JP5619391B2 - Copper alloy material and method for producing the same - Google Patents

Copper alloy material and method for producing the same Download PDF

Info

Publication number
JP5619391B2
JP5619391B2 JP2009186933A JP2009186933A JP5619391B2 JP 5619391 B2 JP5619391 B2 JP 5619391B2 JP 2009186933 A JP2009186933 A JP 2009186933A JP 2009186933 A JP2009186933 A JP 2009186933A JP 5619391 B2 JP5619391 B2 JP 5619391B2
Authority
JP
Japan
Prior art keywords
copper alloy
heat treatment
alloy material
temperature
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009186933A
Other languages
Japanese (ja)
Other versions
JP2011038151A (en
Inventor
亮佑 松尾
亮佑 松尾
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009186933A priority Critical patent/JP5619391B2/en
Publication of JP2011038151A publication Critical patent/JP2011038151A/en
Application granted granted Critical
Publication of JP5619391B2 publication Critical patent/JP5619391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明は端子・コネクタなどの電子部品用に好適な、強度、導電率に優れた銅合金材お
よびその製造方法に関する。
The present invention relates to a copper alloy material excellent in strength and conductivity suitable for electronic parts such as terminals and connectors, and a method for producing the same.

近年、大電流を通電する電子機器の小型軽量化が進展し、電子部品材料は導電率が高く
かつ強度に優れることが強く求められている。コバルト(Co)とケイ素(Si)を主添
加元素とした、Cu−Co−Si系の銅合金は、優れた機械的強度および導電率を有して
いるため、上記電子部品に適しているとされる。
In recent years, electronic devices that carry a large current have been reduced in size and weight, and electronic component materials are strongly required to have high conductivity and excellent strength. A Cu—Co—Si based copper alloy containing cobalt (Co) and silicon (Si) as main additive elements has excellent mechanical strength and electrical conductivity, and is therefore suitable for the electronic component. Is done.

このCu−Co−Si系の銅合金材の特性を向上させるため、様々な技術が検討されて
いる。例えば添加元素を加えるもので、鋳造性や熱間加工性を向上させる技術や固溶強化
を図る技術がある(特許文献1〜8参照)。
In order to improve the characteristics of this Cu—Co—Si based copper alloy material, various techniques have been studied. For example, an additive element is added, and there are techniques for improving castability and hot workability and techniques for enhancing solid solution (see Patent Documents 1 to 8).

特開昭61−87838号公報JP-A-61-87838 特開昭63−307232号公報JP-A 63-307232 特開平02−129326号公報Japanese Patent Laid-Open No. 02-129326 特開平02−277735号公報Japanese Patent Laid-Open No. 02-277735 特開2008−88512号公報JP 2008-88512 A 特開2008−56977号公報JP 2008-55977 A 特許第3408021号公報Japanese Patent No. 3408021 国際公開第2009/096546号International Publication No. 2009/096546

ところで、特許文献1〜8で提案されているCo、Siを主添加元素とした銅合金材は
、添加元素の適正化と一部工程の適正化を図ることで得られる。しかし、これらの文献に
記載された銅合金材について、銅合金原料が持つ特性を十分に引き出せていない可能性が
あり、さらなる特性向上の可能性があると発明者は考えた。
そこで、本発明は、Cu−Co−Si系合金において、コネクタ用端子などの電子部品
に要求される強度と導電性を有し、銅合金原料が持つ特性が十分に引き出された銅合金材
およびその製造方法を提供することを目的とする。
By the way, the copper alloy material which made Co and Si the main addition element proposed by patent documents 1-8 is obtained by trying optimization of an addition element, and optimization of a one part process. However, regarding the copper alloy materials described in these documents, the inventor considered that there is a possibility that the characteristics of the copper alloy raw material cannot be sufficiently extracted, and there is a possibility of further improvement of the characteristics.
Accordingly, the present invention provides a Cu-Co-Si-based alloy having a strength and conductivity required for electronic parts such as connector terminals, and a copper alloy material in which the characteristics of the copper alloy raw material are sufficiently extracted and It aims at providing the manufacturing method.

上記課題は以下の発明により解決される。
(1)コバルト(Co)を0.7〜2.5質量%含有し、ケイ素(Si)をCoとSiの
含有量の比Co/Siが3〜5の範囲となるように含有し、残部がCuおよび不可避不純
物からなる銅合金原料を溶解、鋳造して銅合金鋳塊を得た後、再結晶熱処理前までの熱処
理工程を熱間圧延前の一回のみとし、前記熱処理工程は温度980℃以上1050℃未満
で30分以上の条件で施し、前記熱間圧延の終了時の温度が800℃以上であり、その直
後の冷却を温度250℃以下になるまで30℃/秒以上の冷却速度とすることを特徴とす
る銅合金材の製造方法。
(2)前記銅合金原料が、さらにCr、Fe、Ni、Al、Nb、Ti、V、Mnおよび
Zrからなる群から選ばれる添加元素を1種または2種以上の合計で0.01〜0.5m
ass%含む、請求項1に記載の銅合金材の製造方法。
(3)前記銅合金原料が、さらにSn、MgおよびZnからなる群から選ばれる添加元素
を1種または2種以上の合計で0〜1mass%含む、請求項1または2に記載の銅合金
材の製造方法。
(4)請求項1〜3のいずれか1項に記載の方法によって製造された銅合金材であって、
再結晶熱処理前の熱処理工程以後における直径200nm以上の析出物の数が10 個/
mm 以下であることを特徴とする銅合金材。

The above problems are solved by the following invention.
(1) Cobalt (Co) is contained in an amount of 0.7 to 2.5% by mass, silicon (Si) is contained so that the Co / Si content ratio Co / Si is in the range of 3 to 5, and the balance After the copper alloy raw material consisting of Cu and inevitable impurities is melted and cast to obtain a copper alloy ingot, the heat treatment before recrystallization heat treatment is performed.
The heat treatment process is performed only once before hot rolling, and the heat treatment process is performed at a temperature of 980 ° C. or more and less than 1050 ° C.
For 30 minutes or more, and the temperature at the end of the hot rolling is 800 ° C. or more,
The subsequent cooling is performed at a cooling rate of 30 ° C./second or more until the temperature becomes 250 ° C. or less.
A method for producing a copper alloy material.
(2) The copper alloy raw material further contains one or more additive elements selected from the group consisting of Cr, Fe, Ni, Al, Nb, Ti, V, Mn and Zr in a total of 0.01 to 0 .5m
ass% including manufacturing method of the copper alloy material according to claim 1.
(3) said copper alloy material further Sn, 0~1mass% including a total of one or two or more additive element selected from the group consisting of Mg and Zn, copper alloy according to claim 1 or 2
A method of manufacturing the material.
(4) A copper alloy material manufactured by the method according to any one of claims 1 to 3,
The number of precipitates with a diameter of 200 nm or more after the heat treatment step before the recrystallization heat treatment is 10 6 /
Copper alloy material characterized by being 2 mm or less.

本発明の銅合金材は、再結晶熱処理前に熱処理工程が一回のみ施され、その後銅合金材
が得られるまでの間、直径200nm以上の析出物の数が10個/mm以下とされて
いるものである。よって、コネクタ用端子などの電子部品に要求される強度と導電性を有
し、銅合金原料が持つ特性が十分に引き出された銅合金材を得ることができる。また、熱
処理工程の数を必要最小限とし、銅合金材の製造時のエネルギーを大幅に削減することも
可能となる。
In the copper alloy material of the present invention, the number of precipitates having a diameter of 200 nm or more is set to 10 6 pieces / mm 2 or less until the heat treatment step is performed only once before the recrystallization heat treatment, and thereafter the copper alloy material is obtained. It is what. Therefore, it is possible to obtain a copper alloy material having strength and conductivity required for electronic parts such as connector terminals and sufficiently extracting the characteristics of the copper alloy raw material. In addition, the number of heat treatment steps can be minimized, and the energy at the time of manufacturing the copper alloy material can be greatly reduced.

シャルピー試験の試験片の一例を示す説明図である。It is explanatory drawing which shows an example of the test piece of a Charpy test.

以下に、本発明の好ましい実施形態を述べる。なお、本発明において銅合金材とは、圧
延工程によって、例えば板材、条材、箔などの特定の形状に加工された銅合金を意味する

本発明の実施形態における組成は、Co、Siとその他の添加元素(Cr、Fe、Ni
、Al、Nb、Ti、V、Sn、Mg、Zn、MnおよびZrからなる群から選ばれる少
なくとも1種)とを含有し、残部がCuおよび不可避的不純物を含むものである。
In the following, preferred embodiments of the present invention are described. In the present invention, the copper alloy material means a copper alloy processed into a specific shape such as a plate material, a strip material, or a foil by a rolling process.
In the embodiment of the present invention, Co, Si and other additive elements (Cr, Fe, Ni
, Al, Nb, Ti, V, Sn, Mg, Zn, Mn, and Zr), and the balance contains Cu and inevitable impurities.

本実施形態の銅合金材において、Coの含有量は0.7〜2.5mass%とする。こ
の理由は、製品として十分な強度を確保するためである。0.7mass%未満ではSi
との析出によって得られる強度が不十分となる。また、2.5mass%を超えると固溶
しきれなくなり、合金の強化に寄与しなくなるためである。好ましくは0.9〜2.0m
ass%である。
In the copper alloy material of the present embodiment, the Co content is 0.7 to 2.5 mass%. The reason for this is to ensure sufficient strength as a product. If it is less than 0.7 mass%, Si
The strength obtained by the precipitation becomes insufficient. Further, if it exceeds 2.5 mass%, it cannot be completely dissolved and does not contribute to strengthening of the alloy. Preferably 0.9-2.0m
ass%.

Siの含有量は、CoとSiの含有量の比Co/Siが3〜5の範囲となるようにする
。このような比率とする理由は、製品として十分な強度を確保するとともに、時効熱処理
時に、合金の強化と導電率の回復に最も寄与するCoSi化合物の析出を促進しやすい
ためである。Co/Siの値が3未満ではCoとの析出によって得られる強度が不十分と
なるとともに、固溶によって導電率が低下する傾向がある。また、Co/Siの値が5を
超えると、Coとの析出によって得られる強度が不十分となる。
The Si content is set so that the Co / Si ratio Co / Si is in the range of 3-5. The reason for this ratio is to ensure sufficient strength as a product and to facilitate the precipitation of the Co 2 Si compound that contributes most to strengthening of the alloy and restoring electrical conductivity during aging heat treatment. If the value of Co / Si is less than 3, the strength obtained by precipitation with Co becomes insufficient, and the conductivity tends to decrease due to solid solution. On the other hand, if the value of Co / Si exceeds 5, the strength obtained by precipitation with Co becomes insufficient.

本実施形態の銅合金材は、CoとSiの他に、さらにSn、ZnおよびMgからなる群
から選ばれる少なくとも1種を含有してもよい。これらの元素の添加量は合計で1mas
s%以下、好ましくは0.05〜0.7mass%であり、より好ましくは0.1〜0.
5mass%である。これらの元素を添加することにより、母材の固溶強化と圧延時の加
工硬化量の増大の効果が得られる。なお、本実施形態において、母材の固溶強化と圧延時
の加工硬化量の増大の効果が、Sn、ZnおよびMgからなる群から選ばれる元素を添加
しなくても得られる場合は、これらの元素を添加する必要はない。
The copper alloy material of this embodiment may further contain at least one selected from the group consisting of Sn, Zn, and Mg in addition to Co and Si. The total amount of these elements added is 1 mas
s% or less, preferably 0.05 to 0.7 mass%, more preferably 0.1 to 0.00%.
5 mass%. By adding these elements, effects of solid solution strengthening of the base material and an increase in work hardening amount during rolling can be obtained. In this embodiment, when the effect of increasing the solid solution strengthening of the base material and the work hardening amount at the time of rolling can be obtained without adding an element selected from the group consisting of Sn, Zn and Mg, It is not necessary to add these elements.

本実施形態の銅合金材においては、直径200nm以上(好ましくは10μm以下)の
サイズの化合物を10個/mmとすることで、導電率と強度のバランスのよい銅合金
材を容易に得ることができる。特に、再結晶熱処理前の熱処理工程が熱間圧延前の一回の
み施され、かつ熱処理工程以後において、銅合金材の強度や導電性などの特性向上に寄与
しない直径200nm以上の析出物の数が10個/mm以下の状態を保つことが、銅
合金原料の特性を引き出す点で重要である。また、熱間圧延前の熱処理工程のみで直径2
00nm以上の析出物の数を制御することで、熱処理工程の数を必要最小限とし、銅合金
材の製造時のエネルギーを大幅に削減することができ、工業的に優れた銅合金材の製造方
法を提供することができる。
In the copper alloy material of this embodiment, a copper alloy material having a good balance between conductivity and strength can be easily obtained by setting the number of compounds having a diameter of 200 nm or more (preferably 10 μm or less) to 10 6 pieces / mm 2. be able to. In particular, the number of precipitates having a diameter of 200 nm or more that does not contribute to the improvement in properties such as strength and conductivity of the copper alloy material after the heat treatment step is performed only once before the hot rolling and after the heat treatment step. Maintaining the state of 6 pieces / mm 2 or less is important in terms of extracting the characteristics of the copper alloy raw material. In addition, the diameter is only 2 in the heat treatment process before hot rolling.
By controlling the number of precipitates of 00 nm or more, it is possible to minimize the number of heat treatment steps, greatly reduce the energy at the time of producing the copper alloy material, and to provide an industrially excellent method for producing a copper alloy material. Can be provided.

また、本実施形態の銅合金材において、Cr、Fe、Ni、Al、Nb、Ti、V、M
nおよびZrからなる群から選ばれる少なくとも1種の添加元素を含有していてもよい。
これらの元素は、Co、Siと共に化合物として析出する。前記元素の合計の含有量は0
.01〜0.5mass%とする。0.01mass%未満では、前記元素を添加する効
果が発揮されないため、前記元素が添加されていない場合とほぼ同様の特性となる。また
、0.5mass%を超えると、Co、Siの多くが材料強度の向上に寄与しない晶出物
となることで、材料強度が要求強度よりも低下してしまう。これらの元素の添加量は、好
ましくは0.05〜0.2mass%である。
In the copper alloy material of the present embodiment, Cr, Fe, Ni, Al, Nb, Ti, V, M
It may contain at least one additional element selected from the group consisting of n and Zr.
These elements are precipitated as compounds together with Co and Si. The total content of the elements is 0
. 01-0.5 mass%. If it is less than 0.01 mass%, the effect of adding the element is not exhibited, and therefore, the characteristics are almost the same as those in the case where the element is not added. Moreover, when it exceeds 0.5 mass%, most of Co and Si are crystallized substances that do not contribute to the improvement of the material strength, so that the material strength is lower than the required strength. The addition amount of these elements is preferably 0.05 to 0.2 mass%.

本実施形態では、銅合金中に、Co、Siのうちどちらか一方もしくは両方の元素と他
の添加元素(Cr、Fe、Ni、Al、Nb、Ti、V、Zr)からなる、直径200n
m以上(好ましくは10μm以下)の析出物の数を10個/mm以下有する。この析
出物とは、具体的には、CoSiの他にCo2−xCrSi、Co2−xFeSi
などである。
なお、析出物の直径と密度は、圧延平行方向の断面を走査型電子顕微鏡で写真撮影して
、その写真上で析出物の粒径と密度を測定したものである。
In the present embodiment, the copper alloy contains one or both of Co and Si and other additive elements (Cr, Fe, Ni, Al, Nb, Ti, V, Zr) and has a diameter of 200 n.
The number of precipitates of m or more (preferably 10 μm or less) is 10 6 / mm 2 or less. And this precipitate, in particular, Co 2-x to other Co 2 Si Cr x Si, Co 2-x Fe x Si
Etc.
The diameter and density of the precipitate are obtained by taking a photograph of a cross section in the rolling parallel direction with a scanning electron microscope and measuring the particle size and density of the precipitate on the photograph.

直径200nm以上(好ましくは10μm以下)の析出物の数を10個/mm以下
とする理由は、材料の導電率と強度のバランスを良好にするためである。再結晶熱処理前
の熱処理工程が熱間圧延前の一回のみ施される条件下で、熱処理工程以後に析出物の数が
10個/mmを超えると、特性の劣化をもたらす。好ましくは10個/mm以下
である。
The reason why the number of precipitates having a diameter of 200 nm or more (preferably 10 μm or less) is 10 6 / mm 2 or less is to improve the balance between the conductivity and strength of the material. If the number of precipitates exceeds 10 6 / mm 2 after the heat treatment step under the condition that the heat treatment step before the recrystallization heat treatment is performed only once before the hot rolling, the characteristics are deteriorated. Preferably, it is 10 5 pieces / mm 2 or less.

本発明の実施形態の銅合金材の製造方法は、その熱処理に関する工程に着目すると、銅
合金材に施される順番で、(A)銅合金原料を溶解・鋳造して銅合金鋳塊を得る工程、(
B)熱間圧延前の熱処理工程(銅合金鋳塊を熱間圧延するために加熱する工程)、(C)
熱間圧延およびその終了後の冷却工程、(D)再結晶熱処理工程(溶体化熱処理工程とも
いう)、(E)時効熱処理工程、(F)銅合金材の加工ひずみを解放するために必要に応
じて行われる低温焼鈍工程、などがあり、一般には(C)工程と(D)工程との間、(D
)工程と(E)工程との間、(E)工程と(F)工程との間で冷間圧延が行われて所定の
厚さの銅合金材となる。ここで、直径200nm以上の析出物の数に大きく影響を与える
工程が、上記(B)工程であることを知見し、(B)工程の最適化を図ることとした。
In the manufacturing method of the copper alloy material of the embodiment of the present invention, when paying attention to the process related to the heat treatment, (A) the copper alloy raw material is melted and cast in the order applied to the copper alloy material to obtain a copper alloy ingot. Process, (
B) Heat treatment step before hot rolling (step of heating to hot-roll the copper alloy ingot), (C)
Hot rolling and cooling process after the completion, (D) Recrystallization heat treatment process (also called solution heat treatment process), (E) Aging heat treatment process, (F) Necessary for releasing processing strain of copper alloy material There is a low-temperature annealing process, etc. performed in response, and generally between (C) process and (D) process, (D
) Process and (E) process, and between (E) process and (F) process, cold rolling is performed and it becomes a copper alloy material of predetermined thickness. Here, it was found that the step that greatly affects the number of precipitates having a diameter of 200 nm or more is the step (B), and the step (B) was optimized.

本発明の実施形態の銅合金材の製造方法においては、上記(B)工程の条件を最適化し
、かつ、上記(D)工程前の熱処理工程を上記(B)工程の一回のみ施すことが、熱処理
工程の数を必要最小限とし、銅合金材の製造時のエネルギーを大幅に削減する観点から重
要である。上記(B)工程の好ましい条件は、温度980℃以上1050℃未満で30分
以上(好ましくは10時間以内)である。また、上記(C)工程の好ましい条件は、熱間
圧延の終了時の温度が800℃以上であり、その直後、温度250℃以下になるまで30
℃/秒以上の冷却速度で冷却されることである。これらの条件は、本実施形態の銅合金材
において直径200nm以上(好ましくは10μm以下)の析出物の数を10個/mm
以下とするために好ましい条件である。
In the method for producing a copper alloy material according to the embodiment of the present invention, the conditions of the step (B) are optimized, and the heat treatment step before the step (D) is performed only once in the step (B). This is important from the viewpoint of minimizing the number of heat treatment steps and greatly reducing the energy when producing the copper alloy material. The preferable conditions of the said (B) process are 30 minutes or more (preferably within 10 hours) at the temperature of 980 degreeC or more and less than 1050 degreeC. Moreover, the preferable conditions of the said (C) process are the temperature at the time of completion | finish of hot rolling being 800 degreeC or more, and immediately after that, until it becomes temperature 250 degrees C or less 30
It is to be cooled at a cooling rate of ° C / second or more. These conditions are such that the number of precipitates having a diameter of 200 nm or more (preferably 10 μm or less) is 10 6 / mm in the copper alloy material of the present embodiment.
This is a preferable condition to make it 2 or less.

この熱処理工程の温度が980℃未満の場合は、鋳造時に形成された晶出物が固溶せず
に残存し、最終工程までこの状態を維持する可能性があることから、時効熱処理において
微細析出量が減ってしまい、それが最終的な強度特性低下(引張強度等)の原因となる可
能性がある。また、熱処理工程の温度が1050℃以上の場合は、合金の脆化が起きるこ
とがあり、加熱された鋳塊を圧延する際に割れるおそれがある。
When the temperature of this heat treatment step is lower than 980 ° C., the crystallized product formed at the time of casting remains without being dissolved, and this state may be maintained until the final step. The amount may be reduced, which may cause a final deterioration in strength characteristics (such as tensile strength). Moreover, when the temperature of the heat treatment step is 1050 ° C. or higher, the alloy may be embrittled and may break when the heated ingot is rolled.

また、熱間圧延の終了時の温度が800℃より低い場合は、圧延中に粗大な析出物が成
長するおそれがあり、熱間圧延終了後の冷却時には、温度が250℃より高い状態で冷却
速度を30℃/秒より小さくすると、冷却中に不要な析出が起きるおそれがある。このた
め、温度が250℃以下となるまでは冷却速度を30℃/秒以上とし、組織変化がない状
態で冷却することが好ましい。
熱間圧延の終了時の温度は、好ましくは850℃以上、さらに好ましくは900℃以上
である。また、温度が250℃以下となるまでの冷却速度は、好ましくは50℃/秒以上
、さらに好ましくは80℃/秒以上である。
In addition, when the temperature at the end of hot rolling is lower than 800 ° C, coarse precipitates may grow during the rolling, and when cooling after the hot rolling is finished, the cooling is performed in a state where the temperature is higher than 250 ° C. If the speed is lower than 30 ° C./second, unnecessary precipitation may occur during cooling. For this reason, it is preferable that the cooling rate is 30 ° C./second or more until the temperature is 250 ° C. or lower, and the cooling is performed without any change in the structure.
The temperature at the end of hot rolling is preferably 850 ° C. or higher, more preferably 900 ° C. or higher. The cooling rate until the temperature reaches 250 ° C. or lower is preferably 50 ° C./second or more, and more preferably 80 ° C./second or more.

本発明の銅合金材は、特に限定されるものではないが、例えば、コネクタ、端子、リレ
ー、スイッチ、さらにはリードフレームなどの電子電気機器部品に好適に用いることがで
きる。
Although the copper alloy material of this invention is not specifically limited, For example, it can use suitably for electronic electrical equipment components, such as a connector, a terminal, a relay, a switch, and also a lead frame.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定され
るものではない。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

表1に示す銅合金材を以下のように作製した。表1に記載する量のCoとSiとその他
の添加元素と残部がCuおよび不可避不純物からなる合金を高周波溶解炉により溶解し、
幅160mm、厚さ30mm、高さ180mmに鋳造したサイズのモールドに溶湯を鋳込
み鋳造した。
The copper alloy material shown in Table 1 was produced as follows. The amount of Co and Si described in Table 1 and other additive elements and the balance of Cu and an alloy composed of inevitable impurities are melted in a high-frequency melting furnace,
The molten metal was cast into a mold having a size cast to a width of 160 mm, a thickness of 30 mm, and a height of 180 mm.

次にこの鋳塊に表1に記載する温度で1時間加熱する熱処理を施した直後に熱間圧延を
行い、表1に記載する温度で熱間圧延を終了させ、その直後に水冷した。水冷時の冷却速
度は、温度約200℃となるまでの平均で約50℃/秒であった。なお、再熱温度は実体
に熱電対を付けて測定し、熱間圧延終了後の温度は放射温度計にて測定した。
Next, this ingot was hot-rolled immediately after being subjected to a heat treatment that was heated at a temperature listed in Table 1 for 1 hour, was terminated at a temperature listed in Table 1, and was immediately cooled with water. The cooling rate during water cooling was about 50 ° C./second on average until the temperature reached about 200 ° C. The reheat temperature was measured by attaching a thermocouple to the substance, and the temperature after hot rolling was measured with a radiation thermometer.

その後は一般的な析出型銅合金の製造工程に沿って処理した。熱間圧延後の水冷が終了
した後、両面をそれぞれ1mm面削して酸化皮膜を除去した。次いで冷間圧延を施し、不
活性化ガス雰囲気中で800〜1025℃において30秒〜2時間の溶体化熱処理を行い
、水冷した。水冷後、材料に300〜600℃で1〜10時間の時効熱処理を行った。こ
の時効熱処理後0〜30%の冷間圧延を加え、さらに200〜450℃で0.5〜5時間
の低温熱処理を行った。
After that, it processed along the manufacturing process of the general precipitation type copper alloy. After the water cooling after the hot rolling was finished, both sides were each 1 mm chamfered to remove the oxide film. Next, cold rolling was performed, and a solution heat treatment was performed at 800 to 1025 ° C. for 30 seconds to 2 hours in an inert gas atmosphere, followed by water cooling. After water cooling, the material was subjected to aging heat treatment at 300 to 600 ° C. for 1 to 10 hours. After this aging heat treatment, 0-30% cold rolling was added, and further low temperature heat treatment was performed at 200-450 ° C. for 0.5-5 hours.

このようにして得られた各々の板材を供試材として下記の特性調査を行った。結果を表
1に示す。なお、各評価項目の測定方法は以下の通りである。
The following characteristic investigation was performed by using each plate material thus obtained as a test material. The results are shown in Table 1. In addition, the measuring method of each evaluation item is as follows.

A.シャルピー試験
日本工業規格(JIS Z 2242)に準拠して実施した。
各サンプルについて、「表1に示す再熱温度」と「温度980℃」の2温度の条件でシ
ャルピー試験を実施した。各サンプルをエレポット内でAr雰囲気下で加熱後、サンプル
表面温度が各温度に到達したら、速やかにエレポットから取り出し、5秒以内に試験を行
った。上記JIS規格に従って、吸収エネルギーを各温度試験について求め、(表1の再
熱温度での値/980℃での値)という式で数値化することで、鋳塊割れに関係するパラ
メータとして取り扱った。この閾値を0.4として、これより低い数値では脆化を示すた
め鋳塊割れを引き起こすものと判定した。
B.鋳塊割れ
熱間圧延後(30mm→14mm)の鋳塊状態から判断した。鋳塊表面を目視して割れ
が検出されたものなど、以後の工程の流動時に製品としての形状を維持できないと判断さ
れる鋳塊について、鋳塊割れ「あり」とした。
C.引張強度(TS)
試験片の圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIZ
2241に準じて3本測定しその平均値を表1に示した。
D.導電率(EC)
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本につい
て導電率(EC)を測定し、その平均値(%IACS)を表1に示した。このとき端子間
距離は100mmとした。
E.析出物の直径と密度
圧延平行方向の断面を走査型電子顕微鏡で写真撮影して、その写真上で直径が200n
m以上の析出物の粒径と密度を測定した。ここでは直径が200nm以上の析出物の数が
10個/mm以下のものを「小」、析出物の数が10個/mmを超えるものを「
大」とした。
A. Charpy test The Charpy test was conducted in accordance with Japanese Industrial Standard (JIS Z 2242).
Each sample was subjected to the Charpy test under the two temperature conditions of “reheating temperature shown in Table 1” and “temperature 980 ° C.”. After each sample was heated in an Ar pot in an Ar atmosphere, when the sample surface temperature reached each temperature, it was immediately removed from the Ele pot and tested within 5 seconds. Absorbed energy was obtained for each temperature test in accordance with the above JIS standard, and was treated as a parameter related to ingot cracking by quantifying with the formula (value at reheating temperature / value at 980 ° C. in Table 1). . When this threshold value was set to 0.4, it was determined that ingot cracking was caused in order to show embrittlement at a lower value.
B. Ingot cracking Judgment was made from the ingot state after hot rolling (30 mm → 14 mm). Ingots that were judged to be unable to maintain the shape of the product during the flow of subsequent processes, such as those in which cracks were detected by visual inspection of the ingot surface, were marked as “ingot cracks”.
C. Tensile strength (TS)
JIS Z2201-13B test piece cut out from the rolling parallel direction of the test piece
Three samples were measured according to 2241, and the average value is shown in Table 1.
D. Conductivity (EC)
Using a four-terminal method, conductivity (EC) was measured for two of each test piece in a thermostat controlled at 20 ° C. (± 1 ° C.), and the average value (% IACS) is shown in Table 1. Indicated. At this time, the distance between terminals was set to 100 mm.
E. Diameter and density of precipitates A cross section in the rolling parallel direction was photographed with a scanning electron microscope, and the diameter was 200 n on the photograph.
The particle size and density of precipitates greater than or equal to m were measured. Here, the number of precipitates having a diameter of 200 nm or more is 10 6 / mm 2 or less is “small”, and the number of precipitates is more than 10 6 / mm 2.
"Large".

<各サンプルのグループ分け>
Co含有量が約0.8質量%の群:
引張強度が520MPa以上、かつ導電率が65%IACS以上を到達目標とした。や
や導電率を重視した群である。発明例のサンプルNo.1〜4、組成の比較例のサンプル
No.103(Crの含有量が多すぎる例)、製法の比較例のサンプルNo.201〜2
02が該当する。
Co含有量が約1.2質量%の群:
引張強度が600MPa以上、かつ導電率が60%IACS以上を到達目標とした。強
度と導電率とのバランスを考慮した群である。発明例のサンプルNo.5〜9、製法の比
較例のサンプルNo.203〜204が該当する。
Co含有量が約1.4質量%の群:
引張強度が620MPa以上、かつ導電率が60%IACS以上を到達目標とした。や
や強度を重視した群である。発明例のサンプルNo.10〜11、製法の比較例のサンプ
ルNo.205〜206が該当する。
なお、Co含有量が0.7〜2.5質量%の範囲にないサンプルを、組成の比較例のサ
ンプルNo.101〜102とした。
<Grouping of each sample>
Group having a Co content of about 0.8% by mass:
The ultimate target was a tensile strength of 520 MPa or more and a conductivity of 65% IACS or more. This is a group with a little emphasis on conductivity. Sample No. of Invention Example 1-4, sample No. of the comparative example of a composition. 103 (example with too much Cr content), sample No. 201-2
02 corresponds.
Group having a Co content of about 1.2% by mass:
The ultimate target was a tensile strength of 600 MPa or more and an electrical conductivity of 60% IACS or more. This is a group considering the balance between strength and conductivity. Sample No. of Invention Example 5-9, sample No. 203-204 corresponds.
Group having a Co content of about 1.4% by mass:
The ultimate target was a tensile strength of 620 MPa or more and a conductivity of 60% IACS or more. This is a group with a little emphasis on strength. Sample No. of Invention Example 10-11, sample No. 205-206 corresponds.
In addition, the sample whose Co content is not in the range of 0.7 to 2.5% by mass is referred to as Sample No. of Comparative Example of the composition. 101-102.

Figure 0005619391
Figure 0005619391

表1に示されるとおり、発明例のサンプルNo.1〜11については、いずれも目標と
する特性を満足し、銅合金原料が持つ特性が十分に引き出されていることがわかった。
一方、比較例の各サンプルについては、鋳塊に割れが発生するもの、または強度や導電
率が低いものとなった。
組成の比較例であるサンプルNo.101については、Coの濃度が低すぎるため、強
度が低下した。サンプルNo.102については、Coの濃度が高すぎるため、導電率が
低下した。サンプルNo.103については、Co,Si以外の元素成分(Cr)の濃度
が高すぎて強度が低下した。
製法の比較例であるサンプルNo.201およびNo.204については、熱間圧延前
の熱処理時の温度が高すぎて鋳塊の脆化割れが発生した。サンプルNo.202〜203
およびサンプルNo.205〜206については、熱間圧延終了時の温度が低く、熱間圧
延時やその後の冷却時に析出が発生して、直径が200nm以上の析出物の数が10
/mmを超えたため、強度が低下した。
As shown in Table 1, Sample No. 1 to 11 all satisfy the target characteristics, and it was found that the characteristics of the copper alloy raw material were sufficiently drawn.
On the other hand, about each sample of the comparative example, it became what a crack generate | occur | produces in an ingot, or a thing with low intensity | strength and electrical conductivity.
Sample No. which is a comparative example of the composition. About 101, since the density | concentration of Co was too low, intensity | strength fell. Sample No. About 102, since the density | concentration of Co was too high, the electrical conductivity fell. Sample No. About 103, the intensity | strength fell because the density | concentration of elemental components (Cr) other than Co and Si was too high.
Sample No. which is a comparative example of the production method. 201 and no. About 204, the temperature at the time of heat processing before hot rolling was too high, and the embrittlement crack of the ingot occurred. Sample No. 202-203
And Sample No. For 205 to 206, the temperature at the end of hot rolling was low, precipitation occurred during hot rolling or subsequent cooling, and the number of precipitates having a diameter of 200 nm or more exceeded 10 6 / mm 2. Decreased.

Claims (4)

コバルト(Co)を0.7〜2.5質量%含有し、ケイ素(Si)をCoとSiの含有
量の比Co/Siが3〜5の範囲となるように含有し、残部がCuおよび不可避不純物か
らなる銅合金原料を溶解、鋳造して銅合金鋳塊を得た後、
再結晶熱処理前までの熱処理工程を熱間圧延前の一回のみとし、
前記熱処理工程は温度980℃以上1050℃未満で30分以上の条件で施し、
前記熱間圧延の終了時の温度が800℃以上であり、その直後の冷却を温度250℃以
下になるまで30℃/秒以上の冷却速度とすることを特徴とする銅合金材の製造方法。
Cobalt (Co) is contained in an amount of 0.7 to 2.5% by mass, silicon (Si) is contained so that the ratio of Co and Si content Co / Si is in the range of 3 to 5, and the balance is Cu and After melting and casting the copper alloy raw material consisting of inevitable impurities to obtain a copper alloy ingot,
The heat treatment process before recrystallization heat treatment is performed only once before hot rolling,
The heat treatment step is performed at a temperature of 980 ° C. or more and less than 1050 ° C. for 30 minutes or more,
The temperature at the end of the hot rolling is 800 ° C. or higher, and cooling immediately after that is performed at a temperature of 250 ° C. or lower.
A method for producing a copper alloy material, characterized in that a cooling rate of 30 ° C./second or more is employed until the temperature falls below.
前記銅合金原料が、さらにCr、Fe、Ni、Al、Nb、Ti、V、MnおよびZr
からなる群から選ばれる添加元素を1種または2種以上の合計で0.01〜0.5mas
s%含む、請求項1に記載の銅合金材の製造方法。
The copper alloy raw material further includes Cr, Fe, Ni, Al, Nb, Ti, V, Mn and Zr.
0.01 to 0.5 mas in total of one or more additive elements selected from the group consisting of
s% including manufacturing method of the copper alloy material according to claim 1.
前記銅合金原料が、さらにSn、MgおよびZnからなる群から選ばれる添加元素を1
種または2種以上の合計で0〜1mass%含む、請求項1または2に記載の銅合金材の
製造方法。
The copper alloy raw material further contains an additive element selected from the group consisting of Sn, Mg and Zn.
0~1Mass% including species or two or more in total, the copper alloy material according to claim 1 or 2
Production method.
請求項1〜3のいずれか1項に記載の方法によって製造された銅合金材であって、It is the copper alloy material manufactured by the method of any one of Claims 1-3,
再結晶熱処理前の熱処理工程以後における直径200nm以上の析出物の数が10  The number of precipitates having a diameter of 200 nm or more after the heat treatment step before the recrystallization heat treatment is 10 6 Pieces
/mm/ Mm 2 以下であることを特徴とする銅合金材。A copper alloy material characterized by:
JP2009186933A 2009-08-12 2009-08-12 Copper alloy material and method for producing the same Expired - Fee Related JP5619391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186933A JP5619391B2 (en) 2009-08-12 2009-08-12 Copper alloy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186933A JP5619391B2 (en) 2009-08-12 2009-08-12 Copper alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011038151A JP2011038151A (en) 2011-02-24
JP5619391B2 true JP5619391B2 (en) 2014-11-05

Family

ID=43766197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186933A Expired - Fee Related JP5619391B2 (en) 2009-08-12 2009-08-12 Copper alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5619391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055808A (en) * 2018-10-26 2018-12-21 浙江星康铜业有限公司 A kind of ormolu

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943095B2 (en) * 2006-08-30 2012-05-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP5085908B2 (en) * 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP2008266787A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy material and its manufacturing method
JP4615616B2 (en) * 2008-01-31 2011-01-19 古河電気工業株式会社 Copper alloy material for electrical and electronic parts and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055808A (en) * 2018-10-26 2018-12-21 浙江星康铜业有限公司 A kind of ormolu

Also Published As

Publication number Publication date
JP2011038151A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
US20130056116A1 (en) Copper alloy for electronic device, method of producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
WO2013073412A1 (en) Copper alloy and copper alloy forming material
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
WO2012073777A1 (en) Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP5439610B2 (en) High strength, high conductivity copper alloy and method for producing the same
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP5981866B2 (en) Copper alloy
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5619391B2 (en) Copper alloy material and method for producing the same
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JPH1180862A (en) Copper-iron alloy material for lead frame, excellent in heat resistance
JP2011190469A (en) Copper alloy material, and method for producing the same
JP3766051B2 (en) Copper alloy having excellent heat resistance and method for producing the same
JPH09316569A (en) Copper alloy for lead frame and its production
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R151 Written notification of patent or utility model registration

Ref document number: 5619391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees