JPH11264037A - Copper alloy foil - Google Patents

Copper alloy foil

Info

Publication number
JPH11264037A
JPH11264037A JP8822398A JP8822398A JPH11264037A JP H11264037 A JPH11264037 A JP H11264037A JP 8822398 A JP8822398 A JP 8822398A JP 8822398 A JP8822398 A JP 8822398A JP H11264037 A JPH11264037 A JP H11264037A
Authority
JP
Japan
Prior art keywords
inclusions
less
size
copper alloy
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8822398A
Other languages
Japanese (ja)
Inventor
Tetsuo Maki
哲生 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP8822398A priority Critical patent/JPH11264037A/en
Publication of JPH11264037A publication Critical patent/JPH11264037A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide Cu-Fe-P series copper alloy foil having sufficient strength and electrical conductivity and moreover excellent in productivity. SOLUTION: This foil is the one having a compsn. contg., by weight, 0.05 to 3.5% Fe and 0.01 to 0.4% P, furthermore contg., at need, one or two kinds of 0.05 to 5% Zn and 0.05 to 3% Sn, moreover contg., at need, one or more kinds among Mg, Co, Pb, Zr, Cr, Mn, Al, Ni, Si, In and B by 0.01 to 2% in total, and the balance Cu, in which the dimensions of inclusions are regulated to <=10 μm, and also, the number of the inclusions with 5 to 10 μm dimensions is regulated to <50 pieces/mm<2> in the cross-section parallel to rolling. It is suitable as a copper alloy foil material high in reliability in use for printed circuit boards and in a semiconductor packaging field such as IC tape carriers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フレキシブルプリ
ント配線基板用およびICテープキャリア等半導体実装
の用途に好適な、強度および電気伝導性に優れた銅合金
箔に関するものであり、特には介在物の大きさおよび介
在物の個数を規制したCu−Fe−P系銅合金箔に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy foil having excellent strength and electrical conductivity suitable for use in semiconductor mounting such as a flexible printed wiring board and an IC tape carrier. The present invention relates to a Cu—Fe—P based copper alloy foil in which the size and the number of inclusions are regulated.

【0002】[0002]

【従来の技術】有機物を基材としたプリント配線基板
は、ガラスエポキシ、紙フェノール基板を構成材料とす
る硬質銅張積層板(リジット)と、ポリイミド、ポリエ
ステル基板を構成材料とする可撓性銅張積層基板(フレ
キシブル)とに大別され、プリント配線基板の導電材と
しては主として銅箔が使用されている。銅箔はその製造
方法の違いにより電解銅箔と圧延銅箔に分類される。上
記プリント配線基板のうち、プリント配線板のより高密
度回路化による多層板化および高可撓性が要求されるフ
レキシブルプリント回路基板は、樹脂基板に銅箔をラミ
ネートし、接着剤あるいは加熱加圧により一体化して形
成される。使用される銅箔としては、タフピッチ銅また
は無酸素銅の圧延銅箔が多く用いられており、近年で
は、高密度実装の有効な手段として、ビルドアップ基板
と呼ばれる多層配線基板が多く用いられている。
2. Description of the Related Art Printed wiring boards based on organic substances include rigid copper-clad laminates (rigid) made of glass epoxy and paper phenol boards, and flexible copper boards made of polyimide and polyester boards. Copper foil is mainly used as a conductive material of a printed wiring board. Copper foils are classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method. Among the above printed wiring boards, a flexible printed circuit board which requires a multi-layer board and high flexibility by increasing the density of the printed wiring board is required to laminate a copper foil on a resin board and use an adhesive or heat and pressure. Are formed integrally. As the copper foil used, rolled copper foil of tough pitch copper or oxygen-free copper is often used, and in recent years, as an effective means of high-density mounting, a multilayer wiring board called a build-up board is often used. I have.

【0003】さらに、プリント配線基板の一部はテープ
キャリア、TAB(テープ・オートメイティド・ボンデ
ィング)リードとして、半導体チップの実装に使用され
ている。半導体チップの実装の分野においては、近年、
その実装密度の向上のためBGA(ボール・グリッド・
アレイ)化、CSP(チップ・サイズ・パッケージ)化
が進められている。これにより、面積当たりの端子数は
増加するが、同時に端子は狭ピッチとなるため、実装す
る基板にも高密度の配線基板が必要となる。高密度化実
現のための有効な手段として、半導体実装分野において
も多層基板が用いられている。
Further, a part of the printed wiring board is used as a tape carrier or TAB (tape automated bonding) lead for mounting a semiconductor chip. In the field of semiconductor chip mounting, in recent years,
BGA (Ball Grid Grid)
(Array) and CSP (chip size package). As a result, the number of terminals per area increases, but at the same time, the terminals have a narrow pitch, so that a high-density wiring board is also required for a mounting board. As an effective means for realizing high density, a multilayer substrate is also used in the field of semiconductor mounting.

【0004】一方、製造工程においては、箔の厚さが薄
くなると、歩留よく圧延することが困難となってくる。
特に、介在物等の内部欠陥は、圧延時に破断を生じまた
ピンホールを生じる原因となるため、生産性を低下さ
せ、ひいては製造コストの増大を招く。従って、素材に
は介在物の少ないことが望まれる。近年、電子機器銅合
金のような高い強度と導電性を要求される用途には、析
出型銅合金が使われるケースが多い。Cu−Fe−P系
銅合金は、高強度と高導電率とを併せ持つ代表的な析出
型銅合金であり、電子機器用材料として実用化されてい
る。この合金においては、時効析出過程において銅マト
リックス中に微細なFeあるいはFe−P系化合物が析
出することにより強度と導電率が上昇する。
On the other hand, in the manufacturing process, when the thickness of the foil is reduced, it becomes difficult to perform rolling at a high yield.
In particular, internal defects such as inclusions cause breakage during rolling and cause pinholes, thereby lowering productivity and consequently increasing manufacturing costs. Therefore, it is desired that the material has few inclusions. In recent years, for applications requiring high strength and conductivity, such as copper alloys for electronic equipment, precipitation-type copper alloys are often used. A Cu-Fe-P-based copper alloy is a typical precipitation-type copper alloy having both high strength and high electrical conductivity, and has been put to practical use as a material for electronic devices. In this alloy, strength and electrical conductivity increase due to precipitation of fine Fe or Fe—P-based compounds in the copper matrix during the aging precipitation process.

【0005】[0005]

【発明が解決しようとする課題】前述のプリント基板
は、(1)組み立て時に曲げた状態で固定されて使用さ
れるもの、(2)駆動系統(例えばプリンターのヘッド
部分、ハードディスク内の駆動用回路基板等)に使用さ
れ、1万回〜100万回以上の屈曲が繰り返されるも
の、等に用いられる。近年の電子機器の小型化と高密度
化に伴い、プリント基板自体も小型化が要求され、純銅
箔では強度が不足するため、部品の加工および組み立て
時に切断あるいは変形といった問題が生じる。また純銅
は耐熱性が著しく低いため、銅箔を樹脂基板にラミネー
トする際の加熱によって変形、断線という問題が発生
し、信頼性が低下するという欠点があった。
The above-mentioned printed circuit board is (1) used while being fixed in a bent state at the time of assembling, and (2) a driving system (for example, a head portion of a printer, a driving circuit in a hard disk). Substrate and the like, which is repeatedly bent 10,000 times to 1,000,000 times or more. With the recent miniaturization and high density of electronic devices, miniaturization of the printed circuit board itself is required, and the strength of pure copper foil is insufficient, so that problems such as cutting or deformation occur when processing and assembling parts. In addition, since pure copper has a remarkably low heat resistance, there is a problem that a problem of deformation and disconnection occurs due to heating when laminating a copper foil on a resin substrate, and reliability is reduced.

【0006】半導体チップの実装の分野においては、搭
載されるチップの回路ルールの微細化が進展しており、
「0.1〜0.2μmルール」が開発されている。0.
1〜0.2μmルールの場合、チップ裏面につける金あ
るいはアルミバンプのピッチは40μm程度になり、4
0μmピッチのバンプを接合するには、基板の配線ピッ
チを15μm以下にする必要がある。配線のピッチを1
5μm以下にするためには、基板に使用される銅箔の板
厚を14μm以下にする必要がある。これは、銅箔の板
厚をピッチ以下にしないと、エッチング、組み立て加工
ができないためである。しかし、従来の圧延銅箔では、
板厚が14μm以下になると強度の不足からIRB(イ
ンナーリード・ボンディング)時に切断あるいは変形と
いった問題が生じる。従って上記要請に対処しうる十分
な強度とさらに十分な電気伝導性を持った材料が求めら
れている。
[0006] In the field of semiconductor chip mounting, the circuit rules of mounted chips have been miniaturized.
The “0.1-0.2 μm rule” has been developed. 0.
In the case of the 1 to 0.2 μm rule, the pitch of the gold or aluminum bumps to be attached to the back of the chip is about 40 μm,
In order to bond bumps having a pitch of 0 μm, the wiring pitch of the substrate needs to be 15 μm or less. Wiring pitch is 1
In order to reduce the thickness to 5 μm or less, it is necessary to reduce the thickness of the copper foil used for the substrate to 14 μm or less. This is because etching and assembling cannot be performed unless the thickness of the copper foil is equal to or less than the pitch. However, in the conventional rolled copper foil,
When the plate thickness is 14 μm or less, a problem such as cutting or deformation occurs at the time of IRB (inner lead bonding) due to insufficient strength. Therefore, there is a demand for a material having sufficient strength and further sufficient electric conductivity to meet the above demand.

【0007】上記要求に対し、ある種の添加元素を加え
た銅合金を用いることは有効な手段の一つではあるが、
銅合金を用いるということだけでは必ずしも十分な強度
は得られず、加えて元素の添加により基板の他の必要特
性である電気伝導度の低下といった問題が生じる。ま
た、前述したCu−Fe−P系合金においては、銅マト
リックス中に微細なFeあるいはFe−P系析出粒子が
生じることにより、強度と導電率が上昇するが、反面強
度の向上に寄与しない粗大な晶出物あるいは析出物が残
存し易く、また添加元素の活性が高いために、酸化物、
硫化物、珪化物等が発生し易いため、マトリックス中に
これらの比較的大きな粒子が分散した組織となり易いと
いう結果を生むことになっている。Cu−Fe−P系合
金を銅合金箔材料として実用化するに当たって、これら
の粗大な粒子が残存すると、圧延時に破断、ピンホール
の生じる原因となるため、生産性を低下させ、ひいては
製造コストの増大を招く。本発明は上述した問題解決の
ためになされたもので、十分な強度および電気伝導度を
有し、さらには生産性にも優れたCu−Fe−P系銅合
金箔を提供することを課題としている。
[0007] In order to meet the above requirements, it is one of effective means to use a copper alloy to which a certain additive element is added.
The use of a copper alloy alone does not always provide sufficient strength, and the addition of an element causes a problem such as a decrease in electrical conductivity, which is another required characteristic of the substrate. In the above-described Cu-Fe-P-based alloy, fine Fe or Fe-P-based precipitated particles are generated in the copper matrix, so that strength and conductivity are increased. Crystallization or precipitates are likely to remain, and because of the high activity of the added elements, oxides,
Since sulfides, silicides, and the like are easily generated, the result is that a structure in which these relatively large particles are dispersed in a matrix tends to be formed. In putting a Cu-Fe-P alloy to practical use as a copper alloy foil material, if these coarse particles remain, they cause breakage during rolling and cause pinholes, thereby lowering productivity and consequently reducing production costs. Cause an increase. The present invention has been made to solve the above-described problems, and has an object to provide a Cu-Fe-P-based copper alloy foil having sufficient strength and electrical conductivity, and also having excellent productivity. I have.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
金属箔として適する銅合金箔の研究を重ねたところ、C
u−Fe−P系合金の成分調整を行った上で、必要に応
じて、Znおよび/またはSn、さらにはMg、Co、
Pb、Zr、Cr、Mn、Al、Ni、Si、Inおよ
び/またはBを含有させると共に、製造条件を制御・選
定してマトリックス中の析出物、晶出物、酸化物、硫化
物、珪化物等の介在物の分布の制御を行うことにより、
合金箔として好適な素材を提供できることを見出した。
本発明は、上記知見を基にして完成されたものであり、
銅合金においてFeを0.05〜3.5重量%(以下百
分率は特記しない限り重量%を意味する)およびPを
0.01〜0.4%含有し、必要に応じて0.05〜5
%のZnおよび0.05〜3%のSnのうち1種または
2種を含有し、さらに必要に応じてMg、Co、Pb、
Zr、Cr、Mn、Al、Ni、Si、InおよびBの
うち1種以上を総量で0.01〜2%含有し、残部がC
uおよびその不可避的不純物からなり、介在物の大きさ
が10μm以下であり、かつ圧延平行断面で5〜10μ
mの大きさの介在物個数が50個/mm2 未満であるこ
とを特徴とする、プリント配線基板用やICテープキャ
リア用の箔として十分な強度と電気伝導性を兼備せし
め、さらには生産性も良好な銅合金箔に関する。
Means for Solving the Problems Accordingly, the present inventors have:
After repeated research on copper alloy foil suitable as metal foil, C
After adjusting the components of the u-Fe-P-based alloy, if necessary, Zn and / or Sn, further Mg, Co,
Pb, Zr, Cr, Mn, Al, Ni, Si, In, and / or B are contained, and the production conditions are controlled and selected, and precipitates, crystals, oxides, sulfides, and silicides in the matrix are formed. By controlling the distribution of inclusions such as
It has been found that a material suitable as an alloy foil can be provided.
The present invention has been completed based on the above findings,
The copper alloy contains 0.05 to 3.5% by weight of Fe (hereinafter, the percentage means% by weight unless otherwise specified) and 0.01 to 0.4% of P, and 0.05 to 5% if necessary.
% Of Zn and 0.05 to 3% of Sn, and optionally Mg, Co, Pb,
One or more of Zr, Cr, Mn, Al, Ni, Si, In and B are contained in a total amount of 0.01 to 2%, and the balance is C
u and its unavoidable impurities, the size of inclusions is 10 μm or less, and 5 to 10 μm
The number of inclusions having a size of m is less than 50 pieces / mm 2. The foil has sufficient strength and electrical conductivity as a foil for a printed wiring board or an IC tape carrier, and further has a productivity. Also relates to a good copper alloy foil.

【0009】本発明において、用語「介在物」とは、鋳
造時の凝固過程以降、すなわち凝固後の冷却過程、熱間
圧延後の冷却過程および時効焼鈍時に固相のマトリック
ス中に析出反応で生じる析出物、鋳造時の凝固過程の偏
析により生じ一般に粗大である晶出物、並びに溶解時の
溶湯内での反応により生じる不純物である酸化物および
硫化物など、本合金の顕微鏡観察によりマトリックス中
に観察される粒子を包括するものとして使用する。「介
在物の大きさ」は、介在物を顕微鏡観察下でその介在物
を含む最小円の直径をいう。「介在物の個数」とは、材
料の圧延平行断面を顕微鏡観察により、多数箇所におい
て実際に数えた単位平方mm当たりの介在物個数であ
る。
In the present invention, the term "inclusion" means a precipitation reaction in a solid phase matrix after a solidification process during casting, ie, a cooling process after solidification, a cooling process after hot rolling, and an aging annealing. Microscopic observation of this alloy in the matrix, such as precipitates, generally coarse crystallized substances generated by segregation during the solidification process during casting, and impurities and oxides and sulfides generated by reactions in the molten metal during melting Used to encompass the observed particles. "Size of inclusions" refers to the diameter of the smallest circle containing the inclusions under microscopic observation. The “number of inclusions” is the number of inclusions per unit square mm actually counted at a number of places by microscopic observation of a rolled parallel section of the material.

【0010】[0010]

【発明の実施の形態】次に本発明において銅合金の成分
組成を前記の如くに限定した理由をその作用とともに説
明する。
Next, the reason why the composition of the copper alloy in the present invention is limited as described above will be described together with its operation.

【0011】(Fe)Feは、単独であるいはPと金属
間化合物を形成して、合金の強度、耐熱性を向上させる
作用があるが、その含有量が0.05%未満であると所
望の高強度が得られない。一方、3.5%を超える割合
でFeを含有させると、加工性が低下するとともに導電
性が著しく低下し、さらには粗大なFe粒子が母相中に
残留する。この結果、圧延時の破断、ピンホール発生等
により生産性の低下を招くことになる。こうした理由
で、Feの含有量を0.05%以上3.5%以下と定め
た。
(Fe) Fe has an effect of improving the strength and heat resistance of the alloy alone or by forming an intermetallic compound with P, but if its content is less than 0.05%, it is desirable. High strength cannot be obtained. On the other hand, when Fe is contained in a ratio exceeding 3.5%, the workability is reduced, the conductivity is significantly reduced, and coarse Fe particles remain in the matrix. As a result, the productivity is lowered due to breakage during rolling, generation of pinholes, and the like. For these reasons, the content of Fe is determined to be 0.05% or more and 3.5% or less.

【0012】(P)Pは、Feと金属間化合物を形成し
て、導電性を下げずに強度を向上させるが、0.01%
未満ではその効果がなく、他方0.4%を超えると加工
性が著しく低下するとともに導電率が著しく低下するこ
とから、P含有量は0.01%以上0.4%以下と定め
た。
(P) P forms an intermetallic compound with Fe to improve the strength without lowering the conductivity.
When the content is less than 0.4%, the effect is not obtained. On the other hand, when the content is more than 0.4%, the workability is remarkably reduced and the conductivity is remarkably reduced.

【0013】(Zn)Znは、溶解鋳造時の脱酸剤とし
て作用するとともに、半田接合部の耐熱性を改善する効
果があるが、その含有量が0.05%未満ではその効果
が顕著でなく、一方Znの含有量が5%を超えると、導
電率の低下が著しくなることから、Zn含有量は0.0
5%以上5%以下と定めた。
(Zn) Zn acts as a deoxidizing agent at the time of melting and casting and has an effect of improving the heat resistance of the solder joint. However, if the content is less than 0.05%, the effect is remarkable. On the other hand, when the content of Zn exceeds 5%, the conductivity is significantly reduced, so that the Zn content is 0.0
5% or more and 5% or less.

【0014】(Sn)Snには、合金の強度を確保する
作用があるが、その含有量が0.05%未満では強度の
向上が十分でなく、一方Sn含有量が3%を超えると導
電率の低下が著しくなるとともに、合金の熱間加工性を
低下させることから、Sn含有量は0.05%以上3%
以下と定めた。
(Sn) Sn has the effect of ensuring the strength of the alloy. However, if its content is less than 0.05%, the strength is not sufficiently improved, while if the Sn content exceeds 3%, the conductivity is increased. The Sn content is 0.05% or more and 3% or less since the hot workability of the alloy is lowered while the rate of reduction is remarkable.
It is determined as follows.

【0015】(Mg、Co、Pb、Zr、Cr、Mn、
Al、Ni、Si、InまたはB)Mg、Co、Pb、
Zr、Cr、Mn、Al、Ni、Si、InまたはBに
は、いずれも等しく上記銅合金の強度を改善する作用が
あるので必要により1種または2種以上の添加がなされ
る。しかし、その含有量が総量で0.01%未満である
と強度改善の効果は得られず、一方総含有量が2%を超
えると導電性が著しく低下することから、これらの含有
量を総量で0.01%以上2%以下と定めた。
(Mg, Co, Pb, Zr, Cr, Mn,
Al, Ni, Si, In or B) Mg, Co, Pb,
Since Zr, Cr, Mn, Al, Ni, Si, In and B all have the same effect of improving the strength of the copper alloy, one or more of them may be added as necessary. However, if the total content is less than 0.01%, the effect of improving the strength cannot be obtained, while if the total content exceeds 2%, the conductivity is significantly reduced. And 0.01% or more and 2% or less.

【0016】(介在物)この合金系ではマトリックス中
に介在物の粒子が存在することがある。この合金に必要
な強度を得るための介在物は小さいが、0.5μmを超
える粗大な介在物は強度に寄与しないばかりか、特に粗
大なものは圧延工程において破断やピンホールの原因と
なり、生産性を著しく低下させる。このような不具合を
起こさないためには、この粗大な介在物の大きさの上限
を10μmとし、圧延平行断面における5〜10μmの
大きさの介在物個数を50個/mm2 未満とすればよ
い。
(Inclusion) In this alloy system, inclusion particles may be present in the matrix. Inclusions for obtaining the necessary strength for this alloy are small, but coarse inclusions exceeding 0.5 μm do not contribute to the strength, and especially large ones cause breakage and pinholes in the rolling process, and Properties are significantly reduced. In order not to cause such a problem, the upper limit of the size of the coarse inclusions is set to 10 μm, and the number of inclusions having a size of 5 to 10 μm in the parallel rolling section is set to less than 50 / mm 2. .

【0017】次に、この合金を得るための製造工程につ
いて説明する。所望の強度および電気伝導性を得るため
には、素材の調質状態は時効処理状態である必要があ
る。この時効処理は、強度、電気伝導性を向上させるた
めに必要であるが、時効処理温度は300〜700℃に
する必要がある。300℃未満では時効処理に時間がか
かり、経済的でなく、他方700℃を超えるとFeが固
溶してしまい、時効による強度および電気伝導性の向上
が生じないためである。また、次に冷間圧延により所望
の板厚に仕上げるわけであるが、冷間圧延後の箔の厚さ
は、100μm(0.1mm)以下とすることが望まし
く、通常の使用形態を想定した圧延銅合金箔の好ましい
厚さは、例えば0.035mm、0.07mm、0.0
18mmまたは0.010mmである。
Next, a manufacturing process for obtaining this alloy will be described. In order to obtain desired strength and electrical conductivity, the tempered state of the material needs to be an aging state. This aging treatment is necessary to improve strength and electrical conductivity, but the aging treatment temperature needs to be 300 to 700 ° C. If the temperature is lower than 300 ° C., it takes a long time to perform the aging treatment, which is not economical. On the other hand, if the temperature is higher than 700 ° C., Fe forms a solid solution, and the aging does not improve the strength and electric conductivity. Next, the sheet is finished to a desired thickness by cold rolling, and the thickness of the foil after the cold rolling is desirably 100 μm (0.1 mm) or less, and a normal use form is assumed. The preferred thickness of the rolled copper alloy foil is, for example, 0.035 mm, 0.07 mm, 0.0
18 mm or 0.010 mm.

【0018】[0018]

【実施例】以下、実施例および比較例により本発明をさ
らに詳しく説明する。 (実施例及び比較例)高周波溶解炉にて表1に示す各種
成分組成の銅合金を溶製し、厚さ20mmのインゴット
に鋳造した。次に、このインゴットを800〜950℃
温度で厚さ8mmまで熱間圧延を行い、表面のスケール
除去のため面削を施した後、冷間圧延により厚さ2mm
の板とした。その後、350〜900℃の温度で1時間
の焼鈍を行った後、0.5mmまで冷間圧延した。そし
てさらに、400〜600℃の温度で5時間の時効を行
った後、冷間圧延で厚さ0.018mmの箔とした。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. (Examples and Comparative Examples) Copper alloys having various component compositions shown in Table 1 were melted in a high-frequency melting furnace and cast into ingots having a thickness of 20 mm. Next, this ingot is heated at 800 to 950 ° C.
After hot rolling to a thickness of 8 mm at a temperature, and after facing the surface to remove scale, 2 mm thick by cold rolling
Plate. Then, after annealing for 1 hour at a temperature of 350 to 900 ° C., cold rolling was performed to 0.5 mm. After further aging for 5 hours at a temperature of 400 to 600 ° C., a foil having a thickness of 0.018 mm was formed by cold rolling.

【0019】このようにして得られた各合金箔につき諸
特性の評価を行った。なお表中には従来合金としてタフ
ピッチ銅を併記した。「強度」については引張試験機に
おいて引張強さを測定した。「電気伝導性」は導電率
(%IACS)によって示した。「耐熱性」の評価は種
々の温度で30分間加熱し、引張強さが加熱前の強度と
十分軟化した時の強度の中間になる温度を軟化温度とし
て求めた。介在物個数は、材料の圧延平行断面を顕微鏡
で観察し、多数箇所において実際に数えた単位平方mm
当たりの大きさ5〜10μmの介在物個数である。ま
た、厚さ0.018mm、幅450mm、長さ5000
mの箔を作製し、生産性の評価も行った。「生産性」は
圧延工程中の破断発生状況および製品段階でのピンホー
ルの発生状況で評価した。「破断」については、破断が
発生しなかった場合を○、破断した場合を×とした。
「ピンホール」については1000m当たりの直径0.
5mm以上のピンホールの発生個数を計測した。
Various properties were evaluated for each of the alloy foils thus obtained. In the table, tough pitch copper is also described as a conventional alloy. As for “strength”, the tensile strength was measured by a tensile tester. "Electrical conductivity" was indicated by conductivity (% IACS). The "heat resistance" was evaluated by heating at various temperatures for 30 minutes, and as a softening temperature a temperature at which the tensile strength was intermediate between the strength before heating and the strength when sufficiently softened. The number of inclusions was obtained by observing the rolled parallel cross section of the material with a microscope and counting the unit square mm
The number of inclusions having a size of 5 to 10 μm per hit. Moreover, thickness 0.018mm, width 450mm, length 5000
m was prepared, and productivity was also evaluated. "Productivity" was evaluated based on the occurrence of breaks during the rolling process and the occurrence of pinholes at the product stage. Regarding “break”, ○ indicates that no break occurred, and x indicates that break occurred.
"Pinhole" has a diameter of 0.1 m per 1000 m.
The number of generated pinholes of 5 mm or more was measured.

【0020】[0020]

【表1】 [Table 1]

【0021】表1からわかるように、本発明合金箔は優
れた強度、導電率および耐熱性を有している。介在物個
数が少ないため、ピンホールの発生個数は少なく、最大
で6個である。一方、比較合金の No.1は、本発明合金
に対し、Feが高いために導電率が劣る。比較合金 No.
2はSnが高いため導電率が劣る。比較合金 No.3はP
を含有していないために強度が劣る。比較合金 No.4
は、Fe、Pとも高いために導電率が劣る。また比較例
No. 1、3、4は、介在物個数が多いために製造工程中
で破断が発生し、ピンホールの個数が増加した例であ
る。
As can be seen from Table 1, the alloy foil of the present invention has excellent strength, electrical conductivity and heat resistance. Since the number of inclusions is small, the number of generated pinholes is small, up to six. On the other hand, the comparative alloy No. 1 is inferior in conductivity to the alloy of the present invention because of the higher Fe. Comparative alloy No.
Sample No. 2 has poor conductivity because of high Sn. Comparative alloy No. 3 is P
, The strength is inferior. Comparative alloy No.4
Has a low conductivity because both Fe and P are high. Comparative example
Nos. 1, 3, and 4 are examples in which breakage occurred during the manufacturing process due to a large number of inclusions, and the number of pinholes increased.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
優れた強度と電気伝導性および耐熱性をも有し、さらに
は生産性にも優れた銅合金箔が得られ、本合金箔は、プ
リント配線基板用およびICテープキャリア等半導体実
装分野の用途において信頼性の高い銅合金箔材料として
好適である。
As described above, according to the present invention,
Copper alloy foil with excellent strength, electrical conductivity and heat resistance, and also excellent productivity can be obtained.This alloy foil can be used for applications in the semiconductor mounting field such as printed wiring boards and IC tape carriers. It is suitable as a highly reliable copper alloy foil material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 602 C22F 1/00 602 603 603 622 622 661 661A 685 685Z 686 686A 691 691B 691C 694 694A ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 602 C22F 1/00 602 603 603 622 622 622 661 661 661A 685 685Z 686 686A 691 691B 691C 694 694A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、0.05〜3.5%のFe
および0.01〜0.4%のPを含有し、残部がCuお
よびその不可避的不純物からなり、そして介在物の大き
さが10μm以下であり、かつ5〜10μmの大きさの
介在物個数が圧延平行断面で50個/mm2 未満である
ことを特徴とする銅合金箔。
1. The method according to claim 1, wherein 0.05 to 3.5% of Fe is contained.
And 0.01 to 0.4% of P, the balance being Cu and its unavoidable impurities, and the size of inclusions is 10 μm or less, and the number of inclusions having a size of 5 to 10 μm is A copper alloy foil having a rolled parallel cross section of less than 50 pieces / mm 2 .
【請求項2】 重量割合で、0.05〜3.5%のFe
および0.01〜0.4%のPを含有し、さらに0.0
5〜5%のZnおよび0.05〜3%のSnのうち1種
または2種を含有し、残部がCuおよびその不可避的不
純物からなり、そして介在物の大きさが10μm以下で
あり、かつ5〜10μmの大きさの介在物個数が圧延平
行断面で50個/mm2 未満であることを特徴とする銅
合金箔。
2. 0.05 to 3.5% by weight of Fe
And 0.01 to 0.4% of P, and 0.0
Contains one or two of 5 to 5% Zn and 0.05 to 3% Sn, the balance being Cu and its unavoidable impurities, and the size of inclusions is 10 μm or less, and A copper alloy foil, wherein the number of inclusions having a size of 5 to 10 μm is less than 50 / mm 2 in a rolled parallel section.
【請求項3】 重量割合で、0.05〜3.5%のFe
および0.01〜0.4%のPを含有し、さらにMg、
Co、Pb、Zr、Cr、Mn、Al、Ni、Si、I
nおよびBのうち1種以上を総量で0.01〜2%含有
し、残部がCuおよびその不可避的不純物からなり、そ
して介在物の大きさが10μm以下であり、かつ5〜1
0μmの大きさの介在物個数が圧延平行断面で50個/
mm2未満であることを特徴とする銅合金箔。
3. The composition according to claim 1, wherein the content of Fe is 0.05 to 3.5% by weight.
And 0.01 to 0.4% P, further containing Mg,
Co, Pb, Zr, Cr, Mn, Al, Ni, Si, I
One or more of n and B are contained in a total amount of 0.01 to 2%, the balance is made of Cu and its unavoidable impurities, and the size of inclusions is 10 μm or less, and 5 to 1
The number of inclusions having a size of 0 μm is 50
A copper alloy foil having a size of less than 2 mm 2 .
【請求項4】 重量割合で、0.05〜3.5%のFe
および0.01〜0.4%のPを含有し、さらに0.0
5〜5%のZnおよび0.05〜3%のSnのうち1種
または2種を含有するとともに、さらにまたMg、C
o、Pb、Zr、Cr、Mn、Al、Ni、Si、In
およびBのうち1種以上を総量で0.01〜2%含有
し、残部がCuおよびその不可避的不純物からなり、そ
して介在物の大きさが10μm以下であり、かつ5〜1
0μmの大きさの介在物個数が圧延平行断面で50個/
mm2 未満であることを特徴とする銅合金箔。
4. 0.05 to 3.5% by weight of Fe
And 0.01 to 0.4% of P, and 0.0
It contains one or two of 5 to 5% Zn and 0.05 to 3% Sn, and further contains Mg, C
o, Pb, Zr, Cr, Mn, Al, Ni, Si, In
And B in a total amount of 0.01 to 2%, the balance being Cu and its unavoidable impurities, and the size of inclusions is 10 μm or less, and 5 to 1%.
The number of inclusions having a size of 0 μm is 50
A copper alloy foil having a size of less than 2 mm 2 .
【請求項5】 鋳塊に所定の圧延と熱処理を施して得た
中間素材に対し、材料温度が300〜700℃の温度で
1〜10時間の時効処理を行った後、最終の圧延で0.
1mm以下の厚さに仕上げたことを特徴とする、請求項
1〜4のいずれかに記載した銅合金箔。
5. An intermediate material obtained by subjecting an ingot to predetermined rolling and heat treatment is subjected to an aging treatment at a material temperature of 300 to 700 ° C. for 1 to 10 hours, and then to 0% in the final rolling. .
The copper alloy foil according to any one of claims 1 to 4, wherein the foil is finished to a thickness of 1 mm or less.
JP8822398A 1998-03-18 1998-03-18 Copper alloy foil Withdrawn JPH11264037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8822398A JPH11264037A (en) 1998-03-18 1998-03-18 Copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8822398A JPH11264037A (en) 1998-03-18 1998-03-18 Copper alloy foil

Publications (1)

Publication Number Publication Date
JPH11264037A true JPH11264037A (en) 1999-09-28

Family

ID=13936885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8822398A Withdrawn JPH11264037A (en) 1998-03-18 1998-03-18 Copper alloy foil

Country Status (1)

Country Link
JP (1) JPH11264037A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632300B2 (en) 2000-06-26 2003-10-14 Olin Corporation Copper alloy having improved stress relaxation resistance
FR2865478A1 (en) * 2004-01-23 2005-07-29 Kobe Steel Ltd Copper alloy with high mechanical strength and high conductivity for use as the conducting frame of an integrated circuit of a semiconductor device and other electric and electronics components
FR2880358A1 (en) * 2005-01-06 2006-07-07 Trefimetaux Copper alloy containing iron and phosphorus in low quantities for use in electronic applications, notably power transistor circuits
JP2007031794A (en) * 2005-07-28 2007-02-08 Kobe Steel Ltd High-strength copper alloy
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
WO2013183860A1 (en) * 2012-06-04 2013-12-12 Park Hyo Joo Copper alloy member and preparation method therefor
KR20150086444A (en) * 2014-01-18 2015-07-28 가부시키가이샤 고베 세이코쇼 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
CN109825739A (en) * 2019-03-29 2019-05-31 安徽众源新材料股份有限公司 A kind of fuse cap copper alloy and production technology
CN115386764A (en) * 2022-09-02 2022-11-25 中色奥博特铜铝业有限公司 CuFe5 alloy foil and processing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632300B2 (en) 2000-06-26 2003-10-14 Olin Corporation Copper alloy having improved stress relaxation resistance
FR2865478A1 (en) * 2004-01-23 2005-07-29 Kobe Steel Ltd Copper alloy with high mechanical strength and high conductivity for use as the conducting frame of an integrated circuit of a semiconductor device and other electric and electronics components
FR2880358A1 (en) * 2005-01-06 2006-07-07 Trefimetaux Copper alloy containing iron and phosphorus in low quantities for use in electronic applications, notably power transistor circuits
JP2007031794A (en) * 2005-07-28 2007-02-08 Kobe Steel Ltd High-strength copper alloy
JP4684787B2 (en) * 2005-07-28 2011-05-18 株式会社神戸製鋼所 High strength copper alloy
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
WO2013183860A1 (en) * 2012-06-04 2013-12-12 Park Hyo Joo Copper alloy member and preparation method therefor
KR20150086444A (en) * 2014-01-18 2015-07-28 가부시키가이샤 고베 세이코쇼 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
CN109825739A (en) * 2019-03-29 2019-05-31 安徽众源新材料股份有限公司 A kind of fuse cap copper alloy and production technology
CN115386764A (en) * 2022-09-02 2022-11-25 中色奥博特铜铝业有限公司 CuFe5 alloy foil and processing method thereof

Similar Documents

Publication Publication Date Title
JP2898627B2 (en) Copper alloy foil
EP2339039B1 (en) Copper alloy sheet for electric and electronic part
KR910001420B1 (en) Film carrier and method of manufacturing same
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
EP0114338B2 (en) Lead frame and method for manufacturing the same
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP2505481B2 (en) Copper alloy foil for flexible circuit boards
JPS63149344A (en) High strength copper alloy having high electrical conductivity
JP2006249516A (en) Copper alloy and its manufacturing method
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
JPH11264040A (en) Copper alloy foil
JPH11264037A (en) Copper alloy foil
KR20240112761A (en) Solder alloy, solder paste, solder ball, solder preform, solder joint, automotive electronic circuit, ecu electronic circuit, automotive electronic circuit device, and ecu electronic circuit device
US4668471A (en) Copper alloy lead material for leads of a semiconductor device
JP2505480B2 (en) Copper alloy foil for flexible circuit boards
JP2003089832A (en) Copper alloy foil having excellent thermal peeling resistance of plating
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
JPH11264038A (en) Copper alloy foil
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP2000239762A (en) Copper alloy low in thermal expansion coefficient and high in thermal conductivity, and electrical and electronic equipment parts using the copper alloy
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
JPS6267144A (en) Copper alloy for lead frame
JPH10183274A (en) Copper alloy for electronic equipment
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP3404278B2 (en) Cu-Ni-Si based copper base alloy with improved annealing cracking

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607