JP5499300B2 - Copper alloy tube for heat exchanger - Google Patents

Copper alloy tube for heat exchanger Download PDF

Info

Publication number
JP5499300B2
JP5499300B2 JP2010225532A JP2010225532A JP5499300B2 JP 5499300 B2 JP5499300 B2 JP 5499300B2 JP 2010225532 A JP2010225532 A JP 2010225532A JP 2010225532 A JP2010225532 A JP 2010225532A JP 5499300 B2 JP5499300 B2 JP 5499300B2
Authority
JP
Japan
Prior art keywords
tube
copper
crystal grain
copper alloy
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010225532A
Other languages
Japanese (ja)
Other versions
JP2012077362A (en
Inventor
久郎 宍戸
康博 有賀
雅人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010225532A priority Critical patent/JP5499300B2/en
Publication of JP2012077362A publication Critical patent/JP2012077362A/en
Application granted granted Critical
Publication of JP5499300B2 publication Critical patent/JP5499300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は熱交換器用銅合金管に関するものである。以下の記載では、この「銅合金管」を略して、単に「銅管」ともいう。   The present invention relates to a copper alloy tube for a heat exchanger. In the following description, this “copper alloy tube” is abbreviated and simply referred to as “copper tube”.

エアコンなどの熱交換器は、周知の通り、主として、ヘアピン状に曲げ加工したU字形銅管と、アルミニウム又はアルミニウム合金板からなるフィン(以下、アルミニウムフィンという)とから構成される。すなわち、熱交換器の伝熱部は、U字形に曲げ加工した銅管を、アルミニウムフィンの貫通孔に通し、U字形銅管内に治具を挿入して拡管することにより、銅管とアルミニウムフィンとを密着させる。そして、更に、このU字形銅管の開放端を拡管(フレア加工)して、この拡管開放端部に、同じくU字形に曲げ加工したベンド銅管を挿入し、りん銅ろう等のろう材により、ベンド銅管を銅管の拡管開放端部にろう付けすることにより接続して、熱交換器が製作される。   As is well known, a heat exchanger such as an air conditioner is mainly composed of a U-shaped copper tube bent into a hairpin shape and fins made of aluminum or an aluminum alloy plate (hereinafter referred to as aluminum fins). That is, the heat transfer part of the heat exchanger is formed by passing a copper tube bent into a U-shape through a through hole of an aluminum fin, and inserting a jig into the U-shaped copper tube to expand the tube. Adhere the fins closely. Further, the open end of the U-shaped copper pipe is expanded (flared), and a bent copper pipe bent into a U-shape is inserted into the expanded open end, and a brazing material such as phosphor copper braze is used. The heat exchanger is manufactured by connecting the bend copper pipe to the open end of the copper pipe by brazing.

このため、熱交換器に使用される銅管には、加工性(曲げ、拡管・フレア、縮管・絞りなど)及びろう付け性が良好であることが要求される。従って、これらの特性が良好であり、更に熱伝導率が良く、適切な強度を有するりん脱酸銅が広く使用されている。   For this reason, copper pipes used in heat exchangers are required to have good workability (bending, expansion / flare, contraction / drawing, etc.) and brazing. Accordingly, phosphorous deoxidized copper having good characteristics, good thermal conductivity, and appropriate strength is widely used.

近年、熱交換器に使用する冷媒が、地球環境保護の点より、大きく変化してきた。これまで、エアコンなどの熱交換器に使用されてきた、R22などのHCFC(ハイドロクロロフルオロカーボン)系フロンは、オゾン破壊係数が大きいことから、その値が小さいHFC(ハイドロフルオロカーボン)系フロンに代替されるようになってきた。また、給湯器、自動車用空調機器、自動販売機などに使用される熱交換器には、自然冷媒である二酸化炭素が使用されるようになってきた。これらの新たに採用された冷媒の運転圧力は、従来の冷媒R22の1.6乃至6倍程度に増大している。   In recent years, refrigerants used in heat exchangers have changed greatly from the viewpoint of protecting the global environment. Until now, HCFC (hydrochlorofluorocarbon) chlorofluorocarbons such as R22, which have been used in heat exchangers such as air conditioners, have a large ozone depletion coefficient, so they are replaced by small HFC (hydrofluorocarbon) chlorofluorocarbons. It has come to be. In addition, carbon dioxide, which is a natural refrigerant, has come to be used in heat exchangers used in water heaters, automotive air conditioners, vending machines, and the like. The operating pressure of these newly adopted refrigerants has increased to about 1.6 to 6 times that of the conventional refrigerant R22.

これら運転圧力の増大の一方で、銅地金高騰に伴う銅管コスト増大を抑制すべく、銅使用量低減のための銅管薄肉化の要求も強くなっている。これに対しては、使用される銅管の引張り強さが大きいほど肉厚を薄くできる。しかし、従来のりん脱酸銅管では引張り強さが小さいことから、前記運転圧力の増大に対応するには、管の肉厚を逆に厚くする必要があり、例えば0.5mm以下には肉厚を薄くできない。   While these operating pressures are increasing, there is an increasing demand for thinner copper pipes to reduce the amount of copper used in order to suppress the increase in copper pipe costs associated with soaring copper bullion. On the other hand, the thickness can be reduced as the tensile strength of the copper pipe used is larger. However, since the conventional phosphorous-deoxidized copper pipe has a low tensile strength, it is necessary to increase the thickness of the pipe to cope with the increase in the operating pressure. The thickness cannot be reduced.

また、熱交換器の組立の際、ろう付け部は800℃以上の温度に数秒乃至数十秒間加熱されるため、ろう付け部及びその近傍ではその他の部分に比べて結晶粒が粗大化し、軟化により強度が低下した状態となってしまうことからも、従来のりん脱酸銅管では、肉厚をより厚くする必要がある。このように、りん脱酸銅では、運転圧力の増大や銅管薄肉化の要求にとても対応できず、りん脱酸銅に代わって、これらの要求に対応できる銅管が強く要望されることになる。   Also, when assembling the heat exchanger, the brazed part is heated to a temperature of 800 ° C. or higher for several seconds to several tens of seconds, so that the crystal grains are coarsened and softened in the brazed part and its vicinity in comparison with other parts. Therefore, the thickness of the conventional phosphorous deoxidized copper pipe needs to be increased. As described above, phosphorous deoxidized copper cannot respond to the demand for increased operating pressure and copper pipe thinning, and instead of phosphorous deoxidized copper, a copper pipe capable of meeting these requirements is strongly desired. Become.

このような要望に応えるべく、りん脱酸銅に替えて、より強度が高いSn−P系銅合金からなる銅管(以下、Sn−P系銅管あるいはSn−P系銅合金管と言う)が従来から種々提案されている。このSn−P系銅管は、基本的に、Sn:0.1〜1.0%、P:0.005〜0.1%を含有し、OやHなどの不純物を規制し、Znを選択的に添加した銅合金組成からなる。また、その銅管組織として、例えば平均結晶粒径を30μm以下とした、微細な結晶粒径からなること基本である(特許文献1、2、3、4参照)。   In order to meet such a demand, a copper tube made of Sn-P-based copper alloy having higher strength instead of phosphorous deoxidized copper (hereinafter referred to as Sn-P-based copper tube or Sn-P-based copper alloy tube). Various proposals have been made in the past. This Sn-P-based copper tube basically contains Sn: 0.1 to 1.0%, P: 0.005 to 0.1%, regulates impurities such as O and H, and contains Zn. It consists of a copper alloy composition added selectively. In addition, the copper tube structure is basically composed of a fine crystal grain size, for example, an average crystal grain size of 30 μm or less (see Patent Documents 1, 2, 3, and 4).

このSn−P系銅管において、Goss方位の集積率などの集合組織を制御して、周方向の強度と伸びのバランスを適正に制御し、破壊圧力を向上させる方法も開示されている(特許文献5参照)。更に、破壊強度と引張強さ(破壊強度/引張強さ)の比を、りん脱酸銅よりも大きくすることで、高い破壊圧力と良好な曲げ加工性を兼備した銅管も提案されている(特許文献6参照)。   In this Sn-P-based copper tube, there is also disclosed a method for controlling the texture such as the Goss orientation accumulation rate to appropriately control the balance between the strength and elongation in the circumferential direction to improve the breaking pressure (patent) Reference 5). Furthermore, a copper tube that combines high fracture pressure and good bending workability by increasing the ratio of fracture strength and tensile strength (fracture strength / tensile strength) to that of phosphorous deoxidized copper has also been proposed. (See Patent Document 6).

また、Sn−P系銅管の破壊強度および曲げ加工性ともに優れさせるために、平均結晶粒径の2倍以上の粗大な結晶粒の数を規制することも、特許文献7で提案されている。この特許文献7では、Sn−P系銅合金管を0.5mm以下に薄肉化した場合の、曲げ半径が小さい厳しいU字曲げ加工における割れの原因となる、前記粗大な結晶粒を規制したものである。   Further, in order to improve both the fracture strength and the bending workability of the Sn-P-based copper tube, Patent Document 7 proposes to regulate the number of coarse crystal grains that are twice or more the average crystal grain size. . In this patent document 7, when the Sn-P-based copper alloy tube is thinned to 0.5 mm or less, the coarse crystal grains that cause cracks in a severe U-shaped bending process with a small bending radius are regulated. It is.

ただ、りん脱酸銅管よりも強度が高く、前記薄肉化の要望に応えたSn−P系銅管であっても、前記熱交換器組立の際のろう付けで、800℃以上の高温にさらされ、結晶粒が粗大化して、軟化や強度低下が起こる問題は、りん脱酸銅と同様に、やはり避けがたい。したがって、例えSn−P系銅管であっても、このろう付けによる軟化の問題については、なお改善の余地があった。   However, even Sn-P copper pipes, which have higher strength than phosphorous deoxidized copper pipes and respond to the demand for thinning, can be heated to a high temperature of 800 ° C. or higher by brazing during assembly of the heat exchanger. The problem of being exposed to coarsening of crystal grains and softening or strength reduction is also unavoidable, similarly to phosphorous deoxidized copper. Therefore, even with the Sn-P copper pipe, there is still room for improvement with respect to the problem of softening due to brazing.

このため、この軟化抑制を課題としたSn−P系銅管も従来から提案されており、特許文献8などでは、Pを銅合金管マトリックス中に一定量固溶させ、ろう付けによって結晶粒が粗大化しても、Pの固溶強化によって伝熱管の強度低下を抑制している。   For this reason, Sn-P-based copper pipes that are subject to this softening suppression have also been proposed. In Patent Document 8 and the like, a fixed amount of P is dissolved in a copper alloy pipe matrix, and crystal grains are formed by brazing. Even if it becomes coarse, the strength reduction of the heat transfer tube is suppressed by the solid solution strengthening of P.

特開2000−199023号公報JP 2000-199023 A 特許第3794971号公報Japanese Patent No. 3794971 特開2004−292917号公報JP 2004-292917 A 特開2006−274313号公報JP 2006-274313 A 特開2009−102690号公報JP 2009-102690 A 特開2008−174785号公報JP 2008-174785 A 特開2010−65270号公報JP 2010-65270 A 特開2009−270166号公報JP 2009-270166 A

ただ、前記ろう付け時の耐軟化性の向上につき、前記特許文献8のようなPの固溶強化による手段では、Pを固溶させること自体が難しい。すなわち、Pを固溶させるためには、鋳造におけるビレット(鋳塊)の急冷、熱間押出後の急冷、最終焼鈍後の急冷など、Sn−P系銅管製造の際の、各熱処理工程における冷却速度の制御(急冷)が必要である。これらの冷却速度が遅いと、Pの析出物が増して粗大化し、P固溶量の規定を満足できなくなる可能性が高くなる。   However, for improving the softening resistance at the time of brazing, it is difficult to make P dissolve in itself by means of solid solution strengthening of P as described in Patent Document 8. That is, in order to make P dissolve, each billet (ingot) in casting, rapid cooling after hot extrusion, rapid cooling after final annealing, etc. It is necessary to control the cooling rate (rapid cooling). When these cooling rates are slow, the precipitates of P increase and become coarse, and there is a high possibility that the definition of the P solid solution amount cannot be satisfied.

したがって、冶金的に銅管のろう付け時の耐軟化性を向上させるにしても、改善された銅管をできるだけ製造しやすい、現実的な改善方法が求められる。   Therefore, even if the softening resistance at the time of brazing of a copper pipe is improved metallurgically, there is a need for a practical improvement method that makes it possible to manufacture an improved copper pipe as much as possible.

本発明はかかる問題点に鑑みてなされたものであって、製造しやすく、耐軟化性を向上させ、併せて破壊強度および曲げ加工性に優れた熱交換器用Sn−P系銅合金管を提供することを目的とする。   The present invention has been made in view of such problems, and provides an Sn-P-based copper alloy tube for a heat exchanger that is easy to manufacture, has improved softening resistance, and has excellent fracture strength and bending workability. The purpose is to do.

上記目的のための、本発明の熱交換器用銅合金管の要旨は、Sn:0.1〜3.0質量%、P:0.005〜0.1質量%を含有し、残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、この銅合金管組織が、SEM−EBSP法による測定結果で、この銅合金管の軸方向に平行な断面における平均結晶粒径D1が20μm以下であるとともに、このD1と前記銅合金管の軸方向に垂直な断面における平均結晶粒径D2との差の絶対値|D1−D2|が3μm以下(0μmを含む)であることとする。 The gist of the copper alloy tube for a heat exchanger of the present invention for the above purpose is Sn: 0.1 to 3.0% by mass, P: 0.005 to 0.1% by mass, with the balance being Cu and A copper alloy tube having a composition composed of inevitable impurities, the copper alloy tube structure being a measurement result by the SEM-EBSP method, and an average grain size D1 in a cross section parallel to the axial direction of the copper alloy tube is 20 μm. The absolute value | D1-D2 | of the difference between D1 and the average crystal grain size D2 in the cross section perpendicular to the axial direction of the copper alloy tube is 3 μm or less (including 0 μm).

本発明者らは、Sn−P系銅合金管組織の結晶粒につき、改めて、前記ろう付け前後での強度変化(強度低下)が小さい、耐軟化性に与える影響を研究した。この結果、従来問題としている結晶粒径の大きさだけではなく、銅管の部位による(あるいは断面方向の違いによる)結晶粒の大きさの違い、すなわち結晶粒径の異方性が、大きく耐軟化性に影響することを知見した。   The inventors of the present invention have once again studied the influence on the softening resistance of the crystal grains of the Sn-P-based copper alloy tube structure, in which the change in strength (strength reduction) before and after the brazing is small. As a result, not only the crystal grain size, which has been a problem in the past, but also the difference in crystal grain size depending on the copper tube part (or the difference in cross-sectional direction), that is, the anisotropy of the crystal grain size is greatly improved. It was found to affect the softening property.

本発明者らは、この結晶粒径の異方性の基準として、銅合金管の軸方向に平行な(方向の)断面における平均結晶粒径D1と、この銅合金管の軸方向に垂直な(方向の)断面における平均結晶粒径D2とを選択した。銅合金管のこのD1とD2との差「D1−D2」は、「アスペクト比や扁平度あるいは真円度」のような、同じ結晶粒での縦横の長さの比ではない。すなわち、圧延や抽伸方向に平行で、結晶粒が伸長しやすい、銅合金管の軸方向に平行な断面と、この軸方向に垂直な断面との、管の断面方向が違う、相異なる部位同士の平均結晶粒径の差である。このD1とD2との差D1−D2が無いか小さく、銅管の部位(断面方向)による平均結晶粒径の異方性が小さいものほど、耐軟化性が向上することを知見したからである。これに対して、このD1とD2との差が大きく、銅管の部位による平均結晶粒径の異方性が大きいものほど、例え微細な結晶粒であっても、耐軟化性が劣る。   As a criterion for the anisotropy of the crystal grain size, the inventors have determined that the average crystal grain size D1 in the cross section (in the direction) parallel to the axial direction of the copper alloy tube is perpendicular to the axial direction of the copper alloy tube. The average crystal grain size D2 in the (direction) cross section was selected. The difference “D1−D2” between D1 and D2 of the copper alloy tube is not the ratio of the length and width of the same crystal grain, such as “aspect ratio, flatness or roundness”. In other words, the cross-section direction of the pipe is different from each other in the cross-section parallel to the axial direction of the copper alloy pipe and the cross-section perpendicular to the axial direction, which is parallel to the rolling or drawing direction and the crystal grains are easily elongated. Of the average crystal grain size. This is because it was found that the softening resistance is improved as the difference D1-D2 between D1 and D2 is small or small and the anisotropy of the average crystal grain size due to the copper tube part (cross-sectional direction) is small. . In contrast, the larger the difference between D1 and D2 and the greater the anisotropy of the average crystal grain size due to the copper tube part, the poorer the softening resistance, even if the crystal grains are finer.

このような結晶粒径の異方性が発生する原因は、薄肉化されたSn−P系銅合金管の製造方法(条件)による影響が大きい。通常、熱交換器用の銅合金管は、熱間押出後に圧延および抽伸により減面されて薄肉化されるが、前記した薄肉化の要求によって、銅管を例えば1.0mm以下に薄くする場合には、その圧延および抽伸における減面率は95%以上となる。このような大きな減面率では、これらの圧延工程や抽伸工程で大きなひずみが銅管に導入される。   The cause of the anisotropy of the crystal grain size is greatly influenced by the manufacturing method (conditions) of the thinned Sn—P-based copper alloy tube. Usually, a copper alloy tube for a heat exchanger is reduced in thickness by rolling and drawing after hot extrusion, but when the copper tube is made thinner to, for example, 1.0 mm or less due to the above-described demand for thinning. The area reduction ratio in the rolling and drawing is 95% or more. With such a large area reduction rate, a large strain is introduced into the copper tube in these rolling processes and drawing processes.

しかも、生産効率の点から、通常は、前記抽伸加工途中では、中間焼鈍を入れることが無いのが常識的で、この大きなひずみが導入されたまま(大きなひずみが開放されないまま)、最終焼鈍工程に持ち越される。   Moreover, from the viewpoint of production efficiency, it is common sense that intermediate annealing is not usually performed during the drawing process, and this large strain is introduced (the large strain is not released), and the final annealing step. Carried over to

Sn−P系銅合金管は、その製造工程における最終の焼鈍により、通常は、回復により圧延でのひずみが連続的に開放されて生じた(回復によりひずみが開放されて生じた)結晶粒と、再結晶核の生成によるひずみのない結晶粒との二種類が両方生成した(混在した)組織となる。再結晶核の生成によるひずみのない結晶粒は、最終焼鈍前の結晶粒界から生成する。このため最終焼鈍前の結晶粒径が小さいほど、最終焼鈍後の再結晶核の生成によるひずみのない結晶粒は多くなる。従来の最終焼鈍前の結晶粒径は、熱間押出後の結晶粒径に対応するため、非常に大きく、前記回復によりひずみが開放されて生じた結晶粒が主体の組織となりやすい。   The Sn-P-based copper alloy tube is formed by the final annealing in the manufacturing process, and usually the crystal grains produced by continuous release of strain in the recovery by recovery (generated by the release of strain by recovery) and A structure in which two types of crystal grains having no distortion due to the formation of recrystallization nuclei are both generated (mixed) is obtained. The crystal grains free from distortion due to the formation of recrystallization nuclei are generated from the grain boundaries before the final annealing. For this reason, the smaller the crystal grain size before final annealing, the more crystal grains without distortion due to the formation of recrystallized nuclei after final annealing. Since the crystal grain size before the final annealing according to the related art corresponds to the crystal grain size after hot extrusion, it is very large, and the crystal grains generated by releasing the strain by the recovery tend to be the main structure.

しかし、このような、回復によりひずみが開放されて生じた結晶粒は、圧延方向や抽伸方向、すなわち、銅管の軸方向に伸長した結晶粒であり、前記した再結晶核の生成によるひずみのない、等軸な結晶粒と比較すると、転位密度が非常に高い。このため、従来の最終焼鈍を経たSn−P系銅合金管のように、回復によりひずみが開放されて生じた結晶粒が多くなると、再結晶核の生成によるひずみのない結晶粒が少なく、転位密度が高くなり、強度や加工性が劣ることになると考えられる。   However, such crystal grains generated by releasing strain by recovery are crystal grains elongated in the rolling direction or drawing direction, i.e., the axial direction of the copper tube. Compared with no equiaxed crystal grains, the dislocation density is very high. For this reason, as in the conventional Sn-P-based copper alloy tube that has undergone final annealing, when the number of crystal grains generated by the release of strain by recovery increases, the number of crystal grains without distortion due to the formation of recrystallized nuclei decreases. It is considered that the density becomes high and the strength and workability are inferior.

このような知見に基づき、本発明では、回復によりひずみが開放されて生じた結晶粒を少なくする一方で、再結晶核の生成によるひずみのない結晶粒を多くして結晶粒径の異方性を小さくし、先ず、転位密度を低くして、強度や加工性を向上させる。   Based on such knowledge, the present invention reduces the number of crystal grains generated by releasing the strain by recovery, while increasing the number of undistorted crystal grains due to the formation of recrystallized nuclei. First, the dislocation density is lowered to improve the strength and workability.

また、回復によりひずみが開放されて生じた結晶粒は、前記ろう付け時の高温加熱時に、再結晶核の生成によるひずみのない結晶粒よりも、優先的に成長して粗大化する性質を有する。このため、銅管組織にこの回復によりひずみが開放されて生じた結晶粒が多いと、すなわち、結晶粒径の異方性が大きいと、前記ろう付け後の結晶粒径が著しく粗大化して、ろう付け後の強度や破壊圧力=耐軟化性が低下してしまう。   In addition, the crystal grains generated by the strain being released by recovery have the property of preferentially growing and coarsening over the crystal grains without distortion due to the formation of recrystallized nuclei during high-temperature heating during brazing. . For this reason, when there are many crystal grains generated by releasing strain due to this recovery in the copper tube structure, that is, when the anisotropy of the crystal grain size is large, the crystal grain size after brazing is remarkably coarsened, Strength after brazing and breaking pressure = softening resistance will decrease.

これに対して、本発明では、回復によりひずみが開放されて生じた結晶粒を少なくする一方で、再結晶核の生成によるひずみのない結晶粒を多くして結晶粒径の異方性を小さくし、前記ろう付け時の高温加熱時における結晶粒の成長を抑制して、耐軟化性を向上させる。   On the other hand, in the present invention, the number of crystal grains generated by relieving strain by recovery is reduced, while the number of crystal grains without distortion due to the formation of recrystallization nuclei is increased to reduce the crystal grain anisotropy. And the growth of the crystal grain at the time of the high temperature heating at the time of the brazing is suppressed, and the softening resistance is improved.

このように、従来のSn−P系銅合金管は、その製造方法からして、本発明で規定する前記D1とD2との差が3μmを超えた結晶粒径の異方性となりやく、このため、特に耐軟化性が劣っていたものである。ちなみに、本発明のように、回復により生じた結晶粒を少なくし、再結晶核の生成によるひずみのない結晶粒を多くするためには、抽伸加工途中で中間焼鈍を加えるなどすればよく、工程的に難しいものでは決してない。   Thus, the conventional Sn-P-based copper alloy tube tends to have an anisotropy of crystal grain size in which the difference between the D1 and D2 specified in the present invention exceeds 3 μm because of its manufacturing method. Therefore, the softening resistance is particularly inferior. Incidentally, as in the present invention, in order to reduce the number of crystal grains generated by recovery and increase the number of undistorted crystal grains due to the formation of recrystallization nuclei, intermediate annealing may be added during the drawing process, etc. It is never difficult.

したがって、本発明によれば、製造しやすく、1.0mm以下に薄肉化されても、耐軟化性を向上させ、併せて破壊強度および曲げ加工性に優れた熱交換器用Sn−P系銅合金管を提供することができる。   Therefore, according to the present invention, the Sn-P-based copper alloy for heat exchangers, which is easy to manufacture and has improved softening resistance and excellent fracture strength and bending workability even when thinned to 1.0 mm or less. A tube can be provided.

銅合金管の軸方向に平行な断面の平均結晶粒径D1と、軸方向に垂直な断面の平均結晶粒径D2を示す説明図である。It is explanatory drawing which shows the average crystal grain diameter D1 of the cross section parallel to the axial direction of a copper alloy pipe | tube, and the average crystal grain diameter D2 of a cross section perpendicular | vertical to an axial direction. 実施例表1の発明例1の結晶粒組織を示す図面代用写真である。3 is a drawing-substituting photograph showing the crystal grain structure of Invention Example 1 in Example 1; 実施例表1の比較例7の結晶粒組織を示す図面代用写真である。5 is a drawing-substituting photograph showing the crystal grain structure of Comparative Example 7 in Example Table 1. 実施例表1の比較例2の結晶粒組織を示す図面代用写真である。3 is a drawing-substituting photograph showing the crystal grain structure of Comparative Example 2 in Example Table 1. 実施例表1の比較例1の結晶粒組織を示す図面代用写真である。5 is a drawing substitute photograph showing a crystal grain structure of Comparative Example 1 in Example Table 1.

以下に、本発明の実施の形態につき、要件ごとに順に具体的に説明する。
銅合金組成:
本発明における銅管の銅合金組成は、銅合金管に要求される、耐軟化性、破壊強度および曲げ加工性などの諸特性に優れさせるための基本組成として、Sn:0.1〜3.0質量%、P:0.005〜0.1質量%を含有し、残部がCu及び不可避的不純物からなる組成とする。次ぎに、添加元素の添加理由及び組成限定理由などについて説明するが、記載含有量は全て質量%である。
Hereinafter, the embodiments of the present invention will be specifically described in order for each requirement.
Copper alloy composition:
The copper alloy composition of the copper pipe in the present invention is Sn: 0.1-3. As a basic composition for improving various properties required for the copper alloy pipe, such as softening resistance, fracture strength and bending workability. The composition contains 0% by mass and P: 0.005 to 0.1% by mass with the balance being Cu and inevitable impurities. Next, the reason for addition of the additive element and the reason for limiting the composition will be described. All the described contents are mass%.

P:0.005〜0.1質量%:
Sn、Pをともに含有するSn−P系銅管では、P含有量が0.1質量%を超えると、熱間押出時に割れが生じやすくなり、応力腐食割れ感受性が高くなると共に、熱伝導率の低下が大きくなる。また、P含有量が0.005質量%未満であると、脱酸不足により酸素量が増加してSnの酸化物が発生し、鋳塊の健全性が低下し、銅管として曲げ加工性が低下する。したがって、P含有量の範囲は0.005〜0.1質量%の範囲とする。
P: 0.005 to 0.1% by mass:
In Sn-P copper pipes containing both Sn and P, if the P content exceeds 0.1% by mass, cracking is likely to occur during hot extrusion, the stress corrosion cracking sensitivity is increased, and the thermal conductivity is increased. The decrease in Further, if the P content is less than 0.005% by mass, the amount of oxygen is increased due to insufficient deoxidation, Sn oxide is generated, the soundness of the ingot is lowered, and the bending workability as a copper pipe is reduced. descend. Therefore, the range of P content shall be 0.005-0.1 mass%.

Sn:0.1〜3.0質量%:
Snは、Sn−P系銅管の引張り強さを向上させ、結晶粒の粗大化を抑制させる効果を有し、種々の冷媒を使用する伝熱管の銅合金中に含有させた場合、りん脱酸銅管に比べて管の肉厚を薄くすることが可能になる。また、Snは積層欠陥エネルギーを低下させるため、ひずみが蓄積しやすく、抽伸加工途中の中間焼鈍や最終焼鈍などで、回復により生じる結晶粒を少なくし、再結晶核の生成によるひずみのない結晶粒を多くして、結晶粒の真円度を高める作用がある。
Sn: 0.1-3.0% by mass:
Sn has the effect of improving the tensile strength of the Sn-P-based copper tube and suppressing the coarsening of crystal grains. When Sn is contained in the copper alloy of the heat transfer tube using various refrigerants, phosphorus is removed. The thickness of the pipe can be reduced as compared with the acid copper pipe. In addition, Sn lowers the stacking fault energy, so that strain is likely to accumulate. Crystal grains that are not recovered by the formation of recrystallized nuclei are reduced by reducing the number of crystal grains caused by recovery during intermediate annealing or final annealing during drawing. Increases the roundness of the crystal grains.

Snが少なすぎると、最終焼鈍後後に、細かく真円度を高め結晶粒径を得ることができなくなり、ろう付け後の十分な引張強さや、耐軟化性を得ることができなくなる。一方、銅管のSn含有量が多すぎると、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により偏析が完全に解消しないことがあり、銅管の金属組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質が不均一となる。また、押出圧力が高くなり、Sn含有量が2質量%以下の銅合金と、同一の押出圧力で押出成形するためには、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性の低下及び銅管の表面欠陥が増加する。したがって、Sn含有量の範囲は0.1〜3.0質量%の範囲とする。   If the amount of Sn is too small, it becomes impossible to increase the roundness finely and obtain a crystal grain size after the final annealing, and it becomes impossible to obtain sufficient tensile strength and softening resistance after brazing. On the other hand, if the Sn content of the copper tube is too high, solidification segregation in the ingot becomes severe and segregation may not be completely eliminated by normal hot extrusion and / or processing heat treatment. Mechanical properties, bending workability, texture after brazing, and mechanical properties become non-uniform. Further, in order to perform extrusion molding at the same extrusion pressure as a copper alloy having an extrusion pressure increased and Sn content of 2% by mass or less, it is necessary to raise the extrusion temperature. Increases, resulting in decreased productivity and increased surface defects in the copper tube. Therefore, the range of Sn content shall be 0.1-3.0 mass%.

Zn:0.01〜1.0質量%:
前記Sn−P系銅管やP系銅管では、共通して、Znを選択的に含有することにより、銅管の熱伝導率を大きく低下させることなく、強度、耐軟化性及び疲れ強さを向上させることができる。また、Znの含有により、冷間圧延、抽伸及び転造等に用いる工具の磨耗を低減させることができ、抽伸プラグ及び溝付プラグ等の寿命を延命させる効果があり、生産コストの低減に寄与する。Znの含有量が少なすぎると、これらの効果が十分得られなくなる。一方、Znの含有量が多すぎると、管の長手方向や管円周方向の引張強さが却って低下し、破壊強度が低下する。また、応力腐食割れ感受性も高くなる。従って、選択的に含有させる場合のZnの含有量は0.001〜1.0質量%とする。
Zn: 0.01 to 1.0% by mass:
In the Sn-P-based copper tube and the P-based copper tube in common, by selectively containing Zn, the strength, softening resistance, and fatigue strength are reduced without greatly reducing the thermal conductivity of the copper tube. Can be improved. In addition, the inclusion of Zn can reduce the wear of tools used for cold rolling, drawing, rolling, etc., and has the effect of extending the life of drawing plugs, grooved plugs, etc., contributing to the reduction of production costs To do. If the Zn content is too small, these effects cannot be obtained sufficiently. On the other hand, when there is too much content of Zn, the tensile strength of the longitudinal direction of a pipe and the pipe circumference direction will fall on the contrary, and fracture strength will fall. In addition, the stress corrosion cracking sensitivity is increased. Therefore, the Zn content when selectively contained is 0.001 to 1.0 mass%.

Fe、Ni、Mn、Mg、Cr、Ti、Zr及びAg:
Sn−P系銅管では、Fe、Ni、Mn、Mg、Cr、Ti、Zr、Agからなる群から選択された1種または2種以上を選択的に含有することにより、共通して、銅合金の強度、耐圧破壊強度、及び耐軟化性を向上させ、結晶粒を微細化して曲げ加工性を改善することができる。ただ、これら元素の中から選択する1種または2種以上の元素の含有量が合計で0.07質量%を超えると、押出圧力が上昇するため、これらの元素を添加しないものと同一の押出力で押出を行おうとすると、熱間押出温度を上げることが必要になる。これにより、押出材の表面酸化が多くなるため、本発明の銅管において表面欠陥が多発し、特に薄肉化された銅管の伝熱管としての破壊強度を向上できない。このため、選択的に含有させる場合には、Fe、Ni、Mn、Mg、Cr、Ti、Zr、Zr及びAgからなる群から選択された1種または2種以上の元素を、含有する元素の合計の含有量で0.07質量%未満(但し0質量%を含まず)とする。前記含有量は、0.05質量%未満とすることが望ましく、0.03質量%未満とすることがより望ましい。
Fe, Ni, Mn, Mg, Cr, Ti, Zr and Ag:
In the Sn-P-based copper pipe, by selectively containing one or more selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr, and Ag, It is possible to improve the bending workability by improving the strength, pressure fracture strength, and softening resistance of the alloy, and refining the crystal grains. However, if the content of one or more elements selected from these elements exceeds 0.07% by mass in total, the extrusion pressure rises, so the same pressing as that without adding these elements. When extrusion is performed with output, it is necessary to increase the hot extrusion temperature. Thereby, since the surface oxidation of the extruded material increases, surface defects frequently occur in the copper tube of the present invention, and in particular, the fracture strength of the thinned copper tube as a heat transfer tube cannot be improved. For this reason, when it is selectively contained, one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr, Zr, and Ag are contained. The total content is less than 0.07% by mass (however, 0% by mass is not included). The content is desirably less than 0.05% by mass, and more desirably less than 0.03% by mass.

不純物:
その他の元素は不純物であり、Sn−P系銅管の、特に薄肉化された銅管の伝熱管としての破壊強度を向上させるために、含有量は極力少ない方が好ましい。しかし、これら不純物を低減するためのコストとの兼ね合いもあり、以下に、代表的な不純物元素の現実的な許容量(上限量)を示す。
impurities:
The other elements are impurities, and the content is preferably as small as possible in order to improve the breaking strength of the Sn-P copper pipe, particularly the thinned copper pipe, as the heat transfer pipe. However, there is also a trade-off with the cost for reducing these impurities, and the practical allowable amounts (upper limit amounts) of typical impurity elements are shown below.

S:
Sn−P系銅管で、SはCuと化合物を形成して母相中に存在する。原料として用いる低品位銅地金、スクラップ等の配合割合が増加すると、Sの含有量が増える。Sは鋳塊時の鋳塊割れや熱間押出割れを助長する。また、押出材を冷間圧延したり、抽伸加工すると、Cu-S化合物が管の軸方向に伸張し、銅合金母相とCu−S化合物の界面で割れが発生しやすくなる。このため、加工中の半製品及び加工後の製品において、表面疵や割れ等になりやすく、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。また、管の曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。したがって、S含有量は0.005質量%以下、望ましくは0.003質量%以下、更に望ましくは0.0015質量%以下にする。S含有量を減らすためには、低品位のCu地金及びスクラップの使用量を少なくし、溶解雰囲気のSOxガスを低減し、適正な炉材を選定し、Mg及びCa等のSと親和性が強い元素を溶湯に微量添加する等の対策が有効である。
S:
In the Sn-P copper pipe, S forms a compound with Cu and exists in the parent phase. When the blending ratio of low-grade copper ingots and scraps used as raw materials increases, the S content increases. S promotes ingot cracking and hot extrusion cracking during ingots. Further, when the extruded material is cold-rolled or drawn, the Cu—S compound expands in the axial direction of the pipe, and cracks are likely to occur at the interface between the copper alloy matrix and the Cu—S compound. For this reason, it is easy to become a surface flaw, a crack, etc. in the half-finished product and the product after processing, and especially the fracture strength as a heat transfer tube of the thinned copper tube is reduced. Further, when the pipe is bent, it becomes a starting point of occurrence of cracks, and the frequency of occurrence of cracks at the bent portion increases. Therefore, the S content is 0.005% by mass or less, desirably 0.003% by mass or less, and more desirably 0.0015% by mass or less. In order to reduce the S content, reduce the amount of low-grade Cu ingots and scrap used, reduce the SOx gas in the melting atmosphere, select appropriate furnace materials, and have an affinity for S such as Mg and Ca. Measures such as adding trace amounts of strong elements to the molten metal are effective.

As、Bi、Sb、Pb、Se、Te等:
Sn−P系銅管では、S以外の不純物元素As、Bi、Sb、Pb、Se、Te等についても同様に、鋳塊、熱間押出材、及び冷間加工材の健全性を低下させ、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。したがって、これらの元素の合計含有量(総量)は0.0015質量%以下、望ましくは0.0010質量%以下、更に望ましくは0.0005質量%以下とすることが好ましい。
As, Bi, Sb, Pb, Se, Te etc .:
In the Sn-P based copper pipe, the soundness of the ingot, hot extruded material, and cold worked material is similarly reduced for impurity elements As, Bi, Sb, Pb, Se, Te, etc. other than S, In particular, the breaking strength of a thinned copper tube as a heat transfer tube is reduced. Therefore, the total content (total amount) of these elements is preferably 0.0015% by mass or less, desirably 0.0010% by mass or less, and more desirably 0.0005% by mass or less.

O:
Sn−P系銅管では、Oの含有量が0.005質量%を超えると、Cu又はSnの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下し、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。このため、Oの含有量は好ましくは0.005質量%以下とすることが好ましい。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015質量%以下とすることが更に望ましい。
O:
In the Sn-P-based copper tube, when the O content exceeds 0.005 mass%, the Cu or Sn oxide is caught in the ingot, and the soundness of the ingot is lowered, and particularly the thinned copper Reduces the breaking strength of the tube as a heat transfer tube. For this reason, the content of O is preferably 0.005% by mass or less. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% by mass or less.

H:
Sn−P系銅管では、溶解鋳造時に溶湯に取り込まれる水素(H)が多くなると、凝固時に固溶量が減少した水素が鋳塊の粒界に析出し、多数のピンホールを形成し、熱間押出時に割れを発生させる。また、押出後も圧延及び抽伸加工した銅管を焼鈍すると、焼鈍時にHが粒界に濃縮し、これに起因して膨れが発生しやすくなり、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。このため、Hの含有量を0.0002質量%以下とすることが好ましい。製品歩留りも含めて、破壊強度をより向上させるには、Hの含有量を0.0001質量%以下とすることが望ましい。なお、Hの含有量を低減するには、溶解鋳造時の原料の乾燥、溶湯被覆木炭の赤熱、溶湯と接触する雰囲気の露点の低下、りん添加前の溶湯を酸化気味にする等の対策が有効である。
H:
In the Sn-P-based copper pipe, when the amount of hydrogen (H) taken into the molten metal at the time of melting and casting increases, hydrogen whose solid solution amount has decreased at the time of solidification precipitates at the grain boundary of the ingot, forming a large number of pinholes, Cracks are generated during hot extrusion. In addition, when a rolled and drawn copper tube is annealed even after extrusion, H is concentrated at the grain boundary during annealing, and this tends to cause blistering, particularly as a heat transfer tube of a thinned copper tube. Reduces fracture strength. For this reason, it is preferable to make content of H 0.0002 mass% or less. In order to further improve the fracture strength including the product yield, the H content is preferably 0.0001% by mass or less. In order to reduce the H content, measures such as drying of the raw material during melting and casting, red hotness of the molten-coating charcoal, reduction of the dew point of the atmosphere in contact with the molten metal, and making the molten metal before the addition of phosphorus feel oxidized It is valid.

銅管結晶粒組織:
本発明銅合金管の結晶粒組織は、SEM−EBSP法による測定結果で、銅合金管の軸方向に平行な方向の断面における平均結晶粒径D1を20μm以下とするとともに、このD1と、前記銅合金管の軸方向に垂直な方向の断面における平均結晶粒径D2との差D1−D2を3μm以下(0μmを含む)とする。
Copper tube grain structure:
The crystal grain structure of the copper alloy tube of the present invention is a measurement result by the SEM-EBSP method, and the average crystal grain size D1 in the cross section in the direction parallel to the axial direction of the copper alloy tube is 20 μm or less. The difference D1-D2 from the average crystal grain size D2 in the cross section perpendicular to the axial direction of the copper alloy tube is set to 3 μm or less (including 0 μm).

図1の右側に、銅合金管(銅管)の、一点鎖線で示す銅合金管の軸方向に平行な(方向の)断面の平均結晶粒径D1の例を示す。図1の左側に、銅合金管(銅管)の、一点鎖線で示す銅合金管の軸方向に垂直な(方向の)断面の平均結晶粒径D2の例を示す。これらに各々記載している四角の枠は、後述するSEM−EBSP法による、ピンポイントではない、枠の幅(短辺)=銅管肉厚mm×枠の長さ(長辺)=1.5mmの広範な測定範囲(領域) を示している。したがって、本発明の平均結晶粒径の規定は、光学顕微鏡などによる局部的あるいはピンポイントの測定に比して、銅管の平均結晶粒径特性をより正確に反映しているものである。   The right side of FIG. 1 shows an example of the average crystal grain size D1 of a cross section (in the direction) parallel to the axial direction of the copper alloy pipe indicated by the alternate long and short dash line of the copper alloy pipe (copper pipe). The left side of FIG. 1 shows an example of the average crystal grain size D2 of the cross section perpendicular to (in the direction of) the axis of the copper alloy tube indicated by the alternate long and short dash line of the copper alloy tube (copper tube). The square frames described in each of these are not pinpoints according to the SEM-EBSP method described later, the width of the frame (short side) = thickness of copper tube mm × the length of the frame (long side) = 1. A wide measuring range (area) of 5 mm is shown. Therefore, the definition of the average crystal grain size of the present invention more accurately reflects the average crystal grain size characteristic of the copper tube than the local or pinpoint measurement using an optical microscope or the like.

(平均結晶粒径)
銅管組織において結晶粒径が小さいほど、破壊強度と曲げ加工性バランスが向上することが知られている。本発明でも、この機構を利用して、後述する結晶粒の異方性と共に、平均結晶粒径の前記D1やD2を微細化する。すなわち、後述するSEM−EBSP法による測定結果で、Sn−P系銅管組織の銅合金管の軸方向に平行な(方向の)断面における前記平均結晶粒径D1の方を基準として、20μm以下に微細化し、破壊強度と曲げ加工性とのバランスを向上させる。
(Average crystal grain size)
It is known that the smaller the crystal grain size in the copper tube structure, the better the fracture strength and the bending workability balance. Also in the present invention, by utilizing this mechanism, the above-mentioned D1 and D2 of the average crystal grain size are refined together with the anisotropy of crystal grains described later. That is, in the measurement result by the SEM-EBSP method to be described later, the average crystal grain size D1 in the cross section (direction) parallel to the axial direction of the copper alloy tube of the Sn—P based copper tube structure is 20 μm or less. To improve the balance between fracture strength and bending workability.

因みに、銅管の厚みが比較的厚い場合には、平均結晶粒径は、破壊強度と曲げ加工性バランスにあまり影響ない。しかし、軽量化、薄肉化の要求により、伝熱管の厚みが特に1.0mm以下に薄肉化された場合には、この結晶粒径の大きさの破壊強度と曲げ加工性バランスへの影響が著しく大きくなる。平均結晶粒径が前記上限を超えて大き過ぎると、伝熱管に加わる引張力によって亀裂が発生する際の「ひずみの集中」を避けることができず、伝熱管に亀裂が生じやすくなる。このため、前記した運転圧力が高い代替冷媒を用いた熱交換器用銅管を使用したときの信頼性が低下する。また、結晶粒径が粗大化すると、銅管を曲げ加工したときに、曲げ部に割れが発生しやすくなる問題も生じる。   Incidentally, when the thickness of the copper tube is relatively thick, the average crystal grain size has little influence on the fracture strength and the bending workability balance. However, when the thickness of the heat transfer tube is reduced to 1.0 mm or less due to demands for weight reduction and thinning, the influence of the crystal grain size on the fracture strength and bending workability balance is significant. growing. When the average crystal grain size is too large exceeding the upper limit, “strain concentration” when cracks are generated by the tensile force applied to the heat transfer tubes cannot be avoided, and cracks tend to occur in the heat transfer tubes. For this reason, the reliability when the copper tube for heat exchangers using the above-described alternative refrigerant having a high operating pressure is lowered. Moreover, when the crystal grain size becomes coarse, there is a problem that cracks are likely to occur in the bent portion when the copper tube is bent.

更に、銅管が熱交換器に加工されたとき、800℃以上の高温にさらされる、ろう付けによる熱影響を受けて、伝熱管の加熱された部分の結晶粒径は必ず粗大化する。これに対して、予め銅管の平均結晶粒径を前記した範囲に微細化させていないと、粗大化によって平均結晶粒径が100μmを超える可能性が高くなるり、ろう付け部において耐圧強度の低下が大きくなり、耐軟化性が低下する。   Furthermore, when the copper tube is processed into a heat exchanger, the crystal grain size of the heated portion of the heat transfer tube is necessarily coarsened due to the heat effect of brazing exposed to a high temperature of 800 ° C. or higher. On the other hand, if the average crystal grain size of the copper tube is not refined in the above-mentioned range in advance, the average crystal grain size is likely to exceed 100 μm due to coarsening, or the pressure strength at the brazed portion is high. Decrease increases and softening resistance decreases.

(結晶粒の異方性)
銅合金管の軸方向に平行な(方向の)断面における平均結晶粒径D1と、この銅合金管の軸方向に垂直な(方向の)断面における平均結晶粒径D2との差D1−D2が無い(0μm)か、3μm以下と小さいほど、銅管の部位(断面方向)による平均結晶粒径の異方性が小さく、耐軟化性が向上する。したがって、本発明では、銅合金管の軸方向に平行な断面の平均結晶粒径D1を前記20μm以下に微細化させた上に、更に、このD1とD2との差D1−D2を3μm以下(0μm)と規定する。
(Anisotropy of crystal grains)
The difference D1-D2 between the average crystal grain size D1 in the cross section (direction) parallel to the axial direction of the copper alloy tube and the average crystal grain size D2 in the cross section (direction) perpendicular to the axial direction of the copper alloy tube is The smaller (0 μm) or 3 μm or less, the smaller the anisotropy of the average crystal grain size due to the copper tube part (cross-sectional direction), and the softening resistance improves. Therefore, in the present invention, the average crystal grain size D1 of the cross section parallel to the axial direction of the copper alloy tube is refined to 20 μm or less, and the difference D1-D2 between D1 and D2 is further set to 3 μm or less ( 0 μm).

ここで、銅合金管のこのD1とD2との差「D1−D2」は、前記した通り、通常用いられる「アスペクト比や扁平度あるいは真円度」のような、同じ結晶粒での縦横の長さの比ではない。すなわち、圧延や抽伸方向に平行で、結晶粒が伸長しやすい、銅合金管の軸方向に平行な断面と、この軸方向に垂直な断面との、管の断面方向が違う、相異なる部位同士の平均結晶粒径の比較である。したがって、本発明では管の部位(あるいは断面方向)による結晶粒の異方性と表現している。   Here, the difference “D1−D2” between D1 and D2 of the copper alloy tube is, as described above, the vertical and horizontal directions of the same crystal grains such as “aspect ratio, flatness or roundness” that are usually used. It is not a ratio of length. In other words, the cross-section direction of the pipe is different from each other in the cross-section parallel to the axial direction of the copper alloy pipe and the cross-section perpendicular to the axial direction, which is parallel to the rolling or drawing direction and the crystal grains are easily elongated. It is a comparison of the average crystal grain size. Therefore, in the present invention, it is expressed as anisotropy of crystal grains due to the tube portion (or cross-sectional direction).

なお、通常の製法では、圧延や抽伸方向に平行で、結晶粒が伸長しやすい平均結晶粒径D1の方が、平均結晶粒径D2よりも必然的に大きくなり、このD1とD2との差「D1−D2」がマイナスとなることは無い。ただ、本発明では、結晶粒径の異方性が小さい銅管として、このD1とD2との差「D1−D2」が例えマイナスとなった場合(D1<D2の場合)でも、規定する3μm以下を絶対値と解して、範囲に含みうる。   In a normal manufacturing method, the average crystal grain size D1 that is parallel to the rolling or drawing direction and the crystal grains tend to extend is inevitably larger than the average crystal grain size D2, and the difference between D1 and D2 “D1-D2” never becomes negative. However, in the present invention, even when the difference “D1−D2” between D1 and D2 becomes negative (in the case of D1 <D2) as a copper tube having a small crystal grain anisotropy, 3 μm is defined. The following can be interpreted as absolute values and included in the range.

前記した通り、このD1とD2との差D1−D2は、銅合金管の軸方向に平行な方向の結晶粒径と、銅合金管の軸方向に垂直な方向の結晶粒径との差、すなわち結晶粒径の異方性を表す。すなわち、この差D1−D2が小さいほど、銅合金管の組織が、再結晶核の生成によるひずみのない等軸な結晶粒が主体となった結晶組織であることを示す。このような再結晶核の生成によるひずみのない等軸な結晶粒が主体となった結晶組織は、転位密度が非常に低く、強度や加工性が優れる。このため、銅管の肉厚を薄くしても、引張強さをそれほど大きくせずに、所定の破壊強度を確保することが可能になり、この引張強さの余裕分だけ、管の曲げ加工性を向上することができる。また、再結晶核の生成によるひずみのない等軸な結晶粒が多いほど、前記ろう付け時に、銅合金管組織の結晶粒の成長が抑制され、耐軟化性が優れる。   As described above, the difference D1-D2 between D1 and D2 is the difference between the crystal grain size in the direction parallel to the axial direction of the copper alloy tube and the crystal grain size in the direction perpendicular to the axial direction of the copper alloy tube. That is, it represents the anisotropy of the crystal grain size. That is, as the difference D1-D2 is smaller, the structure of the copper alloy tube is a crystal structure mainly composed of equiaxed crystal grains free from distortion due to the formation of recrystallization nuclei. Such a crystal structure mainly composed of equiaxed crystal grains without distortion due to the formation of recrystallized nuclei has a very low dislocation density and is excellent in strength and workability. For this reason, even if the wall thickness of the copper pipe is reduced, it is possible to ensure a predetermined breaking strength without increasing the tensile strength so much, and bending the pipe by the margin of this tensile strength. Can be improved. Further, the more equiaxed crystal grains without distortion due to the formation of recrystallization nuclei, the more the growth of crystal grains of the copper alloy tube structure is suppressed during the brazing, and the softening resistance is excellent.

これに対して、この差D1−D2が3μmを超えて大きくなるほど、銅合金管の組織が、回復によりひずみが開放されて生じた結晶粒、すなわち、圧延方向や抽伸方向の、銅管の軸方向に伸長した結晶粒が主体となった結晶組織であることを示す。この差D1−D2が3μmを超えた場合には、回復によりひずみが開放されて生じた結晶粒が多くなるとともに、逆に、再結晶核の生成によるひずみのない結晶粒が少なくなっている証拠である。   On the other hand, as the difference D1-D2 increases beyond 3 μm, the structure of the copper alloy tube is a crystal grain formed by releasing the strain by recovery, that is, the axis of the copper tube in the rolling direction or the drawing direction. This indicates that the crystal structure is mainly composed of crystal grains elongated in the direction. When this difference D1-D2 exceeds 3 μm, the number of crystal grains generated by the recovery of strain increases, and conversely, evidence that the number of crystal grains without distortion due to the formation of recrystallization nuclei decreases. It is.

このような組織は、銅合金管組織の転位密度が高く、局所的なひずみが発生しやすくなり、破壊強度と引張強さの比が低くなり、破壊強度と曲げ加工性のバランスが低下してしまう。また、回復によりひずみが連続的に開放した結晶粒は、前記ろう付け時の高温加熱時に、再結晶核の生成によるひずみのない結晶粒よりも、優先的に成長してしまう性質を有する。このため、この結晶粒が多く、前記差D1−D2が3μmを超えて大きくなるほど、前記ろう付け後の結晶粒径が著しく大きくなってしまい、ろう付け後の強度や破壊圧力などの耐軟化性が低下してしまうこととなる。   In such a structure, the dislocation density of the copper alloy tube structure is high, local strain is likely to occur, the ratio of fracture strength to tensile strength is lowered, and the balance between fracture strength and bending workability is reduced. End up. Further, the crystal grains whose strain is continuously released by recovery have the property of preferentially growing over the crystal grains without distortion due to the formation of recrystallized nuclei during the high temperature heating during brazing. For this reason, as the number of crystal grains increases and the difference D1-D2 exceeds 3 μm, the crystal grain size after brazing becomes remarkably large, and softening resistance such as strength and breaking pressure after brazing. Will be reduced.

このように、結晶粒径の微細化だけでなく、この微細な結晶粒自体の由来や形状、あるいは微細な結晶粒の異方性が、大きく耐軟化性に影響する。回復によりひずみが開放されて生じた結晶粒、すなわち、圧延方向や抽伸方向の銅管の軸方向に伸長した結晶粒が主体では、例え、それが微細な結晶粒であっても、強度や加工性だけでなく、特に、耐軟化性が向上しない。   As described above, not only the refinement of the crystal grain size but also the origin and shape of the fine crystal grains themselves or the anisotropy of the fine crystal grains greatly affect the softening resistance. The main component is crystal grains that are generated by releasing strain due to recovery, that is, crystal grains that are elongated in the axial direction of the copper tube in the rolling direction or drawing direction, for example, even if they are fine crystal grains. In particular, the softening resistance is not improved.

結晶粒の制御方法:
本発明で規定するように銅管組織の結晶粒を制御するためには、回復により生じた結晶粒を少なくし、再結晶核の生成によるひずみのない結晶粒を多くする必要がある。このためには、抽伸加工途中で、通常は行わない、中間焼鈍を入れて、この中間焼鈍により一度再結晶させ、結晶粒径を小さくしてから、最終焼鈍すれば良い。本発明によれば、このように、1.0mm以下に薄肉化されても、耐軟化性を向上させ、併せて破壊強度および曲げ加工性に優れた熱交換器用Sn−P系銅合金管を製造しやすい利点もある。
Grain control method:
In order to control the crystal grains of the copper tube structure as defined in the present invention, it is necessary to reduce the crystal grains generated by the recovery and increase the crystal grains without distortion due to the formation of recrystallization nuclei. For this purpose, intermediate annealing, which is not normally performed, is performed during the drawing process, and recrystallization is performed once by this intermediate annealing to reduce the crystal grain size, and then the final annealing is performed. According to the present invention, a Sn-P-based copper alloy tube for a heat exchanger that is improved in softening resistance and excellent in fracture strength and bending workability even when thinned to 1.0 mm or less is thus obtained. There is also an advantage that it is easy to manufacture.

これに対して、通常の熱交換器用の薄肉の銅合金管は、1.0mm以下に薄肉化される際に、熱間押出後の圧延および抽伸工程で、95%以上の減面率で加工されるため、これら圧延工程や抽伸工程で大きなひずみが導入される。しかも、生産効率の点から、通常は、前記抽伸加工途中では、中間焼鈍を入れることが無いので、結晶粒径が大きいまま、最終焼鈍工程に持ち越される。このため、従来のSn−P系銅合金管の最終焼鈍工程で生成する結晶粒は、必然的に、ひずみが連続的に開放して生じた結晶粒の方が生成しやすい。したがって、従来のSn−P系銅合金管は、前記D1−D2が3μmを超えやすく、このため、特に耐軟化性が劣っていたものである。   In contrast, thin copper alloy tubes for ordinary heat exchangers are processed with a reduction in area of 95% or more in the rolling and drawing processes after hot extrusion when thinned to 1.0 mm or less. Therefore, a large strain is introduced in these rolling processes and drawing processes. In addition, from the viewpoint of production efficiency, normally, intermediate annealing is not performed during the drawing process, so that the final annealing process is carried over while the crystal grain size remains large. For this reason, the crystal grains produced in the final annealing step of the conventional Sn-P-based copper alloy tube are inevitably produced more easily because the crystal grains produced by the continuous release of strain are generated. Therefore, in the conventional Sn-P-based copper alloy tube, the D1-D2 is likely to exceed 3 μm, and therefore the softening resistance is particularly inferior.

平均結晶粒径の測定方法:
前記平均結晶粒径D1、D2は、電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)に、後方散乱電子回折像[EBSP: ElectronBack Scattering (Scattered) Pattern]システムを搭載した結晶方位解析法を用いて、各々測定する。この際、前記した通り、図1に各々記載している四角の枠内の広範な測定範囲(領域) を各々測定している。ただ、これらD1、D2との測定位置は必ずしも、互いに銅管での同じ長さ位置(部位)で測定する必要はなく、銅管の長手方向での位置(部位)が互いに異なっても、あるいは互いに大きく離れても、銅管の材質は均一であるので差し支えない。ただ、この点、製造される銅管の長手方向の両端部だけは避けることが好ましい。
Method for measuring average grain size:
The average crystal grain size D1 and D2 is a crystal orientation analysis method in which a field emission scanning electron microscope (FESEM) is equipped with a backscattered electron diffraction image (EBSP: Electron Back Scattering (Scattered) Pattern) system. To measure each. At this time, as described above, a wide measurement range (region) within each square frame illustrated in FIG. 1 is measured. However, the measurement positions of these D1 and D2 do not necessarily need to be measured at the same length position (site) in the copper pipe, even if the positions (sites) in the longitudinal direction of the copper pipe are different from each other, or Even if they are far apart from each other, the material of the copper tube is uniform, so it does not matter. However, it is preferable to avoid only the both ends in the longitudinal direction of the copper pipe to be manufactured.

上記EBSP法は、FESEM の鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方位データが得られる   In the EBSP method, an electron beam is irradiated onto a sample set in a FESEM column and the EBSP is projected onto a screen. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data can be obtained at the end of measurement.

ここで、通常の銅合金の板の場合、主に、Cube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる多くの方位因子からなる集合組織を形成し、それらに応じた結晶面が存在する。これらの事実は、例えば、長島晋一編著、「集合組織」(丸善株式会社刊)や軽金属学会「軽金属」解説Vol.43、1993、P285-293などの記載されている。本発明銅管は押出・圧延・抽伸によって製造されるが、この場合も、前記圧延による板材の集合組織の場合と同様に、押出素管の押出面と押出方向(押出素管を圧延加工する場合は圧延面と圧延方向)で表され、押出面は{ABC}で表現され、押出方向は<DEF>で表現される。   Here, in the case of a normal copper alloy plate, it mainly forms a texture composed of many orientation factors called Cube orientation, Goss orientation, Brass orientation, Copper orientation, S orientation, etc., and a crystal plane corresponding to them Exists. These facts are described in, for example, edited by Shinichi Nagashima, “Aggregate” (published by Maruzen Co., Ltd.) and “Light Metal”, Vol. 43, 1993, P285-293, published by the Japan Institute of Light Metals. The copper pipe of the present invention is manufactured by extrusion / rolling / drawing. In this case as well, as in the case of the texture of the plate material by rolling, the extrusion surface and the extrusion direction of the extrusion element pipe (the extrusion element tube is rolled) In this case, the extrusion surface is expressed by {ABC}, and the extrusion direction is expressed by <DEF>.

本発明においては、基本的に、これらの結晶面から±15°以内の方位のずれのものは同一の結晶面(方位因子)に属するものとし、また、隣り合う結晶粒の方位差が5°以上の結晶粒の境界を結晶粒界と定義する。   In the present invention, basically, those whose orientations deviate within ± 15 ° from these crystal planes belong to the same crystal plane (orientation factor), and the orientation difference between adjacent crystal grains is 5 °. The above crystal grain boundary is defined as a crystal grain boundary.

その上で、本発明においては、測定エリア、管軸方向1000×管周方向800μmに対して1.0μmのピッチで電子線を照射し、図1に各々記載している四角の枠内の広範な測定範囲(領域) を各々測定する。その上で、上記結晶方位解析法により測定した結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、上記平均結晶粒径を(Σx)/nで算出する。   In addition, in the present invention, an electron beam is irradiated at a pitch of 1.0 μm with respect to a measurement area, tube axis direction 1000 × tube circumferential direction 800 μm, and a wide area within each square frame shown in FIG. Each measuring range (area). Then, when the number of crystal grains measured by the crystal orientation analysis method is n and each measured crystal grain size is x, the average crystal grain size is calculated as (Σx) / n.

銅管の製造方法:
本発明銅管の製造方法について、平滑管の場合を例として以下に説明する。本発明のSn−P系銅管は、基本的な工程自体は常法により製造可能であるが、銅管の結晶粒組織を前記した真円状の結晶粒とするためには、抽伸工程において中間焼鈍を特に施す必要がある。以下に、各工程を具体的に説明する。
Copper tube manufacturing method:
The method for producing a copper tube of the present invention will be described below by taking a smooth tube as an example. The Sn-P-based copper pipe of the present invention can be manufactured by a conventional method in the basic process itself, but in order to make the crystal grain structure of the copper pipe into the above-mentioned perfect circular crystal grains, in the drawing process It is particularly necessary to perform intermediate annealing. Below, each process is demonstrated concretely.

先ず、原料の電気銅を木炭被覆の状態で溶解し、銅が溶解した後、所定のSn−P系銅合金組成となるように、合金元素を所定量添加する。この際、脱酸を兼ねてCu−15質量%P中間合金としてPを添加することが好ましい。また、Sn−P系銅合金では、Sn及びCu−P母合金の替わりに、Cu−Sn−Pの母合金を使用することもできる。これらの成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。得られたビレットを加熱炉で加熱し、均質化処理を行なう。なお、熱間押出前に、ビレットを750乃至950℃に1分乃至2時間程度保持して均質化による偏析改善を行うことが望ましい。   First, the raw electrolytic copper is dissolved in a charcoal-coated state, and after the copper is dissolved, a predetermined amount of alloy element is added so that a predetermined Sn-P-based copper alloy composition is obtained. At this time, it is preferable to add P as a Cu-15 mass% P intermediate alloy also for deoxidation. In addition, in the Sn—P based copper alloy, a Cu—Sn—P master alloy can be used instead of the Sn and Cu—P master alloy. After these component adjustments are completed, billets having predetermined dimensions are produced by semi-continuous casting. The obtained billet is heated in a heating furnace and homogenized. Before hot extrusion, it is desirable to improve segregation by homogenization by holding the billet at 750 to 950 ° C. for about 1 minute to 2 hours.

その後、ビレットにピアシングによる穿孔加工を行い、750乃至950℃で熱間押出を行う。この際、Sn−P系銅管のSnの偏析解消や製品管における組織の微細化の達成が必要である。そのために、Sn−P系銅管の熱間押出による断面減少率([穿孔されたビレットのドーナツ状の面積−熱間押出後の素管の断面積]/[穿孔されたビレットのドーナツ状の面積]×100%)を88%以上、望ましくは93%以上とし、更に熱間押出後の素管を水冷等の方法により、表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。   Thereafter, the billet is perforated by piercing and hot extruded at 750 to 950 ° C. At this time, it is necessary to eliminate Sn segregation in the Sn—P based copper pipe and to refine the structure of the product pipe. For this purpose, the reduction rate of the cross-section of the Sn-P-based copper tube by hot extrusion ([perforated billet donut area-cross-sectional area of the base tube after hot extrusion] / [perforated billet donut shape] Area] × 100%) is 88% or more, desirably 93% or more, and further, the cooling rate until the surface temperature reaches 300 ° C. is 10 ° C./second or more by a method such as water cooling. The cooling is preferably performed at 15 ° C./second or more, more preferably 20 ° C./second or more.

次に、押出素管に圧延加工を行ない、外径と肉厚を低減させる。このときの加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減できる。この圧延素管に抽伸加工を行なって所定の寸法および肉厚の素管を製造する。この抽伸加工の際に、肉厚を1.0mm以下に薄肉化する場合には、合計加工率を、断面減少率で95%以上とする。この際、抽伸加工は通常複数台の抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)を35%以下とすることにより、素管における表面欠陥及び内部割れを低減できる。   Next, the extruded element tube is rolled to reduce the outer diameter and thickness. By setting the processing rate at this time to 92% or less in terms of the cross-sectional reduction rate, product defects during rolling can be reduced. The rolling blank is subjected to drawing to produce a blank having a predetermined size and thickness. When the thickness is reduced to 1.0 mm or less during the drawing process, the total processing rate is set to 95% or more in terms of the cross-sectional reduction rate. At this time, the drawing process is usually performed using a plurality of drawing machines. By setting the processing rate (cross-sectional reduction rate) by each drawing machine to 35% or less, surface defects and internal cracks in the raw pipe can be reduced.

この抽伸加工の途中あるいは後で、中間焼鈍を400℃以上、700℃以下の温度範囲で2分〜1時間行う。中間焼鈍温度が300℃よりも低いと、中間焼鈍工程で再結晶が生じず、結晶粒径が大きいまま最終焼鈍工程に持ち越される。このため、従来のSn−P系銅合金管同様に、最終焼鈍工程で生成する結晶粒は、ひずみが連続的に開放して生じた結晶粒の方が生成しやすくなり、前記D1−D2が3μmを超えた伸長粒となりやく、耐軟化性が劣ることとなる。   During or after the drawing process, intermediate annealing is performed at a temperature range of 400 ° C. to 700 ° C. for 2 minutes to 1 hour. When the intermediate annealing temperature is lower than 300 ° C., recrystallization does not occur in the intermediate annealing step, and the final annealing step is carried over with the crystal grain size being large. For this reason, as with conventional Sn-P-based copper alloy tubes, the crystal grains produced in the final annealing step are more likely to be produced by the continuous release of strain, and the D1-D2 is It tends to be elongated grains exceeding 3 μm and is inferior in softening resistance.

一方、中間焼鈍温度が700℃以上では、結晶粒径が粗大となり、破壊圧力の換算応力が230MPa以下と低くなりすぎる。   On the other hand, when the intermediate annealing temperature is 700 ° C. or higher, the crystal grain size becomes coarse, and the converted stress of the fracture pressure is too low at 230 MPa or less.

この中間焼鈍後、更に、抽伸加工を行って平滑管を製作するが、この中間焼鈍後の断面減面率は35%以上80%以下とする。減面率が35%よりも低いと、蓄積ひずみ量が逆に小さすぎ、再結晶核の生成に必要な駆動力を高められない。このため、その後の最終焼鈍で、再結晶核の生成によるひずみのない等軸な結晶粒が生成しにくくなり、やはり前記D1−D2が3μmを超えた伸長粒となりやく、耐軟化性が劣ることとなる。一方、減面率が80%を超えて高すぎると、最終の銅管の外径が小さくなりすぎ、また銅管の肉厚が薄くなりすぎてしまい、冷媒の内圧に耐えられなくなってしまう。   After this intermediate annealing, drawing is further performed to manufacture a smooth tube. The cross-sectional area reduction ratio after this intermediate annealing is set to 35% or more and 80% or less. If the area reduction rate is lower than 35%, the accumulated strain amount is too small, and the driving force necessary for generating recrystallized nuclei cannot be increased. For this reason, in the subsequent final annealing, it becomes difficult to produce equiaxed crystal grains without distortion due to the formation of recrystallization nuclei, and the D1-D2 tends to be elongated grains exceeding 3 μm, and the softening resistance is poor. It becomes. On the other hand, if the area reduction rate exceeds 80% and is too high, the outer diameter of the final copper tube becomes too small, and the thickness of the copper tube becomes too thin, so that it cannot withstand the internal pressure of the refrigerant.

また、この中間焼鈍の昇温の際に、300〜400℃の範囲の昇温速度は150℃/分以上に速めることが好ましい。この温度範囲では、回復による転位密度の減少が顕著であり、昇温速度を大きくして、なるべく回復を生じさせないことが重要である。一方、400℃以上では再結晶核の生成が生じ始めるため、この温度以上では、昇温速度が結晶粒のバラツキに与える影響は小さく、速める必要はない。中間焼鈍の使用加熱炉はインダクションヒーターを用い、設定温度を高温にし、保持時間を短時間とすることで、前記300〜400℃の範囲の昇温速度を大きくできる。   Moreover, it is preferable that the temperature increase rate in the range of 300 to 400 ° C. is increased to 150 ° C./min or more during the temperature increase of the intermediate annealing. In this temperature range, the reduction in dislocation density due to recovery is significant, and it is important to increase the rate of temperature rise so that recovery does not occur as much as possible. On the other hand, since recrystallization nuclei start to be generated at temperatures higher than 400 ° C., the temperature increase rate has little influence on the variation of crystal grains at temperatures higher than this, and it is not necessary to increase the temperature. The heating furnace used for the intermediate annealing can use an induction heater, increase the set temperature to a high temperature, and shorten the holding time to increase the heating rate in the range of 300 to 400 ° C.

この抽伸工程の後、抽伸素管に最終の焼鈍処理を行う。銅管を連続的に焼鈍するには、銅管コイル等の焼鈍に通常使用されるローラーハース炉、又は高周波誘導コイルに通電しながら、抽伸素管を前記コイル内に通す、高周波誘導コイルによる加熱を利用することができる。   After this drawing process, a final annealing process is performed on the drawing element tube. In order to continuously anneal a copper pipe, heating by a high-frequency induction coil is performed by passing a drawing element pipe through the coil while energizing a roller hearth furnace or a high-frequency induction coil normally used for annealing a copper pipe coil or the like. Can be used.

ローラーハース炉によって、本発明の銅管を製造するには、抽伸素管の実体温度が350乃至700℃となり、その温度で抽伸素管が1分乃至120分間程度加熱されるように焼鈍することが望ましい。抽伸素管の実体温度が350℃より低いと完全な再結晶組織にならず、繊維状の加工組織が残存し、需要家における曲げ加工が困難になる。また、700℃を超える温度では、結晶粒が粗大化し、管の曲げ加工性が却って低下してしまう。したがって、抽伸管の実体温度が350乃至700℃の範囲で焼鈍することが望ましい。   In order to manufacture the copper tube of the present invention using a roller hearth furnace, annealing is performed so that the actual temperature of the drawn element tube is 350 to 700 ° C., and the drawn element tube is heated for about 1 to 120 minutes at that temperature. Is desirable. When the body temperature of the drawn element tube is lower than 350 ° C., a complete recrystallized structure is not formed, and a fibrous processed structure remains, which makes it difficult for a customer to perform bending. Moreover, when the temperature exceeds 700 ° C., the crystal grains become coarse, and the bending workability of the tube is lowered. Therefore, it is desirable to anneal the drawing tube at a solid temperature of 350 to 700 ° C.

また、この温度範囲における加熱時間が1分より短いと、完全な再結晶組織にならないため、前記した問題が発生する。また、120分を超えて焼鈍を行っても、結晶粒径に変化がなく、焼鈍の効果は飽和してしまうため、効率が悪い。このため、前記温度範囲における加熱時間は1分乃至120分が適当である。   In addition, when the heating time in this temperature range is shorter than 1 minute, a complete recrystallized structure is not obtained, and thus the above-described problem occurs. Further, even if annealing is performed for more than 120 minutes, the crystal grain size does not change, and the effect of annealing is saturated. For this reason, the heating time in the temperature range is suitably 1 minute to 120 minutes.

以上が平滑管の製造方法であるが、このように最終焼鈍した平滑管に、必要に応じて各種加工率の抽伸加工を行い、引張り強さを向上させた加工管としてもよい。内面溝付管の場合は平滑管に溝付転造加工を行い、内面溝付管を製造した後、更に最終の焼鈍を行う。また、このように焼鈍した内面溝付管に、必要に応じて軽加工率の抽伸加工を行い、引張り強さを向上させてもよい。   The smooth tube manufacturing method has been described above. However, the smooth annealed smooth tube may be subjected to drawing processing at various processing rates as necessary to obtain a processed tube with improved tensile strength. In the case of an internally grooved tube, the smooth tube is subjected to grooved rolling to produce an internally grooved tube, followed by final annealing. Further, the annealed inner surface grooved tube may be subjected to a drawing process at a light processing rate as necessary to improve the tensile strength.

以下、本発明の実施例について説明する。表1に示す種々の化学組成や、表2に示す製造条件(抽伸における中間焼鈍の有無)とし、結晶粒組織を異なせた種々のSn−P系銅管を、平滑管として製造した。   Examples of the present invention will be described below. Various Sn-P-based copper tubes with different crystal grain structures were manufactured as smooth tubes with various chemical compositions shown in Table 1 and production conditions shown in Table 2 (whether or not intermediate annealing in drawing).

この銅合金管の軸方向に平行な断面における平均結晶粒径D1、軸方向に垂直な断面における平均結晶粒径D2を、各々前記SEM−EBSP法により測定し、このD1とD2との差D1−D2(μm)も求めた。そして、これら銅管の引張強さ、破壊強度、曲げ加工性についても測定、評価した。これらの結果も表1に示す。これらSn−P系銅管(平滑管)の具体的な製造方法や測定、評価方法は以下の通りである。   An average crystal grain size D1 in a cross section parallel to the axial direction of the copper alloy tube and an average crystal grain size D2 in a cross section perpendicular to the axial direction were measured by the SEM-EBSP method, respectively, and the difference D1 between D1 and D2 -D2 (μm) was also determined. The tensile strength, fracture strength, and bending workability of these copper tubes were also measured and evaluated. These results are also shown in Table 1. Specific manufacturing methods, measurements, and evaluation methods for these Sn-P-based copper tubes (smooth tubes) are as follows.

(平滑管の製造条件)
(a)電気銅を原料として、Sn−P系銅管は溶湯中に所定のSnを添加し、更に必要に応じて選択的な添加元素を添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製した。これら溶製した銅合金の成分組成を、銅管の成分組成とした。
(Smooth tube manufacturing conditions)
(A) Using electrolytic copper as a raw material, Sn—P-based copper pipe is to add a predetermined Sn to the molten metal, and optionally add additional additive elements, and then add a Cu—P master alloy. Thus, a molten metal having a predetermined composition was produced. The component composition of these molten copper alloys was defined as the component composition of the copper tube.

(b)鋳造温度1200℃で、直径300mm×長さ6500mmの鋳塊を半連続鋳造し、得られた鋳塊から、長さ450mmのビレットを切り出した。 (B) An ingot having a diameter of 300 mm and a length of 6500 mm was semi-continuously cast at a casting temperature of 1200 ° C., and a billet having a length of 450 mm was cut out from the obtained ingot.

(c)ビレットをビレットヒーターで650℃に加熱した後、加熱炉(インダクションヒーター)で950℃に加熱し、950℃に到達した後2分経過後、加熱炉から取り出し、熱間押出機で、ビレット中心に直径80mmのピアシング加工を施した後、直ちに(遅滞なく)、同じ熱間押出機で、外径96mm、肉厚9.5mmの押出素管を作製した(断面減少率:96.6%)。熱間押出後の押出素管の300℃までの平均冷却速度は40℃/秒とした。 (C) After heating the billet to 650 ° C. with a billet heater, the billet is heated to 950 ° C. with a heating furnace (induction heater). After reaching 950 ° C., after 2 minutes, the billet is taken out from the heating furnace, Immediately after the piercing process with a diameter of 80 mm at the center of the billet (without delay), an extruded element tube having an outer diameter of 96 mm and a wall thickness of 9.5 mm was produced with the same hot extruder (cross-sectional reduction rate: 96.6). %). The average cooling rate to 300 ° C. of the extruded tube after hot extrusion was 40 ° C./second.

(d)押出素管を圧延して、外径35mm、肉厚2.3mmの圧延素管を作製し、圧延素管を、1回の抽伸工程における断面減少率が35%以下になるように、引き抜き抽伸加工を行い、外径22mm、肉厚1.2mm〜外径12mm、肉厚0.95mmとした。 (D) The extruded element tube is rolled to produce a rolled element tube having an outer diameter of 35 mm and a wall thickness of 2.3 mm, and the rolling element tube has a cross-sectional reduction rate of 35% or less in one drawing process. Then, drawing and drawing were performed to obtain an outer diameter of 22 mm, a wall thickness of 1.2 mm to an outer diameter of 12 mm, and a wall thickness of 0.95 mm.

(e)その後、中間焼鈍として、加熱炉(インダクションヒーター)で、表1に各々示す温度に加熱し、この温度にて30分保持し、冷却帯を通過させて室温まで徐冷し、供試材とした。この中間焼鈍の昇温の際には、中間焼鈍を施した各例とも、共通して300〜400℃の範囲の昇温速度は、設定温度を高温にして、200℃/分程度に速めた。 (E) After that, as intermediate annealing, heating to a temperature shown in Table 1 in a heating furnace (induction heater), holding at this temperature for 30 minutes, passing through a cooling zone and gradually cooling to room temperature, test A material was used. In the case of the temperature increase of the intermediate annealing, the temperature increase rate in the range of 300 to 400 ° C. is commonly increased to about 200 ° C./min in the range of 300 to 400 ° C. in each example subjected to the intermediate annealing. .

(f)この後、引き続いて、引き抜き抽伸加工を行い、外径9.52mm、肉厚0.80mmとし、断面減面率を種々変更した銅管を作成した。このときの断面減面率(%)を表1に示す。 (F) Thereafter, drawing and drawing were performed, and copper tubes having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm and various cross-sectional area reduction rates were produced. Table 1 shows the cross-sectional area reduction ratio (%).

(g)最終焼鈍として、焼鈍炉にて、還元性ガス雰囲気中で、前記抽伸管を表1に示す温度(平均昇温速度は共通して12℃/分)、保持時間にて焼鈍し、冷却帯を通過させて、表1に示す、室温までの冷却速度、300〜400℃の間の冷却速度で室温まで冷却し、供試材とした。 (G) As final annealing, in the reducing gas atmosphere in an annealing furnace, the drawing tube was annealed at the temperature shown in Table 1 (average heating rate is 12 ° C./min) and holding time, The sample was allowed to pass through a cooling zone and cooled to room temperature at a cooling rate to room temperature shown in Table 1 and a cooling rate between 300 to 400 ° C. to obtain a test material.

(h)これら製造した銅管(外径9.52mm、肉厚0.80mm)の平均結晶粒径D1とD2、この差D1−D2の銅管組織、引張強さ、破壊強度、曲げ加工性などの銅管特性を表2に示す。なお、表1において、発明例、比較例の各例ともに、共通して、銅管のS含有量は0.005質量%以下、As、Bi、Sb、Pb、Se、Teの合計含有量(総量)は0.0005質量%以下、Oの含有量は0.003質量%以下、Hの含有量は0.0001質量%以下であった。 (H) The average crystal grain diameters D1 and D2 of these manufactured copper tubes (outer diameter 9.52 mm, wall thickness 0.80 mm), copper tube structure, tensile strength, fracture strength, bending workability of this difference D1-D2 Table 2 shows the properties of copper pipes. In Table 1, the S content of the copper tube is 0.005 mass% or less in common with each of the examples of the invention and the comparative example, and the total content of As, Bi, Sb, Pb, Se, Te ( The total amount) was 0.0005 mass% or less, the O content was 0.003 mass% or less, and the H content was 0.0001 mass% or less.

(結晶粒組織)
前記製造した銅管の結晶粒組織における、平均結晶粒径D1とD2は前記したSEMにEBSPシステムを搭載した結晶方位解析法により、図1に示す各四角の枠内を測定した。これら四角の枠の測定範囲は、枠の幅(短辺)=銅管肉厚0.80mm×枠の長さ(長辺)=1.5mmの測定範囲(領域)とした。
これら測定結果のうち、図2に表1の発明例1、図3に表1の比較例7、図4に比較例2、図5に比較例1の銅管結晶組織(図面代用写真)を各々示す。これら図2〜5において、平均結晶粒径D1を測定した、銅管の軸方向に平行な断面(平行D1と記載)は右側に、平均結晶粒径D2を測定した、銅管の軸方向に垂直な断面(垂直D2と記載)は左側に、各々示している。
(Grain structure)
The average crystal grain diameters D1 and D2 in the crystal grain structure of the manufactured copper tube were measured in the square frames shown in FIG. 1 by the crystal orientation analysis method in which the EBSP system was mounted on the SEM. The measurement range of these square frames was a measurement range (region) of frame width (short side) = copper tube thickness 0.80 mm × frame length (long side) = 1.5 mm.
Of these measurement results, FIG. 2 shows Invention Example 1 in Table 1, FIG. 3 shows Comparative Example 7 in Table 1, FIG. 4 shows Comparative Example 2, and FIG. Each is shown. In these FIGS. 2-5, the average crystal grain size D1 was measured, the cross section parallel to the axial direction of the copper tube (described as parallel D1) is on the right side, and the average crystal grain size D2 was measured in the axial direction of the copper tube. Vertical sections (denoted as vertical D2) are shown on the left, respectively.

(引張試験)
前記供試材の引張試験は、JIS11号試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、引張強さ(MPa)を測定した。同一条件の試験片を3本試験し、それらの平均値を採用した。
(Tensile test)
A tensile test (MPa) was performed on the specimen under the conditions of room temperature, test speed 10.0 mm / min, GL = 50 mm, using a JIS No. 11 test piece and a 5882 type Instron universal testing machine. ) Was measured. Three test pieces under the same conditions were tested, and the average value thereof was adopted.

(破壊強度)
前記製造した銅管から500mmの長さの銅管を試験用に採取して、銅管の一方の端部を金属製治具(ボルト)にて耐圧的に閉塞した。そして、もう一方の開放側端部から、ポンプにて管内に負荷される水圧を徐々に高めていき(昇圧速度:1.5MPa/秒程度)、完全に管が破裂する際の水圧(MPa)を、ブルドン管式圧力計で読み取り、伝熱管の破壊強度(耐圧強度、耐圧性能、破壊圧力)とした。この試験を同一銅管に対して5回(試験管5個に対して)行い、各水圧(MPa)の平均値を室温での破壊強度とした。また破壊強度から銅管の肉厚や外径の影響を取り除いた換算応力を、破壊圧力として求めた。ここで換算応力σは、破壊強度をP、銅管の外径をD、銅管の肉厚をtとしたとき下記の式から求めた。
σ=P×(D−0.8t)/(2×t)
(destruction strength)
A copper tube having a length of 500 mm was taken from the manufactured copper tube for testing, and one end of the copper tube was closed in a pressure-resistant manner with a metal jig (bolt). Then, from the other open side end, the water pressure loaded into the pipe by the pump is gradually increased (pressure increase rate: about 1.5 MPa / second), and the water pressure (MPa) when the pipe completely ruptures. Was read with a Bourdon tube pressure gauge and used as the breaking strength (pressure resistance, pressure resistance, breaking pressure) of the heat transfer tube. This test was performed five times on the same copper tube (for five test tubes), and the average value of each water pressure (MPa) was defined as the fracture strength at room temperature. Moreover, the conversion stress which remove | eliminated the influence of the thickness and outer diameter of a copper pipe from fracture strength was calculated | required as fracture pressure. Here, the converted stress σ was obtained from the following equation when the fracture strength was P, the outer diameter of the copper tube was D, and the thickness of the copper tube was t.
σ = P × (D−0.8t) / (2 × t)

(耐軟化性)
銅合金管が熱交換器用伝熱管としてろう付けされることを模擬して、前記製造した銅合金管から試験用に採取した500mmの長さの銅合金管を800℃に10分間加熱した後の破壊強度(破壊圧力)を、ろう付け相当加熱後の破壊圧力として、前記した同じ試験方法で求めた。
(Softening resistance)
Simulating that a copper alloy tube is brazed as a heat exchanger tube for a heat exchanger, a 500 mm long copper alloy tube taken for testing from the manufactured copper alloy tube was heated to 800 ° C. for 10 minutes. The breaking strength (breaking pressure) was determined as the breaking pressure after brazing equivalent heating by the same test method described above.

(曲げ加工試験)
熱交換器の伝熱部を模擬して、前記製造した銅合金管を、各例について10本づつ、ピッチが40mmのU字形に曲げおよびピッチが30mmのU字曲げに加工した。この際、銅合金管の曲げ部における割れ、亀裂の発生を目視にて調査し、10本とも割れ、亀裂が全くなく曲げ加工できたものを、曲げ加工性が良好な○として評価した。また、10本とも割れ、亀裂は無いが、しわが発生しており、曲げ半径がより小さく、曲げ加工条件を厳しくした場合には、割れ、亀裂が発生する可能性があるものを、曲げ加工性が劣る△として評価した。更に、曲げ加工した10本の中に、割れ、亀裂が1本でも発生したものを曲げ加工性が不良な×として評価した。
(Bending test)
Simulating the heat transfer part of the heat exchanger, the manufactured copper alloy tubes were bent into 10 U-shapes with a pitch of 40 mm and into U-shapes with a pitch of 30 mm for each example. At this time, the occurrence of cracks and cracks in the bent portion of the copper alloy tube was visually examined, and all the ten pieces that could be bent without any cracks or cracks were evaluated as ◯ having good bending workability. In addition, there are no cracks or cracks in all of the ten pieces, but wrinkles are generated, the bending radius is smaller, and when bending conditions are strict, bending and cracking may occur. It evaluated as (triangle | delta) inferior in property. Furthermore, out of 10 bent pieces, those in which even one crack or crack occurred were evaluated as x with poor bending workability.

(発明例)
表1に示すとおり、発明例1〜13は化学組成が本発明範囲で、抽伸(中間焼鈍)条件が適正であるので、この銅合金管組織が、SEM−EBSP法による測定結果で、この銅合金管の軸方向に平行な断面における平均結晶粒径D1が20μm以下であるとともに、このD1と前記銅合金管の軸方向に垂直な断面における平均結晶粒径D2との差D1−D2が3μm以下である。このため銅管の特性として、引張強さが高いにも関わらず、曲げ加工性がよく、しかも、ろう付け相当の加熱後の破壊強度の低下も抑制されており、耐軟化性が優れている。
(Invention example)
As shown in Table 1, since the inventive compositions 1 to 13 are within the scope of the present invention and the drawing (intermediate annealing) conditions are appropriate, this copper alloy tube structure is a measurement result by the SEM-EBSP method. The average crystal grain size D1 in the cross section parallel to the axial direction of the alloy tube is 20 μm or less, and the difference D1-D2 between this D1 and the average crystal grain size D2 in the cross section perpendicular to the axial direction of the copper alloy tube is 3 μm. It is as follows. For this reason, the copper tube has good bending workability despite its high tensile strength, and also has a low resistance to breakage after heating equivalent to brazing and has excellent softening resistance. .

これらの発明例を代表して、図2に発明例1の銅管結晶粒組織を示す。図2に示す通り、右側の平均結晶粒径D1を測定した銅管の軸方向に平行な断面(平行D1)や、左側の平均結晶粒径D2を測定した銅管の軸方向に垂直な断面(垂直D2)ともに、同様の微細で等軸な結晶粒となっている。したがって、発明例は管の部位あるいは管の断面方向による結晶粒の異方性が小さいことが分かり、本発明の前記平均結晶粒径D1や、このD1と前記平均結晶粒径D2との差D1−D2の規定の意義がこの図2からも裏付けられる。   As a representative of these invention examples, FIG. 2 shows the copper tube crystal grain structure of Invention Example 1. As shown in FIG. 2, a cross section parallel to the axial direction of the copper tube in which the right average crystal grain size D1 was measured (parallel D1), and a cross section perpendicular to the axial direction of the copper tube in which the left average crystal grain size D2 was measured. Both (vertical D2) have the same fine and equiaxed crystal grains. Therefore, it can be seen that the example of the invention has a small crystal grain anisotropy depending on the tube part or the cross-sectional direction of the tube, and the average crystal grain size D1 of the present invention or the difference D1 between the D1 and the average crystal grain size D2 The significance of the definition of -D2 is supported from FIG.

(比較例)
これに対して、比較例7〜12は、表1に示すとおり、本発明組成範囲内の合金であるにもかかわらず、抽伸(中間焼鈍)条件や最終焼鈍条件が適切な範囲にない。
(Comparative example)
On the other hand, as shown in Table 1, Comparative Examples 7 to 12 are alloys within the composition range of the present invention, but the drawing (intermediate annealing) conditions and the final annealing conditions are not in an appropriate range.

比較例7は抽伸途中での中間焼鈍を施しておらず、比較例8は抽伸途中での中間焼鈍温度が低く過ぎる。このため、前記D1−D2が3μmを超え、強度も低く、ろう付け相当の加熱後の破壊強度の低下も大きく、耐軟化性が劣っている。   In Comparative Example 7, intermediate annealing in the middle of drawing is not performed, and in Comparative Example 8, the intermediate annealing temperature in the middle of drawing is too low. For this reason, said D1-D2 exceeds 3 micrometers, intensity | strength is low, the fall of the fracture strength after the heating equivalent to brazing is also large, and softening resistance is inferior.

比較例8は抽伸途中での中間焼鈍温度が低すぎる。このため、比較例7と同様に、前記D1−D2が3μmを超え、強度も低く、ろう付け相当の加熱後の破壊強度の低下も大きく、耐軟化性が劣っている。   In Comparative Example 8, the intermediate annealing temperature during drawing is too low. For this reason, as in Comparative Example 7, the D1-D2 exceeds 3 μm, the strength is low, the fracture strength after heating corresponding to brazing is greatly reduced, and the softening resistance is inferior.

比較例9は抽伸途中での中間焼鈍温度が高すぎる。このため、前記D1−D2は3μm以下であるものの、平均結晶粒径D1が大きすぎ、強度が低く、破壊圧力も低すぎる。   In Comparative Example 9, the intermediate annealing temperature during drawing is too high. For this reason, although D1-D2 is 3 μm or less, the average crystal grain size D1 is too large, the strength is low, and the breaking pressure is too low.

比較例10は最終焼鈍温度が低すぎる。このため、前記D1−D2が3μmを超え、ろう付け相当の加熱後の破壊強度の低下も大きく、耐軟化性が劣っている。   In Comparative Example 10, the final annealing temperature is too low. For this reason, said D1-D2 exceeds 3 micrometers, the fall of the fracture strength after the heating equivalent to brazing is also large, and softening resistance is inferior.

比較例11は最終焼鈍温度が高すぎる。このため、前記D1−D2は3μm以下であるものの、平均結晶粒径D1が大きすぎ、強度が低く、破壊圧力も低すぎる。   In Comparative Example 11, the final annealing temperature is too high. For this reason, although D1-D2 is 3 μm or less, the average crystal grain size D1 is too large, the strength is low, and the breaking pressure is too low.

比較例12は抽伸途中での中間焼鈍後の抽伸の減面率(加工率)が小さすぎる。このため、蓄積ひずみ量が逆に小さすぎ、再結晶核の生成に必要な駆動力を高められない。このため、その後の最終焼鈍で、再結晶核の生成によるひずみのない等軸な結晶粒が生成しにくくなり、前記D1−D2が3μmを超え、平均結晶粒径D1も大きすぎ、ろう付け相当の加熱後の破壊強度の低下も大きく、耐軟化性が劣っている。   In Comparative Example 12, the area reduction rate (working rate) of drawing after intermediate annealing in the middle of drawing is too small. For this reason, the amount of accumulated strain is too small, and the driving force required for the formation of recrystallized nuclei cannot be increased. For this reason, in the subsequent final annealing, it becomes difficult to generate equiaxed crystal grains without distortion due to the formation of recrystallization nuclei, the D1-D2 exceeds 3 μm, the average crystal grain size D1 is too large, and is equivalent to brazing. The fracture strength after heating is greatly reduced, and the softening resistance is inferior.

また、比較例1〜6は、表1に示すとおり、抽伸(中間焼鈍)条件や最終焼鈍条件は適切な範囲だが、銅管の組成が本発明の範囲を外れている。   In Comparative Examples 1 to 6, as shown in Table 1, the drawing (intermediate annealing) conditions and the final annealing conditions are in an appropriate range, but the composition of the copper tube is outside the scope of the present invention.

比較例1、2はSn含有量が規定範囲よりも少なすぎるため、抽伸途中での中間焼鈍の有無に関わらず、前記D1−D2が3μmを超え、強度も低く、ろう付け相当の加熱後の破壊強度の低下も大きく、耐軟化性が劣っている。   In Comparative Examples 1 and 2, since the Sn content is too much less than the specified range, the D1-D2 exceeds 3 μm, the strength is low, regardless of the presence or absence of intermediate annealing in the middle of drawing, after heating corresponding to brazing. The decrease in fracture strength is also large and the softening resistance is poor.

比較例3はSn含有量が高すぎるため、押出加工できずに、銅管が製造できなかった。また、比較例4はP含有量が高すぎるため、押出加工後に割れが生じ、やはり銅管が製造できなかった。   In Comparative Example 3, since the Sn content was too high, extrusion processing could not be performed and a copper tube could not be manufactured. In Comparative Example 4, since the P content was too high, cracks occurred after extrusion, and a copper tube could not be produced.

比較例5はP含有量が規定範囲よりも少なすぎるため、前記D1−D2は3μm以下であるものの、強度が低く、破壊圧力も低すぎる。   In Comparative Example 5, since the P content is too much less than the specified range, the D1-D2 is 3 μm or less, but the strength is low and the breaking pressure is too low.

比較例6はZn含有量が高すぎるため、前記D1−D2は3μm以下であるものの、曲げ加工性が低い。   In Comparative Example 6, the Zn content is too high, and thus D1-D2 is 3 μm or less, but the bending workability is low.

これらの比較例のうち、図3に表1の比較例7、図4に比較例2、図5に比較例1の銅管結晶組織を各々示す。これらの図に示す通り、右側の銅管の軸方向に平行な断面(平行D1)や、左側の軸方向に垂直な断面(垂直D2)ともに、発明例の図1に比して、結晶粒径が粗大となっている。そして、特に、右側の銅管の軸方向に平行な断面(平行D1)の結晶粒は、粗大であるだけでなく、銅管の軸方向に伸長している。このため、これら比較例は管の部位あるいは管の断面方向による結晶粒の異方性が大きいことが分かる。したがって、前記した図1とともに、本発明の前記平均結晶粒径D1や、このD1と前記平均結晶粒径D2との差D1−D2の規定の意義が裏付けられる。   Among these comparative examples, FIG. 3 shows the comparative example 7 of Table 1, FIG. 4 shows the comparative example 2, and FIG. As shown in these figures, both the cross section parallel to the axial direction of the copper pipe on the right side (parallel D1) and the cross section perpendicular to the axial direction of the left side (vertical D2) are crystal grains as compared to FIG. The diameter is coarse. In particular, the crystal grains of the cross section (parallel D1) parallel to the axial direction of the right copper tube are not only coarse, but also extend in the axial direction of the copper tube. Therefore, it can be seen that these comparative examples have large crystal grain anisotropy depending on the tube portion or the cross-sectional direction of the tube. Therefore, together with the above-described FIG. 1, the significance of the definition of the average crystal grain size D1 of the present invention and the difference D1-D2 between the D1 and the average crystal grain size D2 is supported.

以上の結果から、製造しやすく、1.0mm以下に薄肉化されても、耐軟化性を向上させ、併せて破壊強度および曲げ加工性に優れた熱交換器用Sn−P系銅合金管を得るための、本発明の成分組成、結晶粒組織の規定、更には、このような組織を得るための好ましい製造条件の意義が裏付けられる。   From the above results, it is easy to manufacture, and even if the thickness is reduced to 1.0 mm or less, the softening resistance is improved, and at the same time, an Sn-P-based copper alloy tube for a heat exchanger excellent in fracture strength and bending workability is obtained. Therefore, the component composition of the present invention, the definition of the crystal grain structure, and the significance of preferable production conditions for obtaining such a structure are supported.

Figure 0005499300
Figure 0005499300

以上説明したように、本発明によれば、製造しやすく、1.0mm以下に薄肉化されても耐軟化性にも優れ、曲げ加工性に優れた、薄肉化および高強度化されたSn−P系銅合金管を提供できる。この結果、新たな代替冷媒による高い運転圧力に薄肉化されて用いられる熱交換器用伝熱管などに好適に適用することができる。   As described above, according to the present invention, it is easy to manufacture, excellent in softening resistance even when thinned to 1.0 mm or less, excellent in bending workability, thinned and strengthened Sn- A P-based copper alloy tube can be provided. As a result, it can be suitably applied to a heat exchanger tube for a heat exchanger that is used after being thinned to a high operating pressure by a new alternative refrigerant.

Claims (3)

Sn:0.1〜3.0質量%、P:0.005〜0.1質量%を含有し、残部がCu及び不可避的不純物からなる組成を有する銅合金管であって、この銅合金管組織が、SEM−EBSP法による測定結果で、この銅合金管の軸方向に平行な断面における平均結晶粒径D1が20μm以下であるとともに、このD1と前記銅合金管の軸方向に垂直な断面における平均結晶粒径D2との差の絶対値|D1−D2|が3μm以下(0μmを含む)であることを特徴とする熱交換器用銅合金管。 A copper alloy tube containing Sn: 0.1 to 3.0% by mass, P: 0.005 to 0.1% by mass, with the balance being composed of Cu and inevitable impurities, The structure is a measurement result by the SEM-EBSP method, and the average crystal grain size D1 in the cross section parallel to the axial direction of the copper alloy tube is 20 μm or less, and the cross section perpendicular to the axial direction of D1 and the copper alloy tube A copper alloy tube for a heat exchanger, characterized in that the absolute value | D1-D2 | of the difference from the average crystal grain size D2 is 3 μm or less (including 0 μm). 前記銅合金管が、更にZn:0.01〜1.0質量%を含有する請求項1に記載の熱交換器用銅合金管。   The copper alloy tube for a heat exchanger according to claim 1, wherein the copper alloy tube further contains Zn: 0.01 to 1.0 mass%. 前記銅合金管が、更にFe、Ni、Mn、Mg、Cr、Ti、Co、Zr及びAgからなる群から選択された1種または2種以上の元素を合計で0.07質量%未満(但し0%を含まず)含有する請求項1または2に記載の熱交換器用銅合金管。   The copper alloy tube further contains one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Co, Zr and Ag in total less than 0.07% by mass (provided that The copper alloy tube for a heat exchanger according to claim 1 or 2, which contains (excluding 0%).
JP2010225532A 2010-10-05 2010-10-05 Copper alloy tube for heat exchanger Expired - Fee Related JP5499300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225532A JP5499300B2 (en) 2010-10-05 2010-10-05 Copper alloy tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225532A JP5499300B2 (en) 2010-10-05 2010-10-05 Copper alloy tube for heat exchanger

Publications (2)

Publication Number Publication Date
JP2012077362A JP2012077362A (en) 2012-04-19
JP5499300B2 true JP5499300B2 (en) 2014-05-21

Family

ID=46237944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225532A Expired - Fee Related JP5499300B2 (en) 2010-10-05 2010-10-05 Copper alloy tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP5499300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960672B2 (en) * 2013-11-25 2016-08-02 株式会社神戸製鋼所 High strength copper alloy tube
JP6210887B2 (en) * 2014-01-18 2017-10-11 株式会社神戸製鋼所 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
KR101810925B1 (en) * 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156316B2 (en) * 2007-09-26 2013-03-06 Dowaメタルテック株式会社 Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP4629080B2 (en) * 2007-11-05 2011-02-09 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger
JP5033051B2 (en) * 2008-05-08 2012-09-26 株式会社神戸製鋼所 Copper alloy tube for heat exchangers with excellent softening resistance
JP5107841B2 (en) * 2008-09-10 2012-12-26 株式会社神戸製鋼所 Copper alloy tube for heat exchangers with excellent bending workability

Also Published As

Publication number Publication date
JP2012077362A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP4630323B2 (en) Copper alloy tube for heat exchangers with excellent fracture strength
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP2008255381A (en) Heat resistant and high strength copper alloy tube for heat exchanger
JP2006274313A (en) Copper alloy tube for heat exchanger and manufacturing method therefor
JP5534777B2 (en) Copper alloy seamless pipe
JP4818179B2 (en) Copper alloy tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
JP5960672B2 (en) High strength copper alloy tube
JP5078410B2 (en) Copper alloy tube
JP5968816B2 (en) High strength copper alloy tube and manufacturing method thereof
JP6034727B2 (en) High strength copper alloy tube
JP5404139B2 (en) Copper alloy tube for heat exchanger
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP5792696B2 (en) High strength copper alloy tube
JP5638999B2 (en) Copper alloy tube
JP5033051B2 (en) Copper alloy tube for heat exchangers with excellent softening resistance
JP5544591B2 (en) Copper alloy tube
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP2013076123A (en) Copper alloy tube
JP2013189664A (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5499300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees