JP6210887B2 - Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability - Google Patents

Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability Download PDF

Info

Publication number
JP6210887B2
JP6210887B2 JP2014007334A JP2014007334A JP6210887B2 JP 6210887 B2 JP6210887 B2 JP 6210887B2 JP 2014007334 A JP2014007334 A JP 2014007334A JP 2014007334 A JP2014007334 A JP 2014007334A JP 6210887 B2 JP6210887 B2 JP 6210887B2
Authority
JP
Japan
Prior art keywords
mass
less
crystal grain
copper alloy
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014007334A
Other languages
Japanese (ja)
Other versions
JP2015134955A (en
Inventor
良一 尾崎
良一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014007334A priority Critical patent/JP6210887B2/en
Priority to TW103137240A priority patent/TWI527914B/en
Priority to CN201410643758.7A priority patent/CN104789812B/en
Priority to KR1020150007360A priority patent/KR101688300B1/en
Publication of JP2015134955A publication Critical patent/JP2015134955A/en
Application granted granted Critical
Publication of JP6210887B2 publication Critical patent/JP6210887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、強度、耐熱性及び曲げ加工性に優れ、半導体用リードフレーム、端子、コネクター、バスバーなどの電気・電子部品材料として好適なFe−P系銅合金板に関する。   The present invention relates to an Fe-P-based copper alloy plate that is excellent in strength, heat resistance, and bending workability, and that is suitable as a material for electrical and electronic parts such as semiconductor lead frames, terminals, connectors, and bus bars.

銅及び銅基合金は導電率・熱伝導性が非常に高いことからリードフレームを始めとする電気・電子部品用材料として利用されてきた。近年ではリードフレームの薄肉、狭ピン、狭ピッチ化が益々進み、一部は厚さ100μm以下にまでなっており、非常に高い強度が要求されるようになっている。   Copper and copper-based alloys have been used as materials for electrical and electronic parts such as lead frames because of their very high electrical conductivity and thermal conductivity. In recent years, lead frames have become thinner, narrow pins, and narrow pitches, and some of the lead frames have a thickness of 100 μm or less, and a very high strength is required.

また、リードフレームの作製では、銅及び銅基合金を所定の厚さに圧延した条材に、スタンピング加工やエッチング処理を施して所定の形状に加工することが行われる。スタンピング加工の際には、スタンピングによる歪みを除去するための歪み除去工程で400℃以上の温度での加熱をするなど、高温加熱処理される場合も多い。さらに、各種めっき処理や、パッケージング加工でのダイ・ボンディングやワイヤ・ボンディング、樹脂モールディングが実施される。   In the production of the lead frame, a strip material obtained by rolling copper and a copper base alloy to a predetermined thickness is subjected to a stamping process or an etching process to be processed into a predetermined shape. In the stamping process, high-temperature heat treatment is often performed such as heating at a temperature of 400 ° C. or higher in a strain removing process for removing strain due to stamping. Furthermore, various plating processes, die bonding, wire bonding, and resin molding are performed in the packaging process.

従って、リードフレーム材料には導電率や強度(1次特性)のみならず、スタンピング性、耐熱性(高温に加熱した際の強度低下の度合い)、更にはエッチング性、各種めっき性、半田密着性、酸化膜密着性、樹脂密着性、ワイヤ・ボンディング性など(2次特性)が要求される。   Therefore, the lead frame material has not only conductivity and strength (primary characteristics) but also stamping properties, heat resistance (degree of strength decrease when heated to high temperature), etching property, various plating properties, and solder adhesion. In addition, oxide film adhesion, resin adhesion, wire bonding properties, etc. (secondary characteristics) are required.

これらの特性を全て充分に満足する材料はないが、多ピンICのリードフレーム材料としては、特性、コスト、入手性といった観点から、Cu−2.2質量%Fe−0.03質量%P−0.12質量%Znを標準化学組成とするCDA Alloy 194、Cu−3.0質量%Ni−0.65質量%Si−0.15質量%Mgを標準化学組成とするCDA Alloy 7025、及びCu−0.23mass%Cr−0.25mass%Sn−0.20mass%Znを標準化学組成とするCDA Alloy 18045に集約されつつある。なお、CDAとは米国銅開発協会を意味する。   There is no material that sufficiently satisfies all of these characteristics. However, as a lead frame material for a multi-pin IC, Cu-2.2 mass% Fe-0.03 mass% P- is used from the viewpoint of characteristics, cost, and availability. CDA Alloy 194 with 0.12 wt% Zn as the standard chemical composition, CDA Alloy 7025 with Cu-3.0 wt% Ni-0.65 wt% Si-0.15 wt% Mg as the standard chemical composition, and Cu CDA Alloy 18045 having a standard chemical composition of −0.23 mass% Cr—0.25 mass% Sn—0.20 mass% Zn is being consolidated. CDA means the American Copper Development Association.

このうちFe−P系のCDA Alloy 194は、最高強度の質別であるESHとしても、引張強さ550N/mm程度、ビッカース硬さ160Hv程度であり、他の2種類の銅基合金よりも強度が低い。また耐熱性も比較的低く、例えば450℃で5分程度加熱すると、元の強さの80%以下に軟化してしまう。しかし、CDA Alloy 194はスタンピング性等の2次特性に重大な欠陥が無く、入手性も良いため広く使用されている。 Among them, Fe-P-based CDA Alloy 194 has a tensile strength of about 550 N / mm 2 and a Vickers hardness of about 160 Hv, even as ESH, which is the highest strength, and is more than the other two types of copper-based alloys. Low strength. In addition, the heat resistance is relatively low. For example, when heated at 450 ° C. for about 5 minutes, it softens to 80% or less of the original strength. However, CDA Alloy 194 is widely used because it has no significant defects in secondary characteristics such as stamping properties and is readily available.

一方、特許文献1には、Fe−P系銅合金にMg及びSnを添加することにより、Fe−P系銅合金を高強度化することが記載されている。また、特許文献2には、結晶組織を整粒化することにより、スタンピング性(打抜き加工性及び曲げ加工性)を改善したFe−P系銅合金板が記載されている。特許文献3には、Fe−P系銅合金を熱間圧延及び冷間圧延後、950〜1050℃に加熱し、次いで300℃以下に急冷する溶体化処理を行うなど、特定の製造方法をとることによりFe−P系銅合金板の強度及び耐熱性を改善することが記載されている。   On the other hand, Patent Document 1 describes increasing the strength of an Fe-P copper alloy by adding Mg and Sn to the Fe-P copper alloy. Patent Document 2 describes a Fe-P-based copper alloy plate that has improved stamping properties (punching workability and bending workability) by adjusting the grain size of the crystal structure. Patent Document 3 adopts a specific manufacturing method such as a solution treatment in which an Fe—P-based copper alloy is heated to 950 to 1050 ° C. after hot rolling and cold rolling and then rapidly cooled to 300 ° C. or lower. It is described that the strength and heat resistance of the Fe-P based copper alloy plate are improved.

特開平4−41631号公報JP-A-4-41631 特開2000−104131号公報JP 2000-104131 A 特開2012−57242号公報JP 2012-57242 A

しかし、特許文献1のFe−P系銅合金板は、高強度であるが耐熱性が十分とはいえなず、またスタンピング性については検討されていない。特許文献2のFe−P系銅合金板は、スタンピング性が優れるが、耐熱性が十分とはいえない。特許文献3のFe−P系銅合金板は、強度及び耐熱性が優れるが、スタンピング性については検討されていない。
本発明は、Fe−P系銅合金板のこのような現状に鑑みてなされたもので、高強度で、耐熱性が高く、かつスタンピング性(特に曲げ加工性)にも優れたFe−P系銅合金板を提供することを目的とする。
However, although the Fe-P-based copper alloy plate of Patent Document 1 has high strength, it cannot be said that the heat resistance is sufficient, and the stamping property has not been studied. The Fe—P-based copper alloy plate of Patent Document 2 is excellent in stamping properties, but cannot be said to have sufficient heat resistance. The Fe—P copper alloy plate of Patent Document 3 is excellent in strength and heat resistance, but the stamping property has not been studied.
The present invention has been made in view of the current situation of Fe-P-based copper alloy plates, and is Fe-P-based that has high strength, high heat resistance, and excellent stamping properties (particularly bending workability). An object is to provide a copper alloy sheet.

本発明に係るFe−P系銅合金板は、Fe:1.6質量%以上、2.6質量%以下、P:0.01質量%以上、0.05質量%以下、Zn:0.01質量%以上、0.5質量%以下、Sn:0.01質量%以上、0.20質量%未満、C:0.003質量%以下、Co、Si及びCrが合計で0.05質量%以下、残部Cu及び不可避不純物からなり、圧延方向に平行で板面に垂直な断面の結晶組織をEBSDで観察した場合に、各結晶粒の円相当直径を面積で重み付けした加重平均が10μm以下であり、導電率が60%IACS以上、円相当直径が10〜40nmのFe又はFe−P化合物の析出粒子の存在密度が20個/μm以上であることを特徴とする。
ただし、「各結晶粒の円相当直径を面積で重み付けした加重平均」は、下記式で算出される平均結晶粒径を意味する。

Figure 0006210887
ここで、Σ:総和記号
N:結晶粒の個数
ai:各結晶粒の面積
di:各結晶粒の円相当直径
A:N個の結晶粒の面積の和である。
上記式は、段落0031に記載した式と同じ意味を有する。
なお、本発明において、「銅合金板」という用語は銅合金条を含む意味で用いられている。 The Fe—P based copper alloy plate according to the present invention has Fe: 1.6 mass% or more and 2.6 mass% or less, P: 0.01 mass% or more, 0.05 mass% or less, Zn: 0.01 % By mass or more, 0.5% by mass or less, Sn: 0.01% by mass or more, less than 0.20% by mass, C: 0.003% by mass or less, Co, Si, and Cr in total 0.05% by mass or less When the crystal structure of the cross section consisting of the remainder Cu and unavoidable impurities and parallel to the rolling direction and perpendicular to the plate surface is observed by EBSD, the weighted average obtained by weighting the equivalent circle diameter of each crystal grain by area is 10 μm or less. The existence density of precipitated particles of Fe or Fe—P compound having a conductivity of 60% IACS or more and an equivalent circle diameter of 10 to 40 nm is 20 particles / μm 2 or more.
However, “weighted average obtained by weighting the equivalent circle diameter of each crystal grain by area” means an average crystal grain size calculated by the following formula.
Figure 0006210887
Where Σ: Summation symbol
N: Number of crystal grains
ai: Area of each crystal grain
di: Circle equivalent diameter of each crystal grain
A: Sum of areas of N crystal grains.
The above formula has the same meaning as the formula described in paragraph 0031.
In the present invention, the term “copper alloy sheet” is used to include a copper alloy strip.

本発明によれば、強度、耐熱性及び曲げ加工性に優れたFe−P系銅合金板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Fe-P type copper alloy plate excellent in intensity | strength, heat resistance, and bending workability can be provided.

実施例のNo.14,21,22の顕微鏡組織写真である。No. of an Example. 14 is a micrograph of 14, 21, 22;

以下、本発明に係るFe−P系銅合金板について、より具体的に説明する。
(Fe−P系銅合金の化学組成)
Feは、Fe−P系銅合金板の強度及び耐熱性の向上に寄与し、また、熱間圧延中又は再結晶熱処理中の結晶粒の成長を抑制する効果を有する。Feの含有量が1.6質量%未満では、上記効果が不十分である。一方、Feの含有量が2.6質量%を超えると、溶解・鋳造時に2液相分離や晶出によって粗大なFe粒子(直径数μm以上)が生成し、めっき性やエッチング性が低下する。従って、Feの含有量は1.6質量%以上、2.6質量%以下とし、下限は、好ましくは1.7質量%、さらに好ましくは1.8質量%、上限は、好ましくは2.5質量%、さらに好ましくは2.4質量%とする。
Hereinafter, the Fe-P-based copper alloy plate according to the present invention will be described more specifically.
(Chemical composition of Fe-P copper alloy)
Fe contributes to improving the strength and heat resistance of the Fe—P based copper alloy sheet, and has the effect of suppressing the growth of crystal grains during hot rolling or recrystallization heat treatment. If the Fe content is less than 1.6% by mass, the above effects are insufficient. On the other hand, if the Fe content exceeds 2.6% by mass, coarse Fe particles (diameter of several μm or more) are generated by two-liquid phase separation and crystallization at the time of dissolution and casting, and the plating property and etching property are deteriorated. . Therefore, the Fe content is 1.6% by mass or more and 2.6% by mass or less, and the lower limit is preferably 1.7% by mass, more preferably 1.8% by mass, and the upper limit is preferably 2.5%. % By mass, more preferably 2.4% by mass.

Pは脱酸剤として寄与するほか、Fe−P化合物の析出粒子を形成してFe−P系銅合金板の強度及び耐熱性を向上させる。また、Pは熱間圧延中又は再結晶熱処理中の結晶粒の成長を抑制する効果を有する。Pの含有量が0.01質量%未満では、上記効果が不十分である。一方、Pの含有量が0.05質量%を超えると導電率が低下する。従って、Pの含有量は0.01質量%以上、0.05質量%以下とし、下限は、好ましくは0.015質量%、さらに好ましくは0.02質量%、上限は、好ましくは0.045質量%、さらに好ましくは0.04質量%とする。   In addition to contributing as a deoxidizer, P improves the strength and heat resistance of the Fe—P based copper alloy sheet by forming precipitated particles of Fe—P compounds. Further, P has an effect of suppressing crystal grain growth during hot rolling or recrystallization heat treatment. If the content of P is less than 0.01% by mass, the above effect is insufficient. On the other hand, when the content of P exceeds 0.05% by mass, the electrical conductivity decreases. Accordingly, the P content is 0.01% by mass or more and 0.05% by mass or less, and the lower limit is preferably 0.015% by mass, more preferably 0.02% by mass, and the upper limit is preferably 0.045%. % By mass, more preferably 0.04% by mass.

Znは、Fe−P系銅合金板のはんだ耐熱剥離性や酸化膜の密着性を向上させる。Znの含有量が0.01質量%未満ではその効果が十分でなく、一方、0.5質量%を超えると導電率が低下する。従って、Znの含有量は0.01質量%以上、0.5質量%以下とし、下限は、好ましくは0.02質量%、さらに好ましくは0.05質量%、上限は、好ましくは0.4質量%、さらに好ましくは0.3質量%とする。
Snは、母材に固溶してFe−P系銅合金板の強度及び耐熱性を向上させ、熱間圧延中又は再結晶熱処理中の結晶粒の成長を抑制する効果を有する。また、Snは転移を固着する効果が強く、これによりFeの析出起点を増加させ、析出密度を増加させる効果を有する。Snの含有量が0.01質量%未満では上記効果が十分でなく、一方、0.20質量%以上になると導電率が低下する。従って、Snの含有量は0.01質量%以上、0.20質量%未満とし、下限は、好ましくは0.02質量%、さらに好ましくは0.05質量%、上限は、好ましくは0.18質量%、さらに好ましくは0.15質量%とする。
Zn improves the heat-resistant peelability of the Fe—P based copper alloy plate and the adhesion of the oxide film. If the Zn content is less than 0.01% by mass, the effect is not sufficient, while if it exceeds 0.5% by mass, the electrical conductivity decreases. Accordingly, the Zn content is 0.01% by mass or more and 0.5% by mass or less, and the lower limit is preferably 0.02% by mass, more preferably 0.05% by mass, and the upper limit is preferably 0.4%. % By mass, more preferably 0.3% by mass.
Sn is dissolved in the base material to improve the strength and heat resistance of the Fe—P based copper alloy plate, and has the effect of suppressing the growth of crystal grains during hot rolling or recrystallization heat treatment. Further, Sn has a strong effect of fixing the transition, and thereby has an effect of increasing the precipitation start point of Fe and increasing the precipitation density. If the Sn content is less than 0.01% by mass, the above effect is not sufficient. On the other hand, if the Sn content is 0.20% by mass or more, the conductivity decreases. Therefore, the Sn content is 0.01% by mass or more and less than 0.20% by mass, and the lower limit is preferably 0.02% by mass, more preferably 0.05% by mass, and the upper limit is preferably 0.18%. % By mass, more preferably 0.15% by mass.

Fe−P系銅合金において、不可避不純物であるCの含有量が0.003質量%を超え、又は同じく不可避不純物であるCo、Si及びCrの含有量の合計が0.05質量%を超えると、2液相分離や晶出による粗大なFe粒子が生成しやすくなる。このため、Fe−P系銅合金の強度及び耐熱性が低下し、また、めっき性やエッチング性が低下する。従って、C含有量は0.003質量%以下とし、Co、Si及びCrの合計含有量は0.05質量%以下とする。なお、Cは溶解、鋳造時に溶湯表面に酸化防止等の目的で散布する木炭や黒鉛粒、黒鉛モールド等より限度を超えて混入する場合がある。そのような場合はC含有量を低減するため、C含有量の少ないFe原料を用いる、木炭や黒鉛粒の散布量を減らす、木炭や黒鉛粒のサイズを大きくして溶湯との接触面積を低減する、モールド変更を行う等の手段が利用できる。   In the Fe-P based copper alloy, when the content of C, which is an inevitable impurity, exceeds 0.003 mass%, or the total content of Co, Si and Cr, which are also inevitable impurities, exceeds 0.05 mass% Coarse Fe particles are easily generated due to two-liquid phase separation and crystallization. For this reason, the intensity | strength and heat resistance of a Fe-P type copper alloy fall, and plating property and etching property fall. Therefore, the C content is 0.003% by mass or less, and the total content of Co, Si and Cr is 0.05% by mass or less. C may be mixed in excess of the limit due to charcoal, graphite grains, graphite molds, etc. that are sprayed on the surface of the molten metal for the purpose of preventing oxidation during melting and casting. In such a case, to reduce the C content, use an Fe raw material with a low C content, reduce the amount of charcoal and graphite particles sprayed, increase the size of the charcoal and graphite particles and reduce the contact area with the molten metal For example, a means for changing the mold can be used.

(平均結晶粒径)
Fe−P系銅合金板の圧延方向に平行で板面に垂直な断面の結晶組織をEBSD(Electron BackScatter Diffraction)で観察(粒界条件:方位差5°以上)し、観察面の全結晶粒の円相当直径を求め、各結晶粒の円相当直径を面積で重み付けして加重平均を求め、本発明ではこれを平均結晶粒径とした。平均結晶粒径としてこの加重平均をとったのは、Fe−P系銅合金板のように粗大粒と微細粒が混在する場合、単に相加平均をとると、実態以上に結晶粒径が小さく出るためである。この平均結晶粒径が10μmを超えると、曲げ加工性や打抜き加工性が低下するとともに強度や耐熱性も低下する。従って、平均結晶粒径は10μm以下、好ましくは8μm以下、さらに好ましくは6μm以下である。平均結晶粒径は小さいほどよく、下限値は特に定める必要がないが、後述する製造方法により3μm程度まで微細化できる。
(Average crystal grain size)
The crystal structure of the cross section perpendicular to the rolling direction and parallel to the rolling direction of the Fe-P-based copper alloy plate is observed by EBSD (Electron BackScatter Diffraction) (grain boundary condition: orientation difference of 5 ° or more), and all crystal grains on the observation surface The equivalent circle diameter was obtained, and the equivalent circle diameter of each crystal grain was weighted by the area to obtain a weighted average. In the present invention, this was used as the average crystal grain size. This weighted average is taken as the average crystal grain size when coarse grains and fine grains coexist, such as Fe-P-based copper alloy plates, and if the arithmetic mean is simply taken, the crystal grain size is smaller than the actual grain size. It is to come out. When this average crystal grain size exceeds 10 μm, bending workability and punching workability are lowered, and strength and heat resistance are also lowered. Therefore, the average crystal grain size is 10 μm or less, preferably 8 μm or less, more preferably 6 μm or less. The smaller the average crystal grain size, the better, and the lower limit need not be determined. However, it can be refined to about 3 μm by the manufacturing method described later.

(析出粒子の存在密度)
Fe又はFe−P化合物の析出粒子のうち円相当直径10〜40nmの析出粒子は、転位をピン止めしてFe−P系銅合金板の強度及び耐熱性を向上させる。しかし、この析出粒子の存在密度が20個/μm未満であると、ピン止めできる析出粒子が少なく強度及び耐熱性の向上が不十分となる。従って、円相当直径10〜40nmのFe又はFe−P化合物の析出粒子の存在密度は、20個/μm以上、好ましくは25個/μm以上、さらに好ましくは30個/μm以上である。この存在密度は大きいほどよく、上限値は特に定める必要がないが、本発明の組成であれば後述する製造方法により40個/μm程度まで密度を上げることができる。
(Presence density of precipitated particles)
Among the precipitated particles of Fe or Fe—P compound, the precipitated particles having an equivalent circle diameter of 10 to 40 nm pin the dislocation to improve the strength and heat resistance of the Fe—P based copper alloy plate. However, if the density of the precipitated particles is less than 20 particles / μm 2, the number of precipitated particles that can be pinned is small, and the improvement in strength and heat resistance is insufficient. Therefore, the existence density of precipitated particles of Fe or Fe-P compound having a circle equivalent diameter of 10 to 40 nm is 20 particles / μm 2 or more, preferably 25 particles / μm 2 or more, more preferably 30 particles / μm 2 or more. . The higher the density of presence, the better, and the upper limit need not be particularly determined. However, if the composition of the present invention is used, the density can be increased to about 40 / μm 2 by the production method described later.

(Fe−P系銅合金板の製造方法)
本発明の製造方法は以下の通りである。
まず、鋳塊は、通常のるつぼ型溶解炉などを用いて原料を溶解し、成分調整後、通常の金型やカーボン鋳型などに溶湯を流し込んで製造する。
次に、鋳塊を850〜1050℃の温度に加熱し、圧延加工率50%以上で熱間圧延を行い、熱間圧延の終了温度は750℃以上とする。熱間圧延後の冷却は、水冷などにより、熱間圧延終了温度(=冷却開始温度)から少なくとも300℃までの範囲を10℃/秒以上の冷却速度で急速に冷却する。
(Method for producing Fe-P copper alloy sheet)
The production method of the present invention is as follows.
First, the ingot is manufactured by melting raw materials using a normal crucible melting furnace or the like, adjusting the components, and pouring the molten metal into a normal mold or carbon mold.
Next, the ingot is heated to a temperature of 850 to 1050 ° C., hot rolling is performed at a rolling rate of 50% or higher, and the end temperature of hot rolling is set to 750 ° C. or higher. Cooling after hot rolling rapidly cools the range from the hot rolling end temperature (= cooling start temperature) to at least 300 ° C. at a cooling rate of 10 ° C./second or more by water cooling or the like.

熱間圧延の加熱温度が850℃未満では、FeやFe−P化合物が析出し、粗大化するため、その分Fe,Pが消費されて析出熱処理で析出する微細なFeやFe−P化合物が減り、製品の強度や耐熱性が低下する。一方、1050℃を超えると融点に近くなるため、熱延割れが発生する。また、酸化が激しくなり、熱延により酸化物が巻き込まれ、製品板中に欠陥として残ることがある。従って、熱間圧延の加熱温度は850〜1050℃、好ましくは870〜1030℃、さらに好ましくは890〜1010℃とする。
熱間圧延の圧延加工率が50%より小さいと、再結晶が起こらず、鋳造組織が残存する可能性がある。従って、熱間圧延の圧延加工率は50%以上、好ましくは60%以上、さらに好ましくは70%以上とする。
When the heating temperature of hot rolling is less than 850 ° C., Fe and Fe—P compounds are precipitated and coarsened, so that Fe and P are consumed correspondingly, and fine Fe and Fe—P compounds precipitated by precipitation heat treatment are present. The strength and heat resistance of the product are reduced. On the other hand, when it exceeds 1050 ° C., it becomes close to the melting point, and thus hot-rolled cracks occur. Further, the oxidation becomes intense, and the oxide is entrained by hot rolling, and may remain as a defect in the product plate. Therefore, the heating temperature of the hot rolling is 850 to 1050 ° C, preferably 870 to 1030 ° C, and more preferably 890 to 1010 ° C.
If the rolling rate of hot rolling is less than 50%, recrystallization does not occur and the cast structure may remain. Therefore, the rolling rate of hot rolling is 50% or more, preferably 60% or more, and more preferably 70% or more.

熱間圧延の終了温度が750℃未満になると、FeやFe−P化合物の析出量が増加し、粗大化するため、析出熱処理において析出する微細なFeやFe−P化合物が減少し、製品板の強度及び耐熱性が低下する。また、熱間圧延の終了温度が750℃未満になると、製品板の平均結晶粒径が大きくなる。これは、粗大化したFeやFe−P化合物が再結晶熱処理の際に再結晶の起点となり、再結晶を促進するためと考えられる。従って、熱間圧延の終了温度は750℃以上、好ましくは770℃以上、さらに好ましくは790℃以上とする。
熱間圧延後の冷却速度が、熱間圧延終了温度から300℃までの範囲で10℃/秒未満になると、冷却中にもFeやFe−P化合物が析出し、粗大化するため、析出熱処理において析出する微細なFeやFe−P化合物が減少し、製品板の強度及び耐熱性が低下する。よって、熱間圧延後の冷却速度は10℃/秒以上、望ましくは20℃/秒以上、さらに望ましくは30℃/秒以上とする。熱間圧延材が冷却して300℃に達した後は、急冷する必要はない。
When the end temperature of hot rolling is less than 750 ° C., the amount of Fe and Fe—P compounds increases and coarsens, so the fine Fe and Fe—P compounds that precipitate in the precipitation heat treatment decrease, and the product plate The strength and heat resistance of the steel deteriorate. Moreover, when the completion | finish temperature of hot rolling will be less than 750 degreeC, the average crystal grain diameter of a product plate will become large. This is thought to be because the coarsened Fe or Fe—P compound becomes the starting point of recrystallization during the recrystallization heat treatment and promotes recrystallization. Accordingly, the end temperature of hot rolling is 750 ° C. or higher, preferably 770 ° C. or higher, more preferably 790 ° C. or higher.
When the cooling rate after hot rolling is less than 10 ° C./second in the range from the hot rolling end temperature to 300 ° C., Fe and Fe—P compounds are precipitated and coarsened during cooling, so that precipitation heat treatment The fine Fe and Fe-P compounds that precipitate are reduced, and the strength and heat resistance of the product plate are reduced. Therefore, the cooling rate after hot rolling is 10 ° C./second or more, desirably 20 ° C./second or more, and more desirably 30 ° C./second or more. After the hot-rolled material is cooled and reaches 300 ° C., it is not necessary to rapidly cool it.

この後、熱間圧延材の酸化スケールを除去し、冷間圧延を行う。冷間圧延の圧延加工率は、続いて行われる再結晶熱処理で均一な再結晶組織を得るため、50%以上、望ましくは60%以上、さらに望ましくは70%以上とする。
再結晶熱処理は微細な再結晶粒を形成するための熱処理であり、加熱温度550〜900℃程度で1秒〜10分程度保持する。加熱温度が550℃未満では再結晶しにくく、900℃を超えると再結晶粒が粗大化する。従って、加熱温度は550〜900℃、望ましくは570〜880℃、さらに望ましくは590〜860℃程度とする。保持時間は加熱温度によって適宜選択してよいが、1秒〜10分程度の短時間とする。保持時間が1秒未満では再結晶が生じにくい。保持時間が10分を超えると、再結晶粒が粗大化して製品の平均結晶粒径が大きくなる。また、FeやFe−P化合物の析出量が増加し、粗大化するため、その後の析出熱処理において析出する微細なFeやFe−P化合物が減少する。従って、保持時間は1秒〜10分、望ましくは2秒〜5分、さらに好ましくは5秒〜2分程度とする。
Thereafter, the oxide scale of the hot rolled material is removed and cold rolling is performed. In order to obtain a uniform recrystallized structure by the subsequent recrystallization heat treatment, the rolling rate of cold rolling is set to 50% or more, desirably 60% or more, and more desirably 70% or more.
The recrystallization heat treatment is a heat treatment for forming fine recrystallized grains, and is maintained at a heating temperature of about 550 to 900 ° C. for about 1 second to 10 minutes. When the heating temperature is less than 550 ° C., recrystallization is difficult, and when the heating temperature exceeds 900 ° C., the recrystallized grains become coarse. Therefore, the heating temperature is set to 550 to 900 ° C, desirably 570 to 880 ° C, and more desirably 590 to 860 ° C. The holding time may be appropriately selected depending on the heating temperature, but is a short time of about 1 second to 10 minutes. If the holding time is less than 1 second, recrystallization hardly occurs. When the holding time exceeds 10 minutes, the recrystallized grains become coarse and the average crystal grain size of the product increases. Moreover, since the precipitation amount of Fe and a Fe-P compound increases and it coarsens, the fine Fe and Fe-P compound which precipitate in the subsequent precipitation heat processing reduce. Therefore, the holding time is 1 second to 10 minutes, desirably 2 seconds to 5 minutes, more preferably about 5 seconds to 2 minutes.

また、再結晶熱処理の加熱速度は、300℃以上の範囲で1℃/秒以上とする。この加熱速度が1℃/秒未満では、加熱中にFeやFe−P化合物の析出が生じ、微細な再結晶粒が得られない。これは、加熱中に析出したFeやFe−P化合物が、温度の上昇に伴って粗大化し、それが再結晶の起点となり、再結晶を促進するためと考えられる。また、加熱中にFeやFe−P化合物の析出が生じ、粗大化するため、析出熱処理において析出する微細なFeやFe−P化合物が減少する。よって、再結晶熱処理の加熱速度は1℃/秒以上、望ましくは2℃/秒以上、さらに望ましくは5℃/秒以上とする。
さらに、再結晶熱処理後の冷却速度は、加熱温度から300℃までの範囲で5℃/秒以上とする。この温度範囲の冷却速度が5℃/秒未満では、冷却中にFeやFe−P化合物の析出が生じ、粗大化するため、析出熱処理において析出する微細なFeやFe−P化合物が減少する。従って、再結晶熱処理後の冷却速度は5℃/秒以上、望ましくは10℃/秒以上、さらに望ましくは20℃/秒以上とする。
The heating rate of the recrystallization heat treatment is set to 1 ° C./second or more in the range of 300 ° C. or more. When the heating rate is less than 1 ° C./second, precipitation of Fe and Fe—P compounds occurs during heating, and fine recrystallized grains cannot be obtained. This is presumably because the Fe or Fe-P compound precipitated during heating becomes coarse as the temperature rises, which becomes the starting point of recrystallization and promotes recrystallization. Further, precipitation of Fe and Fe—P compounds occurs during heating and coarsens, so that fine Fe and Fe—P compounds that precipitate in the precipitation heat treatment are reduced. Therefore, the heating rate of the recrystallization heat treatment is 1 ° C./second or more, desirably 2 ° C./second or more, more desirably 5 ° C./second or more.
Furthermore, the cooling rate after the recrystallization heat treatment is 5 ° C./second or more in the range from the heating temperature to 300 ° C. When the cooling rate in this temperature range is less than 5 ° C./second, precipitation of Fe and Fe—P compounds occurs during cooling and coarsens, so that fine Fe and Fe—P compounds precipitated in the precipitation heat treatment are reduced. Therefore, the cooling rate after the recrystallization heat treatment is 5 ° C./second or more, desirably 10 ° C./second or more, more desirably 20 ° C./second or more.

再結晶熱処理の後、冷間圧延を行い又は行うことなく、析出熱処理を行う。析出熱処理は、微細な(円相当直径が10〜40nmの)FeやFe−P化合物の析出物を数多く生成するための熱処理であり、冷間圧延を行わなくても析出物は生成するが、冷間圧延を行うことにより析出物が効率的に析出し、より強度を高めることが可能である。
析出熱処理は、加熱温度300〜600℃程度で0.5〜30時間程度保持する。加熱温度が300℃未満では析出量が少なく、600℃を超えると析出物が粗大化しやすい。従って、加熱温度は300〜600℃、望ましくは320〜580℃、より望ましくは340〜560℃とする。保持時間は加熱温度によって適宜選択してよいが、0.5〜30時間程度の時間とする。保持時間が0.5時間未満では析出が不十分となりやすく、30時間を超えると生産性低下への影響が大きくなる。従って、保持時間は0.5〜30時間、望ましくは1〜25時間、さらに望ましくは1.5〜20時間程度とする。
After the recrystallization heat treatment, precipitation heat treatment is performed with or without cold rolling. Precipitation heat treatment is a heat treatment for producing a large number of fine precipitates of Fe and Fe-P compounds (equivalent circle diameter of 10 to 40 nm), and precipitates are produced without cold rolling. By performing cold rolling, precipitates are efficiently deposited and the strength can be further increased.
The precipitation heat treatment is held at a heating temperature of about 300 to 600 ° C. for about 0.5 to 30 hours. When the heating temperature is less than 300 ° C., the amount of precipitation is small, and when it exceeds 600 ° C., the precipitate tends to be coarsened. Therefore, the heating temperature is 300 to 600 ° C, preferably 320 to 580 ° C, more preferably 340 to 560 ° C. The holding time may be appropriately selected depending on the heating temperature, but it is about 0.5 to 30 hours. When the holding time is less than 0.5 hours, precipitation is likely to be insufficient, and when it exceeds 30 hours, the effect on productivity is increased. Accordingly, the holding time is 0.5 to 30 hours, preferably 1 to 25 hours, and more preferably about 1.5 to 20 hours.

続いて最終の冷間圧延を行い、所定の強度及び板厚に仕上げる。最終冷間圧延の後に、低温焼鈍(歪取り焼鈍ともいう)を行ってもよい。半導体装置の小型化・高集積化によるリードフレームの微細配線化に伴い、板のフラットネスと内部応力低減に関する品質要求は益々高くなっており、低温焼鈍はこれらの品質向上に有効である。   Subsequently, the final cold rolling is performed to finish to a predetermined strength and thickness. After the final cold rolling, low temperature annealing (also referred to as strain relief annealing) may be performed. With the miniaturization and high integration of semiconductor devices, the demand for quality regarding the flatness of the plate and the reduction of internal stress is increasing with the miniaturization of the lead frame, and low temperature annealing is effective in improving these quality.

銅合金原料を高周波炉において溶製した後成分調整を行い、カーボン鋳型で造塊し(冷却方法は水冷)、厚さが50mm、幅が180mm、長さが100mmの鋳塊を得た。得られたFe−P系銅合金の化学組成を表1に示す。なお、表1に示すFe−P系銅合金は、表1に示した元素の他に不可避的不純物を含むが、そのうちTi、Zr、Be、V、Nb、Mo、W、Mgが総量で0.01質量%以下、B、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)が総量で0.005質量%以下であった。これらの元素は少量であり、本発明に係るFe−P系銅合金板の特性に影響を及ぼさない。   After the copper alloy raw material was melted in a high frequency furnace, the components were adjusted and ingot was formed with a carbon mold (cooling method was water cooling) to obtain an ingot having a thickness of 50 mm, a width of 180 mm, and a length of 100 mm. Table 1 shows the chemical composition of the obtained Fe-P-based copper alloy. The Fe—P based copper alloy shown in Table 1 contains unavoidable impurities in addition to the elements shown in Table 1. Among them, Ti, Zr, Be, V, Nb, Mo, W, and Mg are 0 in total. 0.01% by mass or less, and B, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, and MM (Misch metal) were 0.005% by mass or less in total. These elements are in a small amount and do not affect the characteristics of the Fe—P based copper alloy sheet according to the present invention.

Figure 0006210887
Figure 0006210887

続いて、各鋳塊を950℃で1hr加熱後、No.1〜23,26については厚さが18mmになるまで熱間圧延し、No.24,25については厚さが12mmになるまで熱間圧延し、熱間圧延後いずれも水冷した。熱間圧延の終了温度(冷却開始温度)は、No.1〜8,11,13〜23,26では750℃以上であり、No.9,10,12,24,25では750℃未満であった。No.24,25は厚さ12mmまで圧延したため、熱間圧延の終了温度が低くなり、No.9,10,12はパス間時間を長くしたため、熱間圧延の終了温度がNo.24,25よりさらに低くなった。熱間圧延後に行った水冷の冷却速度は全て10℃/秒以上であった。
No.1〜26の熱間圧延板の両面を面削して酸化スケールを除去し、No.1〜23,26は厚さ16mmとし、No.24,25は厚さ10mmとした後、冷間圧延、再結晶熱処理、析出熱処理、最終冷間圧延及び歪み取り焼鈍を行って、厚さが0.15mmのFe−P系銅合金板を得た。
なお、熱間圧延終了温度、再結晶熱処理、及び最終冷間圧延の圧延率の工程条件を表2に示す。
Subsequently, after each ingot was heated at 950 ° C. for 1 hour, For Nos. 1 to 23 and 26, hot rolling was performed until the thickness reached 18 mm. About 24 and 25, it hot-rolled until thickness became 12 mm, and water-cooled all after hot rolling. The end temperature (cooling start temperature) of hot rolling is No. 1 to 8, 11, 13 to 23, 26, the temperature is 750 ° C. or higher. In 9, 10, 12, 24, and 25, it was less than 750 degreeC. No. Since Nos. 24 and 25 were rolled to a thickness of 12 mm, the end temperature of hot rolling was lowered. 9, 10, and 12 have increased the time between passes, the hot rolling finish temperature was No. It was even lower than 24 and 25. The cooling rate of water cooling performed after hot rolling was 10 ° C./second or more.
No. No. 1 to 26 hot-rolled plates were chamfered to remove oxide scale. Nos. 1 to 23 and 26 have a thickness of 16 mm. 24 and 25 are made to have a thickness of 10 mm, followed by cold rolling, recrystallization heat treatment, precipitation heat treatment, final cold rolling, and strain relief annealing to obtain a Fe-P-based copper alloy plate having a thickness of 0.15 mm. It was.
Table 2 shows the process conditions of the hot rolling end temperature, the recrystallization heat treatment, and the rolling rate of the final cold rolling.

Figure 0006210887
Figure 0006210887

得られたFe−P系銅合金板を供試材とし、平均結晶粒径、析出物密度、引張強さ、加熱前後の硬さ、導電率、W曲げ性、はんだ耐熱剥離性の測定を下記要領で行った。これらの結果を表3に示す。また、得られたFe−P系銅合金板の表面を光学顕微鏡(倍率:500倍)で観察し、2液相分離や晶出で発生する粗大Fe粒子の有無を調べた。粗大Fe粒子が観察されたNo.14,21,22について、その顕微鏡組織写真を図1に示す。   Using the obtained Fe-P-based copper alloy plate as a test material, the average crystal grain size, precipitate density, tensile strength, hardness before and after heating, conductivity, W bendability, and solder heat peelability are measured as follows. I went there. These results are shown in Table 3. Moreover, the surface of the obtained Fe-P type copper alloy plate was observed with an optical microscope (magnification: 500 times), and the presence or absence of coarse Fe particles generated by two-liquid phase separation or crystallization was examined. No. in which coarse Fe particles were observed. The micrographs of 14, 21, 22 are shown in FIG.

(平均結晶粒径)
供試材の圧延方向に平行で板面に垂直な断面の結晶組織をEBSDで観察し、粒界条件:方位差5°以上で解析した全結晶粒を円相当直径で数値化し、各結晶粒の円相当直径を面積で重み付けして加重平均を求め、これを供試材の平均結晶粒径とした。No.1〜21の各供試材について各3視野観察し、各視野ごとに平均結晶粒径を求め、その平均値を各供試材の平均結晶粒径とした。1視野においてN個の結晶粒が観察されたとき、その視野における平均結晶粒径は、以下の式で算出される。
平均結晶粒径=(a1×d1+・・・+aN×dN)/A
ただし、ai:各結晶粒の面積(i:1〜Nの整数)
di:各結晶粒の直径(i:1〜Nの整数)
A:N個の結晶粒の面積の和である。
(Average crystal grain size)
The crystal structure of a cross section perpendicular to the plate surface parallel to the rolling direction of the specimen is observed by EBSD, and all crystal grains analyzed under grain boundary conditions: orientation difference of 5 ° or more are quantified by equivalent circle diameters. A weighted average was obtained by weighting the equivalent circle diameter of each by the area, and this was taken as the average crystal grain size of the test material. No. Three visual fields were observed for each of the test materials 1 to 21, the average crystal grain size was determined for each visual field, and the average value was taken as the average crystal grain size of each test material. When N crystal grains are observed in one visual field, the average crystal grain diameter in the visual field is calculated by the following formula.
Average crystal grain size = (a1 × d1 +... + AN × dN) / A
Where ai: area of each crystal grain (i: integer from 1 to N)
di: Diameter of each crystal grain (i: integer from 1 to N)
A: Sum of areas of N crystal grains.

(析出物密度)
供試材の組織を15万倍の透過型電子顕微鏡で観察し、粒径が10nm以上で40nm以下の析出粒子の個数を測定し、単位面積当たりの個数(個/μm)を算出し、これを析出物密度とした。
(引張強さ)
供試材から長手方向を圧延方向に平行としたJIS−5号試験片を作製し、JISZ2241の規定に準じて引張試験を行い、測定した。
(Precipitate density)
The structure of the test material was observed with a transmission electron microscope of 150,000 times, the number of precipitated particles having a particle size of 10 nm to 40 nm was measured, and the number per unit area (pieces / μm 2 ) was calculated. This was defined as the precipitate density.
(Tensile strength)
A JIS-5 test piece having a longitudinal direction parallel to the rolling direction was prepared from the test material, and a tensile test was performed according to the provisions of JISZ2241 and measured.

(加熱前後の硬さ)
供試材から採取した試験片の加熱前の硬さと、550℃で1分加熱後の硬さを、マイクロビッカース硬度計にて、4.9Nの荷重を加えて測定した。次いで、加熱後/加熱前硬さ比を算出した。
(導電率)
供試材をミーリングにより幅10mm×長さ300mmの短冊状の試験片に加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して平均断面積法により算出した。本発明では導電率60%IACS以上を良好と評価した。
(Hardness before and after heating)
The hardness before heating of the test piece collected from the test material and the hardness after heating at 550 ° C. for 1 minute were measured with a micro Vickers hardness tester while applying a load of 4.9 N. Subsequently, the hardness ratio after heating / before heating was calculated.
(conductivity)
The specimen was processed into a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, and the electrical resistance was measured with a double bridge type resistance measuring device and calculated by an average cross-sectional area method. In the present invention, a conductivity of 60% IACS or higher was evaluated as good.

(W曲げ性)
供試材から採取した幅10mmのL.D.及びT.D.試験片に、JCBA−T307に準じてW曲げ(R/t=1)を行い、曲げ部の外観を観察して評価した。L.D.及びT.D.試験片のどちらかに割れが発生したものを×(不良)、肌荒れが発生したものを△(不良)、どちらにも割れ又は肌荒れが発生しなかったものを○(良)と評価した。なお、L.D.(Londitudinal to Rolling Direction)試験片とは、長さ方向が圧延平行方向で曲げ線が圧延垂直方向となる試験片、T.D.(Transverse to Rolling Direction)試験片とは、長さ方向が圧延垂直方向で曲げ線が圧延平行方向となる試験片を意味する。
(はんだ耐熱剥離性)
供試材から採取した短冊状の試験片に弱活性フラックスを塗布し、265℃に保持したはんだ浴(Sn−3%Ag−0.5%Cu)に5秒間浸漬後、150℃のオーブンで1000hr加熱した後、この試験片に180°曲げ及び曲げ戻し加工を加え、曲げ戻し加工部に透明なメンディングテープを貼付けた後引き剥がし、メンディングテープに付着するはんだの有無により、加工部のはんだが剥離するか否かを観察した。メンディングテープに剥離片が付着したものを剥離が生じたとして×(不良)、剥離片が付着しなかったものを剥離が生じなかったとして○(良)と評価した。
(W bendability)
10 mm wide L. sampled from the specimen. D. And T. D. The test piece was subjected to W bending (R / t = 1) according to JCBA-T307, and the appearance of the bent portion was observed and evaluated. L. D. And T. D. Those in which cracks occurred in either of the test pieces were evaluated as x (defect), those in which rough skin occurred were evaluated as Δ (defect), and those in which neither crack or rough skin occurred were evaluated as good (good). In addition, L. D. (Longitudinal to Rolling Direction) test piece is a test piece in which the length direction is parallel to the rolling direction and the bending line is the vertical direction of rolling. D. The (Transverse to Rolling Direction) test piece means a test piece having a length direction in the rolling vertical direction and a bending line in the rolling parallel direction.
(Solder heat-resistant peelability)
A weakly active flux is applied to a strip-shaped test piece taken from the test material, immersed in a solder bath (Sn-3% Ag-0.5% Cu) maintained at 265 ° C. for 5 seconds, and then in an oven at 150 ° C. After heating for 1000 hours, the test piece was subjected to 180 ° bending and unbending, and a transparent mending tape was applied to the bent portion and then peeled off. Depending on the presence or absence of solder adhering to the mending tape, It was observed whether the solder was peeled off. When the peeling piece adhered to the mending tape, it was evaluated as x (defective) when peeling occurred, and when the peeling piece did not adhere, it was evaluated as good (good) as peeling did not occur.

Figure 0006210887
Figure 0006210887

表1〜3に示すように、No.1〜8は、銅合金の組成が本発明の規定範囲内で、熱間圧延の終了温度が750℃以上と高く、再結晶熱処理の加熱・冷却速度が大きく、かつ高温短時間の保持条件である。このため、平均結晶粒径が小さく、析出物密度が高く、高い強度及び耐熱性(加熱後/加熱前硬さ比が90%以上)、良好な曲げ性を有している。   As shown in Tables 1-3, no. 1-8, the composition of the copper alloy is within the specified range of the present invention, the hot rolling finish temperature is as high as 750 ° C. or higher, the heating / cooling rate of the recrystallization heat treatment is high, and the holding conditions are high temperature and short time. is there. Therefore, the average crystal grain size is small, the precipitate density is high, the strength and heat resistance are high (the hardness ratio after heating / before heating is 90% or more), and good bendability.

一方、No.9,10は、熱間圧延の終了温度が750℃未満と低く、再結晶熱処理の加熱・冷却速度が小さく、かつ低温長時間の保持条件である。このため、結晶粒径が大きく、析出物密度が低く、化学組成がほぼ同じで最終冷間圧延率が同じNo.1,2に比べて、それぞれ強度、耐熱性、曲げ性ともに低い。
No.11は、再結晶熱処理の加熱・冷却速度が小さく、かつ低温長時間の保持条件であるため、No.10ほどではないが平均結晶粒径が大きく、析出物密度が低く、化学組成がほぼ同じで最終冷間圧延率が同じNo.2に比べて、強度、耐熱性、曲げ性ともに低い。
On the other hand, no. Nos. 9 and 10 are conditions for holding the hot rolling at a low temperature of less than 750 ° C., a low heating / cooling rate of the recrystallization heat treatment, and a low temperature for a long time. For this reason, the crystal grain size is large, the precipitate density is low, the chemical composition is almost the same, and the final cold rolling rate is the same. Compared to 1 and 2, the strength, heat resistance and bendability are low.
No. No. 11 is a holding condition for a low temperature and a long time with a low heating / cooling rate of the recrystallization heat treatment. Although the average grain size is large, the precipitate density is low, the chemical composition is almost the same, and the final cold rolling reduction is the same. Compared to 2, strength, heat resistance and bendability are low.

No.12は、熱間圧延の終了温度が750℃未満と低いため、No.10ほどではないが平均結晶粒径が大きく、析出物密度が低く、化学組成がほぼ同じで最終冷間圧延率が同じNo.2に比べて、強度、耐熱性、曲げ性ともに低い。
No.13は、Feの含有量が本発明の規定範囲外で少ないため、平均結晶粒径が大きく、析出物密度が低く、同じ工程条件で製造したNo.2〜8に比べて、強度、耐熱性、曲げ性ともに低い。
No. No. 12 is a hot rolling end temperature as low as less than 750 ° C. Although the average grain size is large, the precipitate density is low, the chemical composition is almost the same, and the final cold rolling reduction is the same. Compared to 2, strength, heat resistance and bendability are low.
No. No. 13, since the Fe content is small outside the specified range of the present invention, the average crystal grain size is large, the precipitate density is low, and No. 13 produced under the same process conditions. Compared with 2-8, strength, heat resistance, and bendability are low.

No.14は、平均結晶粒径が小さく、析出物密度が高く、高い強度、耐熱性、曲げ性を有する。しかし、Feの含有量が本発明の規定範囲外で多いため、図1(a)に示すように、粗大Fe粒子が多く生成した。このため、Agなどのめっきを行った場合に突起や未めっき部が生成しやすいなど、めっき性が低いことが推測される。
No.15は、Pの含有量が本発明の規定範囲外で少ないため、平均結晶粒径が大きく、析出物密度が低く、同じ工程条件で製造したNo.2〜8と比べて、強度、耐熱性、曲げ性ともに低い。
No. No. 14 has a small average crystal grain size, a high precipitate density, and high strength, heat resistance and bendability. However, since the Fe content is large outside the specified range of the present invention, a large amount of coarse Fe particles were generated as shown in FIG. For this reason, when plating of Ag etc. is performed, it is guessed that plating nature is low, such as a projection and an unplated part being easy to produce.
No. No. 15, since the P content is small outside the specified range of the present invention, the average crystal grain size is large, the precipitate density is low, and No. 15 produced under the same process conditions. Compared with 2-8, strength, heat resistance, and bendability are low.

No.16,18,20は、平均結晶粒径が小さく、析出物密度が高く、高い強度、耐熱性、曲げ性を有する。しかし、それぞれP,Zn,Snの含有量が本発明の規定範囲外で多いため、いずれも導電率が低い。
No.17は、平均結晶粒径が小さく、析出物密度が高く、高い強度、耐熱性、曲げ性を有する。しかし、Znの含有量が本発明の規定範囲外で少ないため、はんだの耐熱剥離性が低い。
No.19は、Snの含有量が本発明の規定範囲外で少ないため、平均結晶粒径が大きく、析出物密度も低く、同じ工程条件で製造したNo.2と比べて、耐熱性が低く、強度もやや低い。
No. Nos. 16, 18, and 20 have a small average crystal grain size, a high precipitate density, and high strength, heat resistance, and bendability. However, since the contents of P, Zn, and Sn are large outside the specified range of the present invention, the conductivity is low.
No. No. 17 has a small average crystal grain size, a high precipitate density, and high strength, heat resistance, and bendability. However, since the Zn content is small outside the specified range of the present invention, the heat-resistant peelability of the solder is low.
No. No. 19 has a small Sn content outside the specified range of the present invention, so that the average crystal grain size is large and the precipitate density is low. Compared with 2, heat resistance is low and strength is also slightly low.

No.21は、Cの含有量が本発明の規定範囲外で多いため、図1(b)に示すように、粗大Fe粒子が多く生成した。このため、No.21はめっき性が低いことが推測される。また、No.21は平均結晶粒径が大きく、析出物密度が低く、同じ工程条件で製造したNo.2と比べて、強度及び耐熱性が低い。
No.22は、Co,Si,Crの合計含有量が本発明の規定範囲外で多いため、図1(c)に示すように、粗大Fe粒子が多く生成した。このため、No.22はめっき性が低いことが推測される。また、No.22は平均結晶粒径が大きく、析出物密度が低く、同じ工程条件で製造したNo.2と比べて、強度及び耐熱性が低い。
No.23は、Fe,P,Zn,Snの含有量が本発明の規定範囲外で少ないため、平均結晶粒径が大きく、析出物密度が低く、同じ工程条件で製造したNo.2〜8に比べて、強度、耐熱性、曲げ性とも低く、はんだ耐熱剥離性も低い。
No. No. 21 has a large amount of coarse Fe particles as shown in FIG. 1B because the C content is large outside the specified range of the present invention. For this reason, no. No. 21 is estimated to have low plating properties. No. No. 21 has a large average crystal grain size, a low precipitate density, and No. 21 produced under the same process conditions. Compared with 2, strength and heat resistance are low.
No. In No. 22, since the total content of Co, Si, and Cr was large outside the specified range of the present invention, a large amount of coarse Fe particles were generated as shown in FIG. For this reason, no. No. 22 is estimated to have low plating properties. No. No. 22 has a large average crystal grain size, a low precipitate density, and No. 22 produced under the same process conditions. Compared with 2, strength and heat resistance are low.
No. No. 23, which contains Fe, P, Zn, and Sn, outside the specified range of the present invention, has a large average crystal grain size and low precipitate density. Compared to 2 to 8, the strength, heat resistance and bendability are low, and the solder heat resistance peelability is also low.

No.24,25は、熱間圧延の終了温度が750℃未満と低いため、平均結晶粒径が大きく、析出物密度も低く、化学組成がほぼ同じNo.1,2に比べて、それぞれ強度、耐熱性、曲げ性ともに低い。なお、No.24,25の工程条件は特許文献2の製造方法の工程条件に相当する。
No.26は、再結晶熱処理の保持温度が高く、平均結晶粒径が10μmを超えたため、曲げ性が低い。
No. Nos. 24 and 25 are No. 24 and 25 having a hot average end temperature of less than 750 ° C., so that the average grain size is large, the precipitate density is low, and the chemical composition is almost the same. Compared to 1 and 2, the strength, heat resistance and bendability are low. In addition, No. The process conditions of 24 and 25 correspond to the process conditions of the manufacturing method of Patent Document 2.
No. No. 26 has a high holding temperature in the recrystallization heat treatment, and the average crystal grain size exceeds 10 μm, so the bendability is low.

Claims (1)

Fe:1.6質量%以上、2.6質量%以下、P:0.01質量%以上、0.05質量%以下、Zn:0.01質量%以上、0.5質量%以下、Sn:0.01質量%以上、0.20質量%未満、C:0.003質量%以下、Co、Si及びCrが合計で0.05質量%以下、残部Cu及び不可避不純物からなり、圧延方向に平行で板面に垂直な断面の結晶組織をEBSDで観察した場合に、各結晶粒の円相当直径を面積で重み付けした加重平均が10μm以下であり、導電率が60%IACS以上、円相当直径が10〜40nmのFe又はFe−P化合物の析出粒子の存在密度が20個/μm以上であることを特徴とする強度、耐熱性及び曲げ加工性に優れたFe−P系銅合金板。
ただし、「各結晶粒の円相当直径を面積で重み付けした加重平均」は、下記式で算出される平均結晶粒径を意味する。
Figure 0006210887
ここで、Σ:総和記号
N:結晶粒の個数
ai:各結晶粒の面積
di:各結晶粒の円相当直径
A:N個の結晶粒の面積の和である。
Fe: 1.6 mass% or more, 2.6 mass% or less, P: 0.01 mass% or more, 0.05 mass% or less, Zn: 0.01 mass% or more, 0.5 mass% or less, Sn: 0.01 mass% or more, less than 0.20 mass%, C: 0.003 mass% or less, Co, Si and Cr total 0.05 mass% or less, remaining Cu and inevitable impurities, parallel to the rolling direction When the crystal structure of the cross section perpendicular to the plate surface is observed by EBSD, the weighted average obtained by weighting the equivalent circle diameter of each crystal grain by area is 10 μm or less, the conductivity is 60% IACS or more, and the equivalent circle diameter is A Fe-P-based copper alloy plate excellent in strength, heat resistance and bending workability, wherein the existence density of precipitated particles of 10 to 40 nm of Fe or Fe—P compound is 20 particles / μm 2 or more.
However, “weighted average obtained by weighting the equivalent circle diameter of each crystal grain by area” means an average crystal grain size calculated by the following formula.
Figure 0006210887
Where Σ: Summation symbol
N: Number of crystal grains
ai: Area of each crystal grain
di: Circle equivalent diameter of each crystal grain
A: Sum of areas of N crystal grains.
JP2014007334A 2014-01-18 2014-01-18 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability Active JP6210887B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014007334A JP6210887B2 (en) 2014-01-18 2014-01-18 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
TW103137240A TWI527914B (en) 2014-01-18 2014-10-28 Strength, heat resistance and bending workability of the Fe-P copper alloy plate
CN201410643758.7A CN104789812B (en) 2014-01-18 2014-11-11 Fe-P based copper alloy sheet excellent in strength, heat resistance and bending processibility
KR1020150007360A KR101688300B1 (en) 2014-01-18 2015-01-15 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007334A JP6210887B2 (en) 2014-01-18 2014-01-18 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability

Publications (2)

Publication Number Publication Date
JP2015134955A JP2015134955A (en) 2015-07-27
JP6210887B2 true JP6210887B2 (en) 2017-10-11

Family

ID=53555001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007334A Active JP6210887B2 (en) 2014-01-18 2014-01-18 Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability

Country Status (4)

Country Link
JP (1) JP6210887B2 (en)
KR (1) KR101688300B1 (en)
CN (1) CN104789812B (en)
TW (1) TWI527914B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102418935B1 (en) * 2017-12-06 2022-07-07 다나카 기킨조쿠 고교 가부시키가이샤 A method for manufacturing a gold sputtering target and a method for manufacturing a gold film
JP7234501B2 (en) * 2018-03-28 2023-03-08 三菱マテリアル株式会社 Copper alloy
JP7242996B2 (en) * 2018-03-28 2023-03-22 三菱マテリアル株式会社 Copper alloy
WO2022259932A1 (en) * 2021-06-08 2022-12-15 株式会社村田製作所 Elastic wave device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673967B2 (en) 1990-06-04 1997-11-05 三菱伸銅 株式会社 Cu alloy lead frame material for high strength semiconductor devices
JPH10130755A (en) * 1996-11-01 1998-05-19 Kobe Steel Ltd High strength and high conductivity copper alloy excellent in shearing workability
JP3772319B2 (en) * 1997-03-24 2006-05-10 同和鉱業株式会社 Copper alloy for lead frame and manufacturing method thereof
JPH11264037A (en) * 1998-03-18 1999-09-28 Nippon Mining & Metals Co Ltd Copper alloy foil
JP3729662B2 (en) 1998-09-28 2005-12-21 株式会社神戸製鋼所 High strength and high conductivity copper alloy sheet
JP3896793B2 (en) * 2001-02-16 2007-03-22 日立電線株式会社 Manufacturing method of high strength and high conductivity copper alloy material
JP4567906B2 (en) * 2001-03-30 2010-10-27 株式会社神戸製鋼所 Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JP3725506B2 (en) * 2002-09-10 2005-12-14 株式会社神戸製鋼所 Copper alloy having high strength and high conductivity and method for producing the same
US8715431B2 (en) * 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
US20090084473A1 (en) * 2005-07-07 2009-04-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
JP3838521B1 (en) * 2005-12-27 2006-10-25 株式会社神戸製鋼所 Copper alloy having high strength and excellent bending workability and method for producing the same
JP4407953B2 (en) * 2005-08-22 2010-02-03 株式会社神戸製鋼所 High strength and high conductivity copper alloy sheet
JP4357536B2 (en) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP5570109B2 (en) * 2008-10-15 2014-08-13 三菱伸銅株式会社 Copper alloy and lead frame material for electronic equipment
JP5610789B2 (en) * 2010-02-25 2014-10-22 Dowaメタルテック株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP5468423B2 (en) * 2010-03-10 2014-04-09 株式会社神戸製鋼所 High strength and high heat resistance copper alloy material
JP2012057242A (en) 2010-09-13 2012-03-22 Hitachi Cable Ltd Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance
JP5499300B2 (en) * 2010-10-05 2014-05-21 株式会社神戸製鋼所 Copper alloy tube for heat exchanger
JP5638357B2 (en) * 2010-11-18 2014-12-10 株式会社Shカッパープロダクツ Copper alloy for electrical and electronic parts and method for producing the same
JP2013071155A (en) * 2011-09-28 2013-04-22 Hitachi Cable Ltd Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot

Also Published As

Publication number Publication date
CN104789812A (en) 2015-07-22
KR20150086444A (en) 2015-07-28
JP2015134955A (en) 2015-07-27
KR101688300B1 (en) 2016-12-20
CN104789812B (en) 2017-03-22
TWI527914B (en) 2016-04-01
TW201529871A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
KR101056973B1 (en) Cu-Ni-Si alloy
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
TWI381397B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
CN107208191B (en) Copper alloy material and method for producing same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP6210887B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP6210910B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP5981866B2 (en) Copper alloy
WO2018174081A1 (en) Copper alloy strip exhibiting improved dimensional accuracy after press-working
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP2011017073A (en) Copper alloy material
JP2017071812A (en) Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
JP2016211053A (en) Copper alloy excellent in heat resistance
JP2018204115A (en) Copper alloy having excellent heat resistance
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP2012197503A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6210887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150