JP3725506B2 - Copper alloy having high strength and high conductivity and method for producing the same - Google Patents
Copper alloy having high strength and high conductivity and method for producing the same Download PDFInfo
- Publication number
- JP3725506B2 JP3725506B2 JP2002263825A JP2002263825A JP3725506B2 JP 3725506 B2 JP3725506 B2 JP 3725506B2 JP 2002263825 A JP2002263825 A JP 2002263825A JP 2002263825 A JP2002263825 A JP 2002263825A JP 3725506 B2 JP3725506 B2 JP 3725506B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- amount
- mass
- hot rolling
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、例えば半導体装置用リードフレームの素材として好適な高強度、高導電率をバランスよく備えた銅合金に関する。
【0002】
【従来の技術】
電子機器に用いられる半導体装置に使用されるリードフレームには導電性のみならず、機械的強度が要求される。従来、半導体装置のリードフレーム用銅合金としては、Feを含む銅合金が広く用いられており、高い導電率を有し(導電率80%IACS以上)、強度が約300〜520N/mm2 レベルにあるFe:0.1mass%を含む銅合金や、導電率60%IACS以上、強度約580N/mm2 程度のFe:2.1〜2.6mass%、P:0.015〜0.15mass%、Zn:0.05〜0.20mass%を含有する銅合金(CDA194合金)は、Cu−Fe系銅合金の内でも強度、導電性、熱伝導性に優れていることから、国際標準合金として、多く用いられている。
【0003】
近年、半導体装置の大容量化、小型化、高機能化に伴い、リードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されるようになってきた。かかる要求は、前記リードフレームの素材銅合金に限らず、電気・電子機器に使用される各種導電性部品の素材として用いられる銅合金についても言えることである。
【0004】
前記Cu−Fe系の銅合金は、高い導電率を有することが特徴であるが、これまで、強度を高めるために、Fe添加量を増加したり、第3元素を添加する手法が取られてきた。すなわち、Fe、P、Zn等の主成分を規定したり、Sn、Mg、Ca等の微量添加元素を規定することによって、導電率および強度の確保が図られてきた。例えば特開平11−199952号公報には、Fe、P、Zn、MgおよびFe/Pの各量を規定した銅合金が記載されている。
【0005】
しかし、合金元素の種類や添加量を増やすと、強度は向上するものの、導電率が低下してしまい、高強度と高導電率のバランスの良い合金を実現することが難しく、上記のように電気・電子部品等の素材として用いられる銅合金に対する更なる高品質化、特性向上の要求に対し、単なる成分制御だけでは、その要求を十分に満足させることができないようになってきている。
【0006】
そこで、近年、機器の小型化に伴う要求特性を満足させるために、Cu−Fe系銅合金の内部組織や析出状態を制御する方法が提案されている。例えば、特開平10−324935号公報には、銅合金中の析出粒子の粒径100Å以上の粒子個数と100Å未満の粒子個数との比を規定することによって、強度と導電性を向上させた技術が開示されている。また、特開平11−80862号公報には、直径40nm以下の微細Fe粒子の体積分率を規定して耐熱性の改善を図る技術が開示されている。
【0007】
【特許文献1】
特開平11−199952号公報(特許請求の範囲)
【特許文献2】
特開平10−324935号公報(特許請求の範囲)
【特許文献3】
特開平11−80862号公報(特許請求の範囲)
【0008】
【発明が解決しようとする課題】
しかしながら、これらの技術は、非常に微細な析出物を制御する必要があり、Feの析出挙動は、製造過程における焼鈍条件によって敏感に変化しやすいので、製造することが難しく、特性もばらつきやすいという問題がある。また、添加したFe量の割には強度の向上が少なく、導電性の割には強度が低いという問題がある。
本発明は、かかる問題に鑑みなされたもので、製造容易で、高強度かつ高導電率をバランス良く備えた銅合金及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
Fe−Cu系銅合金の強度を向上させるには、Feを含む析出物のサイズを微細に、多く析出させることが有効であり、そのためには焼鈍の際にCuマトリックス中に固溶しているFe量が多いことが必要である。しかしながら、従来の銅合金では、添加されたFe量の多くがCuマトリックス中に固溶しているわけではなく、実際には溶解鋳造時に生成した酸化物、晶出物および鋳塊の均熱から熱間圧延にかけて生成した粗大な析出物に添加したFe量の大部分が取られている。本発明はかかる点に鑑み、強度の向上に有効な微細なFeを含む化合物として、析出物のみならず酸化物および晶出物を、添加したFe量に応じて多く残存させることによって、高強度および高導電率をバランス良く得られるとの着想を基に完成されたものである。
【0010】
すなわち、本発明の銅合金は、Fe:0.01〜4.0mass%を含有し、残部Cu及び不可避的不純物からなる銅合金であって、銅合金のマトリックスのみを溶解し、目開き0.1μm のメッシュによって銅合金中の酸化物、晶出物および析出物を分離抽出したときに、分離抽出された抽出残渣のFe量がFe添加量の80%以下とされたものである。合金成分として、前記Feの他さらに、P:0.01〜0.1mass%、Zn:0.01〜1.0mass%、Sn:0.01〜0.5mass%の範囲で、これらの元素の一種以上を単独で、あるいは複合して添加することができる。
また、本発明の製造方法は、上記成分を有する銅合金を溶製し、鋳造し、鋳造された鋳塊を加熱し、熱間圧延し、その後焼鈍及び冷間圧延を施して銅合金を製造する際に、鋳造後の冷却・凝固速度を0.1℃/秒以上とし、鋳塊が加熱炉から抽出された時点から熱延終了までの経過時間を1200秒以下とし、熱間圧延の入り側温度を1000〜600℃、熱間圧延の終了温度を600〜850℃とするものである。
【0011】
Fe:0.01〜4.0%
Feは、基本的に強度を向上させる元素であるが、0.01%未満では微細析出Fe粒子の生成量が少なく、導電性の向上は満たされるものの、強度向上への寄与が低下する。一方、4.0%を超えると導電性が低下するとともに、鋳塊製造時に粗大な晶出物、析出物が多量に生成し、最終製品(例えば、リードフレーム)の延性が低下する。また、鋳塊から圧延加工する際に、熱間圧延前の加熱あるいは中間焼鈍においてFeの巨大析出物が生成し、圧延加工性が劣化する上に、その巨大析出物が最終製品にも残ることになり、耐熱性の低下をも招くようになる。このため、Fe量の下限を0.01%、好ましくは1.0%とし、上限を4.0%、好ましくは3.0%とする。
【0012】
P:0.01〜0.1%
Pは、脱酸作用があるほか、Feと金属間化合物を形成し、Feを析出強化させる元素である。0.01%未満ではFeが0.01〜4.0%存在しても析出強化に寄与しない。一方、0.1%を超えると導電性が低下するとともに、Feの固溶限が低下して鋳塊製造時に粗大な晶出物を多く生成し、その晶出物がひずみ除去加熱の際の回復現象の核になり、最終製品での耐熱性が低下する。このため、P量の下限を0.01%、上限を0.1%とする。
【0013】
Zn:0.01〜1.0%
Znは、Pと同様に脱酸作用があるが、0.01%未満では脱酸効果は過少である。一方、1.0%超では脱酸作用が飽和し、導電率も低下するようになる。このため、Zn量は0.01〜1.0%とする。
【0014】
Sn:0.01〜0.5%
Snは、耐熱性の向上に寄与する成分である。0.01%未満ではその効果が過少であり、一方0.5%を越えるとマクロ偏析により鋳造時に粗大化合物が生成し、導電率も低下するようになる。このため、Sn量は0.01〜0.5%とする。
【0015】
上記の合金元素の他、不純物である微量元素Pb、Ni、Mn、Cr、Al、Mg、Ca、Be、Si、Zr、In等については、1種類または2種類以上の合計で0.1%以下に止めることが好ましく、この程度であれば本発明による効果に大きな影響を及ぼさない。
【0016】
また、本発明の銅合金は、その組織中の特定サイズのFeを含む化合物として、析出物のみならず、酸化物および晶出物をも含め、これらの量の割合が以下のように規定される。すなわち、銅合金のマトリックスのみを溶解し、銅合金中の酸化物、晶出物および析出物を目開き0.1μm のメッシュによって抽出分離したときに、抽出分離された抽出残渣のFe量がFe添加量の80%以下とされる。前記酸化物、晶出物、析出物とは、銅合金中に存在する酸化物、晶出あるいは析出した晶出物あるいは析出物、またはこれらの混合物をいい、それらの化学組成を問わない。例えば、Feを含む晶出物、析出物には、Fe単体、Fe−P系化合物(Fe3P、Fe2Pなど)が含まれる。
【0017】
前記メッシュサイズを0.1μm と規定したのは、強度の向上にあまり寄与しない、粗大な酸化物、晶出物および析出物(これらをまとめて「粗大生成物」と呼ぶことがある。)を抽出残渣として把握するためである。このような粗大生成物の全生成物量に対する量的割合は、添加したFe量に対する抽出残渣に含まれるFe量の比(「抽出残渣比」と呼ぶことがある。)を求めることで把握され、本発明ではこの比が百分率で80%以下とされる。言い換えると、合金元素の固溶量はごく少ないので、強度の向上に有効に寄与する、0.1μm 以下の微細な酸化物、晶出物および析出物(これらをまとめて「微細生成物」と呼ぶことがある。)の生成量の割合が20%以上とされる。これによって、Fe添加量に応じて、大きな強度向上効果が得られる。
ところで、導電率のレベルは、銅純度、言い換えると銅合金中の添加合金元素量によってほぼ決まるが、同一成分であっても合金元素の固溶量、冷間圧延で導入される加工ひずみ量によって大きな影響を受ける。晶出量、析出量の合計量を多くするほど、銅マトリックス中の合金元素の固溶量は減少するので、導電率は向上する。しかし、抽出残渣量(0.1μm 以上の粗大生成物量)が多いと、微細生成物量が減少するので、強度が低下する。従って、前記抽出残渣比を小さくし、微細生成物量を(1−抽出残渣比)の割合で増加させることによって、強度と導電性とのバランスが優れた銅合金を得ることができる。
【0018】
通常の製造工程においては、鋳造、均熱、熱間圧延(熱延)、そして冷間圧延(冷延)と焼鈍の繰り返しにより最終(製品)板が得られ、強度レベル等の機械的性質の制御は主に冷延条件、焼鈍条件により、0.1μm 以下の微細析出物の析出を制御することによってなされる。その際、ほどよく分散した金属間化合物へのFe等の合金元素の拡散がFe等の固溶量および微細析出物の析出量を安定化させる。しかし、本発明者らの知見によると、熱延以降の冷延条件、焼鈍条件により、前記微細析出物を多く析出させても、高導電率と高強度をバランスさせることは困難である。その理由は、添加されたFe量の大部分が、溶解鋳造時に生じた酸化物、晶出物、および鋳塊の均熱から熱延終了までに生じた粗大析出物に取られてしまい、添加したFe量に応じて生成すべき微細生成物の生成量が意外に少なくなってしまうからである。さらに、粗大な晶出物が多い場合、冷延、焼鈍工程で析出した微細析出物は粗大な晶析出物にトラップされてしまい、マトリックス中に独立して存在する微細析出物は益々少なくなる。このため、Fe添加量の割には、十分な強度、導電率をバランス良く得ることができないのである。
【0019】
ここで、銅合金中の酸化物、晶出物および析出物の抽出分離法について説明する。
銅合金中の銅および固溶元素(マトリックス)のみを溶解し、銅合金中の晶出物、析出物、酸化物を溶失させることなく抽出分離するには、銅合金のマトリックスである銅が酸素共存下のアンモニアに溶解するという性質を利用して、酢酸アンモニウム、硝酸アンモニウムの溶液を用いることによって実現可能である。この際、溶媒としてアルコールを用いた、酢酸アンモニウム−アルコール溶液、硝酸アンモニウム−アルコール溶液を用いることで、上記アンモニウム塩による銅合金の溶解反応を促進することができる。
【0020】
本発明では下記の抽出分離液を用いて下記の要領で抽出残渣を回収することとする。溶液中の酢酸アンモニウム濃度が10mass%であり、水酸化ナトリウム−メタノール溶液を用いてPH8に調整された酢酸アンモニウム−メタノール溶液(抽出分離液)を300ml準備し、これに約10gの銅合金試料を浸漬し、銅合金試料を陽極とし、白金を陰極として用いて、電流密度20mmA/cm2 で定電流電解を行う。試料の溶解状態を観察しながら、マトリックスを溶解させた後、ポリカーボネート製のメンプランフィルター(目開きサイズ0.1μm )を用いて、銅合金溶解後の抽出分離液を吸引ろ過し、未溶解物として残った残渣を回収する。銅合金中には、酸化物、晶出物、析出物が存在し、そのサイズには、数10nmレベル(数0.01μm )から数μm 程度まで様々である。このようにして回収された抽出残渣は、塩酸によって溶解された後、ICP発光分光分析法によって残渣中のFe量が求められる。
【0021】
次に、本発明にかかる銅合金(板材)の製造方法について説明する。
本発明の銅合金板材は、上記成分の銅合金を溶製し、鋳造し、鋳塊を熱間圧延し、さらに熱延板を焼鈍し、冷間圧延よって目的の板厚に加工される。前記焼鈍と冷間圧延は、最終(製品)板厚に応じて繰り返される場合がある。
【0022】
鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行われるが、冷却・凝固速度は、0.1℃/秒以上とし、好ましくは0.2℃/秒以上とすることが望ましい。これにより、Fe系酸化物や晶出物の生成を抑制し、これらを微細化することができる。通常の鋳造法による鋳造では、冷却・凝固速度は一般的に0.1℃/秒未満であり、かかる低い冷却速度では、凝固過程において、酸化物が粒界に生成して粗大化し、また晶出物も粗大化するため、好ましくない。酸化物の生成抑制の観点からは、真空溶解・鋳造、または酸素分圧の低い雰囲気下での溶解・鋳造を行うことがより好ましい。
【0023】
鋳塊を加熱炉にて加熱後、炉から取り出された鋳塊は熱延開始まで待ち時間が生じるが、本発明の銅合金を製造するには、前記鋳造時の冷却・凝固速度の制御を行うと共に、鋳塊が加熱炉から抽出された時点から熱延終了までの総経過時間を1200秒以下とし、好ましくは1150秒以下に制御することが推奨される。これにより、Fe系およびP系の粗大析出物の析出、溶解鋳造中に生じた晶出物中へのFe、Pの拡散、酸化物周辺部へのFe、Pの析出を抑制することができる。前記抑制効果が生じる理由は、熱延終了までの温度範囲でのFe、P系析出開始時間が、合金成分によって異なるものの、概ね1000秒程度以内に存在し、1200秒までは特性的にあまり影響を受けないからである。
熱間圧延については、常法に従えばよく、熱間圧延の入り側温度は1000〜600℃程度、終了温度は600〜850℃程度とされる。
【0024】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
【0025】
【実施例】
表1に示す化学成分を有する銅合金をコアレス炉にて溶製したのち、半連続鋳造法で造塊し、冷却凝固速度を同表に示すように種々調整し、厚さ70mm、幅200mm、長さ500mmの鋳魂を得た。この鋳塊を加熱し、炉抽出から熱延終了までの時間を同表に示すように種々設定し、厚さ16mmの熱延板を得た。この熱延板の表面を面削した後、冷間圧延と中間焼鈍を繰り返して、厚さ0.15mmのCu−Fe系銅合金板を製造した。
【0026】
得られたCu−Fe系銅合金板より、試験片を採取し、引張試験、硬さ測定、導電率測定を行った。引張試験は、JIS13号B試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min 、GL=50mmの条件で測定した。また、約10gの抽出残渣測定用の試験片を採取し、既述の方法により、目開き0.1μm のメッシュによって分離抽出された抽出残渣に含まれるFe量をIPC発光分光分析によって求めた。これらの測定結果を表2に示す。
【0027】
表2より、Fe添加量が2%レベルの試料No. 1〜10(発明例)と試料No. 11〜18(比較例)とを、またFe添加量が0.1%レベルの試料No. 21〜29(発明例)と試料No. 31〜38とを比較すると、導電率については発明例は比較例と同等あるいはそれを上回るものが多数見られ、強度については発明例は比較例に比して格段に向上していることがわかる。
【0028】
【表1】
【0029】
【表2】
【0030】
【発明の効果】
本発明の銅合金によれば、特に目開き0.1μm のメッシュによって分離抽出された抽出残渣のFe量がFe添加量の80%以下とされ、主に強度の向上に寄与する微細な生成物として、焼鈍段階で生成する析出物のみならず、鋳造段階で生成する酸化物および晶出物、さらに鋳塊の加熱から熱延終了までに生成する析出物をも用いるので、添加したFe量に応じて、高強度かつ高導電率をバランス良く備えることができ、例えば半導体装置のリードフレーム用銅合金として好適である。また、本発明の製造方法によれば、超微細な粒子の制御は必要でないので、容易に行うことができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a copper alloy having a good balance of high strength and high conductivity suitable as a material for a lead frame for a semiconductor device, for example.
[0002]
[Prior art]
Lead frames used in semiconductor devices used in electronic devices are required not only to have electrical conductivity but also to have mechanical strength. Conventionally, a copper alloy containing Fe has been widely used as a copper alloy for a lead frame of a semiconductor device, has high conductivity (conductivity of 80% IACS or more), and has a strength of about 300 to 520 N / mm 2 level. in Fe: or a copper alloy containing 0.1mass%, conductivity 60% IACS or more, the strength of about 580N / mm 2 of about Fe: 2.1~2.6mass%, P: 0.015~0.15mass % , Zn: 0.05-0.20 mass% of copper alloy (CDA194 alloy) is excellent in strength, conductivity, and thermal conductivity among Cu-Fe-based copper alloys. Are often used.
[0003]
In recent years, as the capacity, size, and functionality of semiconductor devices have increased, lead frames have become smaller in cross-sectional area, and more strength, conductivity, and thermal conductivity have been required. This requirement is not limited to the copper alloy used for the lead frame, but can also be applied to copper alloys used as materials for various conductive parts used in electrical and electronic equipment.
[0004]
The Cu-Fe-based copper alloy is characterized by having a high electrical conductivity, but until now, in order to increase the strength, a method of increasing the amount of Fe added or adding a third element has been taken. It was. That is, electrical conductivity and strength have been ensured by defining main components such as Fe, P, and Zn, and by defining trace amounts of additive elements such as Sn, Mg, and Ca. For example, Japanese Patent Application Laid-Open No. 11-199952 describes a copper alloy that defines the amounts of Fe, P, Zn, Mg, and Fe / P.
[0005]
However, increasing the type and amount of alloy elements increases the strength, but decreases the conductivity, making it difficult to achieve an alloy with a high balance between high strength and high conductivity. -With respect to the demand for further improvement in quality and characteristics of copper alloys used as materials for electronic parts and the like, it has become impossible to sufficiently satisfy the demand by simple component control alone.
[0006]
Therefore, in recent years, a method for controlling the internal structure and precipitation state of the Cu—Fe-based copper alloy has been proposed in order to satisfy the required characteristics associated with the miniaturization of equipment. For example, Japanese Patent Laid-Open No. 10-324935 discloses a technique for improving strength and conductivity by defining the ratio of the number of particles having a particle size of 100 mm or more and the number of particles having a particle size of less than 100 mm in a copper alloy. Is disclosed. Japanese Patent Application Laid-Open No. 11-80862 discloses a technique for improving heat resistance by defining the volume fraction of fine Fe particles having a diameter of 40 nm or less.
[0007]
[Patent Document 1]
JP-A-11-199952 (Claims)
[Patent Document 2]
JP-A-10-324935 (Claims)
[Patent Document 3]
Japanese Patent Laid-Open No. 11-80862 (Claims)
[0008]
[Problems to be solved by the invention]
However, these technologies need to control very fine precipitates, and the precipitation behavior of Fe is likely to change sensitively depending on the annealing conditions in the manufacturing process, making it difficult to manufacture and characteristics to vary. There's a problem. In addition, there is a problem that the strength is small for the added Fe amount and the strength is low for the conductivity.
The present invention has been made in view of such problems, and an object of the present invention is to provide a copper alloy that is easy to manufacture, has high strength and high conductivity in a well-balanced manner, and a method for manufacturing the copper alloy.
[0009]
[Means for Solving the Problems]
In order to improve the strength of the Fe-Cu-based copper alloy, it is effective to precipitate a large amount of precipitates containing Fe, and for that purpose, they are dissolved in the Cu matrix during annealing. A large amount of Fe is necessary. However, in the conventional copper alloy, most of the added Fe is not dissolved in the Cu matrix. Actually, from the soaking of the oxide, crystallized material and ingot generated during the melt casting. Most of the amount of Fe added to the coarse precipitate produced by hot rolling is taken. In view of this point, the present invention is a compound containing fine Fe that is effective for improving strength, and not only precipitates but also oxides and crystallized substances are left depending on the amount of added Fe, thereby increasing the strength. And completed based on the idea that high conductivity can be obtained in a well-balanced manner.
[0010]
That is, the copper alloy of the present invention contains Fe: 0.01 to 4.0 mass%, and is a copper alloy composed of the balance Cu and inevitable impurities, which dissolves only the matrix of the copper alloy and has an opening of 0.0. When the oxide, crystallized substance and precipitate in the copper alloy are separated and extracted with a 1 μm mesh, the amount of Fe in the extracted residue is 80% or less of the added amount of Fe. As an alloy component, in addition to Fe, P: 0.01 to 0.1 mass%, Zn: 0.01 to 1.0 mass%, Sn: 0.01 to 0.5 mass% One or more can be added alone or in combination.
In addition, the manufacturing method of the present invention melts and casts a copper alloy having the above components, heats the cast ingot, hot-rolls, and then anneals and cold-rolls to manufacture a copper alloy. When cooling, the cooling / solidification rate after casting is set to 0.1 ° C./second or more, the elapsed time from the time when the ingot is extracted from the heating furnace to the end of hot rolling is set to 1200 seconds or less, and hot rolling starts. The side temperature is 1000 to 600 ° C., and the end temperature of hot rolling is 600 to 850 ° C.
[0011]
Fe: 0.01 to 4.0%
Fe is an element that basically improves the strength, but if it is less than 0.01%, the amount of finely precipitated Fe particles is small, and the improvement in conductivity is satisfied, but the contribution to the improvement in strength is reduced. On the other hand, if it exceeds 4.0%, the electrical conductivity is lowered, and a large amount of coarse crystallized substances and precipitates are produced during the production of the ingot, so that the ductility of the final product (for example, lead frame) is lowered. In addition, when rolling from an ingot, giant precipitates of Fe are generated during heating or intermediate annealing before hot rolling, and the rolling processability deteriorates and the giant precipitates remain in the final product. As a result, the heat resistance is also lowered. For this reason, the lower limit of the amount of Fe is 0.01%, preferably 1.0%, and the upper limit is 4.0%, preferably 3.0%.
[0012]
P: 0.01 to 0.1%
P is an element that has a deoxidizing action, forms an intermetallic compound with Fe, and strengthens precipitation of Fe. If it is less than 0.01%, even if Fe is present in an amount of 0.01 to 4.0%, it does not contribute to precipitation strengthening. On the other hand, if it exceeds 0.1%, the conductivity is lowered, the solid solubility limit of Fe is lowered, and a large amount of coarse crystallization is generated at the time of ingot production. At the core of the recovery phenomenon, the heat resistance of the final product is reduced. For this reason, the lower limit of the P amount is 0.01%, and the upper limit is 0.1%.
[0013]
Zn: 0.01 to 1.0%
Zn has a deoxidizing action like P, but if it is less than 0.01%, the deoxidizing effect is too small. On the other hand, if it exceeds 1.0%, the deoxidation action is saturated and the conductivity is also lowered. Therefore, the Zn content is 0.01 to 1.0%.
[0014]
Sn: 0.01-0.5%
Sn is a component that contributes to improvement in heat resistance. If the content is less than 0.01%, the effect is insufficient. On the other hand, if the content exceeds 0.5%, a coarse compound is produced at the time of casting due to macrosegregation, and the conductivity is also lowered. For this reason, the Sn amount is set to 0.01 to 0.5%.
[0015]
In addition to the alloy elements described above, impurities such as trace elements Pb, Ni, Mn, Cr, Al, Mg, Ca, Be, Si, Zr, In, etc. are 0.1% in total of one type or two or more types. It is preferable to stop at the following level, and if this is the case, the effect of the present invention is not greatly affected.
[0016]
Further, the copper alloy of the present invention is a compound containing Fe of a specific size in the structure, and the ratio of these amounts including not only precipitates but also oxides and crystallized substances is defined as follows. The That is, when only the copper alloy matrix is dissolved, and the oxides, crystallized substances and precipitates in the copper alloy are extracted and separated by a mesh having a mesh size of 0.1 μm, the amount of Fe in the extracted and separated residue is Fe. The added amount is 80% or less. The oxides, crystallized substances, and precipitates refer to oxides present in the copper alloy, crystallized or precipitated crystallized substances or precipitates, or a mixture thereof, regardless of their chemical composition. For example, crystallized substances and precipitates containing Fe include Fe alone and Fe-P compounds (Fe 3 P, Fe 2 P, etc.).
[0017]
When the mesh size is defined as 0.1 μm, coarse oxides, crystallized substances, and precipitates (these may be collectively referred to as “coarse products”) that do not contribute much to the improvement in strength. It is for grasping | ascertaining as an extraction residue. The quantitative ratio of the coarse product to the total product amount is grasped by determining the ratio of the amount of Fe contained in the extraction residue to the added Fe amount (sometimes referred to as “extraction residue ratio”). In the present invention, this ratio is 80% or less as a percentage. In other words, since the amount of solid solution of alloy elements is very small, fine oxides, crystallized substances and precipitates of 0.1 μm or less that contribute effectively to the improvement of strength (collectively these are “fine products”. The ratio of the amount of generated is sometimes 20% or more. As a result, a large strength improvement effect can be obtained according to the amount of Fe added.
By the way, the level of electrical conductivity is almost determined by the purity of copper, in other words, the amount of added alloy element in the copper alloy, but it depends on the solid solution amount of the alloy element and the amount of work strain introduced by cold rolling even if it is the same component. It is greatly affected. As the total amount of crystallization and precipitation increases, the solid solution amount of the alloy element in the copper matrix decreases, so that the conductivity improves. However, if the amount of extraction residue (the amount of coarse product of 0.1 μm or more) is large, the amount of fine product decreases, so the strength decreases. Therefore, by reducing the extraction residue ratio and increasing the amount of fine products at a ratio of (1-extraction residue ratio), a copper alloy having an excellent balance between strength and conductivity can be obtained.
[0018]
In the normal manufacturing process, the final (product) plate is obtained by repeated casting, soaking, hot rolling (hot rolling), cold rolling (cold rolling) and annealing, and mechanical properties such as strength level are obtained. The control is performed mainly by controlling the precipitation of fine precipitates of 0.1 μm or less depending on the cold rolling conditions and annealing conditions. At that time, the diffusion of the alloy element such as Fe into the moderately dispersed intermetallic compound stabilizes the solid solution amount of Fe and the like and the precipitation amount of fine precipitates. However, according to the knowledge of the present inventors, it is difficult to balance high conductivity and high strength even if a large amount of the fine precipitates are precipitated due to cold rolling conditions and annealing conditions after hot rolling. The reason for this is that most of the added Fe amount is taken up by oxides, crystallization products, and coarse precipitates generated from the soaking of the ingot to the end of hot rolling. This is because the amount of fine product to be generated is unexpectedly reduced in accordance with the amount of Fe. Furthermore, when there are many coarse crystallized substances, the fine precipitates precipitated in the cold rolling and annealing steps are trapped by the coarse crystal precipitates, and the fine precipitates that exist independently in the matrix are further reduced. For this reason, sufficient strength and electrical conductivity cannot be obtained in a well-balanced manner for the amount of Fe added.
[0019]
Here, a method for extracting and separating oxides, crystallized substances, and precipitates in the copper alloy will be described.
To dissolve only copper and solid solution elements (matrix) in a copper alloy, and extract and separate the crystals, precipitates and oxides in the copper alloy without losing them, the copper alloy matrix copper is used. This can be realized by using a solution of ammonium acetate and ammonium nitrate by utilizing the property of dissolving in ammonia in the presence of oxygen. At this time, the dissolution reaction of the copper alloy with the ammonium salt can be promoted by using an ammonium acetate-alcohol solution or an ammonium nitrate-alcohol solution using alcohol as a solvent.
[0020]
In the present invention, the extraction residue is recovered in the following manner using the following extraction and separation liquid. 300 ml of an ammonium acetate-methanol solution (extracted separation liquid) having an ammonium acetate concentration of 10 mass% and adjusted to PH8 using a sodium hydroxide-methanol solution was prepared, and about 10 g of a copper alloy sample was prepared therein. Immersion is performed, and constant current electrolysis is performed at a current density of 20 mmA / cm 2 using a copper alloy sample as an anode and platinum as a cathode. Dissolve the matrix while observing the dissolution state of the sample, and then suction-filter the extracted separation solution after dissolving the copper alloy using a polycarbonate Membran filter (aperture size 0.1 μm) to obtain undissolved material. The remaining residue as is recovered. There are oxides, crystallized substances, and precipitates in the copper alloy, and the sizes vary from several tens of nm level (several 0.01 μm) to several μm. The extraction residue collected in this manner is dissolved in hydrochloric acid, and then the amount of Fe in the residue is determined by ICP emission spectroscopy.
[0021]
Next, the manufacturing method of the copper alloy (plate material) concerning this invention is demonstrated.
The copper alloy sheet material of the present invention is produced by melting and casting the copper alloy having the above components, hot rolling the ingot, further annealing the hot rolled sheet, and processing to the desired sheet thickness by cold rolling. The annealing and cold rolling may be repeated depending on the final (product) plate thickness.
[0022]
Casting is performed by a normal method such as continuous casting or semi-continuous casting. The cooling / solidification rate is 0.1 ° C./second or more , preferably 0.2 ° C./second or more. Thereby, the production | generation of Fe-type oxide and a crystallized substance can be suppressed, and these can be refined | miniaturized. In casting by a normal casting method, the cooling / solidification rate is generally less than 0.1 ° C./second, and at such a low cooling rate, an oxide is formed at the grain boundary during the solidification process and becomes coarse, and the crystal Since the product is also coarsened, it is not preferable. From the viewpoint of suppressing the formation of oxides, it is more preferable to perform vacuum melting / casting or melting / casting in an atmosphere having a low oxygen partial pressure.
[0023]
After the ingot is heated in the heating furnace, the ingot taken out from the furnace has a waiting time until the start of hot rolling, but in order to produce the copper alloy of the present invention, the cooling and solidification rate is controlled during the casting. It is recommended that the total elapsed time from the time when the ingot is extracted from the heating furnace to the end of hot rolling be 1200 seconds or less , preferably 1150 seconds or less. Thereby, precipitation of Fe-based and P-based coarse precipitates, diffusion of Fe and P into the crystallized material generated during the melt casting, and precipitation of Fe and P in the periphery of the oxide can be suppressed. . The reason why the suppression effect occurs is that the Fe and P-based precipitation start time in the temperature range until the end of hot rolling varies depending on the alloy components, but it is generally within about 1000 seconds. It is because it does not receive.
About hot rolling, what is necessary is just to follow a usual method, the entrance temperature of hot rolling is about 1000-600 degreeC, and end temperature shall be about 600-850 degreeC.
[0024]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limitedly interpreted by this Example.
[0025]
【Example】
After melting a copper alloy having the chemical components shown in Table 1 in a coreless furnace, it was ingoted by a semi-continuous casting method, and the cooling and solidification rate was variously adjusted as shown in the table, with a thickness of 70 mm, a width of 200 mm, A 500mm long casting soul was obtained. The ingot was heated, and various times were set from the furnace extraction to the end of hot rolling as shown in the same table to obtain a hot rolled sheet having a thickness of 16 mm. After chamfering the surface of the hot-rolled sheet, cold rolling and intermediate annealing were repeated to produce a Cu—Fe based copper alloy sheet having a thickness of 0.15 mm.
[0026]
Test pieces were sampled from the obtained Cu—Fe-based copper alloy plate, and subjected to a tensile test, hardness measurement, and conductivity measurement. The tensile test was carried out using a JIS No. 13 B test piece with a 5882 type Instron universal testing machine under the conditions of room temperature, test speed 10.0 mm / min, and GL = 50 mm. Further, about 10 g of a test piece for extraction residue measurement was collected, and the amount of Fe contained in the extraction residue separated and extracted by a mesh having a mesh size of 0.1 μm was determined by IPC emission spectroscopic analysis by the method described above. These measurement results are shown in Table 2.
[0027]
From Table 2, sample Nos. 1 to 10 (invention example) and sample Nos. 11 to 18 (comparative example) with an Fe addition amount of 2% level, and sample No. When comparing Nos. 21 to 29 (Invention Examples) and Sample Nos. 31 to 38, many of the inventive examples are equivalent to or higher than the comparative examples in terms of conductivity, and the inventive examples are comparable to the comparative examples in terms of strength. It can be seen that it has improved dramatically.
[0028]
[Table 1]
[0029]
[Table 2]
[0030]
【The invention's effect】
According to the copper alloy of the present invention, the amount of Fe in the extraction residue separated and extracted by a mesh having a mesh size of 0.1 μm is 80% or less of the amount of Fe added, and it is a fine product that mainly contributes to improvement in strength. As well as precipitates generated in the annealing stage, oxides and crystallized substances generated in the casting stage, and also precipitates generated from the heating of the ingot to the end of hot rolling, so the amount of added Fe Accordingly, high strength and high conductivity can be provided in a well-balanced manner, which is suitable as a copper alloy for a lead frame of a semiconductor device, for example. Further , according to the production method of the present invention, it is not necessary to control ultrafine particles, so that it can be easily performed.
Claims (4)
鋳造後の冷却・凝固速度を0.1℃/秒以上とし、鋳塊が加熱炉から抽出された時点から熱延終了までの経過時間を1200秒以下とし、熱間圧延の入り側温度を1000〜600℃、熱間圧延の終了温度を600〜850℃とする、高強度および高導電率を備えた銅合金の製造方法。Fe: A copper alloy containing 0.01 to 4.0 mass%, consisting of the balance Cu and unavoidable impurities is melted and cast, the cast ingot is heated, hot-rolled, and then annealed and cooled. A method for producing a copper alloy that is subjected to hot rolling,
The cooling / solidification rate after casting is set to 0.1 ° C./second or more, the elapsed time from the time when the ingot is extracted from the heating furnace to the end of hot rolling is set to 1200 seconds or less, and the entry temperature of hot rolling is set to 1000 A method for producing a copper alloy having high strength and high electrical conductivity , wherein the hot rolling end temperature is set to 600 to 850 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002263825A JP3725506B2 (en) | 2002-09-10 | 2002-09-10 | Copper alloy having high strength and high conductivity and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002263825A JP3725506B2 (en) | 2002-09-10 | 2002-09-10 | Copper alloy having high strength and high conductivity and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004099978A JP2004099978A (en) | 2004-04-02 |
JP3725506B2 true JP3725506B2 (en) | 2005-12-14 |
Family
ID=32263435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002263825A Expired - Lifetime JP3725506B2 (en) | 2002-09-10 | 2002-09-10 | Copper alloy having high strength and high conductivity and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3725506B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1882751A1 (en) | 2006-07-28 | 2008-01-30 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength and high softening resistance |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101906553A (en) * | 2010-08-26 | 2010-12-08 | 中铝华中铜业有限公司 | Lead frame material and processing method thereof |
JP5555154B2 (en) * | 2010-12-27 | 2014-07-23 | 株式会社Shカッパープロダクツ | Copper alloy for electrical and electronic parts and method for producing the same |
JP6210887B2 (en) * | 2014-01-18 | 2017-10-11 | 株式会社神戸製鋼所 | Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability |
JP6210910B2 (en) * | 2014-03-18 | 2017-10-11 | 株式会社神戸製鋼所 | Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability |
CN114959349B (en) * | 2022-04-06 | 2023-02-10 | 中南大学 | Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof |
-
2002
- 2002-09-10 JP JP2002263825A patent/JP3725506B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1882751A1 (en) | 2006-07-28 | 2008-01-30 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength and high softening resistance |
Also Published As
Publication number | Publication date |
---|---|
JP2004099978A (en) | 2004-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4950584B2 (en) | Copper alloy with high strength and heat resistance | |
KR100997560B1 (en) | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet | |
JP3999676B2 (en) | Copper-based alloy and method for producing the same | |
JP4677505B1 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP3935492B2 (en) | Copper alloy having high strength and excellent bendability and method for producing copper alloy sheet | |
JP5555135B2 (en) | Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy | |
JP4834781B1 (en) | Cu-Co-Si alloy for electronic materials | |
JP6222885B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP4164517B2 (en) | Copper alloy sheet excellent in stress relaxation resistance and method for producing the same | |
JP3725506B2 (en) | Copper alloy having high strength and high conductivity and method for producing the same | |
JP5610789B2 (en) | Copper alloy sheet and method for producing copper alloy sheet | |
JP2005133185A (en) | Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof | |
JP4287878B2 (en) | Cu-Ni-Si-Mg copper alloy strip | |
JP5524901B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP4209749B2 (en) | Copper alloy with high strength and excellent bendability | |
JP2009242871A (en) | High strength and high electric conductivity two-phase copper alloy foil | |
JP5748945B2 (en) | Copper alloy material manufacturing method and copper alloy material obtained thereby | |
JPH1180862A (en) | Copper-iron alloy material for lead frame, excellent in heat resistance | |
JP2007100136A (en) | Copper alloy for lead frame excellent in uniform plating property | |
JP3946709B2 (en) | Cu-Ni-Si-Mg copper alloy strip | |
JP2012229467A (en) | Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP5619391B2 (en) | Copper alloy material and method for producing the same | |
JP3344687B2 (en) | Copper alloy for lead frame | |
WO2024204150A1 (en) | Copper alloy and component for electronic/electric devices | |
JP5070772B2 (en) | Cu-Ni-Si based copper alloy with excellent hot workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041022 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20041228 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20050121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3725506 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080930 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130930 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |