JP2008255382A - Copper alloy tube - Google Patents

Copper alloy tube Download PDF

Info

Publication number
JP2008255382A
JP2008255382A JP2007095769A JP2007095769A JP2008255382A JP 2008255382 A JP2008255382 A JP 2008255382A JP 2007095769 A JP2007095769 A JP 2007095769A JP 2007095769 A JP2007095769 A JP 2007095769A JP 2008255382 A JP2008255382 A JP 2008255382A
Authority
JP
Japan
Prior art keywords
tube
copper alloy
mass
tensile strength
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095769A
Other languages
Japanese (ja)
Other versions
JP5078410B2 (en
Inventor
Masahito Watanabe
雅人 渡辺
Takashi Shirai
崇 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2007095769A priority Critical patent/JP5078410B2/en
Publication of JP2008255382A publication Critical patent/JP2008255382A/en
Application granted granted Critical
Publication of JP5078410B2 publication Critical patent/JP5078410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy tube having high tensile strength and 0.2% proof stress and having superiority over strength, and useful as a high strength heat exchanger whose hair pin bending workability and expandability are improved. <P>SOLUTION: The copper alloy tube has a composition comprising, by mass, 0.03 to 0.15% Co, 0.004 to 0.08% P, ≤0.005% S, ≤0.005% O and ≤0.0002% H, and the balance Cu with inevitable impurities, and has a tensile strength of 250 to 300 N/mm<SP>2</SP>, a 0.2% proof stress of 70 to 120 N/mm<SP>2</SP>, an elongation of ≥40% and a mean crystal grain size of 10 to 35 μm. Further, provided that the tensile strength of the tube is defined as σ and its 0.2% proof stress is defined as σ0.2, σ0.2/σ=0.25 to 0.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐圧破壊強度及び加工性が優れていて熱交換器用として有用な銅合金管に関する。   The present invention relates to a copper alloy tube that has excellent pressure fracture strength and workability and is useful as a heat exchanger.

例えば、エアコンの熱交換器は、ヘアピン状に曲げ加工したU字形銅管(以下、銅管という場合は銅合金管も含む)をアルミニウムフィンの貫通孔に通し、前記銅管を治具により拡管することにより銅管とアルミニウムフィンとを密着させ、更に、銅管の開放端を拡管し、この拡管部にU字形に曲げ加工した銅管(リターンベンド)を挿入し、りん銅ろう等のろう材により銅管(リターンベンド)をヘアピン状銅管の拡管部にろう付けすることにより、複数個のヘアピン状銅管がリターンベンド銅管により連結された熱交換器が製造されている。   For example, a heat exchanger of an air conditioner passes a U-shaped copper tube bent into a hairpin shape (hereinafter referred to as a copper tube also includes a copper alloy tube) through an aluminum fin through-hole and expands the copper tube with a jig. Then, the copper tube and aluminum fin are brought into close contact with each other, and the open end of the copper tube is expanded, and a copper tube (return bend) bent into a U-shape is inserted into the expanded portion, and a solder such as phosphor copper braze A heat exchanger in which a plurality of hairpin-shaped copper tubes are connected by a return bend copper tube is manufactured by brazing the copper tube (return bend) to the expanded portion of the hairpin-shaped copper tube with a material.

このため、熱交換器に使用される銅管には、熱伝導率、曲げ加工性及びろう付け性が良好であることが要求される。従って、これらの特性が良好であり、適切な強度を有するりん脱酸銅が広く使用されている。   For this reason, it is requested | required that the copper tube used for a heat exchanger should have favorable heat conductivity, bending workability, and brazing property. Therefore, phosphorus deoxidized copper having good characteristics and appropriate strength is widely used.

エアコン等の熱交換器に使用する冷媒には、HCFC(ハイドロクロロフルオロカーボン)系フロンが広く使用されてきたが、HCFCはオゾン破壊係数が大きいことから、地球環境保護の点より、その値が小さいHFC(ハイドロフルオロカーボン)系フロンが使用されるようになってきた。また、給湯器、自動車用空調機器、自動販売機等に使用する熱交換器等に自然冷媒であるCOが用いられるようになってきた。熱交換器において、これらの冷媒が使用される圧力(熱交換器の伝熱管内を流れる圧力)は凝縮器(COにおいてはガスクーラー)において最大となり、例えば、HCFC系フロンのR22では1.8MPa、HFC系フロンのR410Aでは3MPa、またCO冷媒では7乃至10MPa(超臨界状態)程度であり、新たに採用された冷媒の運転圧力は従来冷媒R22の1.6乃至6倍程度に増大している。 HCFC (hydrochlorofluorocarbon) fluorocarbons have been widely used as refrigerants for heat exchangers such as air conditioners. However, HCFC has a low ozone depletion coefficient, so its value is small in terms of protecting the global environment. HFC (hydrofluorocarbon) -based fluorocarbons have been used. Further, CO 2 that is a natural refrigerant has come to be used in heat exchangers used in water heaters, automotive air conditioners, vending machines, and the like. In the heat exchanger, the pressure at which these refrigerants are used (pressure flowing through the heat transfer tubes of the heat exchanger) is maximum in the condenser (gas cooler in CO 2 ). 8 MPa, the R410A of HFC-based fluorocarbons 3 MPa, also in CO 2 refrigerant is about 7 to 10 MPa (supercritical state), the operating pressure of the newly adopted refrigerant is increased to 1.6 to 6 times that of the conventional refrigerant R22 is doing.

伝熱管の破壊圧力をP、伝熱管の外径をD、伝熱管の引張強さをσ、伝熱管の肉厚をt(内面溝付管の場合は底肉厚)とすると、これらの間には、P=2×σ×t/(D−0.8t)の関係がある。前記式を肉厚tに関して整理すると、t=(D×P)/(2×σ+0.8P)となり、伝熱管の引張強さが大きいほど肉厚を薄くできることがわかる。実際に、伝熱管を選定する場合、前記のPに更に安全率S(通常2.5乃至5程度)をかけた圧力に対して算出される引張強さ及び肉厚の伝熱管を用いる。   When the burst pressure of the heat transfer tube is P, the outer diameter of the heat transfer tube is D, the tensile strength of the heat transfer tube is σ, and the wall thickness of the heat transfer tube is t (in the case of an internally grooved tube), Has a relationship of P = 2 × σ × t / (D−0.8t). When the above formula is arranged with respect to the wall thickness t, t = (D × P) / (2 × σ + 0.8P), and it can be seen that the wall thickness can be reduced as the tensile strength of the heat transfer tube is increased. Actually, when selecting a heat transfer tube, a heat transfer tube having a tensile strength and a thickness calculated with respect to the pressure obtained by multiplying the above P by a safety factor S (usually about 2.5 to 5) is used.

りん脱酸銅製伝熱管の場合、引張強さが小さいことから、冷媒の運転圧力の増大に対応するには管の肉厚を厚くする必要がある。また、熱交換器の組立の際、ろう付け部は800℃以上の温度に数秒乃至数十秒間加熱されるため、ろう付け部及びその近傍ではその他の部分に比べて結晶粒が粗大化し、軟化により強度が低下した状態となってしまうことから、肉厚をより厚くする必要がある。このように、伝熱管としてりん脱酸銅を用いると、熱交換器の質量増大、及び価格増大を招くことから、引張強さが大きく、加工性に優れ、且つ良好な熱伝導率を有する伝熱管が強く要求されるようになってきた。   In the case of a phosphorous deoxidized copper heat transfer tube, since the tensile strength is small, it is necessary to increase the thickness of the tube in order to cope with an increase in the operating pressure of the refrigerant. Also, when assembling the heat exchanger, the brazed part is heated to a temperature of 800 ° C. or higher for several seconds to several tens of seconds, so that the crystal grains are coarsened and softened in the brazed part and its vicinity in comparison with other parts. Therefore, it is necessary to make the wall thickness thicker. Thus, when phosphorous deoxidized copper is used as the heat transfer tube, the mass of the heat exchanger is increased and the price is increased. Therefore, the tensile strength is large, the workability is excellent, and the heat conductivity is excellent. There has been a strong demand for heat tubes.

このような要求に応えるべく、0.2%耐力と疲れ強さが優れた銅合金管として、例えば、Co:0.02乃至0.2質量%、P:0.01乃至0.05質量%、C:1乃至20ppmを含有し、残部がCu及び不可避的不純物からなり、不純物の酸素が50ppm以下である熱交換器用継目無銅合金管(特許文献1)が提案されている。また、Co:0.03乃至0.15質量%、P:0.02乃至0.05質量%をCo/P:4以下となるように含有し、残部がCu及び不可避的不純物からなり、不可避不純物として含まれる酸素含有量を50ppm以下に規制した組成を有し、更に平均結晶粒径が20μm以下の再結晶粒を有し、この再結晶粒内に平均粒径が1乃至30nmの微細な析出物が分散した銅合金管(特許文献2)が提案されている。   In order to meet such demands, for example, Co: 0.02 to 0.2 mass%, P: 0.01 to 0.05 mass%, as a copper alloy tube having excellent 0.2% proof stress and fatigue strength , C: 1 to 20 ppm, the remainder being made of Cu and inevitable impurities, and oxygen of impurities is 50 ppm or less, and a seamless copper alloy tube for a heat exchanger (Patent Document 1) has been proposed. Further, Co: 0.03 to 0.15 mass%, P: 0.02 to 0.05 mass% is contained so as to be Co / P: 4 or less, and the balance is made of Cu and inevitable impurities, and is unavoidable. It has a composition in which the oxygen content contained as impurities is regulated to 50 ppm or less, and further has recrystallized grains having an average crystal grain size of 20 μm or less, and the recrystallized grains have a fine average grain size of 1 to 30 nm. A copper alloy tube (Patent Document 2) in which precipitates are dispersed has been proposed.

特開2000−1728JP2000-1728 特開2001−316742JP 2001-316742 A

しかしながら、特許文献1の銅合金は、Coの燐化物による析出強化によって、0.2%耐力及び疲労強度が優れているが、強度を重視したため、0.2%耐力値が高く、熱交換器の組み立て加工時に、ヘアピン管に曲げるときに、割れが発生しやすく、歩留が低下する原因となっていた。また、0.2%耐力値が高いため、曲げ半径を大きくする必要があり、熱交換器が大型になってしまうという不都合もある。   However, the copper alloy of Patent Document 1 is excellent in 0.2% proof stress and fatigue strength due to precipitation strengthening by Co phosphide, but since the emphasis is on strength, the 0.2% proof stress value is high, and the heat exchanger At the time of assembling, when it was bent into a hairpin tube, cracking was likely to occur, resulting in a decrease in yield. Further, since the 0.2% proof stress value is high, it is necessary to increase the bending radius, and there is a disadvantage that the heat exchanger becomes large.

一方、0.2%耐力が高いため、管とアルミニウムフィンとを密着させる拡管作業においても、拡管力が異常に高くなったり、拡管のマンドレルバーが折れるなどのトラブルが発生する虞がある。   On the other hand, since the 0.2% proof stress is high, there is a possibility that troubles such as abnormally high tube expansion force or broken mandrel bar of tube expansion may occur in the tube expansion work for bringing the tube and the aluminum fin into close contact.

また、特許文献2の銅合金は特許文献1と同じく、Coの燐化物による微細な析出物による析出強化によって疲労強度が優れたものとなるが、実施例をみると、結晶粒径が10μm以下と極めて小さいため、当然引張強さ及び0.2%耐力が大きくなり、伸びが小さく、特許文献1の場合と同様に、ヘアピン管に曲げる際に割れが発生する虞があり、また、拡管作業時に設備的な不具合が生じるなどの問題点があった。   In addition, the copper alloy of Patent Document 2 is excellent in fatigue strength by precipitation strengthening by fine precipitates of Co phosphide, as in Patent Document 1, but in the examples, the crystal grain size is 10 μm or less. Naturally, the tensile strength and 0.2% proof stress are large, the elongation is small, and there is a risk of cracking when bending into a hairpin tube, as in the case of Patent Document 1. There were problems such as occasional equipment failures.

本発明はかかる問題点に鑑みてなされたものであって、引張強さ及び0.2%耐力が高く、強度的に優位な銅合金管で、かつヘアピン曲げ加工性及び拡管性を改善した高強度の熱交換器用として有用な銅合金管を提供することを目的とする。   The present invention has been made in view of such a problem, and is a copper alloy tube having high tensile strength and 0.2% proof stress and superior in strength, and has improved hairpin bending workability and tube expandability. An object of the present invention is to provide a copper alloy tube useful for a high-strength heat exchanger.

本発明に係る銅合金管は、Co:0.03乃至0.15質量%、P:0.004乃至0.08質量%、S:0.005質量%以下、O:0.005質量%以下、及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、引張強さが250乃至300N/mm、0.2%耐力が70乃至120N/mm、伸びが40%以上、平均結晶粒径が10乃至35μmであることを特徴とする。 The copper alloy tube according to the present invention is Co: 0.03 to 0.15 mass%, P: 0.004 to 0.08 mass%, S: 0.005 mass% or less, O: 0.005 mass% or less. And H: a copper alloy tube containing 0.0002% by mass or less, with the balance being Cu and inevitable impurities, the tensile strength is 250 to 300 N / mm 2 , and the 0.2% proof stress is 70 to 120 N / mm 2 , elongation is 40% or more, and average crystal grain size is 10 to 35 μm.

本発明においては、管の引張強さをσ、0.2%耐力をσ0.2としたとき、σ0.2/σ=0.25乃至0.5であることが好ましい。   In the present invention, when the tensile strength of the pipe is σ and the 0.2% proof stress is σ0.2, σ0.2 / σ = 0.25 to 0.5 is preferable.

また、本発明の熱交換器用銅合金管は、更に、Zn:0.01乃至1.0質量%を含有することが好ましい。   Moreover, it is preferable that the copper alloy tube for heat exchangers of this invention contains Zn: 0.01 thru | or 1.0 mass% further.

更に、前記銅合金は例えば内面溝付管である。   Further, the copper alloy is, for example, an internally grooved tube.

以下、本発明について詳細に説明する。本発明者等が種々実験研究した結果、Co含有量、P含有量、S含有量、引張強さなどを適切に規定することにより、本発明の課題を解決できる銅合金管を得ることができることを見出した。   Hereinafter, the present invention will be described in detail. As a result of various experimental studies by the present inventors, a copper alloy tube capable of solving the problems of the present invention can be obtained by appropriately defining the Co content, P content, S content, tensile strength, etc. I found.

次に、本発明の熱交換器用として有用な銅合金管の組成について、その成分添加理由及び組成限定理由について説明する。   Next, regarding the composition of the copper alloy tube useful for the heat exchanger of the present invention, the reason for adding the component and the reason for limiting the composition will be described.

「Co:0.03乃至0.15質量%」
Coは本発明の銅合金管において、Pとの化合物により析出物を形成して、引張強さを向上させる成分である。Coの含有量が0.15質量%を超えると、強度が高くなりすぎて、伸びが低下してしまい、加工性に悪影響を及ぼすことになる。また、本発明の銅合金のCo含有量が0.03質量%未満であると、所望の強度を得ることができない。従って、Coの含有量を0.03乃至0.15質量%とすることが必要である。
“Co: 0.03 to 0.15 mass%”
Co is a component that improves the tensile strength by forming precipitates with a compound with P in the copper alloy tube of the present invention. If the Co content exceeds 0.15% by mass, the strength becomes too high and the elongation decreases, which adversely affects workability. Moreover, desired intensity | strength cannot be obtained as Co content of the copper alloy of this invention is less than 0.03 mass%. Therefore, the Co content needs to be 0.03 to 0.15 mass%.

「P:0.004乃至0.08質量%」
Pは本発明の合金中において、前述のように、Coとの化合物により析出物CoPを形成して、引張強さを向上させる成分である。本発明の銅合金へのP含有量が0.08質量%を超えると、導電率が低下したり、熱間加工性及び冷間加工性が阻害されることになる。一方、P含有量が0.004質量%未満であると、CoP析出物による所定の強度を得ることができず、また脱酸が不十分となり、酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。従って、Pの含有量を0.004乃至0.08質量%にすることが必要である。
“P: 0.004 to 0.08 mass%”
In the alloy of the present invention, P is a component that improves the tensile strength by forming a precipitate CoP with a compound with Co as described above. When the P content in the copper alloy of the present invention exceeds 0.08% by mass, the electrical conductivity is lowered, and hot workability and cold workability are inhibited. On the other hand, when the P content is less than 0.004% by mass, the predetermined strength due to the CoP precipitate cannot be obtained, and deoxidation becomes insufficient, and the oxide is caught in the ingot. While soundness falls, the bending property of the manufactured pipe | tube becomes easy to fall. Therefore, it is necessary to make the P content 0.004 to 0.08 mass%.

「S:0.005質量%以下」
Sは本発明の合金中において、Cuと化合物を形成して母相中に存在する。Sの含有量が増えると、鋳塊時の鋳塊割れ及び熱間押出割れが増加する。また、熱間押出割れが発生しなくても、押出材を冷間圧延し、抽伸すると、材料内部のCu−S化合物は管の軸方向に伸張し、Cu−S化合物界面で割れが発生しやすく、製品加工中や製品において表面疵、割れ等になり、製品の歩留りを低下させる。また、Cu−S化合物界面で割れが発生しない場合でも、本発明の合金管に曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。このような問題を改善するために、本発明の銅合金管は、S含有量を0.005%以下、望ましくは0.003%以下、更に望ましくは0.0015%以下にする必要がある。Sは、銅地金、スクラップなどの原料、スクラップに付着する油、溶解鋳造雰囲気(溶湯を被覆する木炭/フラックス、溶湯と接触する雰囲気中のSOxガス、炉材等)より比較的簡単に溶湯中に取り込まれるため、S含有量を0.005質量%以下とするには、低品位のCu地金及びスクラップの使用量低減、溶解雰囲気のSOxガス低減、適正な炉材の選定、Mg、Ca等Sと親和性の強い元素を溶湯に微量添加する等の対策が有効である。
“S: 0.005 mass% or less”
S is present in the matrix by forming a compound with Cu in the alloy of the present invention. When the S content increases, ingot cracking and hot extrusion cracking during ingot increase. Even if hot extrusion cracking does not occur, when the extruded material is cold-rolled and drawn, the Cu-S compound inside the material stretches in the axial direction of the tube and cracks occur at the Cu-S compound interface. It easily causes surface flaws and cracks during product processing and in the product, which reduces the product yield. Even when cracks do not occur at the Cu-S compound interface, when bending the alloy pipe of the present invention, it becomes a starting point of crack generation, and the frequency of occurrence of cracks at the bent portion increases. In order to improve such problems, the copper alloy tube of the present invention needs to have an S content of 0.005% or less, desirably 0.003% or less, and more desirably 0.0015% or less. S is relatively simpler than copper metal, raw materials such as scrap, oil adhering to scrap, melting casting atmosphere (charcoal / flux covering molten metal, SOx gas in furnace atmosphere, furnace material, etc.) In order to reduce the S content to 0.005% by mass or less because of being incorporated into the steel, the amount of low-grade Cu ingots and scrap used is reduced, the SOx gas in the melting atmosphere is reduced, the selection of appropriate furnace materials, Mg, Measures such as adding a trace amount of an element having strong affinity for S, such as Ca, to the melt are effective.

なお、S以外の不純物元素As、Bi、Sb、Pb、Se、Teも、Sと同様に、鋳塊、熱間押出材、及び冷間加工材の健全性を低下させ、また管の曲げ加工性を損なうことから、これらの元素の合計含有量は0.0015%以下、望ましくは0.0010%以下、更に望ましくは0.0005%以下とすることが好ましい。   As with S, impurity elements As, Bi, Sb, Pb, Se, and Te other than S also reduce the soundness of ingots, hot extruded materials, and cold worked materials, and bend pipes. Therefore, the total content of these elements is preferably 0.0015% or less, desirably 0.0010% or less, and more desirably 0.0005% or less.

「O:0.005質量%以下」
本発明の銅合金管において、Oの含有量が0.005質量%を超えると、Cu及びCoの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。このため、Oの含有量を0.005質量%とする必要がある。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015%以下とすることが更に望ましい。
“O: 0.005 mass% or less”
In the copper alloy pipe of the present invention, when the O content exceeds 0.005 mass%, Cu and Co oxides are caught in the ingot, and the soundness of the ingot is lowered, and the manufactured pipe Bending workability tends to decrease. For this reason, it is necessary to make content of O into 0.005 mass%. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% or less.

「H:0.0002質量%以下」
溶解鋳造時に溶湯に取り込まれる水素が多くなると、ピンホール、粒界に濃化等の状態で鋳塊中に存在し、熱間押出時の割れを発生させる。また、押出後も焼鈍時粒界にHの膨れが発生しやすくなり、製品歩留が低下する。このため、本発明の銅合金管においてはHの含有量を0.0002質量%以下とすることが必要である。製品歩留りをより向上させるにはHの含有量を0.0001質量%以下とすることが望ましい。
“H: 0.0002 mass% or less”
When more hydrogen is taken into the molten metal during melt casting, it is present in the ingot in a state of pinhole and grain boundary enrichment, and cracks are generated during hot extrusion. Further, even after the extrusion, blistering of H is likely to occur at the grain boundaries during annealing, and the product yield decreases. For this reason, in the copper alloy pipe | tube of this invention, it is necessary to make content of H 0.0002 mass% or less. In order to further improve the product yield, the H content is desirably 0.0001% by mass or less.

なお、Hの含有量を0.0002質量%(2ppm)以下とするには、溶解鋳造時の原料の乾燥、溶湯被覆木炭の赤熱、溶湯と接触する雰囲気の露点の低下、りん添加前の溶湯を酸化気味にする等の対策が有効である。   In order to make the H content 0.0002% by mass (2 ppm) or less, the raw material is dried at the time of melting and casting, the red heat of the molten metal is reduced, the dew point of the atmosphere in contact with the molten metal is reduced, and the molten metal before phosphorus is added. It is effective to take measures such as oxidizing

次に、本発明の銅合金管の特性について説明する。   Next, the characteristics of the copper alloy tube of the present invention will be described.

「引張強さ:250乃至300N/mm
引張強さは、管の強度を示す重要な指標であり、また前述したように管の引張強さは破壊強度にも関係して、引張強度が高いほど管の厚さを薄くすることができる。引張強さが250N/mm未満であると、エアコン等の熱交換器に組み込んだときの強度が不十分であり、ろう付け後の強度を十分に維持できない。また、引張強さが300N/mmを超えると、ヘアピン管の曲げ加工での割れ及び拡管加工時に拡管力が高くなりすぎて、拡管できなかったり、拡管のビュレットが固定されているバーが折れる等の不具合が発生する虞がある。従って、引張強さは250乃至300N/mmにすることが必要である。ここでいう引張強さは、焼鈍して軟質材とした本発明の組成の銅合金管の管軸方向の引張強さである。
“Tensile strength: 250 to 300 N / mm 2
Tensile strength is an important indicator of tube strength. As described above, the tensile strength of a tube is related to the fracture strength, and the higher the tensile strength, the thinner the tube. . When the tensile strength is less than 250 N / mm 2 , the strength when incorporated in a heat exchanger such as an air conditioner is insufficient, and the strength after brazing cannot be sufficiently maintained. If the tensile strength exceeds 300 N / mm 2 , the crack in the bending process of the hairpin tube and the tube expansion force become too high during the tube expansion process, so that the tube cannot be expanded or the bar to which the expanded burette is fixed breaks. There is a risk of problems such as these. Therefore, the tensile strength needs to be 250 to 300 N / mm 2 . The tensile strength here is the tensile strength in the tube axis direction of the copper alloy tube having the composition of the present invention that is annealed to be a soft material.

「伸び:40%以上」
伸びは管の加工性を示している。伸びが40%未満であると、ヘアピン曲げ加工時に管が十分に伸びずに、曲げ部に割れが発生したり、機内配管の加工時に不都合が生じる。従って、伸びは40%以上であることが必要である。
“Elongation: 40% or more”
Elongation indicates the workability of the tube. If the elongation is less than 40%, the tube does not extend sufficiently at the time of hairpin bending, cracking occurs in the bent portion, and inconvenience occurs at the time of processing the piping in the machine. Accordingly, the elongation needs to be 40% or more.

「結晶粒度:平均結晶粒径が10乃至35μm」
結晶粒度は、素材の強度と加工性に重要な役割を果たしている。一般に結晶粒度が小さければ、強度は高いが加工性が低下し、結晶粒度が大きいと、強度が低くなり、加工性は向上する。結晶粒度が35μmを超えると、強度が低下して、エアコン等の熱交換器に組み込んだときの耐圧が不十分となり、またろう付け後の強度を十分に維持できない。また結晶粒度が10μmより低いと、硬すぎてヘアピン管の曲げ加工において割れが発生したり、拡管加工時に拡管力が高くなりすぎて拡管ができなかったり、拡管のビュレットが固定されているバーが折れるなどの不具合が発生する可能性が高くなる。
“Crystal grain size: average crystal grain size is 10 to 35 μm”
The grain size plays an important role in the strength and workability of the material. In general, if the crystal grain size is small, the strength is high but the workability is lowered, and if the crystal grain size is large, the strength is lowered and the workability is improved. When the crystal grain size exceeds 35 μm, the strength decreases, the pressure resistance when incorporated in a heat exchanger such as an air conditioner becomes insufficient, and the strength after brazing cannot be sufficiently maintained. On the other hand, if the crystal grain size is lower than 10 μm, it is too hard to cause cracks in the bending process of the hairpin tube, the tube expansion force becomes too high at the time of tube expansion processing, and the tube cannot be expanded, or there is a bar where the burette of the tube expansion is fixed. There is a high possibility that problems such as breaking will occur.

平均結晶粒径は、銅合金管の軸方向に平行の断面について、JISH0501に定めらた切断法により、肉厚方向の平均結晶粒径を測定し、これを管軸方向に任意の10箇所で測定してそれらの平均を平均結晶粒径とした。   For the average crystal grain size, the average crystal grain size in the thickness direction was measured for the cross section parallel to the axial direction of the copper alloy tube by the cutting method defined in JISH0501, and this was measured at any 10 locations in the pipe axis direction. The average of these was measured as the average grain size.

「管の引張強さをσ、0.2%耐力をσ0.2としたとき、σ0.2/σ=0.25乃至0.5」
管の引張強さと0.2%耐力の比率は管の加工性と強度をみる指標である。σ0.2/σが0.5を超えると、管が硬くなりすぎてヘアピン管の曲げ加工での割れや拡管加工時に不具合が発生する。σ0.2/σが0.25を下回ると、エアコン等の熱交換器に組み込んだときの耐圧が不十分となり、またろう付け後の強度を十分に維持できない。よって、σ0.2/σは0.25乃至0.5の値にすることが必要である。
“Σ 0.2 /σ=0.25 to 0.5, where σ is the tensile strength of the tube and σ 0.2 is the 0.2% proof stress”
The ratio between the tensile strength of the pipe and the 0.2% proof stress is an indicator of the workability and strength of the pipe. If σ 0.2 / σ exceeds 0.5, the tube becomes too hard, and problems occur during cracking and tube expansion processing in bending of the hairpin tube. When σ 0.2 / σ is less than 0.25, the pressure resistance when incorporated in a heat exchanger such as an air conditioner becomes insufficient, and the strength after brazing cannot be sufficiently maintained. Therefore, σ 0.2 / σ needs to be a value of 0.25 to 0.5.

「Zn:0.01乃至1.0質量%」
Znを添加することにより、銅合金管の熱伝導率を大きく低下させることなく、強度、耐熱性及び疲れ強さを向上させることができる。また、Znの添加により、冷間圧延、抽伸及び転造等に用いる工具の磨耗を低減させることができ、抽伸プラグ、溝付プラグ等の寿命を延命させる効果があり、生産コストの低減に寄与する。また、熱交換器の組み立て工程においても、ヘアピン曲げ時のマンドレルやアルミフィンへ伝熱管を密着させるときの拡管加工時の拡管ビュレットの磨耗も低減させることができる。
“Zn: 0.01 to 1.0 mass%”
By adding Zn, the strength, heat resistance and fatigue strength can be improved without greatly reducing the thermal conductivity of the copper alloy tube. In addition, the addition of Zn can reduce the wear of tools used for cold rolling, drawing, rolling, etc., and has the effect of extending the life of drawing plugs, grooved plugs, etc., contributing to the reduction of production costs To do. In addition, in the heat exchanger assembly process, wear of the expanded burette at the time of expanding the tube when the heat transfer tube is brought into close contact with the mandrel or aluminum fin during bending of the hairpin can also be reduced.

Znの含有量が1.0質量%を超えると、応力腐食割れ感受性が高くなる。また、Znの含有量が0.01質量%未満であると上述の効果が十分でなくなる。従って、Znの含有量を0.01乃至1.0質量%とする。   When the Zn content exceeds 1.0% by mass, the stress corrosion cracking sensitivity becomes high. Further, when the Zn content is less than 0.01% by mass, the above-described effects are not sufficient. Therefore, the Zn content is set to 0.01 to 1.0% by mass.

「銅合金管が内面溝付管である。」
本発明の銅合金管は、りん脱酸銅管に比べて引張強さを大きく、且つ結晶粒径を小さくすることができるので転造加工による内面溝付管の製造に好適である。特に、引張強さが大きいことから、転造加工時に引抜き方向に伸びにくいので溝付プラグの溝部への合金管の肉の充填が円滑であり、良好なフィン形状を有する内面溝付管を高速で加工することが可能になる。銅合金管の引張強さが不足していると、銅合金管が転造加工時に引き抜き方向に伸びてしまい、溝付プラグの溝が銅合金管の内面を押圧しても、銅合金管の内面部分が溝付プラグの溝内に十分に入り込まず、溝加工しにくく、加工速度を遅くせざるを得ない。
“The copper alloy tube is an internally grooved tube.”
The copper alloy tube of the present invention is suitable for the production of an internally grooved tube by rolling because it has a higher tensile strength and a smaller crystal grain size than a phosphorous deoxidized copper tube. In particular, because the tensile strength is large, it is difficult to stretch in the drawing direction during rolling, so the groove of the grooved plug can be smoothly filled with the alloy tube meat, and the inner surface grooved tube with a good fin shape can be filled at high speed. It becomes possible to process with. If the tensile strength of the copper alloy tube is insufficient, the copper alloy tube will stretch in the drawing direction during rolling, and even if the groove of the grooved plug presses the inner surface of the copper alloy tube, Since the inner surface portion does not sufficiently enter the groove of the grooved plug, it is difficult to process the groove, and the processing speed must be reduced.

次に、本発明の銅合金管の製造方法について、平滑管及び内面溝付管の場合を例として以下に説明する。
(a)溶解鋳造
電気銅を雰囲気中で溶解し、銅が溶解した後、Coを添加し、更にCu−15質量%P中間合金の添加によりP成分を調整する。所定成分に調整後、所定寸法のビレットに鋳造する。
(b)加熱
ビレットを650乃至850℃に加熱する。
(c)熱間押出
加熱ビレットに穿孔加工を行い、650乃至850℃で熱間押出する。熱間押出の加工率([穿孔されたビレットの断面積−熱間押出後の素管の断面積]/[穿孔されたビレットの断面積]×100%)は80%以上とすることが望ましく、90%以上とすることが更に望ましい。
(d)急冷処理
本件発明の銅合金管に所定の特性を発揮させるには、押出後Coを固溶させること及び再結晶による結晶粒の粗大化を防止することが必要であり、そのために、例えば水冷等の方法により熱間押出材を急冷する。熱間押出後、押出素管の表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。
(e)圧延
押出素管に圧延加工を行なう。圧延加工率は断面減少率で95%以下、望ましくは90%以下とすることにより、製品不良を低減できる。
(f)抽伸加工
圧延素管に抽伸加工を行なって所定の寸法の素管を製造する。通常、抽伸加工は何台かの抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)は40%以下にすることにより、表面欠陥や内部割れを低減できる。
(g)焼鈍
再結晶及びCo−P化合物の析出が発生する条件で抽伸管を焼鈍する。再結晶により伸びが回復して管の加工性が向上し、またCo−P化合物の析出により目的とする引張り強さと耐力を保持させることが可能になる。本発明の銅合金管を製造するには、抽伸管の実体温度:400乃至700℃で、5分乃至120分間程度保持することが望ましい。また、室温から所定温度までの平均昇温速度を5℃/分以上、望ましくは10℃/分以上とすることが望ましい。なお、通常、ローラーハース炉による連続焼鈍が行われるが、高周波誘導加熱炉を用い、高速昇温、短時間加熱、高速冷却、短時間加熱の焼鈍を行ってもよい。以上の工程で、平滑管が製造される。
(h)内面溝付加工
内面溝付管の場合は、更に、焼鈍した平滑管の内面に溝付転造加工を行う。
(i)焼鈍
その後、加工した内面溝付管に必要に応じて焼鈍する。焼鈍条件は前記(g)と同様である。これにより、内面溝付管が加工される。
Next, the method for producing a copper alloy tube of the present invention will be described below by taking the case of a smooth tube and an internally grooved tube as an example.
(A) Melting casting After electrolytic copper is melted in an atmosphere and copper is melted, Co is added, and the P component is adjusted by adding Cu-15 mass% P intermediate alloy. After adjusting to a predetermined component, it is cast into a billet of a predetermined size.
(B) Heating The billet is heated to 650 to 850 ° C.
(C) Hot extrusion A hot billet is perforated and hot extruded at 650 to 850 ° C. The processing rate of hot extrusion ([cross-sectional area of perforated billet−cross-sectional area of base tube after hot extrusion] / [cross-sectional area of perforated billet] × 100%) is desirably 80% or more. , More preferably 90% or more.
(D) Quenching treatment In order for the copper alloy tube of the present invention to exhibit predetermined characteristics, it is necessary to dissolve Co after extrusion and to prevent coarsening of crystal grains due to recrystallization. For example, the hot extruded material is rapidly cooled by a method such as water cooling. After hot extrusion, cooling is performed so that the cooling rate until the surface temperature of the extruded tube reaches 300 ° C. is 10 ° C./second or more, preferably 15 ° C./second or more, more preferably 20 ° C./second or more. Is preferred.
(E) Rolling The extruded element tube is rolled. By reducing the rolling process rate to 95% or less, preferably 90% or less in terms of cross-sectional reduction, product defects can be reduced.
(F) Drawing process A drawing process is performed on the rolling element pipe to manufacture an element pipe having a predetermined size. Usually, drawing is performed using several drawing machines, but surface defects and internal cracks can be reduced by setting the processing rate (cross-sectional reduction rate) by each drawing machine to 40% or less.
(G) Annealing The drawing tube is annealed under conditions where recrystallization and Co-P compound precipitation occur. Elongation is restored by recrystallization, the workability of the tube is improved, and the desired tensile strength and yield strength can be maintained by precipitation of the Co-P compound. In order to produce the copper alloy tube of the present invention, it is desirable to hold the drawing tube at an actual temperature of 400 to 700 ° C. for about 5 to 120 minutes. The average rate of temperature rise from room temperature to a predetermined temperature is 5 ° C./min or more, preferably 10 ° C./min or more. Normally, continuous annealing with a roller hearth furnace is performed, but high-frequency heating, short-time heating, high-speed cooling, and short-time heating annealing may be performed using a high-frequency induction heating furnace. The smooth tube is manufactured through the above steps.
(H) Internal grooved processing In the case of an internally grooved tube, the grooved rolling process is further performed on the inner surface of the annealed smooth tube.
(I) Annealing Thereafter, the processed inner grooved tube is annealed as necessary. The annealing conditions are the same as in the above (g). Thereby, an internally grooved tube is processed.

次に、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。   Next, examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention.

(第1実施例)
先ず、平滑管の実施例について説明する。
(First embodiment)
First, an example of a smooth tube will be described.

電気銅を溶解して得た溶湯にCoを添加し、更に必要に応じてZnを添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製し、直径300mmのビレットに鋳造した。   Co is added to the molten metal obtained by melting electrolytic copper, and further Zn is added if necessary, and then a Cu-P master alloy is added to prepare a molten metal having a predetermined composition, and into a billet having a diameter of 300 mm. Casted.

次に、前記ビレットを680乃至800℃に加熱した後、ビレット中心をピアシング加工し、熱間押出により外径100mm、肉厚10mmの押出素管を作製した。この断面減少率は90%以上である。押出後の素管を急冷し、押出直後から水冷までの時間及び水冷後の押出素管の表面温度等より、300℃までの平均冷却速度は20℃/秒以上と見積られた。   Next, after the billet was heated to 680 to 800 ° C., the center of the billet was pierced, and an extruded element tube having an outer diameter of 100 mm and a wall thickness of 10 mm was produced by hot extrusion. This cross-sectional reduction rate is 90% or more. The raw tube after extrusion was rapidly cooled, and the average cooling rate up to 300 ° C. was estimated to be 20 ° C./second or more from the time from immediately after extrusion to water cooling and the surface temperature of the extruded raw tube after water cooling.

次に、押出素管を圧延及び抽伸して、外径9.52mm、肉厚0.80mmの素管を製作した。なお、圧延における断面減少率は90%以下、抽伸における1パスあたりの加工率を40%以下とした。   Next, the extruded element tube was rolled and drawn to produce an element tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm. The cross-sectional reduction rate in rolling was 90% or less, and the processing rate per pass in drawing was 40% or less.

次に、還元性ガス雰囲気にしたローラーハース炉で、前記抽伸管を550乃至600℃(実体温度)に加熱し(平均昇温速度10乃至25℃/分)、その温度で30乃至90分保持した後、室温まで冷却して供試材とした。   Next, in a roller hearth furnace in a reducing gas atmosphere, the drawing tube is heated to 550 to 600 ° C. (substance temperature) (average heating rate of 10 to 25 ° C./min) and held at that temperature for 30 to 90 minutes. Then, it was cooled to room temperature to obtain a test material.

(第2実施例)
次に、内面溝付管の実施例について説明する。溶解から抽伸加工までは、前述の平滑管の場合と同様である。抽伸加工後の平滑管を溝付転造用の素管として、この素管をインダクションヒーターにより中間焼鈍した。
(Second embodiment)
Next, an embodiment of the internally grooved tube will be described. The process from melting to drawing is the same as in the case of the smooth tube described above. The smooth tube after drawing was used as a tube for rolling with grooves, and this tube was subjected to intermediate annealing with an induction heater.

中間焼鈍した溝付転造用素管に溝付転造加工を行い、外径7mm、底肉厚0.23mm、フィン高さ0.16mm、リード角35°、溝数55の内面溝付管を製作した。   Groove-rolling processing is performed on the intermediate annealed grooved rolling element tube, and the inner surface grooved tube has an outer diameter of 7 mm, a bottom wall thickness of 0.23 mm, a fin height of 0.16 mm, a lead angle of 35 °, and a groove number of 55. Was made.

還元性ガス雰囲気にしたローラーハース炉で、内面溝付管を570乃至600℃(実体温度)に加熱し(平均昇温速度10乃至25℃/分)、その温度で60乃至100分保持後室温まで冷却して供試材とした。   In a roller hearth furnace in a reducing gas atmosphere, the internally grooved tube is heated to 570 to 600 ° C. (substance temperature) (average temperature rising rate 10 to 25 ° C./min), held at that temperature for 60 to 100 minutes, and room temperature The sample was cooled to a sample.

(実施例比較例の試験方法等)
曲げ試験は以下のようにして行った。供試材より長さ1000mmの管を10本採取し、第1実施例はピッチ25mm、第2実施例はピッチ20mmでヘアピン曲げ加工を行い、曲げ部の割れの有無を確認した。図1は供試管の曲げピッチを示す図である。この図1に示すように、曲げピッチとは曲げ加工後の平行部における管1の中心間隔である。
(Test methods for Examples and Comparative Examples)
The bending test was performed as follows. Ten tubes having a length of 1000 mm were sampled from the test material, and the first example was hairpin bent at a pitch of 25 mm and the second example was pitched 20 mm, and the presence or absence of cracks in the bent portion was confirmed. FIG. 1 is a diagram showing the bending pitch of the test tube. As shown in FIG. 1, the bending pitch is the center interval of the tube 1 in the parallel part after bending.

応力腐食割れ試験は以下のようにして行った。管から長さ75mmの試験片を切り取り、脱脂し、乾燥した後、JISK8085に規定するアンモニア水を等量の純水で薄めた11.8%以上のアンモニア水を入れたデシケーターに液面から50mm離して入れ、このアンモニア雰囲気中に常温で2時間保持する。その後、試験片を元の外径の50%まで押しつぶして、割れの判定を目視で行った。割れなしを○、割れありを×で示す。   The stress corrosion cracking test was conducted as follows. A 75 mm long test piece was cut out from the tube, degreased and dried, and then the desiccator containing 11.8% or more of ammonia water diluted with an equal amount of pure water as defined in JISK8085 was placed 50 mm from the liquid surface. Separated and kept in this ammonia atmosphere at room temperature for 2 hours. Then, the test piece was crushed to 50% of the original outer diameter, and the crack was visually determined. No cracking is indicated by ○, and cracking is indicated by ×.

工具磨耗試験は以下のようにして行った。外径12mm、肉厚0.9mmの実施例及び比較例の管を製作した。前記試験材100トンを外径9.52mm、肉厚0.8mmに冷間抽伸加工したとき、超硬製フローティングプラグの加工前後における銅管加工部の外径を測定して、その外径減少量を工具磨耗とした。   The tool wear test was performed as follows. Examples and comparative pipes having an outer diameter of 12 mm and a wall thickness of 0.9 mm were manufactured. When 100 tons of the test material was cold drawn to an outer diameter of 9.52 mm and a wall thickness of 0.8 mm, the outer diameter of the copper tube processed part before and after the machining of the cemented carbide floating plug was measured, and the outer diameter decreased. The amount was tool wear.

下記表1は、第1実施例の組成並びに機械的強度及び曲げ試験結果を示す。本願請求の範囲を満たす実施例1乃至8は、引張強さ、伸び、0.2%耐力、及び曲げ試験結果はいずれも優れたものであった。これに対し、本発明の範囲から外れる比較例1乃至9は、上記特性のいずれかが劣るものであった。また、比較例10は押出時に割れが発生して、製管できなかった。   Table 1 below shows the composition, mechanical strength and bending test results of the first example. In Examples 1 to 8 satisfying the scope of claims of the present application, the tensile strength, elongation, 0.2% proof stress, and bending test results were all excellent. On the other hand, Comparative Examples 1 to 9 outside the scope of the present invention were inferior in any of the above characteristics. Moreover, in Comparative Example 10, cracks occurred during extrusion, and pipe production was not possible.

Figure 2008255382
Figure 2008255382

下記表2は、第1実施例の応力腐食割れ試験の結果及び工具摩耗量試験の結果を示す。試験材にはZnが入っていない実施例No.2、Zn量を適正に含有させた実施例No.6、7、8、JISC1220T相当品の比較例No.1、Znが特許請求の範囲の下限を下回っている比較例No.6及びZnを特許請求の範囲の上限を超えて入れた比較例No.7を選んだ。   Table 2 below shows the results of the stress corrosion cracking test and the tool wear amount test of the first example. Example No. in which Zn is not contained in the test material. 2, Example No. appropriately containing Zn content. 6, 7, 8, Comparative Example No. of JISC1220T equivalent product 1, Comparative Example No. 1 in which Zn is below the lower limit of the claims. Comparative Example No. 6 containing Zn and Zn exceeding the upper limit of the scope of claims. I chose 7.

図2は、フローティングプラグの磨耗状況を示す図である。供試管4の外側にダイス2を設け、このダイス2に整合する位置の供試管4内にプラグ3を配置し、供試管4を矢印方向に引き抜くと、供試管4はダイス2とフローティングプラグ3との間で縮径加工される。このとき、プラグ3には、供試管4の引抜きによる摩擦力によって矢印方向の力が作用し、プラグ3のアプローチ部3bとベアリング部3aとの境界部分の磨耗が最も激しい。表2はこのプラグ3のアプローチ部3bとベアリング部3aとの境界部分の磨耗を示す。応力腐食割れは、Zn含有量が多いと発生しやすくなり、また工具磨耗はZn量が多いほど改善されるという関係にある。そこで、表1及び2に示すように、本発明の実施例2はZnを含まないので、工具磨耗量は比較的多いものの、実施例6,7,8はZnを本発明の請求項3の範囲で含むので、工具磨耗量が少ないと共に、応力腐食割れが発生しなかった。比較例1はりん脱酸銅(Coを含まない)なので工具磨耗はさほど大きくないが、強度が低い。比較例6はCoを含むので工具磨耗量が大きく、Zn含有量が本願請求項3の範囲よりも小さいので、工具磨耗量を低減する効果までは得られていない。比較例7はZn含有量が多いので工具磨耗量は少ないものの、応力腐食割れが発生した。なお、比較例6は、Zn含有量以外の成分は、本発明の請求項を満足するものであるので、実施例2と同等の特性を示しており、Zn含有量の下限値の作用効果を示すために表2に記載した。   FIG. 2 is a diagram showing a state of wear of the floating plug. When the die 2 is provided outside the test tube 4, the plug 3 is arranged in the test tube 4 at a position aligned with the die 2, and the test tube 4 is pulled out in the direction of the arrow, the test tube 4 is connected to the die 2 and the floating plug 3. The diameter is reduced between. At this time, the force in the direction of the arrow acts on the plug 3 due to the frictional force generated by pulling out the test tube 4, and the wear at the boundary portion between the approach portion 3b and the bearing portion 3a of the plug 3 is the most severe. Table 2 shows the wear of the boundary portion between the approach portion 3b and the bearing portion 3a of the plug 3. Stress corrosion cracking tends to occur when the Zn content is high, and tool wear is improved as the Zn content increases. Therefore, as shown in Tables 1 and 2, Example 2 of the present invention does not contain Zn, so although the amount of tool wear is relatively large, Examples 6, 7, and 8 are Zn in Claim 3 of the present invention. Since it was included in the range, the amount of tool wear was small and stress corrosion cracking did not occur. Since Comparative Example 1 is phosphorous-deoxidized copper (not including Co), the tool wear is not so great, but the strength is low. Since Comparative Example 6 contains Co, the amount of tool wear is large, and the Zn content is smaller than the range of claim 3 of the present application, so the effect of reducing the amount of tool wear is not obtained. Since Comparative Example 7 had a high Zn content, the amount of tool wear was small, but stress corrosion cracking occurred. In Comparative Example 6, since the components other than the Zn content satisfy the claims of the present invention, the same effects as those of Example 2 are shown, and the effect of the lower limit of the Zn content is obtained. Table 2 is provided for illustrative purposes.

Figure 2008255382
Figure 2008255382

下記表3は、第2実施例の機械的強度及び曲げ試験結果を示す。この第2実施例は、第1実施例の平滑管のうち、実施例2,比較例1,2の組成のものについて、内面溝転造加工を施したものである。この表3に示すように、実施例2は比較例1,2に比して、引張強度及び0.2%耐力が優れたものであった。なお、実施例2の応力腐食割れ試験結果及び工具摩耗試験結果は表2に示すとおりである。   Table 3 below shows the mechanical strength and bending test results of the second example. In the second embodiment, among the smooth tubes of the first embodiment, those having the compositions of Example 2 and Comparative Examples 1 and 2 were subjected to inner surface groove rolling. As shown in Table 3, Example 2 was excellent in tensile strength and 0.2% proof stress as compared with Comparative Examples 1 and 2. In addition, the stress corrosion cracking test result and the tool wear test result of Example 2 are as shown in Table 2.

Figure 2008255382
Figure 2008255382

本発明の銅合金管は、耐圧破壊強度が優れているため、二酸化炭素及びフロン等の冷媒を使用する熱交換器の伝熱管(平滑管及び内面溝付管)、前記熱交換器の蒸発器と凝縮器を繋ぐ冷媒配管及び機内配管、前記熱交換器の部品として四方弁及びアキュームレーター等に使用することができる。また、本発明の銅合金管はろう付け加熱後も優れた耐圧破壊強度を備えるため、ろう付け部を有する伝熱管、機内配管、冷媒配管、及びヒートパイプ等に用いることができる。また、本発明の銅合金管は、高強度でかつヘアピン曲げ加工性、及び拡管加工性が優れているため、灯油配管、水配管、及びコントロール銅管等の用途にも適用することができる。   Since the copper alloy tube of the present invention has excellent pressure fracture strength, the heat transfer tube (smooth tube and inner grooved tube) of the heat exchanger using a refrigerant such as carbon dioxide and chlorofluorocarbon, the evaporator of the heat exchanger As a part of the refrigerant pipe and the internal pipe connecting the condenser and the heat exchanger and the heat exchanger, it can be used for a four-way valve and an accumulator. Moreover, since the copper alloy pipe of the present invention has an excellent pressure fracture strength even after brazing heating, it can be used for a heat transfer pipe having a brazed portion, an in-machine pipe, a refrigerant pipe, a heat pipe, and the like. Moreover, since the copper alloy tube of this invention is high intensity | strength and is excellent in hairpin bending workability and pipe expansion workability, it can be applied also to uses, such as kerosene piping, water piping, and a control copper tube.

銅管の曲げピッチを示す図である。It is a figure which shows the bending pitch of a copper pipe. フローティングプラグの磨耗状況を示す図である。It is a figure which shows the wear condition of a floating plug.

符号の説明Explanation of symbols

2 ダイス
3 フローティングプラグ
4 供試管
3a ベアリング部
3b アプローチ部
5 部分
2 Dies 3 Floating plug 4 Test tube 3a Bearing part 3b Approach part 5 part

Claims (4)

Co:0.03乃至0.15質量%、P:0.004乃至0.08質量%、S:0.005質量%以下、O:0.005質量%以下、及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、引張強さが250乃至300N/mm、0.2%耐力が70乃至120N/mm、伸びが40%以上、平均結晶粒径が10乃至35μmであることを特徴とする銅合金管。 Co: 0.03 to 0.15 mass%, P: 0.004 to 0.08 mass%, S: 0.005 mass% or less, O: 0.005 mass% or less, and H: 0.0002 mass% A copper alloy tube having the following composition, the balance being Cu and inevitable impurities, the tensile strength is 250 to 300 N / mm 2 , the 0.2% proof stress is 70 to 120 N / mm 2 , and the elongation is A copper alloy tube characterized by being 40% or more and having an average crystal grain size of 10 to 35 μm. 更に、管の引張強さをσ、0.2%耐力をσ0.2としたとき、σ0.2/σ=0.25乃至0.5であることを特徴とする請求項1に記載の銅合金管。 2. The copper according to claim 1, wherein when the tensile strength of the pipe is σ and the 0.2% proof stress is σ0.2, σ0.2 / σ = 0.25 to 0.5. Alloy tube. 更に、Zn:0.01乃至1.0質量%を含有することを特徴とする請求項1又は2に記載の銅合金管。 Furthermore, Zn: 0.01 thru | or 1.0 mass% is contained, The copper alloy pipe | tube of Claim 1 or 2 characterized by the above-mentioned. 更に、前記銅合金が内面溝付管であることを特徴とする請求項1乃至3のいずれか1項に記載の銅合金管。 The copper alloy tube according to any one of claims 1 to 3, wherein the copper alloy is an internally grooved tube.
JP2007095769A 2007-03-30 2007-03-30 Copper alloy tube Active JP5078410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095769A JP5078410B2 (en) 2007-03-30 2007-03-30 Copper alloy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095769A JP5078410B2 (en) 2007-03-30 2007-03-30 Copper alloy tube

Publications (2)

Publication Number Publication Date
JP2008255382A true JP2008255382A (en) 2008-10-23
JP5078410B2 JP5078410B2 (en) 2012-11-21

Family

ID=39979259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095769A Active JP5078410B2 (en) 2007-03-30 2007-03-30 Copper alloy tube

Country Status (1)

Country Link
JP (1) JP5078410B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100579A (en) * 2011-11-08 2013-05-23 Kobe Steel Ltd High-strength copper tube excellent in strength after brazing
JP2014173141A (en) * 2013-03-08 2014-09-22 Kobe Steel Ltd High strength copper alloy
JP2014189804A (en) * 2013-03-26 2014-10-06 Kobe Steel Ltd High strength copper alloy tube and manufacturing method therefor
JP2018053310A (en) * 2016-09-29 2018-04-05 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168532A (en) * 1996-10-08 1998-06-23 Dowa Mining Co Ltd Copper alloy for backing plate and its production
JP2001279351A (en) * 2000-03-28 2001-10-10 Kobe Steel Ltd Rolled copper alloy foil and its production method
JP2001316742A (en) * 2000-04-28 2001-11-16 Mitsubishi Materials Corp Copper alloy tube excellent in fatigue strength
JP2006274313A (en) * 2005-03-28 2006-10-12 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168532A (en) * 1996-10-08 1998-06-23 Dowa Mining Co Ltd Copper alloy for backing plate and its production
JP2001279351A (en) * 2000-03-28 2001-10-10 Kobe Steel Ltd Rolled copper alloy foil and its production method
JP2001316742A (en) * 2000-04-28 2001-11-16 Mitsubishi Materials Corp Copper alloy tube excellent in fatigue strength
JP2006274313A (en) * 2005-03-28 2006-10-12 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100579A (en) * 2011-11-08 2013-05-23 Kobe Steel Ltd High-strength copper tube excellent in strength after brazing
JP2014173141A (en) * 2013-03-08 2014-09-22 Kobe Steel Ltd High strength copper alloy
JP2014189804A (en) * 2013-03-26 2014-10-06 Kobe Steel Ltd High strength copper alloy tube and manufacturing method therefor
JP2018053310A (en) * 2016-09-29 2018-04-05 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
WO2018062255A1 (en) * 2016-09-29 2018-04-05 株式会社神戸製鋼所 Copper alloy sheet for heat dissipation component, heat dissipation component, and method for producing heat dissipation component

Also Published As

Publication number Publication date
JP5078410B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP4817693B2 (en) Copper alloy tube for heat exchanger and manufacturing method thereof
JP4630323B2 (en) Copper alloy tube for heat exchangers with excellent fracture strength
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP2003268467A (en) Copper alloy tube for heat exchanger
JP5111922B2 (en) Copper alloy tube for heat exchanger
JP4818179B2 (en) Copper alloy tube
JP5078410B2 (en) Copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
JP6034727B2 (en) High strength copper alloy tube
JP6244213B2 (en) Copper tube for heat exchanger
JP5960672B2 (en) High strength copper alloy tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5638999B2 (en) Copper alloy tube
JP5990496B2 (en) Phosphorus deoxidized copper pipe for heat exchanger
JP5639025B2 (en) Copper alloy tube
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP2013189664A (en) Copper alloy tube
JP6360363B2 (en) Copper alloy tube
JP2016180170A (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250