of the phase is 10% or less and the tensile strength is 60%
0 N / mm 2 or more, conductivity of 18% IACS or more and Young's modulus of 115 kN / mm 2 or less, and then a Cu underlayer: 0.3 to 2.0 μm and Sn: 0.5 to 5.0 μm on the surface of the copper alloy material.
A method for producing a copper alloy for a connector, comprising: performing a heat treatment at a temperature of 100 to 280 ° C. for 1 to 180 minutes after the surface treatment of m.

【0020】(8) 前記製造法において、上記発明合金に
Snを表面処理した材料のプレス打ち抜きくずを原料と
する場合は、300〜600℃の温度で0.5 〜24時間
大気中または不活性ガス雰囲気中であらかじめ熱処理し
た後に溶解する請求項7記載のコネクタ用銅合金の製造
法。
(8) In the above-mentioned manufacturing method, in the case where the above-mentioned alloy is press-punched scrap of a material obtained by subjecting the alloy of the invention to a surface treatment with Sn, the alloy or the inert gas atmosphere is used at a temperature of 300 to 600 ° C. for 0.5 to 24 hours. 8. The method for producing a copper alloy for a connector according to claim 7, wherein the copper alloy is melted after heat treatment in advance.

【0021】[0021]

【作用】次に、本発明の内容を具体的に説明する。先
ず、本発明銅合金における成分量限定理由につき説明す
る。Zn:Znを添加することにより、強度、ばね性が
向上し、かつCuより安価であるため多量に添加するこ
とが望ましいが、41wt%を越えると第2相の面積比率
も10%を越える場合があり、加工性、耐食性、耐応力
腐食割れ性が低下する。さらにめっき性、はんだ付性が
低下する。また、20wt%より少ないと強度、ばね性が
不足し、ヤング率が大きくなり、さらにSnを表面処理
したスクラップを原料とした場合、溶融時の水素ガス吸
蔵が多くなり、インゴットのブローホールが発生しやす
くなる。また、安価なZnが少なく経済的にも不利にな
る。したがって、Znは、20〜41wt%の範囲であれ
ば良い。更に好ましい範囲としては、25〜38wt%で
ある。
Next, the contents of the present invention will be specifically described. First, the reasons for limiting the amounts of components in the copper alloy of the present invention will be described. Zn: By adding Zn, strength and resilience are improved and it is cheaper than Cu, so it is desirable to add a large amount, but if it exceeds 41 wt%, the area ratio of the second phase also exceeds 10%. The workability, corrosion resistance and stress corrosion cracking resistance are reduced. Further, the plating property and the solderability are reduced. On the other hand, if the content is less than 20 wt%, the strength and the spring property are insufficient, the Young's modulus becomes large, and when scrap made of Sn surface-treated is used as a raw material, hydrogen gas occlusion at the time of melting increases and blowholes of the ingot are generated. Easier to do. In addition, there is little inexpensive Zn, which is economically disadvantageous. Therefore, Zn may be in the range of 20 to 41 wt%. A more preferred range is 25 to 38% by weight.

【0022】Sn:Snは微量で強度,弾性をはじめと
した機械的特性を向上させる効果がある。また、Znの
共存下で多くの銅合金系に比較し小さいヤング率を満足
することができる。さらにSnめっき等のSnを表面処
理した材料の再利用の点からも添加元素として含有する
のが好ましい。しかし、Sn含有量が増すと導電率が急
激に低下し、また熱間加工性も低下する。導電率18%
IACSを確保するためには、4.0 wt%を越えない範囲
でなければならない。また、0.1 wt%より少ないと以上
のような効果が望めない。したがって、Snは、0.1 〜
4.0 wt%の範囲であれば良い。
Sn: A small amount of Sn has the effect of improving mechanical properties such as strength and elasticity. In addition, a small Young's modulus can be satisfied in the presence of Zn as compared with many copper alloys. Further, it is preferable that Sn is contained as an additive element from the viewpoint of reusing a material whose surface is treated with Sn such as Sn plating. However, when the Sn content increases, the electrical conductivity sharply decreases, and the hot workability also decreases. Conductivity 18%
In order to secure IACS, it must be in a range not exceeding 4.0 wt%. On the other hand, if the content is less than 0.1 wt%, the above effects cannot be expected. Therefore, Sn is 0.1 to
It may be in the range of 4.0 wt%.

【0023】また、第2相の面積比率は10%以下が望
ましい。ここで第2相は、CuとZnとの化合物による
第1相(いわゆるα相)以外の相の全てをさすものとし
例えばβ相、γ相あるいは後述する第3以降の添加元素
とZn、Snとの化合物やこれら同士の化合物によって
得られる相である。これらの異相の合計が10%をこえ
ると成形加工性が極端に劣化するのと同時にヤング率に
も影響してしまう。したがって、第2相の面積比率は1
0%以下、好ましくは5%以下とする。しかしながら金
型摩耗に対して、わずかの第2相を含んでいた方が有利
であることがわかった。このような効果は、0.1 %以上
必要であり、更に好ましくは0.5 %以上必要である。こ
れらを勘案すると好ましい第2相の面積比率は0.5 〜5
%となる。
The area ratio of the second phase is desirably 10% or less. Here, the second phase refers to all phases other than the first phase (so-called α phase) of a compound of Cu and Zn, for example, β phase, γ phase, or third and later additional elements described later, and Zn, Sn And a phase obtained by these compounds. If the total of these different phases exceeds 10%, the moldability will be extremely deteriorated and the Young's modulus will be affected at the same time. Therefore, the area ratio of the second phase is 1
0% or less, preferably 5% or less. However, it has been found advantageous to include a small amount of the second phase against mold wear. Such an effect is required to be 0.1% or more, more preferably 0.5% or more. Taking these into consideration, the preferred area ratio of the second phase is 0.5 to 5
%.

【0024】また、以上のようにして限定された成分の
範囲であれば、Cuの固溶限を越えて析出する第2相の
面積比率を制御でき、なおかつ以下の式(1)より限定
される範囲(図1.斜線部が本銅基合金の組成範囲)で
Zn、SnをCuに添加することで引張強さ600N/
mm2 以上、導電率が18%IACS以上、ヤング率が1
15kN/mm2 以下、さらにコネクタ材として必要な諸
特性、具体的には耐食性、耐応力腐食割れ性(アンモニ
ア蒸気中での割れ寿命が黄銅一種の3倍以上)、耐応力
緩和特性(80〜120℃における緩和率が黄銅一種の
半分以下、りん青銅並)、成形加工性(R/t≦1.0 の
90°W曲げにもクラック発生無し)等を満足するコネ
クタ用銅基合金を製造できる。
Further, if the range of the components is limited as described above, the area ratio of the second phase which precipitates beyond the solid solubility limit of Cu can be controlled, and is limited by the following formula (1). (FIG. 1. The composition range of the copper-based alloy in FIG. 1 is shaded), Zn and Sn are added to Cu to obtain a tensile strength of 600 N /
mm 2 or more, conductivity 18% IACS or more, Young's modulus 1
15 kN / mm 2 or less, further properties required as a connector material, in particular corrosion resistance, stress corrosion cracking resistance (more than 3 times cracking life brass one with ammonia vapors in), the stress relaxation property (80 It is possible to produce a copper base alloy for a connector that has a relaxation rate at 120 ° C. of less than half that of brass, comparable to that of phosphor bronze, and moldability (no cracking even in 90 ° W bending with R / t ≦ 1.0).

【0025】(1) 式について 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%),Y:Snの含有量
(wt%) なお(1)式において式の値が6.0より少ないと引張強
さ等の強度が低下し、所望のヤング率が得られず,12
より大きいと導電率や成形加工性が低下するなどの悪影
響をおよぼすことになる。
Expression (1) 6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn content (wt%), Y: Sn content (wt%) In the expression (1), If the value is less than 6.0, the strength such as tensile strength decreases, and the desired Young's modulus cannot be obtained.
If it is larger, it will have an adverse effect such as a decrease in conductivity and moldability.

【0026】さらに、不純物のSはできるだけ少ない方
が望ましい。Sは少量の含有で、熱間圧延における変形
能を著しく低下させる。特に、硫酸浴でSnめっきされ
たくずを使用した場合やプレス等の油からSが取り込ま
れるが、この値を規制することにより、熱間圧延での特
に350〜600℃の温度域での割れ防止につなげるこ
とができる。このような効果を発現するには、Sは30
ppm 以下、好ましくは15ppm 以下が必要である。
Further, it is desirable that S of the impurity is as small as possible. S, when contained in a small amount, significantly reduces the deformability in hot rolling. In particular, when using Sn-plated debris in a sulfuric acid bath or when S is taken in from oil such as a press, by controlling this value, cracking in hot rolling, particularly in the temperature range of 350 to 600 ° C. in hot rolling is performed. It can lead to prevention. To achieve such an effect, S should be 30
ppm or less, preferably 15 ppm or less is required.

【0027】さらに、第3添加元素として、Fe:0.01
〜3wt%、Ni0.01〜5wt%、Co:0.01〜3wt%、T
i:0.01〜3wt%、Mg:0.01〜2wt%、Zr:0.01〜
2wt%、Ca:0.01〜1wt%、Si:0.01〜3wt%、M
n:0.01〜5wt%、Cd:0.01〜3wt%、Al:0.01〜
5wt%、Pb:0.01〜3wt%、Bi:0.01〜3wt%、B
e:0.01〜3wt%、Te:0.01〜1wt%Y:0.01〜3wt
%、La:.01 〜3wt%、Cr:0.01〜3wt%、Ca:
0.01〜3wt%、Au:0.01〜5wt%Ag:0.01〜5wt
%、P:0.005 〜0.5 wt%のうち少なくとも1種以上の
元素を含み、その総量が0.01〜5wt%を含んでも良い。
これらは、導電率、ヤング率や成形加工性を大きく損な
うことなく、強度を向上できる。また、各元素の含有範
囲からはずれると所望とする効果が得られなくないかも
しくは、成形加工性、導電率、ヤング率、コスト面で不
利となる。
Further, as a third additive element, Fe: 0.01
-3 wt%, Ni 0.01-5 wt%, Co: 0.01-3 wt%, T
i: 0.01 to 3 wt%, Mg: 0.01 to 2 wt%, Zr: 0.01 to
2 wt%, Ca: 0.01-1 wt%, Si: 0.01-3 wt%, M
n: 0.01 to 5 wt%, Cd: 0.01 to 3 wt%, Al: 0.01 to
5 wt%, Pb: 0.01-3 wt%, Bi: 0.01-3 wt%, B
e: 0.01 to 3 wt%, Te: 0.01 to 1 wt% Y: 0.01 to 3 wt%
%, La: 0.01 to 3 wt%, Cr: 0.01 to 3 wt%, Ca:
0.01-3 wt%, Au: 0.01-5 wt% Ag: 0.01-5 wt%
%, P: contains at least one or more elements of 0.005 to 0.5 wt%, and the total amount may contain 0.01 to 5 wt%.
These can improve the strength without significantly impairing the electrical conductivity, Young's modulus and moldability. If the content is out of the range of each element, the desired effect may not be obtained, or the moldability, conductivity, Young's modulus and cost may be disadvantageous.

【0028】次に、本発明に係る製造条件の限定理由に
つき説明する。本発明合金にSnを表面処理した材料の
プレス打ち抜きくずを原料として溶解するに際し、30
0〜600℃の温度で0.5 〜24hr、大気中または不活
性雰囲気中で熱処理した後に溶解する。300℃未満の
温度では、プレスくずに付着したプレス油の燃焼が不十
分であり、また保管中に吸着した水分の乾燥が不十分で
あり、この後急激に温度を上昇させ溶解作業に入ると、
分解により生成した水素を溶湯中に吸収しブローホール
発生の原因となる。
Next, the reasons for limiting the manufacturing conditions according to the present invention will be described. In dissolving the press-punched scrap of the material obtained by surface-treating Sn in the alloy of the present invention as a raw material,
After a heat treatment at a temperature of 0 to 600 ° C. for 0.5 to 24 hours in the air or in an inert atmosphere, it is dissolved. At a temperature lower than 300 ° C., the combustion of the press oil adhering to the press waste is insufficient, and the moisture adsorbed during storage is insufficiently dried. ,
Hydrogen generated by the decomposition is absorbed into the molten metal and causes blowholes.

【0029】また、600℃を超える温度では、酸化が
急激に進みドロス発生の原因となる。このドロスは溶湯
の粘性を高め鋳造性を低下させる。したがって、熱処理
温度は300〜600℃の範囲とする。0.5 時間未満の
時間では、プレス油の燃焼や水分の乾燥が十分でなく、
24時間を超えると母材のCuがSn表面処理層に拡散
し酸化し、Cu−Sn−O系の酸化物を形成しドロスの
原因となり、また経済的でもない。しがたって熱処理時
間は0.5 〜24時間の範囲とする。また、雰囲気は大気
中で十分であるが、不活性ガスでシールした方が酸化防
止の面から好ましい。ただし、還元ガス中では高温にな
ると水分の分解による水素の吸収、拡散によって不利に
なる。
At a temperature exceeding 600 ° C., oxidation proceeds rapidly, causing dross. The dross increases the viscosity of the molten metal and lowers castability. Therefore, the heat treatment temperature is in the range of 300 to 600 ° C. If the time is less than 0.5 hours, the combustion of press oil and drying of water will not be enough,
If it exceeds 24 hours, Cu of the base material diffuses into the Sn surface treatment layer and is oxidized to form a Cu—Sn—O-based oxide, which causes dross, and is not economical. Accordingly, the heat treatment time is in the range of 0.5 to 24 hours. Although the atmosphere is sufficient in the air, it is preferable to seal with an inert gas from the viewpoint of preventing oxidation. However, if the temperature becomes high in the reducing gas, it is disadvantageous due to absorption and diffusion of hydrogen due to decomposition of water.

【0030】また、本銅合金材料を350〜750℃の
温度で1〜360分間の熱処理後、加工率15%以上で
冷間加工した材料の表面に、Cu下地0.3 〜2.0 μm、
Sn0.5 〜5.0 μmの表面処理した後に、100〜28
0℃の温度で1〜180分間の熱処理を施すとさらにコ
ネクタ用材料としての特性を向上させることができる。
Further, after subjecting the copper alloy material to a heat treatment at a temperature of 350 to 750 ° C. for 1 to 360 minutes, a Cu underlayer of 0.3 to 2.0 μm,
After a surface treatment of Sn 0.5-5.0 μm, 100-28
When the heat treatment is performed at a temperature of 0 ° C. for 1 to 180 minutes, the characteristics as a connector material can be further improved.

【0031】最終冷間加工前の焼鈍において、結晶粒径
を5〜20μmに制御すればプレス成形性が向上する
が、この時の処理温度は300〜750℃が好ましい。
300℃未満の温度では再結晶に必要な温度としては低
すぎ、処理時間が長くなり経済的でなく、750℃を超
える温度では短時間で結晶粒が粗大化し結晶粒径の制御
が難しい。また時間については、1〜360分間が好ま
しい。処理時間が短すぎると再結晶による結晶粒の制御
が十分でなく、長すぎると結晶粒の成長、粗大化がおこ
りやすくまた経済的にも不利になる。また、最終冷間加
工率は15%以上が好ましい。15%未満では加工硬化
による強度、硬さ等の向上が十分でない。ただし、加工
率が大きすぎると加工性が低下するので、好ましい範囲
としては15〜80%、より好ましくは20〜60%の
範囲とする。
In the annealing before the final cold working, the press formability is improved by controlling the crystal grain size to 5 to 20 μm, but the processing temperature at this time is preferably 300 to 750 ° C.
If the temperature is lower than 300 ° C., the temperature required for recrystallization is too low, and the processing time becomes longer, which is not economical. The time is preferably from 1 to 360 minutes. If the treatment time is too short, the control of the crystal grains by recrystallization is not sufficient, and if the treatment time is too long, the growth and coarsening of the crystal grains are likely to occur, and it is economically disadvantageous. Further, the final cold working ratio is preferably 15% or more. If it is less than 15%, improvement in strength, hardness and the like by work hardening is not sufficient. However, if the working ratio is too large, the workability decreases, so the preferred range is 15 to 80%, more preferably 20 to 60%.

【0032】このようにして得られた材料に、表面処理
としてCu下地を0.3 から2.0 μm、Sn表面処理を0.
5 〜5.0 μm施す。Cu下地は0.3 μm未満では、合金
中のZnが表面処理層および表面に拡散し酸化すること
による接触抵抗の増加やはんだ付け性の低下を防止する
効果が少なく、2.0 μmを超えても効果が飽和しまた経
済的でもなくなる。ただし、Cu下地めっきは、純Cu
であることに限らず、Cu−FeやCu−Ni等の銅合
金でも良い。
The material thus obtained was treated with a Cu underlayer of 0.3 to 2.0 μm and a Sn surface treatment of 0.3 to 2.0 μm.
Apply 5 to 5.0 μm. When the Cu underlayer is less than 0.3 μm, the effect of preventing the increase in contact resistance and the decrease in solderability due to the diffusion and oxidation of Zn in the alloy to the surface treatment layer and the surface is small, and the effect is more than 2.0 μm. It becomes saturated and less economical. However, Cu base plating is pure Cu
Not limited to this, a copper alloy such as Cu-Fe or Cu-Ni may be used.

【0033】Sn表面処理層は、0.5 μm未満では耐食
性、特に耐硫化水素性が不十分であり、また5.0 μmを
超えても効果が飽和し経済的にも不利となる。さらに、
これらの表面処理は電気めっきによって実施すれば、膜
厚の均一性、経済性の面から好ましい。表面処理後に光
沢をだすためにリフロー処理を施してもよい。この処理
はさらにウイスカ対策にも有効である。
If the Sn surface treatment layer is less than 0.5 μm, the corrosion resistance, particularly hydrogen sulfide resistance, is insufficient, and if it exceeds 5.0 μm, the effect is saturated and it is economically disadvantageous. further,
If these surface treatments are performed by electroplating, it is preferable in terms of uniformity of film thickness and economy. After the surface treatment, a reflow treatment may be performed to give gloss. This processing is also effective for whisker countermeasures.

【0034】この表面処理材を100〜280℃の温度
で1〜180分間熱処理する。この熱処理によって、材
料のばね限界値、耐応力緩和特性、ウイスカ対策が実現
できる。100℃未満の温度ではこのような効果が十分
でなく、280℃を超えると拡散や酸化により、接触抵
抗、はんだ付け性、加工性が低下する。また、熱処理時
間が1分間未満では効果が十分でなく、180分間を超
えると拡散や酸化による前述の特性低下が起こりまた経
済的でもない。次に本発明の実施の形態を実施例により
説明する。
This surface treatment material is heat-treated at a temperature of 100 to 280 ° C. for 1 to 180 minutes. By this heat treatment, the spring limit value of the material, the stress relaxation resistance, and the whisker countermeasures can be realized. If the temperature is lower than 100 ° C., such an effect is not sufficient. If the temperature is higher than 280 ° C., the contact resistance, the solderability and the workability are reduced due to diffusion and oxidation. Further, if the heat treatment time is less than 1 minute, the effect is not sufficient, and if the heat treatment time exceeds 180 minutes, the above-mentioned property deterioration due to diffusion and oxidation occurs, and it is not economical. Next, embodiments of the present invention will be described with reference to examples.

【0035】[0035]

【発明の実施の形態】実施例1 表1に化学成分(wt%)を示す銅合金No.1〜11を
高周波誘導溶解炉を用いて溶製し、40×40×150
(mm)の鋳塊に鋳造した。ただし、溶解鋳造時の雰囲気
はArガス雰囲気とし、鋳造後直ちに水冷した。ここで
No.11の合金は、原料中のSnめっきくずの油も処
理せず、急速溶解鋳造した。その後、各鋳塊を熱間圧延
後、冷間圧延と焼鈍を繰り返し、厚さ0.50mmとした。そ
して、450℃の温度で60分間熱処理材後、水急冷を
行い、さらに酸洗を施した。上記のように得られた熱処
理材を厚さ0.25mmまで冷間圧延し、試験材とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Example 1 Table 1 shows copper alloy Nos. Having chemical components (wt%). 1 to 11 were melted using a high-frequency induction melting furnace, and 40 × 40 × 150
(Mm). However, the atmosphere at the time of melting and casting was an Ar gas atmosphere, and water cooling was performed immediately after casting. Here, No. The alloy No. 11 was subjected to rapid melting casting without treating the oil of the Sn plating waste in the raw material. Thereafter, each ingot was subjected to hot rolling, and then cold rolling and annealing were repeated to a thickness of 0.50 mm. Then, after a heat-treated material at a temperature of 450 ° C. for 60 minutes, water quenching was performed, and further, pickling was performed. The heat-treated material obtained as described above was cold-rolled to a thickness of 0.25 mm to obtain a test material.

【0036】以上のようにして得られた試験材を用いて
ビッカース硬さ、引張強さ、ヤング率および導電率の測
定を行った。試験方法は、それぞれJIS−Z−224
4、JIS−Z−2241、JIS−H−0505にし
たがった。曲げ加工性は、90°W曲げ試験(CES−
M−0002−6、R=0.2 mm、R/t=0.8 、圧延方
向および垂直方向)を行い、中央部の山表面が、良好な
ものを○印、しわの発生したものを△印、割れの発生し
たものを×印として評価した。
Using the test materials thus obtained, Vickers hardness, tensile strength, Young's modulus and conductivity were measured. The test method was JIS-Z-224.
4, according to JIS-Z-2241 and JIS-H-0505. The bending workability was determined by the 90 ° W bending test (CES-
M-0002-6, R = 0.2 mm, R / t = 0.8, rolling direction and vertical direction). Were evaluated as x marks.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に示した結果から、本発明に係るN
o.1〜8の銅合金は、引張強さ、ヤング率、導電率の
バランスに優れ、また曲げ加工性も良好である。したが
って、コネクタ等の電気・電子用材料として非常に優れ
た特性を有する銅合金である。またNo.1〜8いずれ
の合金も第2相の面積比は5%以内であった。第2相の
面積比率を調べるために、板表面を研磨、エッチング後
組織観察を行い、格子をきざんで打点法により面積比率
を求めた。
From the results shown in Table 1, it is found that N
o. Copper alloys Nos. 1 to 8 have an excellent balance of tensile strength, Young's modulus and electrical conductivity, and also have good bending workability. Therefore, it is a copper alloy having very excellent properties as an electric / electronic material such as a connector. No. In all of the alloys 1 to 8, the area ratio of the second phase was within 5%. In order to examine the area ratio of the second phase, the plate surface was polished and the structure was observed after etching.

【0039】これに対して、Zn、Sn含有量が(1)
式で規定するより小さいNo.9は、引張強さ、ヤング
率に劣り、Zn、Sn含有量が一式で規定するより大き
いNo.10は第2相の面積比は10%を越え、曲げ加
工性に劣っている。Zn、Sn含有量が1式で規定する
範囲内であってもS不純物の多いNo.11は、熱間圧
延の途中で割れが入り、その後の冷間加工との兼ね合い
で最終板厚まで歩留まり良く製造できなかった。
On the other hand, when the Zn and Sn contents are (1)
A smaller No. defined by the equation No. 9 is inferior in tensile strength and Young's modulus and has a Zn and Sn content larger than that specified by a set. In No. 10, the area ratio of the second phase exceeds 10%, and the bending workability is poor. Even when the contents of Zn and Sn are within the range defined by the formula (1), no. In No. 11, a crack was formed during hot rolling, and it could not be manufactured with a good yield to the final thickness due to the subsequent cold working.

【0040】実施例2 実施例1の表1中に示す本発明合金No.1と市販の黄
銅1種(C2600−EH)、りん青銅2種(C519
1−EH)について、硬さ、引張強さ、曲げ加工性、ヤ
ング率、導電率及び応力腐食割れ寿命を試験測定した。
硬さ、引張強さ、ヤング率及び導電率の測定試験は、実
施例1と同様の測定法であり、応力腐食割れ時間は、試
料に約400N/mm2 の曲げ応力を負荷し12.5%アンモ
ニア水の入ったデシケータ内に暴露し割れが発生した時
間である。
Example 2 Inventive alloy No. 1 shown in Table 1 of Example 1. 1 and commercially available brass (C2600-EH) and phosphor bronze (C519)
For 1-EH), hardness, tensile strength, bending workability, Young's modulus, conductivity, and stress corrosion cracking life were measured by test.
The test for hardness, tensile strength, Young's modulus, and conductivity was performed in the same manner as in Example 1. The stress corrosion cracking time was determined by applying a bending stress of about 400 N / mm 2 to the sample and applying 12.5% ammonia. Exposure time in the desiccator containing water and the time when cracks occurred.

【0041】表2に示す結果から、本発明の銅合金は、
従来の代表的なコネクタ等の電気・電子用材料である黄
銅に比較して強度、ヤング率、曲げ加工性、耐応力腐食
割れ性が向上していることがわかる。りん青銅に比較し
ても、強度,曲げ加工性,ヤング率,導電率に優れてい
る。さらにコスト面でも成分と製造工程から優れている
といえる。したがって、本発明銅基合金は従来の黄銅、
りん青銅に比較しても十分に優れているといえる。
From the results shown in Table 2, the copper alloy of the present invention was
It can be seen that the strength, Young's modulus, bending workability, and stress corrosion cracking resistance are improved as compared with brass, which is a conventional electrical and electronic material for connectors and the like. Excellent in strength, bending workability, Young's modulus, and conductivity as compared with phosphor bronze. Furthermore, it can be said that the cost is excellent in terms of the components and the production process. Therefore, the copper-based alloy of the present invention is a conventional brass,
It can be said that it is sufficiently superior to phosphor bronze.

【0042】[0042]

【表2】 [Table 2]

【0043】実施例3 表3に示す本発明合金条材を作製後、Cu下地めっきを
0.5 μm,Snめっきを1.1 μm実施した後に、プレス
打ち抜きした材料を溶解鋳造用の原料として準備した。
鋳造における目標組成は表3とし、また溶解用の原料と
してプレスくずは約1t、残りは電気Cu、Znにより
成分調整し約2tのインゴットを6本得た。得られたイ
ンゴットの成分はほぼ表3と同じであった。
Example 3 After producing the alloy strips of the present invention shown in Table 3, a Cu base plating was performed.
After 0.5 μm and 1.1 μm of Sn plating, a material punched out by press was prepared as a raw material for melting casting.
The target composition in the casting is shown in Table 3. Press scrap as a raw material for melting was about 1 t, and the balance was adjusted with electric Cu and Zn to obtain six ingots of about 2 t. The components of the obtained ingot were almost the same as in Table 3.

【0044】ここで3本は、原料のプレスくずを450
℃で3時間大気中で加熱した。残り3本は何も処理しな
かった。これを急速に溶解し2tのインゴットを鋳造
し、熱間圧延、冷間圧延、焼鈍を繰り返し、0.25mmに仕
上げた。このようにして得られた材料の全長を検査し、
インゴットのブロホールに起因した欠点の個数を数え
た。(表4) 表4より、プレスくずを本発明法によって熱処理したも
のは欠陥がなく優れていた。これに対し熱処理していな
いものは欠陥が発生しており、歩留まりに問題があるの
がわかる。
Here, the three pieces were prepared by pressing 450 parts of raw material press waste.
Heated at 0 ° C for 3 hours in air. The other three did nothing. This was rapidly melted to cast a 2t ingot, and hot rolling, cold rolling and annealing were repeated to finish to 0.25 mm. Inspect the full length of the material obtained in this way,
The number of defects caused by ingot broholes was counted. (Table 4) Table 4 shows that the heat-treated press waste obtained by the method of the present invention was excellent without defects. On the other hand, those not subjected to the heat treatment have defects, indicating that there is a problem in the yield.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】実施例1により得られた本発明合金No.
1にCu下地めっき0.5 μm、Snめっき1.1 μmを施
した後、190℃の温度で60分間の熱処理を実施し
た。この材料とめっき処理後熱処理しなかったものの特
性を比較したのが表5である。ただし、応力緩和率は、
試験片の中央部の応力が、400N/mm2 になるように
アーチ状に曲げ150℃の温度で500時間保持後の曲
げぐせを応力緩和率として次式により算出した。 応力緩和率(%)=[(L1 −L2 )/(L1 −L
0 )]×100 ただしL0 :治具の長さ(mm) L1 :開始時の試料長さ(mm) L2:処理後の試料端間の水平距離(mm)
The alloy No. 1 of the present invention obtained in Example 1 was used.
1 was coated with 0.5 μm of Cu base plating and 1.1 μm of Sn plating, and then heat-treated at 190 ° C. for 60 minutes. Table 5 compares the properties of this material and those that were not heat-treated after plating. However, the stress relaxation rate is
The test piece was bent in an arch shape so that the stress at the center of the test piece became 400 N / mm 2 , and the bending after holding at a temperature of 150 ° C. for 500 hours was calculated as a stress relaxation rate by the following equation. Stress relaxation rate (%) = [(L 1 −L 2 ) / (L 1 −L)
0 )] × 100 where L 0 : length of jig (mm) L 1 : sample length at start (mm) L 2 : horizontal distance between sample ends after processing (mm)

【0048】[0048]

【表5】 [Table 5]

【0049】表5より、めっき処理後本発明法によって
熱処理した材料は、熱処理しなかった材料に比べ特性に
優れ、コネクタ用として適していることがわかった。な
お、同様にして比較した従来合金(黄銅1種 比較材
C2600 EH、りん青銅2種 比較材 C5191
H 表2中の合金)の応力緩和率は、それぞれ56.5
%、22.1%であり、これからも本発明合金および本発明
法の耐応力緩和特性が、優れていることがわかる。
From Table 5, it was found that the material heat-treated by the method of the present invention after the plating treatment had better characteristics than the material not heat-treated, and was suitable for connectors. In addition, the conventional alloy (brass 1 class comparative material)
C2600 EH, Phosphor bronze type 2 Comparative material C5191
H alloys in Table 2) had a stress relaxation rate of 56.5
% And 22.1%, which shows that the alloy of the present invention and the method of the present invention have excellent stress relaxation resistance.

【0050】実施例1によって得られた、表1の本発明
合金No.5と比較合金No.9を準備した。第2相の
面積比率を調べるために、板表面を研磨、エッチング後
組織観察を行い、格子をきざんで打点法により面積比率
を求めた。その結果、本発明合金No.5の第2相の面
積比は3%であり、比較合金No.9は第2相を確認で
きなかった。(α単相)。面積比率は上記のように打点
法によって求めてもよいし、他の方法(例えばコンピュ
ーターによる画像解析法)によって求めてもよい。両者
を超硬のパンチと工具鋼のダイスを用いてクリアランス
を板厚の8%とし、100万ショットのプレス打ち抜き
後のバリの状況を圧延方向、直角方向で調査したとこ
ろ、No.5にはバリが確認されなかったが、比較合金
No.9の圧延方向に平行な部分は15μmもの大きな
バリが発生していた。以上より、本発明に係るNo.5
の合金は金型摩耗に対しても優れていることがわかる。
The alloy No. of the present invention obtained in Example 1 in Table 1 was obtained. No. 5 and Comparative Alloy No. 5 9 was prepared. In order to examine the area ratio of the second phase, the plate surface was polished and the structure was observed after etching. As a result, the alloy No. 1 of the present invention. The area ratio of the second phase of Comparative Alloy No. 5 was 3%. 9 could not confirm the second phase. (Α single phase). The area ratio may be determined by the dot method as described above, or may be determined by another method (for example, an image analysis method using a computer). When the clearance was set to 8% of the plate thickness using a carbide punch and a tool steel die, the burrs after 1 million shots of press punching were examined in the rolling direction and the perpendicular direction. No burrs were observed in Comparative Alloy No. 5; The portion parallel to the rolling direction of No. 9 had burrs as large as 15 μm. From the above, No. 1 according to the present invention. 5
It can be seen that alloy No. is also excellent in mold wear.

【0051】[0051]

【発明の効果】以上の実施例から明らかなように、本発
明に係る銅基合金または本発明法によって得られた材料
は、従来の黄銅やりん青銅等に比較して、強度,導電
率,ヤング率のバランスや成形加工性をはじめ耐環境
性,耐熱性,耐応力緩和特性,金型摩耗等に優れるため
黄銅やりん青銅に代わる安価なコネクタ等の電気・電子
材料として最適なものである。
As is clear from the above examples, the copper-based alloy according to the present invention or the material obtained by the method of the present invention has strength, conductivity, and conductivity which are lower than those of conventional brass and phosphor bronze. Excellent in environmental resistance, heat resistance, stress relaxation resistance, mold abrasion, etc., including balance of Young's modulus and moldability, making it an ideal electrical and electronic material for inexpensive connectors such as brass and phosphor bronze. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る6.0 ≦0.25X+Y≦12を図示し
たものである。
FIG. 1 illustrates 6.0 ≦ 0.25X + Y ≦ 12 according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 694 C22F 1/00 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 694 C22F 1/00 694A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Zn:20〜41wt%、Sn:0.1 〜4.
0 wt%の範囲でかつ次式(1)を満たしてなるZn,S
nを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、ただしSが3
0ppm 以下であることを特徴とするコネクタ用銅合金。
1. Zn: 20-41 wt%, Sn: 0.1-4.
Zn, S in the range of 0 wt% and satisfying the following expression (1):
6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn content (wt%) Y: Sn content (wt%) The balance is made of Cu and unavoidable impurities. 3
A copper alloy for a connector characterized by being at most 0 ppm.
【請求項2】 Zn:20〜41wt%、Sn:0.1 〜4.
0 wt%の範囲でかつ次式(1)を満たしてなるZn,S
nを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、ただしSが3
0ppm 以下であり、第2相の面積占有比率が10%以下
であることを特徴とするコネクタ用銅合金。
2. Zn: 20-41 wt%, Sn: 0.1-4.
Zn, S in the range of 0 wt% and satisfying the following expression (1):
6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn content (wt%) Y: Sn content (wt%) The balance is made of Cu and unavoidable impurities. 3
A copper alloy for a connector, wherein the copper alloy content is 0 ppm or less and the area occupation ratio of the second phase is 10% or less.
【請求項3】 Zn:20〜41wt%、Sn:0.1 〜4.
0 wt%の範囲でかつ次式(1)を満たしてなるZn,S
nを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、ただしSが3
0ppm 以下であり、第2相の面積占有比率が10%以下
であり、更に引張強さ600N/mm2 以上、導電率が1
8%IACS以上、ヤング率が115kN/mm2 以下で
あることを特徴とするコネクタ用銅合金。
3. Zn: 20-41 wt%, Sn: 0.1-4.
Zn, S in the range of 0 wt% and satisfying the following expression (1):
6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn content (wt%) Y: Sn content (wt%) The balance is made of Cu and unavoidable impurities. 3
0 ppm or less, the area occupation ratio of the second phase is 10% or less, the tensile strength is 600 N / mm 2 or more, and the conductivity is 1 or less.
A copper alloy for a connector, characterized in that it has an IACS of 8% or more and a Young's modulus of 115 kN / mm 2 or less.
【請求項4】 Zn:20〜41wt%、Sn:0.1 〜4.
0 wt%の範囲でかつ次式(1)を満たしてなるZn,S
nを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、更にFe:0.
01〜3wt%、Ni:0.01〜5wt%、Co:0.01〜3wt
%、Ti0.01〜3wt%、Mg:0.01〜2wt%、Zr:0.
01〜2wt%、Ca:0.01〜1wt%、Si:0.01〜3wt
%、Mn:0.01〜5wt%、Cd:0.01〜3wt%、Al:
0.01〜5wt%、Pb:0.01〜3wt%、Bi:0.01〜3wt
%、Be:0.01〜3wt%、Te:0.01〜1wt%、Y:0.
01〜3wt%、La:0.01〜3wt%、Cr:0.01〜3wt
%、Ce:0.01〜3wt%、Au:0.01〜5wt%、Ag:
0.01〜5wt%、P:0.005 〜0.5 wt%のうち少なくとも
1種以上の元素を含み、その総量が0.01〜5wt%であ
り、ただしSが30ppm 以下、第2相の面積占有比率が
10%以下で、更に引張強さ600N/mm2 以上、導電
率が18%IACS以上、ヤング率が115kN/mm2
以下であることを特徴とするコネクタ用銅合金。
4. Zn: 20-41 wt%, Sn: 0.1-4.
Zn, S in the range of 0 wt% and satisfying the following expression (1):
6.0 ≦ 0.25X + Y ≦ 12 (1) where X: Zn content (wt%) Y: Sn content (wt%) The balance consists of Cu and unavoidable impurities. 0.
01-3 wt%, Ni: 0.01-5 wt%, Co: 0.01-3 wt%
%, Ti: 0.01 to 3 wt%, Mg: 0.01 to 2 wt%, Zr: 0.
01-2wt%, Ca: 0.01-1wt%, Si: 0.01-3wt
%, Mn: 0.01 to 5 wt%, Cd: 0.01 to 3 wt%, Al:
0.01-5 wt%, Pb: 0.01-3 wt%, Bi: 0.01-3 wt%
%, Be: 0.01 to 3 wt%, Te: 0.01 to 1 wt%, Y: 0.
01-3wt%, La: 0.01-3wt%, Cr: 0.01-3wt
%, Ce: 0.01 to 3 wt%, Au: 0.01 to 5 wt%, Ag:
0.01 to 5 wt%, P: 0.005 to 0.5 wt%, containing at least one or more elements, the total amount of which is 0.01 to 5 wt%, provided that S is 30 ppm or less, and the area occupation ratio of the second phase is 10% or less. And a tensile strength of at least 600 N / mm 2 , a conductivity of at least 18% IACS, and a Young's modulus of 115 kN / mm 2.
A copper alloy for connectors characterized by the following.
【請求項5】 前記金属材料の表面にCu下地:0.3〜
2.0μm、Sn:0.5〜5.0μmの表面処理を施したこと
を特徴とする請求項1〜4に記載のコネクタ用銅合金。
5. The method according to claim 1, wherein the surface of the metal material has a Cu underlayer: 0.3 to
The copper alloy for a connector according to any one of claims 1 to 4, wherein a surface treatment of 2.0 m and Sn: 0.5 to 5.0 m is performed.
【請求項6】 Zn:20〜41wt%、Sn:0.1 〜4.
0 wt%の範囲でかつ次式(1)を満たしてなるZn,S
nを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、場合によって
は更にFe:0.01〜3wt%、Ni:0.01〜5wt%、C
o:0.01〜3wt%、Ti0.01〜3wt%、Mg:0.01〜2
wt%、Zr:0.01〜2wt%、Ca:0.01〜1wt%、S
i:0.01〜3wt%、Mn:0.01〜5wt%、Cd:0.01〜
3wt%、Al:0.01〜5wt%、Pb:0.01〜3wt%、B
i:0.01〜3wt%、Be:0.01〜3wt%、Te:0.01〜
1wt%、Y:0.01〜3wt%、La:0.01〜3wt%、C
r:0.01〜3wt%、Ce:0.01〜3wt%、Au:0.01〜
5wt%、Ag:0.01〜5wt%、P:0.005 〜0.5 wt%の
うち少なくとも1種以上の元素を含み、その総量が0.01
〜5wt%であり、ただしSが30ppm 以下、である銅合
金材料を、300〜750℃の温度で1〜360分間の
熱処理後、加工率15%以上で冷間加工することによっ
て、第2相の面積占有比率が10%以下で、更に引張強
さ600N/mm2 以上、導電率が18%IACS以上、
ヤング率が115kN/mm2 以下であることを特徴とす
るコネクタ用銅合金の製造法。
6. Zn: 20-41 wt%, Sn: 0.1-4.
Zn, S in the range of 0 wt% and satisfying the following expression (1):
6.0 ≦ 0.25X + Y ≦ 12 (1) where, X: Zn content (wt%) Y: Sn content (wt%) The balance consists of Cu and unavoidable impurities. Fe: 0.01 to 3 wt%, Ni: 0.01 to 5 wt%, C
o: 0.01-3 wt%, Ti 0.01-3 wt%, Mg: 0.01-2
wt%, Zr: 0.01-2 wt%, Ca: 0.01-1 wt%, S
i: 0.01 to 3 wt%, Mn: 0.01 to 5 wt%, Cd: 0.01 to
3 wt%, Al: 0.01 to 5 wt%, Pb: 0.01 to 3 wt%, B
i: 0.01 to 3 wt%, Be: 0.01 to 3 wt%, Te: 0.01 to
1 wt%, Y: 0.01-3 wt%, La: 0.01-3 wt%, C
r: 0.01 to 3 wt%, Ce: 0.01 to 3 wt%, Au: 0.01 to
5 wt%, Ag: 0.01 to 5 wt%, P: 0.005 to 0.5 wt%, containing at least one or more elements, and the total amount is 0.01%.
A copper alloy material having a S content of 30 ppm or less, a heat treatment at a temperature of 300 to 750 ° C. for 1 to 360 minutes, followed by a cold working at a working rate of 15% or more to form a second phase. Has an area occupancy of 10% or less, a tensile strength of 600 N / mm 2 or more, and a conductivity of 18% IACS or more,
A method for producing a copper alloy for a connector, wherein the Young's modulus is 115 kN / mm 2 or less.
【請求項7】 Zn:20〜41wt%、Sn:0.1 〜4.
0 wt%の範囲でかつ次式(1)を満たしてなるZn,S
nを含み、 6.0 ≦0.25X+Y≦12・・・(1) ただし、X:Znの含有量(wt%) Y:Snの含有量(wt%) 残部がCuおよび不可避不純物からなり、場合によって
は更にFe:0.01〜3wt%、Ni:0.01〜5wt%、C
o:0.01〜3wt%、Ti0.01〜3wt%、Mg:0.01〜2
wt%、Zr:0.01〜2wt%、Ca:0.01〜1wt%、S
i:0.01〜3wt%、Mn:0.01〜5wt%、Cd:0.01〜
3wt%、Al:0.01〜5wt%、Pb:0.01〜3wt%、B
i:0.01〜3wt%、Be:0.01〜3wt%、Te:0.01〜
1wt%、Y:0.01〜3wt%、La:0.01〜3wt%、C
r:0.01〜3wt%、Ce:0.01〜3wt%、Au:0.01〜
5wt%、Ag:0.01〜5wt%、P:0.005 〜0.5 wt%の
うち少なくとも1種以上の元素を含み、その総量が0.01
〜5wt%であり、ただし、Sが30ppm 以下、である銅
合金材料を、300〜750℃の温度で1〜360分間
の熱処理後、加工率15%以上で冷間加工することによ
って、第2相の面積比率が10%以下で、引張強さ60
0N/mm2 以上、導電率が18%IACS以上、ヤング
率が115kN/mm2 以下にした後,当該銅合金材料の
表面にCu下地:0.3 〜2.0 μm、Sn:0.5 〜5.0 μ
mの表面処理をした後に、更に100〜280℃の温度
で1〜180分間の熱処理を施すことを特徴とするコネ
クタ用銅合金の製造法。
7. Zn: 20-41 wt%, Sn: 0.1-4.
Zn, S in the range of 0 wt% and satisfying the following expression (1):
6.0 ≦ 0.25X + Y ≦ 12 (1) where, X: Zn content (wt%) Y: Sn content (wt%) The balance consists of Cu and unavoidable impurities. Fe: 0.01 to 3 wt%, Ni: 0.01 to 5 wt%, C
o: 0.01-3 wt%, Ti 0.01-3 wt%, Mg: 0.01-2
wt%, Zr: 0.01-2 wt%, Ca: 0.01-1 wt%, S
i: 0.01 to 3 wt%, Mn: 0.01 to 5 wt%, Cd: 0.01 to
3 wt%, Al: 0.01 to 5 wt%, Pb: 0.01 to 3 wt%, B
i: 0.01 to 3 wt%, Be: 0.01 to 3 wt%, Te: 0.01 to
1 wt%, Y: 0.01-3 wt%, La: 0.01-3 wt%, C
r: 0.01 to 3 wt%, Ce: 0.01 to 3 wt%, Au: 0.01 to
5 wt%, Ag: 0.01 to 5 wt%, P: 0.005 to 0.5 wt%, containing at least one or more elements, and the total amount is 0.01%.
A copper alloy material having a S content of 30 ppm or less is subjected to a heat treatment at a temperature of 300 to 750 ° C. for 1 to 360 minutes, followed by cold working at a working rate of 15% or more. When the area ratio of the phase is 10% or less and the tensile strength is 60%
0 N / mm 2 or more, conductivity of 18% IACS or more and Young's modulus of 115 kN / mm 2 or less, and then a Cu underlayer: 0.3 to 2.0 μm and Sn: 0.5 to 5.0 μm on the surface of the copper alloy material.
A method for producing a copper alloy for a connector, comprising: performing a heat treatment at a temperature of 100 to 280 ° C. for 1 to 180 minutes after the surface treatment of m.
【請求項8】 前記製造法において、上記発明合金にS
nを表面処理した材料のプレス打ち抜きくずを原料とす
る場合は、300〜600℃の温度で0.5 〜24時間大
気中または不活性ガス雰囲気中であらかじめ熱処理した
後に溶解する請求項7記載のコネクタ用銅合金の製造
法。
8. The method according to claim 1, wherein the alloy of the invention is
8. The method according to claim 7, wherein in the case of using as a raw material a stamping waste of a material whose n has been surface-treated, the material is heat-treated at a temperature of 300 to 600 ° C. for 0.5 to 24 hours in the air or in an inert gas atmosphere and then melted. Manufacturing method of copper alloy.
JP2000004658A 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof Expired - Lifetime JP4129807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004658A JP4129807B2 (en) 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28162099 1999-10-01
JP11-281620 1999-10-01
JP2000004658A JP4129807B2 (en) 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001164328A true JP2001164328A (en) 2001-06-19
JP4129807B2 JP4129807B2 (en) 2008-08-06

Family

ID=26554254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004658A Expired - Lifetime JP4129807B2 (en) 1999-10-01 2000-01-13 Copper alloy for connector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4129807B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247035A (en) * 2002-02-25 2003-09-05 Dowa Mining Co Ltd Copper alloy having excellent stress corrosion cracking resistance and dezincification resistance and production method thereof
EP1452612A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
WO2006016621A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Structure for use in seawater, wire-shaped or rod-shaped copper alloy material for constituting the same, and process for production thereof
CN101787463A (en) * 2010-04-09 2010-07-28 宁波博威合金材料股份有限公司 Environmentally-friendly lead-free free-machining zinc white copper and preparation method thereof
CN102230105A (en) * 2011-04-08 2011-11-02 菏泽广源铜带股份有限公司 High strength tin brass
CN102828064A (en) * 2012-09-28 2012-12-19 合肥工业大学 Lead-free free-cutting brass alloy and preparation method thereof
CN104294137A (en) * 2014-09-25 2015-01-21 昆山伯建精密模具有限公司 Copper-zinc alloy mold
CN105400989A (en) * 2015-11-13 2016-03-16 太仓荣中机电科技有限公司 Electronic alloy material containing rare earth elements
CN107419961A (en) * 2017-07-18 2017-12-01 宁波瑞国精机工业有限公司 Key and preparation method thereof made of one kind copper alloy
CN107502780A (en) * 2017-07-18 2017-12-22 宁波瑞国精机工业有限公司 Lock core and preparation method thereof made of one kind copper alloy
JP2019510132A (en) * 2016-02-19 2019-04-11 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Sliding member made of copper-zinc alloy
KR20190077011A (en) 2016-10-28 2019-07-02 도와 메탈테크 가부시키가이샤 Copper alloy sheet and manufacturing method thereof
CN110117736A (en) * 2019-06-17 2019-08-13 上海理工大学 A kind of good corrosion resistant bismuth-brass alloy of plasticity
KR102120320B1 (en) * 2018-12-26 2020-06-08 태원공업(주) Manufacturing Method of Rectangular Wire Composed of Brass
CN111799117A (en) * 2020-06-25 2020-10-20 西安斯瑞先进铜合金科技有限公司 Preparation method of CuCrZr alloy material self-operated contact finger product
JP2021509934A (en) * 2018-01-09 2021-04-08 オットー フックス カーゲー Copper-zinc alloy
DE112020001366T5 (en) 2019-04-16 2021-12-16 Dowa Metaltech Co., Ltd. COPPER ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same
US11591673B2 (en) 2018-03-09 2023-02-28 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216429A (en) * 2016-08-25 2016-12-14 铜陵华洋特种线材有限责任公司 Zinc white wire rod processing process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456755A (en) * 1990-06-25 1992-02-24 Nikko Kyodo Co Ltd Manufacture of phosphor bronze excellent in bendability
JPH0533087A (en) * 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The Copper alloy for small conductive member
JPH08134565A (en) * 1994-11-09 1996-05-28 Furukawa Electric Co Ltd:The Heat resistant material for automotive terminal
JPH1025562A (en) * 1996-07-11 1998-01-27 Dowa Mining Co Ltd Copper base alloy and its production
JPH1081926A (en) * 1996-09-05 1998-03-31 Furukawa Electric Co Ltd:The Copper alloy for electronic device
JPH11264039A (en) * 1998-03-16 1999-09-28 Sumitomo Metal Mining Co Ltd Brass material containing tin and excellent in mechanical property, and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456755A (en) * 1990-06-25 1992-02-24 Nikko Kyodo Co Ltd Manufacture of phosphor bronze excellent in bendability
JPH0533087A (en) * 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The Copper alloy for small conductive member
JPH08134565A (en) * 1994-11-09 1996-05-28 Furukawa Electric Co Ltd:The Heat resistant material for automotive terminal
JPH1025562A (en) * 1996-07-11 1998-01-27 Dowa Mining Co Ltd Copper base alloy and its production
JPH1081926A (en) * 1996-09-05 1998-03-31 Furukawa Electric Co Ltd:The Copper alloy for electronic device
JPH11264039A (en) * 1998-03-16 1999-09-28 Sumitomo Metal Mining Co Ltd Brass material containing tin and excellent in mechanical property, and its production

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247035A (en) * 2002-02-25 2003-09-05 Dowa Mining Co Ltd Copper alloy having excellent stress corrosion cracking resistance and dezincification resistance and production method thereof
EP1452612A2 (en) * 2003-02-28 2004-09-01 Wieland-Werke AG Lead-free copper alloy and use thereof
EP1452612A3 (en) * 2003-02-28 2004-09-22 Wieland-Werke AG Lead-free copper alloy and use thereof
JP2007332466A (en) * 2004-08-10 2007-12-27 Sanbo Copper Alloy Co Ltd Copper alloy and structure for use in seawater using the same
US8171886B2 (en) 2004-08-10 2012-05-08 Mitsubishi Shindoh Co., Ltd. Structure used in seawater, copper alloy wire or bar forming the structure, and method for manufacturing the copper alloy wire or bar
WO2006016621A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Structure for use in seawater, wire-shaped or rod-shaped copper alloy material for constituting the same, and process for production thereof
CN101787463A (en) * 2010-04-09 2010-07-28 宁波博威合金材料股份有限公司 Environmentally-friendly lead-free free-machining zinc white copper and preparation method thereof
CN101787463B (en) * 2010-04-09 2012-04-25 宁波博威合金材料股份有限公司 Environmentally-friendly lead-free free-machining zinc white copper and preparation method thereof
CN102230105A (en) * 2011-04-08 2011-11-02 菏泽广源铜带股份有限公司 High strength tin brass
CN102828064A (en) * 2012-09-28 2012-12-19 合肥工业大学 Lead-free free-cutting brass alloy and preparation method thereof
CN104294137A (en) * 2014-09-25 2015-01-21 昆山伯建精密模具有限公司 Copper-zinc alloy mold
CN105400989A (en) * 2015-11-13 2016-03-16 太仓荣中机电科技有限公司 Electronic alloy material containing rare earth elements
JP2019510132A (en) * 2016-02-19 2019-04-11 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Sliding member made of copper-zinc alloy
US11293084B2 (en) 2016-10-28 2022-04-05 Dowa Metaltech Co., Ltd. Sheet matertal of copper alloy and method for producing same
KR20190077011A (en) 2016-10-28 2019-07-02 도와 메탈테크 가부시키가이샤 Copper alloy sheet and manufacturing method thereof
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same
CN107419961A (en) * 2017-07-18 2017-12-01 宁波瑞国精机工业有限公司 Key and preparation method thereof made of one kind copper alloy
CN107502780A (en) * 2017-07-18 2017-12-22 宁波瑞国精机工业有限公司 Lock core and preparation method thereof made of one kind copper alloy
JP2021509934A (en) * 2018-01-09 2021-04-08 オットー フックス カーゲー Copper-zinc alloy
JP7374904B2 (en) 2018-01-09 2023-11-07 オットー フックス カーゲー copper-zinc alloy
US11591673B2 (en) 2018-03-09 2023-02-28 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing same
KR102120320B1 (en) * 2018-12-26 2020-06-08 태원공업(주) Manufacturing Method of Rectangular Wire Composed of Brass
DE112020001366T5 (en) 2019-04-16 2021-12-16 Dowa Metaltech Co., Ltd. COPPER ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
CN110117736B (en) * 2019-06-17 2021-11-19 上海理工大学 Corrosion-resistant bismuth brass alloy with good plasticity
CN110117736A (en) * 2019-06-17 2019-08-13 上海理工大学 A kind of good corrosion resistant bismuth-brass alloy of plasticity
CN111799117A (en) * 2020-06-25 2020-10-20 西安斯瑞先进铜合金科技有限公司 Preparation method of CuCrZr alloy material self-operated contact finger product
CN111799117B (en) * 2020-06-25 2022-07-29 西安斯瑞先进铜合金科技有限公司 Preparation method of self-operated contact finger product made of CuCrZr alloy material

Also Published As

Publication number Publication date
JP4129807B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP2522629B2 (en) Copper alloy for electric parts and electronic parts and method for producing the same
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4441669B2 (en) Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP5150908B2 (en) Copper alloy for connector and its manufacturing method
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP3105392B2 (en) Manufacturing method of copper base alloy for connector
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP3323472B2 (en) Manufacturing method of copper base alloy for connector
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JPH0978162A (en) Copper alloy for electronic equipment and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

R150 Certificate of patent or registration of utility model

Ref document number: 4129807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term