JPH05311298A - Copper base alloy for connector and its manufacture - Google Patents

Copper base alloy for connector and its manufacture

Info

Publication number
JPH05311298A
JPH05311298A JP4146380A JP14638092A JPH05311298A JP H05311298 A JPH05311298 A JP H05311298A JP 4146380 A JP4146380 A JP 4146380A JP 14638092 A JP14638092 A JP 14638092A JP H05311298 A JPH05311298 A JP H05311298A
Authority
JP
Japan
Prior art keywords
weight
copper
connector
alloy
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4146380A
Other languages
Japanese (ja)
Other versions
JP2594250B2 (en
Inventor
Akira Sugawara
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP4146380A priority Critical patent/JP2594250B2/en
Publication of JPH05311298A publication Critical patent/JPH05311298A/en
Application granted granted Critical
Publication of JP2594250B2 publication Critical patent/JP2594250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the objective copper base alloy for a connector having excellent strength, elasticity and electrical conductivity as well as excellent formability, stress relaxing resistance and plating reliability. CONSTITUTION:The objective copper base alloy constituted of, by weight, 10.8% Ni, 1.36% Al, 0.49% Sn, 0.13% Co and 0.11% Cr, in which the ratio of the weight percentage of Ni/Al is regulated to 7.9 and the concn. of oxygen to 0.00l3%, and the balance Cu with inevitable impurities shows the various properties of 244Hv hardness, 79.8kgf/mm<2> tensile strength, 63.4kgf/mm<2> spring limit value and 14.3IACS electrical conductivity, is excellent in 90 degrees w bendability, soldering adhesion and castability, is furthermore good in the dispersion of properties and is suitable as the construction material for a connector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輸送機器の電気配線等
に使用される信号用微小電流コネクタ、電子機器等に使
用される圧接型コネクタやICソケットなどの構成材料
として好適な、優れた強度、弾性および電気伝導性を有
し、かつ優れた成形加工性、耐応力緩和特性およびめっ
き信頼性を有するコネクタ用銅基合金およびその製造法
に関する。
INDUSTRIAL APPLICABILITY The present invention is excellent as a constituent material for signal micro-current connectors used for electric wiring of transportation equipment, pressure contact type connectors used for electronic equipment, IC sockets and the like. The present invention relates to a copper-based alloy for connectors, which has strength, elasticity, and electrical conductivity, and has excellent formability, stress relaxation resistance, and plating reliability, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器装置の内部実装は、I
C、LSI、VLSIへの急速な高集積化に伴い高密度
化が図られるようになったため、これに必要なコネクタ
やICソケットのより一層の多機能化および高信頼化が
求められるようになった。また、輸送機器の電気配線に
おいてもカーエレクトロニクスの発達に伴って高密度化
や軽量化が図られ、これに必要なコネクタのより一層の
多機能化、高信頼化および小型化が求られている。
2. Description of the Related Art In recent years, internal mounting of electronic equipment has been
As the density of C, LSI, and VLSI has been rapidly increased, the densities have been increased. Therefore, the connectors and IC sockets required for this are required to have more functions and higher reliability. It was In addition, with the development of car electronics, the electrical wiring of transportation equipment is becoming higher in density and lighter in weight, and there is a demand for further multifunctionalization, higher reliability, and smaller size of the connectors required for this. ..

【0003】すなわち、上記のようにより一層の多機能
化や高信頼化が求められているコネクタ等の構成材料に
は、以下のような特性が要求されているのである。
That is, the following characteristics are required for the constituent materials of the connector and the like, which are required to be more multifunctional and highly reliable as described above.

【0004】ターミナルと電線との接続においては、高
密度化に伴う電線本数の増加に対して結線の合理化を図
るため、圧接が採用される場合が多い。そのため、ター
ミナルの構成材料は、優れた強度や弾性を有する必要が
ある。また、ターミナルの電気的信頼性を確保するため
には、バネの接触力が大きくかつ経時変化しないことが
必要である。そのため、ターミナルの構成材料には、優
れた電気伝導性、耐応力緩和性および耐食性が要求され
る。さらに、ターミナルの構成材料には、複雑な加工に
も耐え得る優れた成形加工性を有することが要求され
る。
In the connection between the terminal and the electric wire, crimping is often adopted in order to rationalize the connection with the increase in the number of electric wires accompanying the higher density. Therefore, the constituent material of the terminal needs to have excellent strength and elasticity. Further, in order to secure the electrical reliability of the terminal, it is necessary that the contact force of the spring is large and does not change with time. Therefore, the constituent material of the terminal is required to have excellent electrical conductivity, stress relaxation resistance and corrosion resistance. Further, the constituent material of the terminal is required to have excellent moldability capable of withstanding complicated processing.

【0005】また、ターミナルにおけるコンタクト部に
は、ターミナルの接触抵抗の安定性を向上させるため、
めっき処理が施されることが多い。そのため、ターミナ
ルの構成材料は、めっき付け性に優れ、かつ使用環境や
発熱による熱影響によって材料とめっき層との間に拡散
が生じ、この拡散が生じた部分(脆弱部)においてめっ
き剥離を生じないことが必要とされる。
Further, in order to improve the stability of the contact resistance of the terminal,
Often plated. Therefore, the constituent material of the terminal has excellent plating properties, and diffusion occurs between the material and the plating layer due to the thermal influence of the operating environment and heat generation, and plating peeling occurs at the portion where this diffusion has occurred (weakened portion). It is required not to.

【0006】ICソケットにおいては、集積度の向上に
伴ってピン数が増加しており、その実装方式は、DIP
タイプからピングリットアレイやチップキャリア等に移
行している。また、ICソケットは、脱着回数の多いE
P−ROMやP−ROMライター用、およびICテスタ
ーのバーンインやエージング用等として広く展開されて
いる。そのため、ICソケットの構成材料は、ターミナ
ルの構成材料と同様に、強度、弾性、電気伝導性、耐熱
性、耐応力緩和性に優れている必要がある。
In the IC socket, the number of pins is increasing as the degree of integration is improved, and the mounting method is DIP.
It is shifting from type to pin array and chip carrier. In addition, IC sockets are often used E
It is widely used for P-ROMs and P-ROM writers, and for burn-in and aging of IC testers. Therefore, the constituent material of the IC socket needs to be excellent in strength, elasticity, electrical conductivity, heat resistance, and stress relaxation resistance, like the constituent material of the terminal.

【0007】従来、上記のような用途におけるコネクタ
の構成材料としては、主にリン青銅やベリリウム銅が用
いられていた。しかしながら、リン青銅は圧接型コネク
タとして使用した場合、十分な強度や弾性が得られない
という問題点があった。また、ICソケット用、特にI
Cテスターのバーンインやエージング用として使用した
場合、耐応力緩和特性や耐熱性が不十分であり、信頼性
や耐久性に問題があった。さらに、一般的なコネクタと
して使用した場合においても、耐応力緩和特性が不十分
であったり、めっき剥離を生じてしまうことがあったた
め、信頼性に問題があった。
Conventionally, phosphor bronze or beryllium copper has been mainly used as the constituent material of the connector in the above-mentioned applications. However, when phosphor bronze is used as a pressure contact type connector, there is a problem that sufficient strength and elasticity cannot be obtained. For IC sockets, especially I
When used for burn-in and aging of a C tester, the stress relaxation resistance and heat resistance were insufficient, and there were problems in reliability and durability. Further, even when it is used as a general connector, the stress relaxation resistance may be insufficient or the plating may be peeled off, resulting in a problem in reliability.

【0008】一方、ベリリウム銅は、強度および弾性を
もたせるためには成形加工後に 300〜 350℃で時効処理
を行わなければならなかったため、経済性の面で問題が
あった。また、成形加工後の時効処理の後に行われる後
めっきにおいては、複雑に加工した部分にめっきが均一
に電着しにくく、めっきむらを生じやすいという問題点
があった。一方、成型加工前に行われる先めっきにおい
ては、SnやSn−Pb等といった低融点金属のめっき
が行えず、めっき種類が限定されてしまうという問題点
があった。
On the other hand, beryllium copper had a problem in terms of economy because it had to be subjected to an aging treatment at 300 to 350 ° C. after molding in order to have strength and elasticity. Further, in the post-plating performed after the aging treatment after the forming process, there is a problem that it is difficult for the plating to be uniformly electrodeposited on the complicatedly processed portion, and uneven plating is likely to occur. On the other hand, in the pre-plating that is performed before the molding process, there is a problem that a low melting point metal such as Sn or Sn-Pb cannot be plated, and the type of plating is limited.

【0009】上記のような問題を解決すべく、Cu−N
i−Al系あるいはCu−Ni−Al−B系のコネクタ
用銅基合金およびその製造方法が提供されている(特願
昭62-84653号、特願昭 62-209839号、特願昭 62-306993
号)。しかしながら、これらの方法によると、Cu−N
i−Al系、Cu−Ni−Al−B系の合金は連続鋳造
におけるカーボン鋳型と添加元素のNiとの反応の問題
が、Alの存在下で顕著であるため、鋳造時の歩留低下
が著しいという問題点があった。また、溶体化処理、時
効処理と加工との組合せで得られる板材の材料特性のう
ち、特にばね限界値が大きくバラついてしまうという問
題があった。
In order to solve the above problems, Cu-N
An i-Al-based or Cu-Ni-Al-B-based copper-based alloy for connectors and a method for producing the same are provided (Japanese Patent Application Nos. 62-84653, 62-209839 and 62-62). 306993
issue). However, according to these methods, Cu-N
In the case of the i-Al-based alloy and the Cu-Ni-Al-B-based alloy, the problem of the reaction between the carbon template and Ni as an additional element in continuous casting is significant in the presence of Al, so that the yield during casting is reduced. There was a serious problem. Further, among the material properties of the plate material obtained by the combination of the solution treatment, the aging treatment, and the processing, there is a problem that especially the spring limit value greatly varies.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述従来の
技術の問題点を解決し、強度、弾性および電気伝導性に
優れ、かつ成形加工性、耐応力緩和特性およびめっき信
頼性に優れたコネクタ用銅基合金およびその製造法を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the conventional techniques and is excellent in strength, elasticity and electrical conductivity, and is excellent in moldability, stress relaxation resistance and plating reliability. An object is to provide a copper-based alloy for connectors and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究の結果、NiおよびAlを規
制した割合で適量添加し、さらにCo、CrおよびTi
のうち少なくとも1種、およびSnを適量添加し(必要
に応じてBも適量添加)、酸素含有量を規制することに
より、上記課題が解決されることを見い出し、本発明に
到達した。
Means for Solving the Problems As a result of earnest research for achieving the above-mentioned object, the present inventors have added Ni and Al in appropriate amounts in a regulated ratio, and further added Co, Cr and Ti.
It was found that the above problems can be solved by adding at least one of them and Sn in an appropriate amount (B is also added in an appropriate amount if necessary) and the oxygen content is regulated, and the present invention has been achieved.

【0012】すなわち、本発明は、重量%において、N
i: 5〜15%、Al: 0.5〜 2.0%、Sn: 0.1〜 3.0
%、Co、CrおよびTiのうち少なくとも1種:0.01
〜 2.0%を含有し、かつ上記Ni/Alの重量百分率の
比率が 3〜10の範囲、および酸素含有量が 50ppm以下で
あり、残部がCuおよび不可避的不純物からなるコネク
タ用銅基合金;および重量%において、Ni: 5〜15
%、Al: 0.5〜 2.0%、Sn: 0.1〜 3.0%、B:
0.005〜 0.1%、Co、CrおよびTiのうち少なくと
も1種:0.01〜 2.0%を含有し、かつ上記Ni/Alの
重量百分率の比率が3〜10の範囲、および酸素含有量が
50ppm以下であり、残部がCuおよび不可避的不純物か
らなるコネクタ用銅基合金;ならびに重量%において、
Ni: 5〜15%、Al: 0.5〜 2.0%、Sn: 0.1〜
3.0%、Co、CrおよびTiのうち少なくとも1種:
0.01〜 2.0%を含有し、かつ上記Ni/Alの重量百分
率の比率が 3〜10の範囲、および酸素含有量が 50ppm以
下であり、残部がCuおよび不可避的不純物からなる合
金材料を連続鋳造して素材板を得、この素材板を50%以
上の加工率で冷間圧延する工程、冷延材を 750〜 950℃
の温度で10〜 600秒間溶体化処理する工程、溶体化処理
材を30〜90%の加工率で冷間圧延する工程、および冷延
材を 300〜 600℃の温度で 5〜 360分間時効処理する工
程からなることを特徴とするコネクタ用銅基合金の製造
方法;および重量%において、Ni: 5〜15%、Al:
0.5〜 2.0%、Sn: 0.1〜 3.0%、B: 0.005〜 0.1
%、Co、CrおよびTiのうち少なくとも1種:0.01
〜 2.0%を含有し、かつ上記Ni/Alの重量百分率の
比率が 3〜10の範囲、および酸素含有量が 50ppm以下で
あり、残部がCuおよび不可避的不純物からなる合金材
料を連続鋳造して素材板を得、この素材板を50%以上の
加工率で冷間圧延する工程、冷延材を 750〜 950℃の温
度で10〜 600秒間溶体化処理する工程、溶体化処理材を
30〜90%の加工率で冷間圧延する工程、および冷延材を
300〜 600℃の温度で 5〜 360分間時効処理する工程か
らなることを特徴とするコネクタ用銅基合金の製造方法
を提供するものである。
That is, according to the present invention, in% by weight, N
i: 5 to 15%, Al: 0.5 to 2.0%, Sn: 0.1 to 3.0
%, At least one of Co, Cr and Ti: 0.01
Copper-based alloy for connectors, which contains ~ 2.0% and has a Ni / Al weight percentage ratio in the range of 3-10, an oxygen content of 50 ppm or less, and the balance Cu and inevitable impurities; and % By weight, Ni: 5-15
%, Al: 0.5 to 2.0%, Sn: 0.1 to 3.0%, B:
0.005 to 0.1%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the above Ni / Al weight percentage ratio is in the range of 3 to 10, and the oxygen content is
A copper-based alloy for connectors, which has a content of 50 ppm or less and the balance of Cu and unavoidable impurities;
Ni: 5-15%, Al: 0.5-2.0%, Sn: 0.1-
3.0%, at least one of Co, Cr and Ti:
An alloy material containing 0.01 to 2.0% and having a Ni / Al weight percentage ratio in the range of 3 to 10 and an oxygen content of 50 ppm or less and the balance being Cu and inevitable impurities is continuously cast. To obtain a material plate, cold rolling this material plate at a processing rate of 50% or more, cold-rolled material at 750 to 950 ℃
Solution treatment at 10 to 600 seconds, cold rolling the solution treated material at a processing rate of 30 to 90%, and cold rolling material at 300 to 600 ℃ for 5 to 360 minutes A method for producing a copper-based alloy for a connector, comprising: 5 to 15% by weight, and Al:
0.5-2.0%, Sn: 0.1-3.0%, B: 0.005-0.1
%, At least one of Co, Cr and Ti: 0.01
~ 2.0%, the above Ni / Al weight percentage ratio is in the range of 3 to 10, the oxygen content is 50 ppm or less, and the balance is Cu and inevitable impurities. The process of obtaining a material plate and cold rolling the material plate at a processing rate of 50% or more, the step of solution heat treating the cold rolled material at a temperature of 750 to 950 ° C for 10 to 600 seconds, the solution heat treatment material
Cold rolling with cold rolling at a processing rate of 30-90%
Provided is a method for producing a copper-based alloy for a connector, which comprises a step of aging treatment at a temperature of 300 to 600 ° C. for 5 to 360 minutes.

【0013】上記コネクタ用銅基合金の製造方法におい
ては、冷間圧延前の溶体化処理材に、 300〜 550℃の温
度で 5〜 360分間の時効処理を施したり、溶体化処理工
程を少なくとも2回行うことにより、より好適なコネク
タ用銅基合金を得ることができる。
In the above-mentioned method for producing a copper-based alloy for a connector, the solution-treated material before cold rolling is subjected to an aging treatment at a temperature of 300 to 550 ° C. for 5 to 360 minutes, or at least a solution treatment step. By performing twice, a more suitable copper-based alloy for connectors can be obtained.

【0014】[0014]

【作用】まず、本発明の合金成分の含有量の範囲限定理
由について以下に説明する。
First, the reason for limiting the range of the content of the alloy component of the present invention will be described below.

【0015】本発明の銅基合金はNi−Al系金属間化
合物による析出強化を図った点に一つの特徴があるた
め、NiとAlは本発明合金において不可欠の元素であ
る。Niは、Alと化合物を形成し、強度、弾性、耐熱
性、耐応力緩和特性の向上に寄与する元素であり、ま
た、鋳造組織を微細にし、かつ溶体化処理時における結
晶粒の粗大化を阻止する効果を有している。
Since the copper-based alloy of the present invention is characterized in that it is precipitation strengthened by the Ni-Al intermetallic compound, Ni and Al are essential elements in the alloy of the present invention. Ni is an element that forms a compound with Al and contributes to the improvement of strength, elasticity, heat resistance, and stress relaxation resistance properties. Further, it makes the cast structure fine and coarsens the crystal grains during solution treatment. It has a blocking effect.

【0016】このような効果を発揮させるためには、N
iの含有量が、重量%において 5%以上必要であるが、
15%を超えると電気伝導性の低下が顕著になり、しかも
連続鋳造でカーボン鋳型を用いた場合、鋳型との反応が
顕著になってインゴットの健全性が損なわれてしまう。
また、Niの含有量が15%を超えると、溶体化処理温度
が高くなりすぎて製造上不利になる上、材料費が高くな
ってしまう。そのため、本発明におけるNiの含有量は
5〜15重量%の範囲とした。
In order to exert such an effect, N
The content of i must be 5% or more in weight%,
If it exceeds 15%, the electrical conductivity will be remarkably reduced, and when a carbon mold is used in continuous casting, the reaction with the mold will be remarkable and the soundness of the ingot will be impaired.
On the other hand, if the Ni content exceeds 15%, the solution heat treatment temperature becomes too high, which is disadvantageous in manufacturing and the material cost becomes high. Therefore, the content of Ni in the present invention is
The range was 5 to 15% by weight.

【0017】一方、Al含有量は、 0.5%未満ではNi
との共存下であっても強度、弾性、耐熱性の向上が少な
く、 2.0%を超えると析出物が過度に多くなり合金の延
性、成形加工性、めっき性を低下させ、しかも鋳造性が
低下し、経済的に不利になってしまう。そのため、本発
明におけるAlの含有量は 0.5〜 2.0重量%の範囲とし
た。
On the other hand, if the Al content is less than 0.5%, the Ni content is
Strength, elasticity, and heat resistance are not improved even in the presence of and when it exceeds 2.0%, precipitates become excessive and ductility, formability and platability of the alloy deteriorate, and castability decreases. However, it becomes economically disadvantageous. Therefore, the Al content in the present invention is in the range of 0.5 to 2.0% by weight.

【0018】また、NiとAlは、Ni−Al系金属間
化合物として析出するときに本発明の目的が有利に達成
されるが、このNi−Al系金属間化合物による強化を
十分に発揮させるためには、Ni/Alの重量百分率の
比率を制限する必要がある。すなわち、Ni/Alの重
量百分率の比率が3より小さい場合には、Cuマトリッ
クス中に固溶するAl量が過度に多くなり、Ni/Al
の重量百分率の比率が10より大きい場合には、Cuマト
リックス中に固溶するNi量が過度に多くなる。このよ
うに、NiおよびAlのどちらか一方のCuマトリック
ス中に固溶する量が過度に多くなると電気伝導性が低下
し、効率良く強度および弾性を向上させることができな
くなってしまうのである。そのため、本発明におけるN
i/Alの重量百分率の比率は 3〜10の範囲とした。
The objects of the present invention are advantageously achieved when Ni and Al are precipitated as Ni-Al intermetallic compounds, but in order to sufficiently exert the strengthening by the Ni-Al intermetallic compounds. Therefore, it is necessary to limit the weight percentage ratio of Ni / Al. That is, when the weight percentage ratio of Ni / Al is smaller than 3, the amount of Al dissolved in the Cu matrix becomes excessively large, and Ni / Al
When the ratio of the weight percentage of is larger than 10, the amount of Ni dissolved in the Cu matrix becomes excessively large. As described above, if the amount of either Ni or Al dissolved in the Cu matrix becomes excessively large, the electrical conductivity is lowered, and the strength and elasticity cannot be efficiently improved. Therefore, N in the present invention
The weight percentage ratio of i / Al was in the range of 3-10.

【0019】Snは、カーボン鋳造を用いた連続鋳造性
を向上させる作用を有している。すなわち、SnはAl
存在下におけるNiとカーボンとの反応を効率良く防止
し、インゴットの健全性の向上とカーボン鋳型の寿命向
上に寄与しているのである。また、SnはCuマトリッ
クス中に固溶して強度や弾性を向上させ、特にばね限界
値のバラツキを小さくする効果を有している。上記のよ
うな効果は、Snの含有量が、重量%において 0.1%未
満では十分でなく、 3.0%を超えるとNiとの共存下で
スピノーダル分解を起こして異相を生じてしまう。この
ように異相を生じると、さらなる強度および弾性の向上
は可能となるが、成形加工性が著しく低下し、しかも熱
処理が複雑になりコストアップにつながるため好ましく
ない。そのため、本発明におけるSnの含有量は 0.1〜
3.0重量%の範囲とした。
Sn has the function of improving the continuous castability using carbon casting. That is, Sn is Al
It effectively prevents the reaction between Ni and carbon in the presence, and contributes to the improvement of the soundness of the ingot and the life of the carbon mold. Further, Sn has the effect of forming a solid solution in the Cu matrix to improve the strength and elasticity, and particularly to reduce the variation of the spring limit value. The above effect is not sufficient if the Sn content is less than 0.1% by weight, and if it exceeds 3.0%, spinodal decomposition occurs in the coexistence with Ni and a different phase occurs. When such a different phase is generated, the strength and elasticity can be further improved, but the moldability is remarkably lowered, and the heat treatment is complicated, leading to an increase in cost, which is not preferable. Therefore, the Sn content in the present invention is 0.1 to
The range was 3.0% by weight.

【0020】Co、Cr、Tiは、溶体化処理工程おけ
る結晶粒粗大化の防止、および時効処理工程における粒
界反応の効果的抑制等、合金の製造上有利になるだけで
なく、強度、弾性、電気伝導性をよりいっそう向上させ
る効果を有している。このような効果は、Co、Crお
よびTiのうち少なくとも1種を添加することにより発
揮されるが、その含有量は、重量%において0.01%未満
では充分でなく、 2.0%を超えると電気伝導性および成
形加工性の低下が著しくなる上、鋳造性も低下するため
経済的に不利となる。そのため、本発明におけるCo、
CrおよびTiのうち少なくとも1種の含有量は0.01〜
2.0%とした。なお、Co、CrおよびTiのより好ま
しい含有量は、Co:0.01〜 2.0重量%、Cr:0.01〜
1.5重量%、Ti:0.01〜 1.5重量%の範囲である。
Co, Cr, and Ti are not only advantageous in the production of alloys, such as prevention of crystal grain coarsening in the solution treatment step and effective suppression of grain boundary reaction in the aging treatment step, but also strength and elasticity. , And has the effect of further improving the electrical conductivity. Such effects are exhibited by adding at least one of Co, Cr and Ti, but the content is not sufficient if less than 0.01% by weight, and if the content exceeds 2.0%, electrical conductivity is increased. In addition, the molding processability is significantly deteriorated, and the castability is also decreased, which is economically disadvantageous. Therefore, Co in the present invention,
The content of at least one of Cr and Ti is 0.01 to
It was set to 2.0%. The more preferable contents of Co, Cr and Ti are: Co: 0.01-2.0 wt%, Cr: 0.01-
1.5% by weight, Ti: 0.01 to 1.5% by weight.

【0021】Bは、溶解、鋳造時の脱酸剤として寄与
し、また溶体化処理時の結晶粒の粗大化を防止する効果
を有するが、Bの含有量が 0.005%未満ではこのような
効果が充分に発揮されず、 0.1%を超えると成形加工性
が低下し、経済的にも不利となってしまう。そのため、
本発明におけるBの含有量は 0.005〜 0.1重量%の範囲
とした。
B contributes as a deoxidizing agent during melting and casting, and has an effect of preventing coarsening of crystal grains during solution treatment. However, when the B content is less than 0.005%, such an effect is obtained. Is not sufficiently exhibited, and if it exceeds 0.1%, the formability is deteriorated, which is economically disadvantageous. for that reason,
The content of B in the present invention is in the range of 0.005 to 0.1% by weight.

【0022】O2 は、合金中に50ppm より多量に含まれ
ると、酸素との親和力の大きいAlが酸化されてAl2
3 が形成され、めっき付け性やめっき信頼性の劣化、
プレス金型寿命の低下等を招いてしまう。また、合金の
製造過程においてH2 ガスを用いた場合、表面および内
部に水素脆化が生じてしまうこともある。そのため、本
発明におけるO2 の含有量は 50ppm以下の範囲とした。
When O 2 is contained in the alloy in an amount of more than 50 ppm, Al having a large affinity with oxygen is oxidized and Al 2
O 3 is formed, deterioration of plating property and plating reliability,
This leads to a reduction in the life of the press die. Further, when H 2 gas is used in the process of manufacturing the alloy, hydrogen embrittlement may occur on the surface and inside. Therefore, the content of O 2 in the present invention is set in the range of 50 ppm or less.

【0023】このような成分組成に調整した本発明の銅
基合金は、Ni−Al系金属間化合物を微細に析出さ
れ、強度、弾性、電気伝導性、成形加工性、耐応力緩和
特性、めっき信頼性など様々な特性に優れているため、
近時のコネクタ用材料に要求される諸特性を具備した材
料とすることができる。
The copper-based alloy of the present invention adjusted to such a composition has finely deposited Ni-Al intermetallic compound, and has strength, elasticity, electrical conductivity, moldability, stress relaxation resistance, and plating. Because it has various characteristics such as reliability,
It is possible to use a material having various properties required for a recent material for connectors.

【0024】次に、本発明のコネクタ用銅基合金の製造
方法について以下に説明する。
Next, a method for producing the copper-based alloy for connectors of the present invention will be described below.

【0025】まず、重量%において、Ni: 5〜15%、
Al: 0.5〜 2.0%、Sn: 0.1〜3.0%、Co、Cr
およびTiのうち少なくとも1種:0.01〜 2.0%を含有
し、かつ上記Ni/Alの重量百分率の比率が 3〜10の
範囲、および酸素濃度が 50ppm以下であり、場合によっ
てはBを 0.005〜 0.1%含有し、残部がCuおよび不可
避的不純物からなる合金材料を連続鋳造(溶解鋳造)し
て素材板(インゴット)を作製する。
First, in weight%, Ni: 5 to 15%,
Al: 0.5-2.0%, Sn: 0.1-3.0%, Co, Cr
And at least one of Ti: 0.01 to 2.0%, the Ni / Al weight percentage ratio is in the range of 3 to 10, the oxygen concentration is 50 ppm or less, and B is 0.005 to 0.1 in some cases. %, With the balance being Cu and unavoidable impurities, an alloy material is continuously cast (melt cast) to produce a material plate (ingot).

【0026】なお、上記溶解鋳造は不活性ガスあるいは
還元ガス雰囲気中で行うことが望ましい。また、連続鋳
造の鋳型の材質としては、冷却(急冷)、消耗、溶湯と
の反応、ランニングコストの面からカーボンを用いるこ
とが望ましい。さらに、鋳造後、二次冷却によってイン
ゴットは急冷されるのが望ましい。ただし、上記急冷開
始温度は 800℃以上が望ましい。
It is desirable that the melting and casting be performed in an inert gas or reducing gas atmosphere. Further, as a material of the casting mold for continuous casting, it is desirable to use carbon from the viewpoint of cooling (quick cooling), consumption, reaction with molten metal, and running cost. Furthermore, it is desirable that the ingot be rapidly cooled by secondary cooling after casting. However, the quenching start temperature is preferably 800 ° C or higher.

【0027】次に、作製したインゴットを冷間加工率50
%以上で圧延する。この場合、冷間圧延でなく熱間圧延
を行ってもよいが、酸化雰囲気での加熱、圧延は、添加
元素のAlが内部酸化してAl2 3 (強固な皮膜)を
形成し、熱間割れを生じやすくなるため望ましくない。
また、冷間加工率が50%未満であると引き続き行われる
溶体化処理工程において、鋳造時の偏析を消失させるの
に要する時間が著しく長くなってしまうため好ましくな
い。
Next, the cold working rate of the produced ingot is set to 50.
Roll over%. In this case, hot rolling may be performed instead of cold rolling, but heating and rolling in an oxidizing atmosphere causes internal oxidation of the additive element Al to form Al 2 O 3 (a strong film), It is not desirable because cracking easily occurs.
Further, if the cold working ratio is less than 50%, the time required for eliminating the segregation during casting is significantly lengthened in the subsequent solution treatment step, which is not preferable.

【0028】次いで、この板材に 750〜 950℃の温度で
10〜 600秒の溶体化処理を施す。なお、処理温度は 750
℃未満では充分に溶体化せず、 950℃を超えると短時間
で結晶粒が粗大化してしまうため、 750〜 950℃の範囲
とした。また、処理時間は、10秒未満では鋳造時の偏析
が残ってしまうため溶体化が充分に行われず、 600秒を
超えると結晶粒が粗大化する上経済的でなくなってしま
うため、10〜 600秒の範囲とした。
Then, the plate material was heated at a temperature of 750 to 950 ° C.
Solution treatment is applied for 10 to 600 seconds. The processing temperature is 750
If the temperature is lower than ℃, the solution is not sufficiently formed, and if the temperature exceeds 950 ℃, the crystal grains become coarse in a short time. Therefore, the range is set to 750 to 950 ℃. Further, if the treatment time is less than 10 seconds, the solution is not sufficiently solutionized because segregation at the time of casting remains, and if it exceeds 600 seconds, the crystal grains become coarse and it is not economical, so 10 to 600. It was set to the range of seconds.

【0029】次に、得られた溶体化処理材を必要に応じ
て酸洗した後、30〜90%の範囲で冷間圧延する。これ
は、加工率が30%未満では加工によって付与される加工
歪が小さく、後続の時効処理工程の時効析出における強
度および弾性の向上が充分でなくなってしまい、また、
加工率が90%を超えると圧延の集合組織の発達が著しく
機械的性質に方向性(異方性)をもつようになり、成形
加工性を低下させてしまうため、時効処理前の冷間圧延
の加工率は30〜90%の範囲とした。
Next, the solution treated material thus obtained is pickled, if necessary, and then cold rolled in the range of 30 to 90%. This is because if the working rate is less than 30%, the working strain imparted by working is small, and the strength and elasticity in the aging precipitation in the subsequent aging treatment step are not sufficiently improved, and
If the workability exceeds 90%, the texture of rolling will be significantly developed and the mechanical properties will have directionality (anisotropic), which will reduce the formability and formability, so cold rolling before aging treatment will occur. The processing rate was in the range of 30 to 90%.

【0030】次いで、時効処理として 300〜 600℃の温
度で 5〜 360分の熱処理を行う。処理温度は、 300℃未
満では析出に要する時間が長くなり過ぎるため経済的で
なく、 600℃を超える温度では過時効となってしまい、
特性の一層の向上が期待できなくなるため、 300〜 600
℃の範囲とした。また、時効処理時間は、 5分未満では
析出物の形成が不十分であり、 360分を超えるような長
時間では析出物の成長の上からも経済性の上からも好ま
しくないため、 5〜 360分の範囲とした。
Next, as an aging treatment, a heat treatment is performed at a temperature of 300 to 600 ° C. for 5 to 360 minutes. If the treatment temperature is lower than 300 ° C, the time required for precipitation becomes too long, which is not economical, and if the temperature exceeds 600 ° C, overaging may occur.
300-600 because further improvement of characteristics cannot be expected
It was set in the range of ° C. If the aging treatment time is less than 5 minutes, the formation of precipitates is insufficient, and if the aging treatment time is longer than 360 minutes, it is not preferable from the viewpoint of growth of the precipitates and economical efficiency. The range was 360 minutes.

【0031】また、本発明法においては、必要に応じて
上記溶体化処理後に得られた溶体化処理材(冷間圧延処
理を施す前)に、 300〜 550℃の温度で 5〜 360分間の
時効処理(前時効処理)を施しても良い。この時効処理
によって一層の強度、弾性、電気伝導性の向上が期待で
きる。この時効処理における処理温度は、 300℃未満で
は析出するに要する時間が長すぎて経済的でなく、 550
℃を超えると過時効になり特性の一層の向上が期待でき
なくなるため、 300〜 550℃の範囲とした。また、処理
時間については、 5分未満では析出物の形成が不十分で
あり、 360分を超えるような長時間では析出物の成長の
上からも経済性の上からも好ましくないことから、 5〜
360分間の範囲とした。ただし、この前時効処理を施し
た後の冷間圧延における加工率は30〜70%が望ましい。
これは、30%未満の加工率では引き続き行われる時効処
理後の強度、弾性が不十分であり、70%を超えると成形
加工性の低下が著しくなってしまうためである。
Further, in the method of the present invention, if necessary, the solution heat-treated material obtained before the solution heat treatment (before the cold rolling treatment) is performed at a temperature of 300 to 550 ° C. for 5 to 360 minutes. Aging treatment (pre-aging treatment) may be performed. This aging treatment can be expected to further improve strength, elasticity, and electric conductivity. If the treatment temperature in this aging treatment is less than 300 ° C, the time required for precipitation is too long, which is not economical.
If the temperature exceeds ° C, overaging will occur and further improvement of the characteristics cannot be expected, so the range was set to 300 to 550 ° C. Regarding the treatment time, if the formation time is less than 5 minutes, the formation of precipitates is insufficient, and if the treatment time is longer than 360 minutes, it is not preferable from the viewpoint of growth of the precipitates and economical efficiency. ~
The range was 360 minutes. However, the working rate in cold rolling after the pre-aging treatment is preferably 30 to 70%.
This is because if the processing rate is less than 30%, the strength and elasticity after the subsequent aging treatment are insufficient, and if the processing rate exceeds 70%, the moldability is markedly deteriorated.

【0032】さらに、本発明法においては、必要に応じ
て上記溶体化処理工程を2回以上行っても良い。溶体化
処理を2回以上行うことにより、鋳造時の不均一な組織
および偏析の影響をほとんどなくすことができるように
なる(鋳造組織の影響を残すと本合金の弾性および成形
加工性のより一層の向上が望めなくなる)。
Further, in the method of the present invention, the solution treatment step may be carried out twice or more, if necessary. By carrying out the solution heat treatment twice or more, it becomes possible to almost eliminate the influence of the non-uniform structure and segregation during casting (If the influence of the cast structure is left, the elasticity and formability of this alloy will be further improved. Can no longer be expected to improve).

【0033】以上のような加工と熱処理を経ることによ
り、Ni−Al系金属間化合物がCuマトリックス中に
微細に析出した組織の銅基合金の薄板が得られるように
なる。この銅基合金は、高強度、高弾性、高伝導性を兼
備し、かつ成形加工性、めっき性、耐応力緩和特性等に
優れるものであるため、近年の電気・電子部品、輸送機
器等で用いられるコネクタ材料として極めて好適なもの
である。
By undergoing the above-mentioned processing and heat treatment, it becomes possible to obtain a copper-based alloy thin plate having a structure in which the Ni-Al intermetallic compound is finely precipitated in the Cu matrix. This copper-based alloy has high strength, high elasticity, and high conductivity, and is excellent in moldability, plating properties, stress relaxation resistance, etc., so it is used in recent electric and electronic parts, transportation equipment, etc. It is a very suitable connector material to be used.

【0034】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は以下の実施例により制
限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.

【0035】[0035]

【実施例1】表1にその化学成分値(重量%)を示す銅
基合金(試料No.1〜11:試料No.1〜5は本発明合金、試
料No.6〜11は比較合金)を高周波溶解炉を用いて溶製
し、10× 100× 10000(mm)の鋳塊に連続鋳造した。た
だし、溶解鋳造は、試料No.1〜10の合金についてはAr
ガスで完全にシールドした雰囲気中で行い、 No.11の合
金については大気中で行った。また、鋳型の材質として
はカーボンを用い、引出しはパルス方式(平均引出し速
度100mm/分)で行った。
Example 1 Copper-based alloys whose chemical composition values (% by weight) are shown in Table 1 (Sample Nos. 1 to 11: Sample Nos. 1 to 5 of the present invention, Samples Nos. 6 to 11 are comparative alloys) Was melted using a high-frequency melting furnace and continuously cast into a 10 × 100 × 10000 (mm) ingot. However, melt casting is performed using Ar for the alloys of sample Nos. 1 to 10.
It was carried out in an atmosphere completely shielded with gas, and in the atmosphere of No. 11 alloy. Further, carbon was used as the material of the mold, and the drawing was performed by a pulse method (average drawing speed 100 mm / min).

【0036】[0036]

【表1】 溶解鋳造後、得られたインゴットの表面を観察し、欠陥
のなかったものを○、欠陥のあったものを×として表1
に併記した。
[Table 1] After melting and casting, the surface of the obtained ingot was observed, and those without defects were marked with ◯, and those with defects were marked with x.
Also described in.

【0037】次に、該インゴットを冷間圧延によって厚
さ 2mmまで圧延(加工率80%)し、これを 850℃の温度
で 180秒間の溶体化処理を行った。溶体化処理後、再度
厚さ0.6mmまで冷間圧延(加工率70%)し、 850℃の温
度で 150秒間の溶体化処理を行った。次いで、得られた
溶体化処理材を酸洗、バフ掛けした後、厚さ 0.2mmまで
冷間圧延(加工率67%)し、 500℃の温度で60分間の時
効処理を施した。なお、上記熱処理に際しては、処理雰
囲気を不活性ガスまたは還元ガス雰囲気とすることによ
り、材料表面および内部の酸化をできるだけ制御した。
Next, the ingot was cold-rolled to a thickness of 2 mm (working rate 80%), and this was subjected to solution treatment at a temperature of 850 ° C. for 180 seconds. After the solution treatment, cold rolling (working rate 70%) was performed again to a thickness of 0.6 mm, and solution treatment was performed at a temperature of 850 ° C for 150 seconds. Next, the solution treated material obtained was pickled, buffed, cold-rolled to a thickness of 0.2 mm (working rate 67%), and aged at a temperature of 500 ° C. for 60 minutes. During the heat treatment, the atmosphere of the material and the inside of the material were controlled as much as possible by controlling the atmosphere of the atmosphere of the inert gas or the reducing gas.

【0038】上記のようにして得た試験材を用い、硬
度、引張強さ、ばね限界値、導電率、曲げ加工性、はん
だ付け性、特性バラツキを測定し、その結果を表1に併
記した。なお、硬度、引張強さ、ばね限界値および導電
率の測定は、それぞれJIS Z 2244、JIS Z 2241、JIS H
3130およびJIS H 0505にしたがって行った。また、曲げ
加工性の測定は、90度w曲げ試験( CES-M0002-6、R=
0.2mm、曲げ軸が圧延方向に平行)を行い、中央部山表
面が良好なものを○、割れが発生したものを×として評
価した。
Using the test materials obtained as described above, hardness, tensile strength, spring limit value, conductivity, bending workability, solderability, and characteristic variation were measured, and the results are also shown in Table 1. .. The hardness, tensile strength, spring limit value and conductivity are measured according to JIS Z 2244, JIS Z 2241 and JIS H, respectively.
It carried out according to 3130 and JIS H 0505. In addition, the bending workability is measured by 90 degree w bending test (CES-M0002-6, R =
0.2 mm, the bending axis was parallel to the rolling direction), the sample with a good central mountain surface was evaluated as ◯, and the sample with cracks was evaluated as x.

【0039】半田密着性の測定は、表面に半田めっき
(ディップ:Sn−40wt%Pb、 260℃×5sec、弱活性
ロジンフラックス使用)を行った後、 150℃の温度で 5
00時間加熱後、試験片を90度w曲げし(R= 0.2mm)、
セロハンテープでピーリングテストを行い、めっきが剥
離しなかったものを○、剥離したものを×として評価し
た。特性のバラツキの測定は、同一工程にて3回繰り返
し試作を行い、得られた試験材の引張強さ、ばね限界値
を測定し、この測定値のバラツキが平均値の 5%以内に
すべておさまったものを○、 5%を超えたものを×とし
て評価した。
The solder adhesion was measured by solder plating (dip: Sn-40 wt% Pb, 260 ° C x 5 sec, weakly active rosin flux was used) on the surface, and then at 5 ° C at 5 ° C.
After heating for 00 hours, bend the test piece 90 degrees w (R = 0.2 mm),
A peeling test was carried out using cellophane tape, and those in which the plating did not peel off were evaluated as ◯, and those peeled off were evaluated as x. To measure the variation in properties, repeat trial production three times in the same process, measure the tensile strength and spring limit value of the obtained test material, and the variation in this measured value is all within 5% of the average value. The samples were evaluated as ◯, and those exceeding 5% were evaluated as x.

【0040】また、試料No.3の本発明合金と市販のリン
青銅( C5210EH、 0.2mm)について応力緩和特性(応力
緩和率)の測定を行い、その結果を表2に示した。応力
緩和特性(応力緩和率)の測定は、試験片の中央部応力
が40kgf/mm2 になるようにアーチ状に曲げ 150℃および
200℃の温度で 500時間保持後の曲げぐせを応力緩和率
として算出した。なお、応力緩和率(%)は、次式によ
り計算した。
The stress relaxation characteristics (stress relaxation rate) of the alloy of the present invention of Sample No. 3 and commercially available phosphor bronze (C5210EH, 0.2 mm) were measured, and the results are shown in Table 2. The stress relaxation characteristics (stress relaxation rate) were measured by bending the test piece into an arch shape at a stress of 40 kgf / mm 2 at 150 ° C and
The bending behavior after 500 hours of holding at 200 ° C was calculated as the stress relaxation rate. The stress relaxation rate (%) was calculated by the following formula.

【0041】応力緩和率(%)=[(L1 −L2 )/
(L1 −L0 )]× 100 上記式中におけるL0 は、治具の長さ(mm)、L1 は、
開始時の試料長さ(mm)、L2 は、処理後の試料端間の
水平距離(mm)である。
Stress relaxation rate (%) = [(L 1 -L 2 ) /
(L 1 −L 0 )] × 100 In the above formula, L 0 is the jig length (mm), and L 1 is
The starting sample length (mm) and L 2 are the horizontal distance (mm) between the processed sample ends.

【0042】[0042]

【表2】 [Table 2]

【0043】表1の結果から次のことが確認された。試
料No.1〜 5の本発明合金は、硬度、引張強さ、ばね限界
値および導電率のバランスに優れ、かつ曲げ加工性、半
田密着性および鋳造性に優れており、しかも特性のバラ
ツキが小さいことから、コネクタ用銅基合金として非常
に優れたものであった。
From the results shown in Table 1, the following was confirmed. The alloys of the present invention of Sample Nos. 1 to 5 are excellent in balance of hardness, tensile strength, spring limit value and conductivity, and are excellent in bending workability, solder adhesion and castability, and have variations in properties. Since it was small, it was a very excellent copper-based alloy for connectors.

【0044】これに対し、Sn、Co、CrおよびTi
のいずれも含まない試料No.6の比較合金は、鋳造性およ
び特性バラツキの点で劣っていた。また、本発明で規定
するよりNi量が多く、Ni/Alの重量百分率の比率
が大きい試料No.7の比較合金は、導電率が低く、しかも
成形加工性が劣っていた。さらに、本発明で規定するよ
りAl量が少なく、かつNi/Alの重量百分率の比率
が大きい試料No.8の比較合金は、硬度、引張強さおよび
ばね限界値が低く、バランスが悪かった。
On the other hand, Sn, Co, Cr and Ti
The comparative alloy of Sample No. 6 containing neither of these was inferior in terms of castability and property variation. Further, the comparative alloy of Sample No. 7, which had a larger amount of Ni and a larger ratio of Ni / Al weight percentage than those specified in the present invention, had a low electrical conductivity and was inferior in moldability. Further, the comparative alloy of Sample No. 8 having a smaller amount of Al and a higher Ni / Al weight percentage ratio than those specified in the present invention had poor hardness, tensile strength and spring limit value, and was out of balance.

【0045】また、本発明で規定するSn量より多い試
料No.9の比較合金は、導電率、曲げ加工性、鋳造性およ
び特性バラツキの点で劣っていた。また、本発明で規定
するよりCoとTiとの合計含有量が多い試料 No.10の
比較合金は、曲げ加工性、半田密着性、鋳造性および特
性バラツキが劣っていた。さらに、Ni量、Al量、N
i/Alの重量百分率の比率、Sn量、ならびにCo、
CrおよびTiの合計含有量が本発明で規定する値であ
るが、酸素含有量が多い試料 No.11の比較合金は、曲げ
加工性、半田密着性、鋳造性および特性バラツキが劣っ
ていた。
Further, the comparative alloy of Sample No. 9 in which the amount of Sn was larger than that specified in the present invention was inferior in terms of electrical conductivity, bending workability, castability and property variation. Further, the comparative alloy of Sample No. 10 having a larger total content of Co and Ti than specified in the present invention was inferior in bending workability, solder adhesion, castability and property variation. Furthermore, Ni content, Al content, N
i / Al weight percentage ratio, Sn content, and Co,
Although the total content of Cr and Ti is the value specified in the present invention, the comparative alloy of Sample No. 11 having a large oxygen content was inferior in bending workability, solder adhesion, castability and property variation.

【0046】一方、表2の結果から、本発明合金は従来
の代表的なコネクタ材料であるリン青銅に比べて耐応力
緩和特性に優れていることが確認された。
On the other hand, from the results of Table 2, it was confirmed that the alloy of the present invention is superior in stress relaxation resistance property to phosphor bronze which is a typical conventional connector material.

【0047】[0047]

【実施例2】まず、表1における試料No.3の化学成分値
(重量%)を示す本発明銅基合金を、実施例1と同様に
して鋳造、圧延および溶体化処理を行い、厚さ 0.6mmの
溶体化処理材を作製した。次いで、該処理材を 400℃の
高温で30分間時効処理し、酸洗、バフ掛けした後、厚さ
0.2mmまで冷間圧延し、 500℃の温度で60分間の時効処
理を施した。
Example 2 First, the copper-based alloy of the present invention showing the chemical composition value (% by weight) of sample No. 3 in Table 1 was subjected to casting, rolling and solution treatment in the same manner as in Example 1 to obtain the thickness. A 0.6 mm solution heat treated material was prepared. Then, the treated material is aged at a high temperature of 400 ° C for 30 minutes, pickled and buffed, and then the thickness
It was cold-rolled to 0.2 mm and aged at a temperature of 500 ° C for 60 minutes.

【0048】上記のようにして得た試験材(「試料A」
とする)について、硬度、引張強さ、ばね限界値、導電
率を測定し、その結果を表3に示した。なお、これらの
測定については実施例1に準拠した。また、参考のため
表1における試料No.3の試料から実施例1と同様の方法
で試験材(「試料B」とする)を作製し、硬度、引張強
さ、ばね限界値、導電率を測定し、その結果を表3に併
記した。
The test material obtained as described above (“Sample A”)
The hardness, the tensile strength, the spring limit value, and the electrical conductivity were measured, and the results are shown in Table 3. Note that these measurements were based on Example 1. For reference, a test material (referred to as “Sample B”) was prepared from the sample No. 3 in Table 1 by the same method as in Example 1, and the hardness, tensile strength, spring limit value, and conductivity were determined. The measurement was performed, and the results are also shown in Table 3.

【0049】[0049]

【表3】 [Table 3]

【0050】表3からも分かるように、溶体化処理後に
得られた溶体化処理材に、冷間圧延処理を施す前に時効
処理を施すことにより、硬度、引張強さ、ばね限界値、
導電率が一層向上した。
As can be seen from Table 3, by subjecting the solution heat-treated material obtained after the solution heat treatment to the aging treatment before the cold rolling treatment, the hardness, the tensile strength, the spring limit value,
The conductivity is further improved.

【0051】[0051]

【発明の効果】本発明の開発により、強度、弾性、電気
伝導性に優れ、かつ成形加工性、耐応力緩和特性、めっ
き信頼性に優れる銅基合金が得られるようになった。そ
のため、本発明の銅基合金は、近年の輸送機器電装品の
小型軽量化と配線の高密度化や電子機器装置の内部実装
の高密度化高信頼化に十分対応できるものである。
As a result of the development of the present invention, it has become possible to obtain a copper-based alloy that is excellent in strength, elasticity, and electrical conductivity, as well as in moldability, stress relaxation resistance, and plating reliability. Therefore, the copper-based alloy of the present invention can sufficiently cope with the recent reduction in size and weight of electrical equipment for transportation equipment, high density of wiring and high density and high reliability of internal mounting of electronic equipment.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn: 0.1〜 3.0%、Co、Crお
よびTiのうち少なくとも1種:0.01〜 2.0%を含有
し、かつ上記Ni/Alの重量百分率の比率が 3〜10の
範囲、および酸素含有量が 50ppm以下であり、残部がC
uおよび不可避的不純物からなるコネクタ用銅基合金。
1. In weight%, Ni: 5-15%, A
l: 0.5 to 2.0%, Sn: 0.1 to 3.0%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the Ni / Al weight percentage ratio is in the range of 3 to 10, And the oxygen content is 50 ppm or less, and the balance is C
Copper-based alloy for connectors, which comprises u and unavoidable impurities.
【請求項2】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn: 0.1〜 3.0%、B: 0.005〜
0.1%、Co、CrおよびTiのうち少なくとも1種:
0.01〜 2.0%を含有し、かつ上記Ni/Alの重量百分
率の比率が 3〜10の範囲、および酸素含有量が 50ppm以
下であり、残部がCuおよび不可避的不純物からなるコ
ネクタ用銅基合金。
2. Ni: 5 to 15% by weight, A
1: 0.5 to 2.0%, Sn: 0.1 to 3.0%, B: 0.005 to
0.1%, at least one of Co, Cr and Ti:
A copper-based alloy for connectors, which contains 0.01 to 2.0%, has a Ni / Al weight percentage ratio in the range of 3 to 10, an oxygen content of 50 ppm or less, and the balance Cu and inevitable impurities.
【請求項3】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn: 0.1〜 3.0%、Co、Crお
よびTiのうち少なくとも1種:0.01〜 2.0%を含有
し、かつ上記Ni/Alの重量百分率の比率が 3〜10の
範囲、および酸素含有量が 50ppm以下であり、残部がC
uおよび不可避的不純物からなる合金材料を連続鋳造し
て素材板を得、この素材板を50%以上の加工率で冷間圧
延する工程、冷延材を 750〜 950℃の温度で10〜 600秒
間溶体化処理する工程、溶体化処理材を30〜90%の加工
率で冷間圧延する工程、および冷延材を 300〜 600℃の
温度で 5〜 360分間時効処理する工程からなることを特
徴とするコネクタ用銅基合金の製造方法。
3. In weight%, Ni: 5-15%, A
l: 0.5 to 2.0%, Sn: 0.1 to 3.0%, at least one of Co, Cr and Ti: 0.01 to 2.0%, and the Ni / Al weight percentage ratio is in the range of 3 to 10, And the oxygen content is 50 ppm or less, and the balance is C
A process of continuously casting an alloy material consisting of u and unavoidable impurities to obtain a raw material plate, and cold rolling the raw material plate at a processing rate of 50% or more. The cold rolled material is 10 to 600 at a temperature of 750 to 950 ° C. Solution treatment for seconds, cold rolling the solution treated material at a working rate of 30 to 90%, and aging the cold rolled material at a temperature of 300 to 600 ° C for 5 to 360 minutes. A method for producing a copper-based alloy for a connector.
【請求項4】 重量%において、Ni: 5〜15%、A
l: 0.5〜 2.0%、Sn: 0.1〜 3.0%、B: 0.005〜
0.1%、Co、CrおよびTiのうち少なくとも1種:
0.01〜 2.0%を含有し、かつ上記Ni/Alの重量百分
率の比率が 3〜10の範囲、および酸素含有量が 50ppm以
下であり、残部がCuおよび不可避的不純物からなる合
金材料を連続鋳造して素材板を得、この素材板を50%以
上の加工率で冷間圧延する工程、冷延材を 750〜 950℃
の温度で10〜 600秒間溶体化処理する工程、溶体化処理
材を30〜90%の加工率で冷間圧延する工程、および冷延
材を 300〜 600℃の温度で 5〜 360分間時効処理する工
程からなることを特徴とするコネクタ用銅基合金の製造
方法。
4. In weight%, Ni: 5-15%, A
1: 0.5 to 2.0%, Sn: 0.1 to 3.0%, B: 0.005 to
0.1%, at least one of Co, Cr and Ti:
An alloy material containing 0.01 to 2.0% and having a Ni / Al weight percentage ratio in the range of 3 to 10 and an oxygen content of 50 ppm or less and the balance being Cu and inevitable impurities is continuously cast. To obtain a material plate, cold rolling this material plate at a processing rate of 50% or more, cold-rolled material at 750 to 950 ℃
Solution treatment at 10 to 600 seconds, cold rolling the solution treated material at a processing rate of 30 to 90%, and cold rolling material at 300 to 600 ℃ for 5 to 360 minutes A method of manufacturing a copper-based alloy for a connector, comprising:
JP4146380A 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same Expired - Fee Related JP2594250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146380A JP2594250B2 (en) 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146380A JP2594250B2 (en) 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05311298A true JPH05311298A (en) 1993-11-22
JP2594250B2 JP2594250B2 (en) 1997-03-26

Family

ID=15406404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146380A Expired - Fee Related JP2594250B2 (en) 1992-05-13 1992-05-13 Copper base alloy for connector and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2594250B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228743A (en) * 2003-06-20 2006-08-31 Alps Electric Co Ltd Connecting device
JP2012522138A (en) * 2009-03-31 2012-09-20 ケステック イノベーションズ エルエルシー High strength copper alloy without beryllium
CN109429497A (en) * 2017-06-22 2019-03-05 日本精线株式会社 Spring copper alloy superfine wire and its manufacturing method
CN112739838A (en) * 2018-09-27 2021-04-30 同和金属技术有限公司 Cu-Ni-Al based copper alloy sheet material, method for producing same, and conductive spring member
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254616A (en) * 1975-10-31 1977-05-04 Ishikawajima Harima Heavy Ind Co Ltd Reddish yellow coppr bae alloy of high trength, and high hardness
JPS64240A (en) * 1987-06-23 1989-01-05 Furukawa Electric Co Ltd:The High tensile high electroconductive copper alloy
JPS6452035A (en) * 1987-08-24 1989-02-28 Dowa Mining Co Copper-base alloy for connector
JPH01177328A (en) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk High strength copper-based alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254616A (en) * 1975-10-31 1977-05-04 Ishikawajima Harima Heavy Ind Co Ltd Reddish yellow coppr bae alloy of high trength, and high hardness
JPS64240A (en) * 1987-06-23 1989-01-05 Furukawa Electric Co Ltd:The High tensile high electroconductive copper alloy
JPS6452035A (en) * 1987-08-24 1989-02-28 Dowa Mining Co Copper-base alloy for connector
JPH01177328A (en) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk High strength copper-based alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228743A (en) * 2003-06-20 2006-08-31 Alps Electric Co Ltd Connecting device
JP2012522138A (en) * 2009-03-31 2012-09-20 ケステック イノベーションズ エルエルシー High strength copper alloy without beryllium
CN109429497A (en) * 2017-06-22 2019-03-05 日本精线株式会社 Spring copper alloy superfine wire and its manufacturing method
TWI746855B (en) * 2017-06-22 2021-11-21 日商日本精線股份有限公司 Copper alloy ultra-fine wire for spring and manufacturing method thereof
CN112739838A (en) * 2018-09-27 2021-04-30 同和金属技术有限公司 Cu-Ni-Al based copper alloy sheet material, method for producing same, and conductive spring member
CN112739838B (en) * 2018-09-27 2022-08-02 同和金属技术有限公司 Cu-Ni-Al based copper alloy sheet material, method for producing same, and conductive spring member
CN115491540A (en) * 2022-08-03 2022-12-20 上海万生合金材料有限公司 High-reliability copper alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP2594250B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JP4441669B2 (en) Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
JPH0841612A (en) Copper alloy and its preparation
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US6136104A (en) Copper alloy for terminals and connectors and method for making same
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
US20030196736A1 (en) Copper alloy with excellent stress relaxation resistance property and production method therefor
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH10219372A (en) Copper alloy for electrical and electronic parts, and is production
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP3729733B2 (en) Copper alloy plate for lead frame
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2743342B2 (en) Copper base alloy for connector and method of manufacturing the same
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP2594249B2 (en) Copper base alloy for connector and method of manufacturing the same
JPH0355532B2 (en)
WO2023167230A1 (en) Copper alloy material and method for manufacturing copper alloy material
JPS63105941A (en) High strength conductive copper alloy and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees