JP2004099978A - Copper alloy having high strength and high conductivity - Google Patents

Copper alloy having high strength and high conductivity Download PDF

Info

Publication number
JP2004099978A
JP2004099978A JP2002263825A JP2002263825A JP2004099978A JP 2004099978 A JP2004099978 A JP 2004099978A JP 2002263825 A JP2002263825 A JP 2002263825A JP 2002263825 A JP2002263825 A JP 2002263825A JP 2004099978 A JP2004099978 A JP 2004099978A
Authority
JP
Japan
Prior art keywords
copper alloy
amount
strength
conductivity
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263825A
Other languages
Japanese (ja)
Other versions
JP3725506B2 (en
Inventor
Katsura Kajiwara
梶原 桂
Yasuhiro Ariga
有賀 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002263825A priority Critical patent/JP3725506B2/en
Publication of JP2004099978A publication Critical patent/JP2004099978A/en
Application granted granted Critical
Publication of JP3725506B2 publication Critical patent/JP3725506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy showing a good balance between a high strength and a high conductivity. <P>SOLUTION: The copper alloy contains 0.01-4.0 mass% Fe, wherein ≤80% of the added Fe is left in an extract obtained by dissolving only a matrix of the copper alloy and separating and extracting oxides, crystallized products and precipitates within the copper alloy using a mesh having a sieve opening 0.1 μm. As alloy components other than Fe, one or more elements chosen from 0.01-0.1 mass% P, 0.01-1.0 mass% Zn and 0.01-0.5 mass% Sn are added, either alone or in combination. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、例えば半導体装置用リードフレームの素材として好適な高強度、高導電率をバランスよく備えた銅合金に関する。
【0002】
【従来の技術】
電子機器に用いられる半導体装置に使用されるリードフレームには導電性のみならず、機械的強度が要求される。従来、半導体装置のリードフレーム用銅合金としては、Feを含む銅合金が広く用いられており、高い導電率を有し(導電率80%IACS以上)、強度が約300〜520N/mm2 レベルにあるFe:0.1mass%を含む銅合金や、導電率60%IACS以上、強度約580N/mm2 程度のFe:2.1〜2.6mass%、P:0.015〜0.15mass%、Zn:0.05〜0.20mass%を含有する銅合金(CDA194合金)は、Cu−Fe系銅合金の内でも強度、導電性、熱伝導性に優れていることから、国際標準合金として、多く用いられている。
【0003】
近年、半導体装置の大容量化、小型化、高機能化に伴い、リードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されるようになってきた。かかる要求は、前記リードフレームの素材銅合金に限らず、電気・電子機器に使用される各種導電性部品の素材として用いられる銅合金についても言えることである。
【0004】
前記Cu−Fe系の銅合金は、高い導電率を有することが特徴であるが、これまで、強度を高めるために、Fe添加量を増加したり、第3元素を添加する手法が取られてきた。すなわち、Fe、P、Zn等の主成分を規定したり、Sn、Mg、Ca等の微量添加元素を規定することによって、導電率および強度の確保が図られてきた。例えば特開平11−199952号公報には、Fe、P、Zn、MgおよびFe/Pの各量を規定した銅合金が記載されている。
【0005】
しかし、合金元素の種類や添加量を増やすと、強度は向上するものの、導電率が低下してしまい、高強度と高導電率のバランスの良い合金を実現することが難しく、上記のように電気・電子部品等の素材として用いられる銅合金に対する更なる高品質化、特性向上の要求に対し、単なる成分制御だけでは、その要求を十分に満足させることができないようになってきている。
【0006】
そこで、近年、機器の小型化に伴う要求特性を満足させるために、Cu−Fe系銅合金の内部組織や析出状態を制御する方法が提案されている。例えば、特開平10−324935号公報には、銅合金中の析出粒子の粒径100Å以上の粒子個数と100Å未満の粒子個数との比を規定することによって、強度と導電性を向上させた技術が開示されている。また、特開平11−80862号公報には、直径40nm以下の微細Fe粒子の体積分率を規定して耐熱性の改善を図る技術が開示されている。
【0007】
【特許文献1】
特開平11−199952号公報(特許請求の範囲)
【特許文献2】
特開平10−324935号公報(特許請求の範囲)
【特許文献3】
特開平11−80862号公報(特許請求の範囲)
【0008】
【発明が解決しようとする課題】
しかしながら、これらの技術は、非常に微細な析出物を制御する必要があり、Feの析出挙動は、製造過程における焼鈍条件によって敏感に変化しやすいので、製造することが難しく、特性もばらつきやすいという問題がある。また、添加したFe量の割には強度の向上が少なく、導電性の割には強度が低いという問題がある。
本発明は、かかる問題に鑑みなされたもので、製造容易で、高強度かつ高導電率をバランス良く備えた銅合金を提供することを目的とする。
【0009】
【課題を解決するための手段】
Fe−Cu系銅合金の強度を向上させるには、Feを含む析出物のサイズを微細に、多く析出させることが有効であり、そのためには焼鈍の際にCuマトリックス中に固溶しているFe量が多いことが必要である。しかしながら、従来の銅合金では、添加されたFe量の多くがCuマトリックス中に固溶しているわけではなく、実際には溶解鋳造時に生成した酸化物、晶出物および鋳塊の均熱から熱間圧延にかけて生成した粗大な析出物に添加したFe量の大部分が取られている。本発明はかかる点に鑑み、強度の向上に有効な微細なFeを含む化合物として、析出物のみならず酸化物および晶出物を、添加したFe量に応じて多く残存させることによって、高強度および高導電率をバランス良く得られるとの着想を基に完成されたものである。
【0010】
すなわち、本発明の銅合金は、Fe:0.01〜4.0mass%を含有し、銅合金のマトリックスのみを溶解し、目開き0.1μm のメッシュによって銅合金中の酸化物、晶出物および析出物を分離抽出したときに、分離抽出された抽出残渣のFe量がFe添加量の80%以下とされたものである。合金成分として、前記Feの他さらに、P:0.01〜0.1mass%、Zn:0.01〜1.0mass%、Sn:0.01〜0.5mass%の範囲で、これらの元素の一種以上を単独で、あるいは複合して添加することができる。
【発明の実施の形態】
本発明の銅合金は、Fe:0.01〜4.0mass%(以下、単に「%」と表示する。)を必須の合金元素として含有するものであり、残部不可避的不純物およびCuによって形成されるが、さらにP、ZnおよびSnから選ばれた1種以上の元素を単独で、あるいは複合してP:0.01〜0.1%、Zn:0.01〜1.0%、Sn:0.01〜0.5%の範囲で含有させることができる。
【0011】
Fe:0.01〜4.0%
Feは、基本的に強度を向上させる元素であるが、0.01%未満では微細析出Fe粒子の生成量が少なく、導電性の向上は満たされるものの、強度向上への寄与が低下する。一方、4.0%を超えると導電性が低下するとともに、鋳塊製造時に粗大な晶出物、析出物が多量に生成し、最終製品(例えば、リードフレーム)の延性が低下する。また、鋳塊から圧延加工する際に、熱間圧延前の加熱あるいは中間焼鈍においてFeの巨大析出物が生成し、圧延加工性が劣化する上に、その巨大析出物が最終製品にも残ることになり、耐熱性の低下をも招くようになる。このため、Fe量の下限を0.01%、好ましくは1.0%とし、上限を4.0%、好ましくは3.0%とする。
【0012】
P:0.01〜0.1%
Pは、脱酸作用があるほか、Feと金属間化合物を形成し、Feを析出強化させる元素である。0.01%未満ではFeが0.01〜4.0%存在しても析出強化に寄与しない。一方、0.1%を超えると導電性が低下するとともに、Feの固溶限が低下して鋳塊製造時に粗大な晶出物を多く生成し、その晶出物がひずみ除去加熱の際の回復現象の核になり、最終製品での耐熱性が低下する。このため、P量の下限を0.01%、上限を0.1%とする。
【0013】
Zn:0.01〜1.0%
Znは、Pと同様に脱酸作用があるが、0.01%未満では脱酸効果は過少である。一方、1.0%超では脱酸作用が飽和し、導電率も低下するようになる。このため、Zn量は0.01〜1.0%とする。
【0014】
Sn:0.01〜0.5%
Snは、耐熱性の向上に寄与する成分である。0.01%未満ではその効果が過少であり、一方0.5%を越えるとマクロ偏析により鋳造時に粗大化合物が生成し、導電率も低下するようになる。このため、Sn量は0.01〜0.5%とする。
【0015】
上記の合金元素の他、不純物である微量元素Pb、Ni、Mn、Cr、Al、Mg、Ca、Be、Si、Zr、In等については、1種類または2種類以上の合計で0.1%以下に止めることが好ましく、この程度であれば本発明による効果に大きな影響を及ぼさない。
【0016】
また、本発明の銅合金は、その組織中の特定サイズのFeを含む化合物として、析出物のみならず、酸化物および晶出物をも含め、これらの量の割合が以下のように規定される。すなわち、銅合金のマトリックスのみを溶解し、銅合金中の酸化物、晶出物および析出物を目開き0.1μm のメッシュによって抽出分離したときに、抽出分離された抽出残渣のFe量がFe添加量の80%以下とされる。前記酸化物、晶出物、析出物とは、銅合金中に存在する酸化物、晶出あるいは析出した晶出物あるいは析出物、またはこれらの混合物をいい、それらの化学組成を問わない。例えば、Feを含む晶出物、析出物には、Fe単体、Fe−P系化合物(FeP、FePなど)が含まれる。
【0017】
前記メッシュサイズを0.1μm と規定したのは、強度の向上にあまり寄与しない、粗大な酸化物、晶出物および析出物(これらをまとめて「粗大生成物」と呼ぶことがある。)を抽出残渣として把握するためである。このような粗大生成物の全生成物量に対する量的割合は、添加したFe量に対する抽出残渣に含まれるFe量の比(「抽出残渣比」と呼ぶことがある。)を求めることで把握され、本発明ではこの比が百分率で80%以下とされる。言い換えると、合金元素の固溶量はごく少ないので、強度の向上に有効に寄与する、0.1μm 以下の微細な酸化物、晶出物および析出物(これらをまとめて「微細生成物」と呼ぶことがある。)の生成量の割合が20%以上とされる。これによって、Fe添加量に応じて、大きな強度向上効果が得られる。
ところで、導電率のレベルは、銅純度、言い換えると銅合金中の添加合金元素量によってほぼ決まるが、同一成分であっても合金元素の固溶量、冷間圧延で導入される加工ひずみ量によって大きな影響を受ける。晶出量、析出量の合計量を多くするほど、銅マトリックス中の合金元素の固溶量は減少するので、導電率は向上する。しかし、抽出残渣量(0.1μm 以上の粗大生成物量)が多いと、微細生成物量が減少するので、強度が低下する。従って、前記抽出残渣比を小さくし、微細生成物量を(1−抽出残渣比)の割合で増加させることによって、強度と導電性とのバランスが優れた銅合金を得ることができる。
【0018】
通常の製造工程においては、鋳造、均熱、熱間圧延(熱延)、そして冷間圧延(冷延)と焼鈍の繰り返しにより最終(製品)板が得られ、強度レベル等の機械的性質の制御は主に冷延条件、焼鈍条件により、0.1μm 以下の微細析出物の析出を制御することによってなされる。その際、ほどよく分散した金属間化合物へのFe等の合金元素の拡散がFe等の固溶量および微細析出物の析出量を安定化させる。しかし、本発明者らの知見によると、熱延以降の冷延条件、焼鈍条件により、前記微細析出物を多く析出させても、高導電率と高強度をバランスさせることは困難である。その理由は、添加されたFe量の大部分が、溶解鋳造時に生じた酸化物、晶出物、および鋳塊の均熱から熱延終了までに生じた粗大析出物に取られてしまい、添加したFe量に応じて生成すべき微細生成物の生成量が意外に少なくなってしまうからである。さらに、粗大な晶出物が多い場合、冷延、焼鈍工程で析出した微細析出物は粗大な晶析出物にトラップされてしまい、マトリックス中に独立して存在する微細析出物は益々少なくなる。このため、Fe添加量の割には、十分な強度、導電率をバランス良く得ることができないのである。
【0019】
ここで、銅合金中の酸化物、晶出物および析出物の抽出分離法について説明する。
銅合金中の銅および固溶元素(マトリックス)のみを溶解し、銅合金中の晶出物、析出物、酸化物を溶失させることなく抽出分離するには、銅合金のマトリックスである銅が酸素共存下のアンモニアに溶解するという性質を利用して、酢酸アンモニウム、硝酸アンモニウムの溶液を用いることによって実現可能である。この際、溶媒としてアルコールを用いた、酢酸アンモニウム−アルコール溶液、硝酸アンモニウム−アルコール溶液を用いることで、上記アンモニウム塩による銅合金の溶解反応を促進することができる。
【0020】
本発明では下記の抽出分離液を用いて下記の要領で抽出残渣を回収することとする。溶液中の酢酸アンモニウム濃度が10mass%であり、水酸化ナトリウム−メタノール溶液を用いてPH8に調整された酢酸アンモニウム−メタノール溶液(抽出分離液)を300ml準備し、これに約10gの銅合金試料を浸漬し、銅合金試料を陽極とし、白金を陰極として用いて、電流密度20mmA/cm で定電流電解を行う。試料の溶解状態を観察しながら、マトリックスを溶解させた後、ポリカーボネート製のメンプランフィルター(目開きサイズ0.1μm )を用いて、銅合金溶解後の抽出分離液を吸引ろ過し、未溶解物として残った残渣を回収する。銅合金中には、酸化物、晶出物、析出物が存在し、そのサイズには、数10nmレベル(数0.01μm )から数μm 程度まで様々である。このようにして回収された抽出残渣は、塩酸によって溶解された後、ICP発光分光分析法によって残渣中のFe量が求められる。
【0021】
次に、本発明にかかる銅合金(板材)の製造方法について説明する。
本発明の銅合金板材は、上記成分の銅合金を溶製し、鋳造し、鋳塊を熱間圧延し、さらに熱延板を焼鈍し、冷間圧延よって目的の板厚に加工される。前記焼鈍と冷間圧延は、最終(製品)板厚に応じて繰り返される場合がある。
【0022】
鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行われるが、冷却・凝固速度は、0.1℃/秒以上、好ましくは0.2℃/秒以上とすることが望ましい。これにより、Fe系酸化物や晶出物の生成を抑制し、これらを微細化することができる。通常の鋳造法による鋳造では、冷却・凝固速度は一般的に0.1℃/秒未満であり、かかる低い冷却速度では、凝固過程において、酸化物が粒界に生成して粗大化し、また晶出物も粗大化するため、好ましくない。酸化物の生成抑制の観点からは、真空溶解・鋳造、または酸素分圧の低い雰囲気下での溶解・鋳造を行うことがより好ましい。
【0023】
鋳塊を加熱炉にて加熱後、炉から取り出された鋳塊は熱延開始まで待ち時間が生じるが、本発明の銅合金を製造するには、前記鋳造時の冷却・凝固速度の制御を行うと共に、鋳塊が加熱炉から抽出された時点から熱延終了までの総経過時間を1200秒以下、好ましくは1150秒以下に制御することが推奨される。これにより、Fe系およびP系の粗大析出物の析出、溶解鋳造中に生じた晶出物中へのFe、Pの拡散、酸化物周辺部へのFe、Pの析出を抑制することができる。前記抑制効果が生じる理由は、熱延終了までの温度範囲でのFe、P系析出開始時間が、合金成分によって異なるものの、概ね1000秒程度以内に存在し、1200秒までは特性的にあまり影響を受けないからである。
熱間圧延については、常法に従えばよく、熱間圧延の入り側温度は1000〜600℃程度、終了温度は600〜850℃程度とされる。
【0024】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
【0025】
【実施例】
表1に示す化学成分を有する銅合金をコアレス炉にて溶製したのち、半連続鋳造法で造塊し、冷却凝固速度を同表に示すように種々調整し、厚さ70mm、幅200mm、長さ500mmの鋳魂を得た。この鋳塊を加熱し、炉抽出から熱延終了までの時間を同表に示すように種々設定し、厚さ16mmの熱延板を得た。この熱延板の表面を面削した後、冷間圧延と中間焼鈍を繰り返して、厚さ0.15mmのCu−Fe系銅合金板を製造した。
【0026】
得られたCu−Fe系銅合金板より、試験片を採取し、引張試験、硬さ測定、導電率測定を行った。引張試験は、JIS13号B試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min 、GL=50mmの条件で測定した。また、約10gの抽出残渣測定用の試験片を採取し、既述の方法により、目開き0.1μm のメッシュによって分離抽出された抽出残渣に含まれるFe量をIPC発光分光分析によって求めた。これらの測定結果を表2に示す。
【0027】
表2より、Fe添加量が2%レベルの試料No. 1〜10(発明例)と試料No. 11〜18(比較例)とを、またFe添加量が0.1%レベルの試料No. 21〜29(発明例)と試料No. 31〜38とを比較すると、導電率については発明例は比較例と同等あるいはそれを上回るものが多数見られ、強度については発明例は比較例に比して格段に向上していることがわかる。
【0028】
【表1】

Figure 2004099978
【0029】
【表2】
Figure 2004099978
【0030】
【発明の効果】
本発明の銅合金によれば、特に目開き0.1μm のメッシュによって分離抽出された抽出残渣のFe量がFe添加量の80%以下とされ、主に強度の向上に寄与する微細な生成物として、焼鈍段階で生成する析出物のみならず、鋳造段階で生成する酸化物および晶出物、さらに鋳塊の加熱から熱延終了までに生成する析出物をも用いるので、添加したFe量に応じて、高強度かつ高導電率をバランス良く備えることができ、例えば半導体装置のリードフレーム用銅合金として好適である。また、その製造も超微細な粒子の制御は必要でないので、容易に行うことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper alloy having a high balance of high strength and high electrical conductivity suitable as a material for a lead frame for a semiconductor device, for example.
[0002]
[Prior art]
A lead frame used for a semiconductor device used in an electronic device requires not only conductivity but also mechanical strength. Conventionally, copper alloys containing Fe have been widely used as copper alloys for lead frames of semiconductor devices, have high conductivity (conductivity of 80% IACS or more), and have a strength of about 300 to 520 N / mm 2 level. Copper alloy containing 0.1 mass% of Fe: Fe: 2.1 to 2.6 mass%, P: 0.015 to 0.15 mass%, having a conductivity of 60% IACS or more and a strength of about 580 N / mm 2 , Zn: a copper alloy containing 0.05 to 0.20 mass% (CDA194 alloy) is an international standard alloy because it has excellent strength, electrical conductivity, and thermal conductivity among Cu-Fe-based copper alloys. , Are often used.
[0003]
2. Description of the Related Art In recent years, as the capacity, size, and function of semiconductor devices have increased, the cross-sectional area of lead frames has been reduced, and more strength, conductivity, and heat conductivity have been required. This requirement is not limited to the copper alloy used for the lead frame, but also applies to the copper alloy used as a material for various conductive components used in electric and electronic devices.
[0004]
The Cu-Fe-based copper alloy is characterized by having a high electrical conductivity. However, in order to increase the strength, a method of increasing the amount of Fe added or adding a third element has been employed. Was. That is, the conductivity and strength have been ensured by defining the main components such as Fe, P, and Zn, and defining the trace addition elements such as Sn, Mg, and Ca. For example, JP-A-11-199952 describes a copper alloy in which the amounts of Fe, P, Zn, Mg and Fe / P are specified.
[0005]
However, when the type and addition amount of alloying elements are increased, the strength is improved, but the conductivity is reduced, and it is difficult to realize an alloy having a good balance between high strength and high conductivity. -With respect to the demand for higher quality and improved properties of copper alloys used as materials for electronic parts and the like, it is becoming impossible to sufficiently satisfy the demand only by simple component control.
[0006]
Therefore, in recent years, a method for controlling the internal structure and the precipitation state of a Cu—Fe-based copper alloy has been proposed in order to satisfy the required characteristics accompanying the miniaturization of equipment. For example, Japanese Patent Application Laid-Open No. 10-324935 discloses a technique in which strength and conductivity are improved by defining the ratio between the number of particles having a particle diameter of 100 ° or more and the number of particles having a particle diameter of less than 100 ° in a copper alloy. Is disclosed. Japanese Patent Application Laid-Open No. 11-80862 discloses a technique for improving the heat resistance by defining the volume fraction of fine Fe particles having a diameter of 40 nm or less.
[0007]
[Patent Document 1]
JP-A-11-199952 (Claims)
[Patent Document 2]
JP-A-10-324935 (Claims)
[Patent Document 3]
JP-A-11-80862 (Claims)
[0008]
[Problems to be solved by the invention]
However, these techniques need to control very fine precipitates, and the precipitation behavior of Fe is easily changed sensitively depending on the annealing conditions in the manufacturing process, so that it is difficult to manufacture and the characteristics are liable to vary. There's a problem. Further, there is a problem that the strength is little improved for the amount of Fe added, and the strength is low for the conductivity.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a copper alloy which is easy to manufacture, has high strength and high electrical conductivity in a well-balanced manner.
[0009]
[Means for Solving the Problems]
In order to improve the strength of the Fe-Cu-based copper alloy, it is effective to precipitate fine and large amounts of precipitates containing Fe, and for that purpose, they are dissolved in a Cu matrix during annealing. It is necessary that the amount of Fe be large. However, in conventional copper alloys, much of the added Fe amount does not necessarily form a solid solution in the Cu matrix. Most of the amount of Fe added to the coarse precipitates formed by hot rolling is taken. In view of the above, the present invention provides a high-strength compound by leaving a large amount of not only precipitates but also oxides and crystallizations as a compound containing fine Fe effective for improving strength in accordance with the amount of Fe added. It has been completed based on the idea that a high conductivity can be obtained in a well-balanced manner.
[0010]
That is, the copper alloy of the present invention contains 0.01 to 4.0 mass% of Fe, dissolves only the matrix of the copper alloy, and forms oxides and crystallized substances in the copper alloy by a mesh having an opening of 0.1 μm. In addition, when the precipitate is separated and extracted, the amount of Fe in the extraction residue separated and extracted is 80% or less of the added amount of Fe. As an alloy component, in addition to the above Fe, P: 0.01 to 0.1 mass%, Zn: 0.01 to 1.0 mass%, Sn: 0.01 to 0.5 mass%, One or more can be added alone or in combination.
BEST MODE FOR CARRYING OUT THE INVENTION
The copper alloy of the present invention contains Fe: 0.01 to 4.0 mass% (hereinafter, simply referred to as “%”) as an essential alloy element, and is formed by the remaining unavoidable impurities and Cu. However, P: 0.01 to 0.1%, Zn: 0.01 to 1.0%, and Sn: one or more elements selected from P, Zn and Sn are used alone or in combination. It can be contained in the range of 0.01 to 0.5%.
[0011]
Fe: 0.01 to 4.0%
Fe is an element that basically improves the strength, but if it is less than 0.01%, the amount of finely precipitated Fe particles is small and the improvement in conductivity is satisfied, but the contribution to the improvement in strength is reduced. On the other hand, if it exceeds 4.0%, the conductivity is reduced, and a large amount of coarse crystals and precipitates are produced during the production of the ingot, and the ductility of the final product (for example, a lead frame) is reduced. Also, when rolling from an ingot, giant precipitates of Fe are generated during heating or intermediate annealing before hot rolling, which deteriorates rolling workability and leaves the giant precipitates in the final product. , Resulting in a decrease in heat resistance. For this reason, the lower limit of the Fe content is set to 0.01%, preferably 1.0%, and the upper limit is set to 4.0%, preferably 3.0%.
[0012]
P: 0.01-0.1%
P is an element that not only has a deoxidizing effect but also forms an intermetallic compound with Fe to precipitate and strengthen Fe. If it is less than 0.01%, even if Fe is present at 0.01 to 4.0%, it does not contribute to precipitation strengthening. On the other hand, if the content exceeds 0.1%, the conductivity is reduced, and the solid solubility limit of Fe is reduced, so that a large amount of coarse crystallized material is produced during ingot production, and the crystallized material is generated during strain removal heating. It becomes the core of the recovery phenomenon, and the heat resistance of the final product decreases. For this reason, the lower limit of the P content is set to 0.01% and the upper limit is set to 0.1%.
[0013]
Zn: 0.01 to 1.0%
Zn has a deoxidizing effect like P, but if it is less than 0.01%, the deoxidizing effect is too small. On the other hand, if it exceeds 1.0%, the deoxidizing action is saturated, and the electric conductivity also decreases. For this reason, the amount of Zn is set to 0.01 to 1.0%.
[0014]
Sn: 0.01-0.5%
Sn is a component that contributes to improvement in heat resistance. If the content is less than 0.01%, the effect is too small, while if it exceeds 0.5%, a coarse compound is produced at the time of casting due to macrosegregation, and the electric conductivity also decreases. Therefore, the amount of Sn is set to 0.01 to 0.5%.
[0015]
In addition to the above-mentioned alloy elements, trace elements Pb, Ni, Mn, Cr, Al, Mg, Ca, Be, Si, Zr, In, etc., which are impurities, are 0.1% in total of one type or two or more types. It is preferable to stop below, and to this extent, the effect of the present invention is not significantly affected.
[0016]
Further, in the copper alloy of the present invention, as a compound containing Fe of a specific size in the structure, not only precipitates, but also oxides and crystallized substances, the proportions of these amounts are defined as follows. You. That is, when only the copper alloy matrix is dissolved and oxides, crystallized substances and precipitates in the copper alloy are extracted and separated by a mesh having an opening of 0.1 μm, the amount of Fe in the extracted and separated extraction residue is Fe It is 80% or less of the added amount. The oxides, crystallized substances, and precipitates refer to oxides, crystallized or precipitated crystallized substances or precipitates, or mixtures thereof, which are present in the copper alloy, regardless of their chemical composition. For example, a crystallized substance and a precipitate containing Fe include a simple substance of Fe and an Fe—P-based compound (Fe 3 P, Fe 2 P, etc.).
[0017]
The reason why the mesh size is defined as 0.1 μm is that coarse oxides, crystallized substances, and precipitates that do not significantly contribute to improvement in strength (these are sometimes collectively referred to as “coarse products”). This is for grasping as an extraction residue. The quantitative ratio of such a coarse product to the total product amount is grasped by calculating the ratio of the amount of Fe contained in the extraction residue to the amount of Fe added (sometimes referred to as “extraction residue ratio”). In the present invention, this ratio is set to 80% or less in percentage. In other words, since the solid solution amount of the alloy element is very small, fine oxides, crystallized substances and precipitates of 0.1 μm or less that effectively contribute to the improvement of the strength (these are collectively referred to as “fine products”) ) May be 20% or more. Thereby, a great strength improving effect can be obtained according to the amount of Fe added.
By the way, the level of the conductivity is almost determined by the copper purity, in other words, the amount of the added alloy element in the copper alloy. Greatly affected. As the total amount of the crystallization amount and the precipitation amount increases, the solid solution amount of the alloy element in the copper matrix decreases, so that the conductivity increases. However, when the amount of the extraction residue (the amount of the coarse product of 0.1 μm or more) is large, the amount of the fine product decreases, and the strength decreases. Therefore, a copper alloy having an excellent balance between strength and conductivity can be obtained by reducing the extraction residue ratio and increasing the amount of fine products at a ratio of (1−extraction residue ratio).
[0018]
In a normal manufacturing process, a final (product) plate is obtained by repeating casting, soaking, hot rolling (hot rolling), and cold rolling (cold rolling) and annealing, and mechanical properties such as strength level. The control is mainly performed by controlling the precipitation of fine precipitates of 0.1 μm or less under the conditions of cold rolling and annealing. At this time, the diffusion of alloy elements such as Fe into the moderately dispersed intermetallic compound stabilizes the amount of solid solution such as Fe and the amount of fine precipitates precipitated. However, according to the knowledge of the present inventors, it is difficult to balance high electrical conductivity and high strength even when a large amount of the fine precipitates is precipitated by cold rolling conditions and annealing conditions after hot rolling. The reason is that most of the added Fe amount is taken out by oxides, crystallized substances generated during melting casting, and coarse precipitates generated from the soaking of the ingot to the end of hot rolling. This is because the amount of fine products to be generated is unexpectedly reduced in accordance with the amount of Fe. Further, when there are many coarse precipitates, fine precipitates precipitated in the cold rolling and annealing steps are trapped in the coarse crystal precipitates, and the number of fine precipitates independently present in the matrix is further reduced. For this reason, sufficient strength and electrical conductivity cannot be obtained in a well-balanced manner for the amount of Fe added.
[0019]
Here, a method of extracting and separating oxides, crystallized substances and precipitates in the copper alloy will be described.
In order to dissolve only the copper and solid solution elements (matrix) in the copper alloy and extract and separate it without losing crystallized substances, precipitates, and oxides in the copper alloy, copper, the matrix of the copper alloy, Utilizing the property of dissolving in ammonia in the presence of oxygen, it can be realized by using a solution of ammonium acetate and ammonium nitrate. At this time, by using an ammonium acetate-alcohol solution or an ammonium nitrate-alcohol solution using alcohol as a solvent, the dissolution reaction of the copper alloy by the ammonium salt can be promoted.
[0020]
In the present invention, an extraction residue is recovered using the following extraction separation solution in the following manner. The ammonium acetate concentration in the solution was 10 mass%, and 300 ml of an ammonium acetate-methanol solution (extraction separation liquid) adjusted to PH8 using a sodium hydroxide-methanol solution was prepared, and about 10 g of a copper alloy sample was added thereto. Immersion is performed, and a constant current electrolysis is performed at a current density of 20 mmA / cm 2 using a copper alloy sample as an anode and platinum as a cathode. After dissolving the matrix while observing the dissolution state of the sample, the extracted and separated liquid after dissolving the copper alloy was suction-filtered using a polycarbonate membrane filter (opening size: 0.1 μm), and the undissolved material was removed. And collect the remaining residue. Oxides, crystallized substances, and precipitates are present in copper alloys, and their sizes vary from several tens of nanometers (several 0.01 μm) to about several μm. After the extracted residue thus recovered is dissolved with hydrochloric acid, the amount of Fe in the residue is determined by ICP emission spectroscopy.
[0021]
Next, a method for producing a copper alloy (plate material) according to the present invention will be described.
The copper alloy sheet of the present invention is produced by melting and casting a copper alloy of the above components, hot rolling an ingot, annealing a hot rolled sheet, and cold rolling to a target sheet thickness. The annealing and the cold rolling may be repeated depending on the final (product) thickness.
[0022]
Casting is performed by a usual method such as continuous casting or semi-continuous casting, and the cooling / solidification rate is preferably 0.1 ° C./sec or more, and more preferably 0.2 ° C./sec or more. Thereby, generation of Fe-based oxides and crystallized substances can be suppressed, and these can be miniaturized. In the casting by the ordinary casting method, the cooling / solidification rate is generally lower than 0.1 ° C./sec. At such a low cooling rate, in the solidification process, the oxides are formed at the grain boundaries and become coarse, and Undesired products are also undesirably coarse. From the viewpoint of suppressing the formation of oxides, it is more preferable to perform vacuum melting / casting or melting / casting in an atmosphere having a low oxygen partial pressure.
[0023]
After heating the ingot in the heating furnace, the ingot taken out of the furnace has a waiting time until the start of hot rolling.However, in order to produce the copper alloy of the present invention, the cooling / solidification rate during the casting must be controlled. At the same time, it is recommended to control the total elapsed time from the time when the ingot is extracted from the heating furnace to the end of hot rolling to 1200 seconds or less, preferably 1150 seconds or less. Thereby, precipitation of Fe-based and P-based coarse precipitates, diffusion of Fe and P into crystallized substances generated during melting and casting, and precipitation of Fe and P in oxide peripheral portions can be suppressed. . The reason for the suppression effect is that the start time of Fe- and P-based precipitation in the temperature range up to the end of hot rolling differs depending on the alloy components, but exists within about 1000 seconds, and does not significantly affect characteristics up to 1200 seconds. Because they do not receive it.
The hot rolling may be performed according to a conventional method, and the hot-rolling entrance temperature is set to about 1000 to 600 ° C, and the end temperature is set to about 600 to 850 ° C.
[0024]
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not construed as being limited to such examples.
[0025]
【Example】
After smelting a copper alloy having the chemical components shown in Table 1 in a coreless furnace, ingot was formed by a semi-continuous casting method, and the cooling and solidification rate was variously adjusted as shown in the same table, thickness 70 mm, width 200 mm, A 500mm long casting soul was obtained. The ingot was heated and the time from furnace extraction to the end of hot rolling was set variously as shown in the same table, and a hot rolled sheet having a thickness of 16 mm was obtained. After the surface of the hot-rolled sheet was chamfered, cold rolling and intermediate annealing were repeated to produce a Cu—Fe-based copper alloy sheet having a thickness of 0.15 mm.
[0026]
A test piece was collected from the obtained Cu-Fe-based copper alloy plate and subjected to a tensile test, a hardness measurement, and a conductivity measurement. The tensile test was carried out using a JIS No. 13B test piece with a universal tester manufactured by Instron Co., Ltd. under the conditions of room temperature, a test speed of 10.0 mm / min, and GL = 50 mm. In addition, about 10 g of a test piece for measuring the extraction residue was collected, and the amount of Fe contained in the extraction residue separated and extracted by a mesh having a mesh of 0.1 μm was determined by IPC emission spectroscopy according to the method described above. Table 2 shows the measurement results.
[0027]
From Table 2, it can be seen that Sample No. 2 in which the amount of Fe added was 2% level. Sample Nos. 1 to 10 (Invention Examples) and Sample Nos. Sample Nos. 11 to 18 (Comparative Examples) and Sample Nos. Sample Nos. 21 to 29 (Invention Examples) and Sample Nos. Comparing with Comparative Examples 31 to 38, it can be seen that many examples of the present invention are equivalent to or higher in conductivity than the comparative example, and that the invention examples are remarkably improved in strength as compared with the comparative example. .
[0028]
[Table 1]
Figure 2004099978
[0029]
[Table 2]
Figure 2004099978
[0030]
【The invention's effect】
According to the copper alloy of the present invention, in particular, the amount of Fe in the extraction residue separated and extracted by a mesh having an opening of 0.1 μm is set to 80% or less of the added amount of Fe, and a fine product mainly contributing to improvement in strength. As not only the precipitates generated in the annealing step, but also oxides and crystallized substances generated in the casting step, and also the precipitates generated from the heating of the ingot to the end of hot rolling, the amount of Fe added is Accordingly, high strength and high conductivity can be provided in a well-balanced manner, and are suitable, for example, as a copper alloy for a lead frame of a semiconductor device. In addition, the production can be easily performed because it is not necessary to control ultrafine particles.

Claims (4)

Fe:0.01〜4.0mass%を含有し、銅合金のマトリックスのみを溶解し、目開き0.1μm のメッシュによって銅合金中の酸化物、晶出物および析出物を分離抽出したときに、分離抽出された抽出残渣のFe量がFe添加量の80%以下である、高強度および高導電率を備えた銅合金。Fe: containing 0.01 to 4.0 mass%, dissolving only the copper alloy matrix, and separating and extracting oxides, crystallized substances and precipitates in the copper alloy with a mesh having an opening of 0.1 μm. A copper alloy having high strength and high electrical conductivity, wherein the amount of Fe in the separated and extracted extraction residue is 80% or less of the amount of Fe added. さらに、P:0.01〜0.1mass%を含有する、請求項1に記載した銅合金。The copper alloy according to claim 1, further comprising P: 0.01 to 0.1 mass%. さらに、Zn:0.01〜1.0mass%を含有する、請求項1または2に記載した銅合金。The copper alloy according to claim 1, further comprising Zn: 0.01 to 1.0 mass%. さらに、Sn:0.01〜0.5mass%を含有する、請求項1、2または3に記載した銅合金。The copper alloy according to claim 1, further comprising Sn: 0.01 to 0.5 mass%.
JP2002263825A 2002-09-10 2002-09-10 Copper alloy having high strength and high conductivity and method for producing the same Expired - Lifetime JP3725506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263825A JP3725506B2 (en) 2002-09-10 2002-09-10 Copper alloy having high strength and high conductivity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263825A JP3725506B2 (en) 2002-09-10 2002-09-10 Copper alloy having high strength and high conductivity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004099978A true JP2004099978A (en) 2004-04-02
JP3725506B2 JP3725506B2 (en) 2005-12-14

Family

ID=32263435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263825A Expired - Lifetime JP3725506B2 (en) 2002-09-10 2002-09-10 Copper alloy having high strength and high conductivity and method for producing the same

Country Status (1)

Country Link
JP (1) JP3725506B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031525A (en) * 2006-07-28 2008-02-14 Kobe Steel Ltd Copper alloy having high strength and high softening resistance
CN101906553A (en) * 2010-08-26 2010-12-08 中铝华中铜业有限公司 Lead frame material and processing method thereof
CN102534292A (en) * 2010-12-27 2012-07-04 日立电线株式会社 Copper alloy for electrical and electronic component, and method for producing the same
JP2015134955A (en) * 2014-01-18 2015-07-27 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP2015175056A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
CN114959349A (en) * 2022-04-06 2022-08-30 中南大学 Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031525A (en) * 2006-07-28 2008-02-14 Kobe Steel Ltd Copper alloy having high strength and high softening resistance
CN101906553A (en) * 2010-08-26 2010-12-08 中铝华中铜业有限公司 Lead frame material and processing method thereof
CN102534292A (en) * 2010-12-27 2012-07-04 日立电线株式会社 Copper alloy for electrical and electronic component, and method for producing the same
JP2015134955A (en) * 2014-01-18 2015-07-27 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP2015175056A (en) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
CN114959349A (en) * 2022-04-06 2022-08-30 中南大学 Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof
CN114959349B (en) * 2022-04-06 2023-02-10 中南大学 Ultrahigh-strength high-conductivity copper-iron alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JP3725506B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
KR100997560B1 (en) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
JP4950584B2 (en) Copper alloy with high strength and heat resistance
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP3935492B2 (en) Copper alloy having high strength and excellent bendability and method for producing copper alloy sheet
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2012026488A1 (en) Copper-cobalt-silicon alloy for electrode material
TW201224171A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP4275697B2 (en) Copper alloy and lead frame material for electronic equipment
JP4164517B2 (en) Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
JP3725506B2 (en) Copper alloy having high strength and high conductivity and method for producing the same
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPH1180862A (en) Copper-iron alloy material for lead frame, excellent in heat resistance
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
JP4209749B2 (en) Copper alloy with high strength and excellent bendability
JP3306585B2 (en) Cu alloy rolled sheet with fine crystals and precipitates and low distribution ratio
JP4147088B2 (en) Copper alloy having excellent strength stability and method for producing the same
JP3344687B2 (en) Copper alloy for lead frame
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5619391B2 (en) Copper alloy material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Ref document number: 3725506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

EXPY Cancellation because of completion of term